MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / net / sb1250-mac.c
blobe0f88fbd33f58ee35a601b8e8347e9fa47fc6738
1 /*
2 * Copyright (C) 2001,2002,2003 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 This driver is designed for the Broadcom SiByte SOC built-in
21 Ethernet controllers.
23 Written by Mitch Lichtenberg at Broadcom Corp.
28 #define CONFIG_SBMAC_COALESCE
30 /* A few user-configurable values.
31 These may be modified when a driver module is loaded. */
33 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
34 static int noisy_mii = 1; /* mii status msgs */
36 /* Used to pass the media type, etc.
37 Both 'options[]' and 'full_duplex[]' should exist for driver
38 interoperability.
39 The media type is usually passed in 'options[]'.
42 #define MAX_UNITS 3 /* More are supported, limit only on options */
43 #ifdef MODULE
44 static int options[MAX_UNITS] = {-1, -1, -1};
45 static int full_duplex[MAX_UNITS] = {-1, -1, -1};
46 #endif
48 #ifdef CONFIG_SBMAC_COALESCE
49 static int int_pktcnt = 0;
50 static int int_timeout = 0;
51 #endif
53 /* Operational parameters that usually are not changed. */
55 /* Time in jiffies before concluding the transmitter is hung. */
56 #define TX_TIMEOUT (2*HZ)
58 #include <linux/module.h>
59 #include <linux/kernel.h>
60 #include <linux/string.h>
61 #include <linux/timer.h>
62 #include <linux/errno.h>
63 #include <linux/ioport.h>
64 #include <linux/slab.h>
65 #include <linux/interrupt.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/skbuff.h>
69 #include <linux/init.h>
70 #include <linux/config.h>
71 #include <asm/processor.h> /* Processor type for cache alignment. */
72 #include <asm/bitops.h>
73 #include <asm/io.h>
74 #include <asm/cache.h>
76 /* This is only here until the firmware is ready. In that case,
77 the firmware leaves the ethernet address in the register for us. */
78 #ifdef CONFIG_SIBYTE_STANDALONE
79 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
80 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
81 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
82 #endif
85 /* These identify the driver base version and may not be removed. */
86 #if 0
87 static char version1[] __devinitdata =
88 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
89 #endif
93 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
94 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
95 MODULE_PARM(debug, "i");
96 MODULE_PARM(noisy_mii, "i");
97 MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
98 MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
100 MODULE_PARM(int_pktcnt, "i");
101 MODULE_PARM(int_timeout, "i");
103 #include <asm/sibyte/sb1250.h>
104 #include <asm/sibyte/sb1250_defs.h>
105 #include <asm/sibyte/sb1250_regs.h>
106 #include <asm/sibyte/sb1250_mac.h>
107 #include <asm/sibyte/sb1250_dma.h>
108 #include <asm/sibyte/sb1250_int.h>
109 #include <asm/sibyte/sb1250_scd.h>
112 /**********************************************************************
113 * Simple types
114 ********************************************************************* */
117 typedef unsigned long sbmac_port_t;
119 typedef enum { sbmac_speed_auto, sbmac_speed_10,
120 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
122 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
123 sbmac_duplex_full } sbmac_duplex_t;
125 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
126 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
128 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
129 sbmac_state_broken } sbmac_state_t;
132 /**********************************************************************
133 * Macros
134 ********************************************************************* */
137 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
138 (d)->sbdma_dscrtable : (d)->f+1)
141 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
143 #define SBMAC_READCSR(t) __raw_readq((unsigned long)t)
144 #define SBMAC_WRITECSR(t,v) __raw_writeq(v, (unsigned long)t)
147 #define SBMAC_MAX_TXDESCR 32
148 #define SBMAC_MAX_RXDESCR 32
150 #define ETHER_ALIGN 2
151 #define ETHER_ADDR_LEN 6
152 #define ENET_PACKET_SIZE 1518
153 /*#define ENET_PACKET_SIZE 9216 */
155 /**********************************************************************
156 * DMA Descriptor structure
157 ********************************************************************* */
159 typedef struct sbdmadscr_s {
160 uint64_t dscr_a;
161 uint64_t dscr_b;
162 } sbdmadscr_t;
164 typedef unsigned long paddr_t;
166 /**********************************************************************
167 * DMA Controller structure
168 ********************************************************************* */
170 typedef struct sbmacdma_s {
173 * This stuff is used to identify the channel and the registers
174 * associated with it.
177 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
178 int sbdma_channel; /* channel number */
179 int sbdma_txdir; /* direction (1=transmit) */
180 int sbdma_maxdescr; /* total # of descriptors in ring */
181 #ifdef CONFIG_SBMAC_COALESCE
182 int sbdma_int_pktcnt; /* # descriptors rx/tx before interrupt*/
183 int sbdma_int_timeout; /* # usec rx/tx interrupt */
184 #endif
186 sbmac_port_t sbdma_config0; /* DMA config register 0 */
187 sbmac_port_t sbdma_config1; /* DMA config register 1 */
188 sbmac_port_t sbdma_dscrbase; /* Descriptor base address */
189 sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */
190 sbmac_port_t sbdma_curdscr; /* current descriptor address */
193 * This stuff is for maintenance of the ring
196 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
197 sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
199 struct sk_buff **sbdma_ctxtable; /* context table, one per descr */
201 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
202 sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
203 sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
204 } sbmacdma_t;
207 /**********************************************************************
208 * Ethernet softc structure
209 ********************************************************************* */
211 struct sbmac_softc {
214 * Linux-specific things
217 struct net_device *sbm_dev; /* pointer to linux device */
218 spinlock_t sbm_lock; /* spin lock */
219 struct timer_list sbm_timer; /* for monitoring MII */
220 struct net_device_stats sbm_stats;
221 int sbm_devflags; /* current device flags */
223 int sbm_phy_oldbmsr;
224 int sbm_phy_oldanlpar;
225 int sbm_phy_oldk1stsr;
226 int sbm_phy_oldlinkstat;
227 int sbm_buffersize;
229 unsigned char sbm_phys[2];
232 * Controller-specific things
235 unsigned long sbm_base; /* MAC's base address */
236 sbmac_state_t sbm_state; /* current state */
238 sbmac_port_t sbm_macenable; /* MAC Enable Register */
239 sbmac_port_t sbm_maccfg; /* MAC Configuration Register */
240 sbmac_port_t sbm_fifocfg; /* FIFO configuration register */
241 sbmac_port_t sbm_framecfg; /* Frame configuration register */
242 sbmac_port_t sbm_rxfilter; /* receive filter register */
243 sbmac_port_t sbm_isr; /* Interrupt status register */
244 sbmac_port_t sbm_imr; /* Interrupt mask register */
245 sbmac_port_t sbm_mdio; /* MDIO register */
247 sbmac_speed_t sbm_speed; /* current speed */
248 sbmac_duplex_t sbm_duplex; /* current duplex */
249 sbmac_fc_t sbm_fc; /* current flow control setting */
251 unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
253 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
254 sbmacdma_t sbm_rxdma;
255 int rx_hw_checksum;
256 int sbe_idx;
260 /**********************************************************************
261 * Externs
262 ********************************************************************* */
264 /**********************************************************************
265 * Prototypes
266 ********************************************************************* */
268 static void sbdma_initctx(sbmacdma_t *d,
269 struct sbmac_softc *s,
270 int chan,
271 int txrx,
272 int maxdescr);
273 static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
274 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
275 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
276 static void sbdma_emptyring(sbmacdma_t *d);
277 static void sbdma_fillring(sbmacdma_t *d);
278 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d);
279 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d);
280 static int sbmac_initctx(struct sbmac_softc *s);
281 static void sbmac_channel_start(struct sbmac_softc *s);
282 static void sbmac_channel_stop(struct sbmac_softc *s);
283 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
284 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
285 static uint64_t sbmac_addr2reg(unsigned char *ptr);
286 static irqreturn_t sbmac_intr(int irq,void *dev_instance,struct pt_regs *rgs);
287 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
288 static void sbmac_setmulti(struct sbmac_softc *sc);
289 static int sbmac_init(struct net_device *dev, int idx);
290 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
291 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
293 static int sbmac_open(struct net_device *dev);
294 static void sbmac_timer(unsigned long data);
295 static void sbmac_tx_timeout (struct net_device *dev);
296 static struct net_device_stats *sbmac_get_stats(struct net_device *dev);
297 static void sbmac_set_rx_mode(struct net_device *dev);
298 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
299 static int sbmac_close(struct net_device *dev);
300 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
302 static void sbmac_mii_sync(struct sbmac_softc *s);
303 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
304 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
305 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
306 unsigned int regval);
309 /**********************************************************************
310 * Globals
311 ********************************************************************* */
313 static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
316 /**********************************************************************
317 * MDIO constants
318 ********************************************************************* */
320 #define MII_COMMAND_START 0x01
321 #define MII_COMMAND_READ 0x02
322 #define MII_COMMAND_WRITE 0x01
323 #define MII_COMMAND_ACK 0x02
325 #define BMCR_RESET 0x8000
326 #define BMCR_LOOPBACK 0x4000
327 #define BMCR_SPEED0 0x2000
328 #define BMCR_ANENABLE 0x1000
329 #define BMCR_POWERDOWN 0x0800
330 #define BMCR_ISOLATE 0x0400
331 #define BMCR_RESTARTAN 0x0200
332 #define BMCR_DUPLEX 0x0100
333 #define BMCR_COLTEST 0x0080
334 #define BMCR_SPEED1 0x0040
335 #define BMCR_SPEED1000 BMCR_SPEED1
336 #define BMCR_SPEED100 BMCR_SPEED0
337 #define BMCR_SPEED10 0
339 #define BMSR_100BT4 0x8000
340 #define BMSR_100BT_FDX 0x4000
341 #define BMSR_100BT_HDX 0x2000
342 #define BMSR_10BT_FDX 0x1000
343 #define BMSR_10BT_HDX 0x0800
344 #define BMSR_100BT2_FDX 0x0400
345 #define BMSR_100BT2_HDX 0x0200
346 #define BMSR_1000BT_XSR 0x0100
347 #define BMSR_PRESUP 0x0040
348 #define BMSR_ANCOMPLT 0x0020
349 #define BMSR_REMFAULT 0x0010
350 #define BMSR_AUTONEG 0x0008
351 #define BMSR_LINKSTAT 0x0004
352 #define BMSR_JABDETECT 0x0002
353 #define BMSR_EXTCAPAB 0x0001
355 #define PHYIDR1 0x2000
356 #define PHYIDR2 0x5C60
358 #define ANAR_NP 0x8000
359 #define ANAR_RF 0x2000
360 #define ANAR_ASYPAUSE 0x0800
361 #define ANAR_PAUSE 0x0400
362 #define ANAR_T4 0x0200
363 #define ANAR_TXFD 0x0100
364 #define ANAR_TXHD 0x0080
365 #define ANAR_10FD 0x0040
366 #define ANAR_10HD 0x0020
367 #define ANAR_PSB 0x0001
369 #define ANLPAR_NP 0x8000
370 #define ANLPAR_ACK 0x4000
371 #define ANLPAR_RF 0x2000
372 #define ANLPAR_ASYPAUSE 0x0800
373 #define ANLPAR_PAUSE 0x0400
374 #define ANLPAR_T4 0x0200
375 #define ANLPAR_TXFD 0x0100
376 #define ANLPAR_TXHD 0x0080
377 #define ANLPAR_10FD 0x0040
378 #define ANLPAR_10HD 0x0020
379 #define ANLPAR_PSB 0x0001 /* 802.3 */
381 #define ANER_PDF 0x0010
382 #define ANER_LPNPABLE 0x0008
383 #define ANER_NPABLE 0x0004
384 #define ANER_PAGERX 0x0002
385 #define ANER_LPANABLE 0x0001
387 #define ANNPTR_NP 0x8000
388 #define ANNPTR_MP 0x2000
389 #define ANNPTR_ACK2 0x1000
390 #define ANNPTR_TOGTX 0x0800
391 #define ANNPTR_CODE 0x0008
393 #define ANNPRR_NP 0x8000
394 #define ANNPRR_MP 0x2000
395 #define ANNPRR_ACK3 0x1000
396 #define ANNPRR_TOGTX 0x0800
397 #define ANNPRR_CODE 0x0008
399 #define K1TCR_TESTMODE 0x0000
400 #define K1TCR_MSMCE 0x1000
401 #define K1TCR_MSCV 0x0800
402 #define K1TCR_RPTR 0x0400
403 #define K1TCR_1000BT_FDX 0x200
404 #define K1TCR_1000BT_HDX 0x100
406 #define K1STSR_MSMCFLT 0x8000
407 #define K1STSR_MSCFGRES 0x4000
408 #define K1STSR_LRSTAT 0x2000
409 #define K1STSR_RRSTAT 0x1000
410 #define K1STSR_LP1KFD 0x0800
411 #define K1STSR_LP1KHD 0x0400
412 #define K1STSR_LPASMDIR 0x0200
414 #define K1SCR_1KX_FDX 0x8000
415 #define K1SCR_1KX_HDX 0x4000
416 #define K1SCR_1KT_FDX 0x2000
417 #define K1SCR_1KT_HDX 0x1000
419 #define STRAP_PHY1 0x0800
420 #define STRAP_NCMODE 0x0400
421 #define STRAP_MANMSCFG 0x0200
422 #define STRAP_ANENABLE 0x0100
423 #define STRAP_MSVAL 0x0080
424 #define STRAP_1KHDXADV 0x0010
425 #define STRAP_1KFDXADV 0x0008
426 #define STRAP_100ADV 0x0004
427 #define STRAP_SPEEDSEL 0x0000
428 #define STRAP_SPEED100 0x0001
430 #define PHYSUP_SPEED1000 0x10
431 #define PHYSUP_SPEED100 0x08
432 #define PHYSUP_SPEED10 0x00
433 #define PHYSUP_LINKUP 0x04
434 #define PHYSUP_FDX 0x02
436 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
437 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
438 #define MII_K1STSR 0x0A /* 1K Status Register (ro) */
439 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
442 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
444 #define ENABLE 1
445 #define DISABLE 0
447 /**********************************************************************
448 * SBMAC_MII_SYNC(s)
450 * Synchronize with the MII - send a pattern of bits to the MII
451 * that will guarantee that it is ready to accept a command.
453 * Input parameters:
454 * s - sbmac structure
456 * Return value:
457 * nothing
458 ********************************************************************* */
460 static void sbmac_mii_sync(struct sbmac_softc *s)
462 int cnt;
463 uint64_t bits;
464 int mac_mdio_genc;
466 mac_mdio_genc = SBMAC_READCSR(s->sbm_mdio) & M_MAC_GENC;
468 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
470 SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
472 for (cnt = 0; cnt < 32; cnt++) {
473 SBMAC_WRITECSR(s->sbm_mdio,bits | M_MAC_MDC | mac_mdio_genc);
474 SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
478 /**********************************************************************
479 * SBMAC_MII_SENDDATA(s,data,bitcnt)
481 * Send some bits to the MII. The bits to be sent are right-
482 * justified in the 'data' parameter.
484 * Input parameters:
485 * s - sbmac structure
486 * data - data to send
487 * bitcnt - number of bits to send
488 ********************************************************************* */
490 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
492 int i;
493 uint64_t bits;
494 unsigned int curmask;
495 int mac_mdio_genc;
497 mac_mdio_genc = SBMAC_READCSR(s->sbm_mdio) & M_MAC_GENC;
499 bits = M_MAC_MDIO_DIR_OUTPUT;
500 SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
502 curmask = 1 << (bitcnt - 1);
504 for (i = 0; i < bitcnt; i++) {
505 if (data & curmask)
506 bits |= M_MAC_MDIO_OUT;
507 else bits &= ~M_MAC_MDIO_OUT;
508 SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
509 SBMAC_WRITECSR(s->sbm_mdio,bits | M_MAC_MDC | mac_mdio_genc);
510 SBMAC_WRITECSR(s->sbm_mdio,bits | mac_mdio_genc);
511 curmask >>= 1;
517 /**********************************************************************
518 * SBMAC_MII_READ(s,phyaddr,regidx)
520 * Read a PHY register.
522 * Input parameters:
523 * s - sbmac structure
524 * phyaddr - PHY's address
525 * regidx = index of register to read
527 * Return value:
528 * value read, or 0 if an error occurred.
529 ********************************************************************* */
531 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
533 int idx;
534 int error;
535 int regval;
536 int mac_mdio_genc;
539 * Synchronize ourselves so that the PHY knows the next
540 * thing coming down is a command
543 sbmac_mii_sync(s);
546 * Send the data to the PHY. The sequence is
547 * a "start" command (2 bits)
548 * a "read" command (2 bits)
549 * the PHY addr (5 bits)
550 * the register index (5 bits)
553 sbmac_mii_senddata(s,MII_COMMAND_START, 2);
554 sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
555 sbmac_mii_senddata(s,phyaddr, 5);
556 sbmac_mii_senddata(s,regidx, 5);
558 mac_mdio_genc = SBMAC_READCSR(s->sbm_mdio) & M_MAC_GENC;
561 * Switch the port around without a clock transition.
563 SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | mac_mdio_genc);
566 * Send out a clock pulse to signal we want the status
569 SBMAC_WRITECSR(s->sbm_mdio,
570 M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc);
571 SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | mac_mdio_genc);
574 * If an error occurred, the PHY will signal '1' back
576 error = SBMAC_READCSR(s->sbm_mdio) & M_MAC_MDIO_IN;
579 * Issue an 'idle' clock pulse, but keep the direction
580 * the same.
582 SBMAC_WRITECSR(s->sbm_mdio,
583 M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc);
584 SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_INPUT | mac_mdio_genc);
586 regval = 0;
588 for (idx = 0; idx < 16; idx++) {
589 regval <<= 1;
591 if (error == 0) {
592 if (SBMAC_READCSR(s->sbm_mdio) & M_MAC_MDIO_IN)
593 regval |= 1;
596 SBMAC_WRITECSR(s->sbm_mdio,
597 M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc);
598 SBMAC_WRITECSR(s->sbm_mdio,
599 M_MAC_MDIO_DIR_INPUT | mac_mdio_genc);
602 /* Switch back to output */
603 SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc);
605 if (error == 0)
606 return regval;
607 return 0;
611 /**********************************************************************
612 * SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
614 * Write a value to a PHY register.
616 * Input parameters:
617 * s - sbmac structure
618 * phyaddr - PHY to use
619 * regidx - register within the PHY
620 * regval - data to write to register
622 * Return value:
623 * nothing
624 ********************************************************************* */
626 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
627 unsigned int regval)
629 int mac_mdio_genc;
631 sbmac_mii_sync(s);
633 sbmac_mii_senddata(s,MII_COMMAND_START,2);
634 sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
635 sbmac_mii_senddata(s,phyaddr, 5);
636 sbmac_mii_senddata(s,regidx, 5);
637 sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
638 sbmac_mii_senddata(s,regval,16);
640 mac_mdio_genc = SBMAC_READCSR(s->sbm_mdio) & M_MAC_GENC;
642 SBMAC_WRITECSR(s->sbm_mdio,M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc);
647 /**********************************************************************
648 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
650 * Initialize a DMA channel context. Since there are potentially
651 * eight DMA channels per MAC, it's nice to do this in a standard
652 * way.
654 * Input parameters:
655 * d - sbmacdma_t structure (DMA channel context)
656 * s - sbmac_softc structure (pointer to a MAC)
657 * chan - channel number (0..1 right now)
658 * txrx - Identifies DMA_TX or DMA_RX for channel direction
659 * maxdescr - number of descriptors
661 * Return value:
662 * nothing
663 ********************************************************************* */
665 static void sbdma_initctx(sbmacdma_t *d,
666 struct sbmac_softc *s,
667 int chan,
668 int txrx,
669 int maxdescr)
672 * Save away interesting stuff in the structure
675 d->sbdma_eth = s;
676 d->sbdma_channel = chan;
677 d->sbdma_txdir = txrx;
679 #if 0
680 /* RMON clearing */
681 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
682 #endif
684 SBMAC_WRITECSR(IOADDR(
685 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)), 0);
686 SBMAC_WRITECSR(IOADDR(
687 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)), 0);
688 SBMAC_WRITECSR(IOADDR(
689 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)), 0);
690 SBMAC_WRITECSR(IOADDR(
691 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)), 0);
692 SBMAC_WRITECSR(IOADDR(
693 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)), 0);
694 SBMAC_WRITECSR(IOADDR(
695 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)), 0);
696 SBMAC_WRITECSR(IOADDR(
697 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)), 0);
698 SBMAC_WRITECSR(IOADDR(
699 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)), 0);
700 SBMAC_WRITECSR(IOADDR(
701 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)), 0);
702 SBMAC_WRITECSR(IOADDR(
703 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)), 0);
704 SBMAC_WRITECSR(IOADDR(
705 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)), 0);
706 SBMAC_WRITECSR(IOADDR(
707 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)), 0);
708 SBMAC_WRITECSR(IOADDR(
709 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)), 0);
710 SBMAC_WRITECSR(IOADDR(
711 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)), 0);
712 SBMAC_WRITECSR(IOADDR(
713 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)), 0);
714 SBMAC_WRITECSR(IOADDR(
715 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)), 0);
716 SBMAC_WRITECSR(IOADDR(
717 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)), 0);
718 SBMAC_WRITECSR(IOADDR(
719 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)), 0);
720 SBMAC_WRITECSR(IOADDR(
721 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)), 0);
722 SBMAC_WRITECSR(IOADDR(
723 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)), 0);
724 SBMAC_WRITECSR(IOADDR(
725 A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)), 0);
728 * initialize register pointers
731 d->sbdma_config0 =
732 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
733 d->sbdma_config1 =
734 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
735 d->sbdma_dscrbase =
736 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
737 d->sbdma_dscrcnt =
738 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
739 d->sbdma_curdscr =
740 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
743 * Allocate memory for the ring
746 d->sbdma_maxdescr = maxdescr;
748 d->sbdma_dscrtable = (sbdmadscr_t *)
749 kmalloc(d->sbdma_maxdescr*sizeof(sbdmadscr_t), GFP_KERNEL);
751 memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
753 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
755 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
758 * And context table
761 d->sbdma_ctxtable = (struct sk_buff **)
762 kmalloc(d->sbdma_maxdescr*sizeof(struct sk_buff *), GFP_KERNEL);
764 memset(d->sbdma_ctxtable,0,d->sbdma_maxdescr*sizeof(struct sk_buff *));
766 #ifdef CONFIG_SBMAC_COALESCE
768 * Setup Rx/Tx DMA coalescing defaults
771 if ( int_pktcnt ) {
772 d->sbdma_int_pktcnt = int_pktcnt;
773 } else {
774 d->sbdma_int_pktcnt = 1;
777 if ( int_timeout ) {
778 d->sbdma_int_timeout = int_timeout;
779 } else {
780 d->sbdma_int_timeout = 0;
782 #endif
786 /**********************************************************************
787 * SBDMA_CHANNEL_START(d)
789 * Initialize the hardware registers for a DMA channel.
791 * Input parameters:
792 * d - DMA channel to init (context must be previously init'd
793 * rxtx - DMA_RX or DMA_TX depending on what type of channel
795 * Return value:
796 * nothing
797 ********************************************************************* */
799 static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
802 * Turn on the DMA channel
805 #ifdef CONFIG_SBMAC_COALESCE
806 SBMAC_WRITECSR(d->sbdma_config1,
807 V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
809 SBMAC_WRITECSR(d->sbdma_config0,
810 M_DMA_EOP_INT_EN |
811 V_DMA_RINGSZ(d->sbdma_maxdescr) |
812 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
814 #else
815 SBMAC_WRITECSR(d->sbdma_config1,0);
816 SBMAC_WRITECSR(d->sbdma_config0,
817 V_DMA_RINGSZ(d->sbdma_maxdescr) |
819 #endif
821 SBMAC_WRITECSR(d->sbdma_dscrbase,d->sbdma_dscrtable_phys);
824 * Initialize ring pointers
827 d->sbdma_addptr = d->sbdma_dscrtable;
828 d->sbdma_remptr = d->sbdma_dscrtable;
831 /**********************************************************************
832 * SBDMA_CHANNEL_STOP(d)
834 * Initialize the hardware registers for a DMA channel.
836 * Input parameters:
837 * d - DMA channel to init (context must be previously init'd
839 * Return value:
840 * nothing
841 ********************************************************************* */
843 static void sbdma_channel_stop(sbmacdma_t *d)
846 * Turn off the DMA channel
849 SBMAC_WRITECSR(d->sbdma_config1,0);
851 SBMAC_WRITECSR(d->sbdma_dscrbase,0);
853 SBMAC_WRITECSR(d->sbdma_config0,0);
856 * Zero ring pointers
859 d->sbdma_addptr = 0;
860 d->sbdma_remptr = 0;
863 static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
865 unsigned long addr;
866 unsigned long newaddr;
868 addr = (unsigned long) skb->data;
870 newaddr = (addr + power2 - 1) & ~(power2 - 1);
872 skb_reserve(skb,newaddr-addr+offset);
876 /**********************************************************************
877 * SBDMA_ADD_RCVBUFFER(d,sb)
879 * Add a buffer to the specified DMA channel. For receive channels,
880 * this queues a buffer for inbound packets.
882 * Input parameters:
883 * d - DMA channel descriptor
884 * sb - sk_buff to add, or NULL if we should allocate one
886 * Return value:
887 * 0 if buffer could not be added (ring is full)
888 * 1 if buffer added successfully
889 ********************************************************************* */
892 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
894 sbdmadscr_t *dsc;
895 sbdmadscr_t *nextdsc;
896 struct sk_buff *sb_new = NULL;
897 int pktsize = ENET_PACKET_SIZE;
899 /* get pointer to our current place in the ring */
901 dsc = d->sbdma_addptr;
902 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
905 * figure out if the ring is full - if the next descriptor
906 * is the same as the one that we're going to remove from
907 * the ring, the ring is full
910 if (nextdsc == d->sbdma_remptr) {
911 return -ENOSPC;
915 * Allocate a sk_buff if we don't already have one.
916 * If we do have an sk_buff, reset it so that it's empty.
918 * Note: sk_buffs don't seem to be guaranteed to have any sort
919 * of alignment when they are allocated. Therefore, allocate enough
920 * extra space to make sure that:
922 * 1. the data does not start in the middle of a cache line.
923 * 2. The data does not end in the middle of a cache line
924 * 3. The buffer can be aligned such that the IP addresses are
925 * naturally aligned.
927 * Remember, the SOCs MAC writes whole cache lines at a time,
928 * without reading the old contents first. So, if the sk_buff's
929 * data portion starts in the middle of a cache line, the SOC
930 * DMA will trash the beginning (and ending) portions.
933 if (sb == NULL) {
934 sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
935 if (sb_new == NULL) {
936 printk(KERN_INFO "%s: sk_buff allocation failed\n",
937 d->sbdma_eth->sbm_dev->name);
938 return -ENOBUFS;
941 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
943 /* mark skbuff owned by our device */
944 sb_new->dev = d->sbdma_eth->sbm_dev;
946 else {
947 sb_new = sb;
949 * nothing special to reinit buffer, it's already aligned
950 * and sb->data already points to a good place.
955 * fill in the descriptor
958 #ifdef CONFIG_SBMAC_COALESCE
960 * Do not interrupt per DMA transfer.
962 dsc->dscr_a = virt_to_phys(sb_new->tail) |
963 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
965 #else
966 dsc->dscr_a = virt_to_phys(sb_new->tail) |
967 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
968 M_DMA_DSCRA_INTERRUPT;
969 #endif
971 /* receiving: no options */
972 dsc->dscr_b = 0;
975 * fill in the context
978 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
981 * point at next packet
984 d->sbdma_addptr = nextdsc;
987 * Give the buffer to the DMA engine.
990 SBMAC_WRITECSR(d->sbdma_dscrcnt,1);
992 return 0; /* we did it */
995 /**********************************************************************
996 * SBDMA_ADD_TXBUFFER(d,sb)
998 * Add a transmit buffer to the specified DMA channel, causing a
999 * transmit to start.
1001 * Input parameters:
1002 * d - DMA channel descriptor
1003 * sb - sk_buff to add
1005 * Return value:
1006 * 0 transmit queued successfully
1007 * otherwise error code
1008 ********************************************************************* */
1011 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
1013 sbdmadscr_t *dsc;
1014 sbdmadscr_t *nextdsc;
1015 uint64_t phys;
1016 uint64_t ncb;
1017 int length;
1019 /* get pointer to our current place in the ring */
1021 dsc = d->sbdma_addptr;
1022 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
1025 * figure out if the ring is full - if the next descriptor
1026 * is the same as the one that we're going to remove from
1027 * the ring, the ring is full
1030 if (nextdsc == d->sbdma_remptr) {
1031 return -ENOSPC;
1035 * Under Linux, it's not necessary to copy/coalesce buffers
1036 * like it is on NetBSD. We think they're all contiguous,
1037 * but that may not be true for GBE.
1040 length = sb->len;
1043 * fill in the descriptor. Note that the number of cache
1044 * blocks in the descriptor is the number of blocks
1045 * *spanned*, so we need to add in the offset (if any)
1046 * while doing the calculation.
1049 phys = virt_to_phys(sb->data);
1050 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
1052 dsc->dscr_a = phys |
1053 V_DMA_DSCRA_A_SIZE(ncb) |
1054 #ifndef CONFIG_SBMAC_COALESCE
1055 M_DMA_DSCRA_INTERRUPT |
1056 #endif
1057 M_DMA_ETHTX_SOP;
1059 /* transmitting: set outbound options and length */
1061 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
1062 V_DMA_DSCRB_PKT_SIZE(length);
1065 * fill in the context
1068 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
1071 * point at next packet
1074 d->sbdma_addptr = nextdsc;
1077 * Give the buffer to the DMA engine.
1080 SBMAC_WRITECSR(d->sbdma_dscrcnt,1);
1082 return 0; /* we did it */
1088 /**********************************************************************
1089 * SBDMA_EMPTYRING(d)
1091 * Free all allocated sk_buffs on the specified DMA channel;
1093 * Input parameters:
1094 * d - DMA channel
1096 * Return value:
1097 * nothing
1098 ********************************************************************* */
1100 static void sbdma_emptyring(sbmacdma_t *d)
1102 int idx;
1103 struct sk_buff *sb;
1105 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1106 sb = d->sbdma_ctxtable[idx];
1107 if (sb) {
1108 dev_kfree_skb(sb);
1109 d->sbdma_ctxtable[idx] = NULL;
1115 /**********************************************************************
1116 * SBDMA_FILLRING(d)
1118 * Fill the specified DMA channel (must be receive channel)
1119 * with sk_buffs
1121 * Input parameters:
1122 * d - DMA channel
1124 * Return value:
1125 * nothing
1126 ********************************************************************* */
1128 static void sbdma_fillring(sbmacdma_t *d)
1130 int idx;
1132 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
1133 if (sbdma_add_rcvbuffer(d,NULL) != 0)
1134 break;
1139 /**********************************************************************
1140 * SBDMA_RX_PROCESS(sc,d)
1142 * Process "completed" receive buffers on the specified DMA channel.
1143 * Note that this isn't really ideal for priority channels, since
1144 * it processes all of the packets on a given channel before
1145 * returning.
1147 * Input parameters:
1148 * sc - softc structure
1149 * d - DMA channel context
1151 * Return value:
1152 * nothing
1153 ********************************************************************* */
1155 static void sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1157 int curidx;
1158 int hwidx;
1159 sbdmadscr_t *dsc;
1160 struct sk_buff *sb;
1161 int len;
1163 for (;;) {
1165 * figure out where we are (as an index) and where
1166 * the hardware is (also as an index)
1168 * This could be done faster if (for example) the
1169 * descriptor table was page-aligned and contiguous in
1170 * both virtual and physical memory -- you could then
1171 * just compare the low-order bits of the virtual address
1172 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1175 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1176 hwidx = (int) (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1177 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1180 * If they're the same, that means we've processed all
1181 * of the descriptors up to (but not including) the one that
1182 * the hardware is working on right now.
1185 if (curidx == hwidx)
1186 break;
1189 * Otherwise, get the packet's sk_buff ptr back
1192 dsc = &(d->sbdma_dscrtable[curidx]);
1193 sb = d->sbdma_ctxtable[curidx];
1194 d->sbdma_ctxtable[curidx] = NULL;
1196 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1199 * Check packet status. If good, process it.
1200 * If not, silently drop it and put it back on the
1201 * receive ring.
1204 if (!(dsc->dscr_a & M_DMA_ETHRX_BAD)) {
1207 * Add a new buffer to replace the old one. If we fail
1208 * to allocate a buffer, we're going to drop this
1209 * packet and put it right back on the receive ring.
1212 if (sbdma_add_rcvbuffer(d,NULL) == -ENOBUFS) {
1213 sc->sbm_stats.rx_dropped++;
1214 sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
1215 } else {
1217 * Set length into the packet
1219 skb_put(sb,len);
1222 * Buffer has been replaced on the
1223 * receive ring. Pass the buffer to
1224 * the kernel
1226 sc->sbm_stats.rx_bytes += len;
1227 sc->sbm_stats.rx_packets++;
1228 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1229 /* Check hw IPv4/TCP checksum if supported */
1230 if (sc->rx_hw_checksum == ENABLE) {
1231 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1232 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1233 sb->ip_summed = CHECKSUM_UNNECESSARY;
1234 /* don't need to set sb->csum */
1235 } else {
1236 sb->ip_summed = CHECKSUM_NONE;
1240 netif_rx(sb);
1242 } else {
1244 * Packet was mangled somehow. Just drop it and
1245 * put it back on the receive ring.
1247 sc->sbm_stats.rx_errors++;
1248 sbdma_add_rcvbuffer(d,sb);
1253 * .. and advance to the next buffer.
1256 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1263 /**********************************************************************
1264 * SBDMA_TX_PROCESS(sc,d)
1266 * Process "completed" transmit buffers on the specified DMA channel.
1267 * This is normally called within the interrupt service routine.
1268 * Note that this isn't really ideal for priority channels, since
1269 * it processes all of the packets on a given channel before
1270 * returning.
1272 * Input parameters:
1273 * sc - softc structure
1274 * d - DMA channel context
1276 * Return value:
1277 * nothing
1278 ********************************************************************* */
1280 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d)
1282 int curidx;
1283 int hwidx;
1284 sbdmadscr_t *dsc;
1285 struct sk_buff *sb;
1286 unsigned long flags;
1288 spin_lock_irqsave(&(sc->sbm_lock), flags);
1290 for (;;) {
1292 * figure out where we are (as an index) and where
1293 * the hardware is (also as an index)
1295 * This could be done faster if (for example) the
1296 * descriptor table was page-aligned and contiguous in
1297 * both virtual and physical memory -- you could then
1298 * just compare the low-order bits of the virtual address
1299 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1302 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1303 hwidx = (int) (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1304 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1307 * If they're the same, that means we've processed all
1308 * of the descriptors up to (but not including) the one that
1309 * the hardware is working on right now.
1312 if (curidx == hwidx)
1313 break;
1316 * Otherwise, get the packet's sk_buff ptr back
1319 dsc = &(d->sbdma_dscrtable[curidx]);
1320 sb = d->sbdma_ctxtable[curidx];
1321 d->sbdma_ctxtable[curidx] = NULL;
1324 * Stats
1327 sc->sbm_stats.tx_bytes += sb->len;
1328 sc->sbm_stats.tx_packets++;
1331 * for transmits, we just free buffers.
1334 dev_kfree_skb_irq(sb);
1337 * .. and advance to the next buffer.
1340 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1345 * Decide if we should wake up the protocol or not.
1346 * Other drivers seem to do this when we reach a low
1347 * watermark on the transmit queue.
1350 netif_wake_queue(d->sbdma_eth->sbm_dev);
1352 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1358 /**********************************************************************
1359 * SBMAC_INITCTX(s)
1361 * Initialize an Ethernet context structure - this is called
1362 * once per MAC on the 1250. Memory is allocated here, so don't
1363 * call it again from inside the ioctl routines that bring the
1364 * interface up/down
1366 * Input parameters:
1367 * s - sbmac context structure
1369 * Return value:
1371 ********************************************************************* */
1373 static int sbmac_initctx(struct sbmac_softc *s)
1377 * figure out the addresses of some ports
1380 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1381 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1382 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1383 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1384 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1385 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1386 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1387 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1389 s->sbm_phys[0] = 1;
1390 s->sbm_phys[1] = 0;
1392 s->sbm_phy_oldbmsr = 0;
1393 s->sbm_phy_oldanlpar = 0;
1394 s->sbm_phy_oldk1stsr = 0;
1395 s->sbm_phy_oldlinkstat = 0;
1398 * Initialize the DMA channels. Right now, only one per MAC is used
1399 * Note: Only do this _once_, as it allocates memory from the kernel!
1402 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1403 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1406 * initial state is OFF
1409 s->sbm_state = sbmac_state_off;
1412 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1415 s->sbm_speed = sbmac_speed_10;
1416 s->sbm_duplex = sbmac_duplex_half;
1417 s->sbm_fc = sbmac_fc_disabled;
1419 return 0;
1423 static void sbdma_uninitctx(struct sbmacdma_s *d)
1425 if (d->sbdma_dscrtable) {
1426 kfree(d->sbdma_dscrtable);
1427 d->sbdma_dscrtable = NULL;
1430 if (d->sbdma_ctxtable) {
1431 kfree(d->sbdma_ctxtable);
1432 d->sbdma_ctxtable = NULL;
1437 static void sbmac_uninitctx(struct sbmac_softc *sc)
1439 sbdma_uninitctx(&(sc->sbm_txdma));
1440 sbdma_uninitctx(&(sc->sbm_rxdma));
1444 /**********************************************************************
1445 * SBMAC_CHANNEL_START(s)
1447 * Start packet processing on this MAC.
1449 * Input parameters:
1450 * s - sbmac structure
1452 * Return value:
1453 * nothing
1454 ********************************************************************* */
1456 static void sbmac_channel_start(struct sbmac_softc *s)
1458 uint64_t reg;
1459 sbmac_port_t port;
1460 uint64_t cfg,fifo,framecfg;
1461 int idx, th_value;
1464 * Don't do this if running
1467 if (s->sbm_state == sbmac_state_on)
1468 return;
1471 * Bring the controller out of reset, but leave it off.
1474 SBMAC_WRITECSR(s->sbm_macenable,0);
1477 * Ignore all received packets
1480 SBMAC_WRITECSR(s->sbm_rxfilter,0);
1483 * Calculate values for various control registers.
1486 cfg = M_MAC_RETRY_EN |
1487 M_MAC_TX_HOLD_SOP_EN |
1488 V_MAC_TX_PAUSE_CNT_16K |
1489 M_MAC_AP_STAT_EN |
1490 M_MAC_FAST_SYNC |
1491 M_MAC_SS_EN |
1495 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1496 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1497 * Use a larger RD_THRSH for gigabit
1499 if (periph_rev >= 2)
1500 th_value = 64;
1501 else
1502 th_value = 28;
1504 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1505 ((s->sbm_speed == sbmac_speed_1000)
1506 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1507 V_MAC_TX_RL_THRSH(4) |
1508 V_MAC_RX_PL_THRSH(4) |
1509 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1510 V_MAC_RX_PL_THRSH(4) |
1511 V_MAC_RX_RL_THRSH(8) |
1514 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1515 V_MAC_MAX_FRAMESZ_DEFAULT |
1516 V_MAC_BACKOFF_SEL(1);
1519 * Clear out the hash address map
1522 port = s->sbm_base + R_MAC_HASH_BASE;
1523 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1524 SBMAC_WRITECSR(port,0);
1525 port += sizeof(uint64_t);
1529 * Clear out the exact-match table
1532 port = s->sbm_base + R_MAC_ADDR_BASE;
1533 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1534 SBMAC_WRITECSR(port,0);
1535 port += sizeof(uint64_t);
1539 * Clear out the DMA Channel mapping table registers
1542 port = s->sbm_base + R_MAC_CHUP0_BASE;
1543 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1544 SBMAC_WRITECSR(port,0);
1545 port += sizeof(uint64_t);
1549 port = s->sbm_base + R_MAC_CHLO0_BASE;
1550 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1551 SBMAC_WRITECSR(port,0);
1552 port += sizeof(uint64_t);
1556 * Program the hardware address. It goes into the hardware-address
1557 * register as well as the first filter register.
1560 reg = sbmac_addr2reg(s->sbm_hwaddr);
1562 port = s->sbm_base + R_MAC_ADDR_BASE;
1563 SBMAC_WRITECSR(port,reg);
1564 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1566 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1568 * Pass1 SOCs do not receive packets addressed to the
1569 * destination address in the R_MAC_ETHERNET_ADDR register.
1570 * Set the value to zero.
1572 SBMAC_WRITECSR(port,0);
1573 #else
1574 SBMAC_WRITECSR(port,reg);
1575 #endif
1578 * Set the receive filter for no packets, and write values
1579 * to the various config registers
1582 SBMAC_WRITECSR(s->sbm_rxfilter,0);
1583 SBMAC_WRITECSR(s->sbm_imr,0);
1584 SBMAC_WRITECSR(s->sbm_framecfg,framecfg);
1585 SBMAC_WRITECSR(s->sbm_fifocfg,fifo);
1586 SBMAC_WRITECSR(s->sbm_maccfg,cfg);
1589 * Initialize DMA channels (rings should be ok now)
1592 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1593 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1596 * Configure the speed, duplex, and flow control
1599 sbmac_set_speed(s,s->sbm_speed);
1600 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1603 * Fill the receive ring
1606 sbdma_fillring(&(s->sbm_rxdma));
1609 * Turn on the rest of the bits in the enable register
1612 SBMAC_WRITECSR(s->sbm_macenable,
1613 M_MAC_RXDMA_EN0 |
1614 M_MAC_TXDMA_EN0 |
1615 M_MAC_RX_ENABLE |
1616 M_MAC_TX_ENABLE);
1621 #ifdef CONFIG_SBMAC_COALESCE
1623 * Accept any TX interrupt and EOP count/timer RX interrupts on ch 0
1625 SBMAC_WRITECSR(s->sbm_imr,
1626 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1627 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0));
1628 #else
1630 * Accept any kind of interrupt on TX and RX DMA channel 0
1632 SBMAC_WRITECSR(s->sbm_imr,
1633 (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1634 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1635 #endif
1638 * Enable receiving unicasts and broadcasts
1641 SBMAC_WRITECSR(s->sbm_rxfilter,M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1644 * we're running now.
1647 s->sbm_state = sbmac_state_on;
1650 * Program multicast addresses
1653 sbmac_setmulti(s);
1656 * If channel was in promiscuous mode before, turn that on
1659 if (s->sbm_devflags & IFF_PROMISC) {
1660 sbmac_promiscuous_mode(s,1);
1666 /**********************************************************************
1667 * SBMAC_CHANNEL_STOP(s)
1669 * Stop packet processing on this MAC.
1671 * Input parameters:
1672 * s - sbmac structure
1674 * Return value:
1675 * nothing
1676 ********************************************************************* */
1678 static void sbmac_channel_stop(struct sbmac_softc *s)
1680 /* don't do this if already stopped */
1682 if (s->sbm_state == sbmac_state_off)
1683 return;
1685 /* don't accept any packets, disable all interrupts */
1687 SBMAC_WRITECSR(s->sbm_rxfilter,0);
1688 SBMAC_WRITECSR(s->sbm_imr,0);
1690 /* Turn off ticker */
1692 /* XXX */
1694 /* turn off receiver and transmitter */
1696 SBMAC_WRITECSR(s->sbm_macenable,0);
1698 /* We're stopped now. */
1700 s->sbm_state = sbmac_state_off;
1703 * Stop DMA channels (rings should be ok now)
1706 sbdma_channel_stop(&(s->sbm_rxdma));
1707 sbdma_channel_stop(&(s->sbm_txdma));
1709 /* Empty the receive and transmit rings */
1711 sbdma_emptyring(&(s->sbm_rxdma));
1712 sbdma_emptyring(&(s->sbm_txdma));
1716 /**********************************************************************
1717 * SBMAC_SET_CHANNEL_STATE(state)
1719 * Set the channel's state ON or OFF
1721 * Input parameters:
1722 * state - new state
1724 * Return value:
1725 * old state
1726 ********************************************************************* */
1727 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
1728 sbmac_state_t state)
1730 sbmac_state_t oldstate = sc->sbm_state;
1733 * If same as previous state, return
1736 if (state == oldstate) {
1737 return oldstate;
1741 * If new state is ON, turn channel on
1744 if (state == sbmac_state_on) {
1745 sbmac_channel_start(sc);
1747 else {
1748 sbmac_channel_stop(sc);
1752 * Return previous state
1755 return oldstate;
1759 /**********************************************************************
1760 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1762 * Turn on or off promiscuous mode
1764 * Input parameters:
1765 * sc - softc
1766 * onoff - 1 to turn on, 0 to turn off
1768 * Return value:
1769 * nothing
1770 ********************************************************************* */
1772 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1774 uint64_t reg;
1776 if (sc->sbm_state != sbmac_state_on)
1777 return;
1779 if (onoff) {
1780 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1781 reg |= M_MAC_ALLPKT_EN;
1782 SBMAC_WRITECSR(sc->sbm_rxfilter,reg);
1784 else {
1785 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1786 reg &= ~M_MAC_ALLPKT_EN;
1787 SBMAC_WRITECSR(sc->sbm_rxfilter,reg);
1791 /**********************************************************************
1792 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1794 * Set the iphdr offset as 15 assuming ethernet encapsulation
1796 * Input parameters:
1797 * sc - softc
1799 * Return value:
1800 * nothing
1801 ********************************************************************* */
1803 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1805 uint64_t reg;
1807 /* Hard code the off set to 15 for now */
1808 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1809 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1810 SBMAC_WRITECSR(sc->sbm_rxfilter,reg);
1812 /* read system identification to determine revision */
1813 if (periph_rev >= 2) {
1814 printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
1815 sc->sbm_dev->name);
1816 sc->rx_hw_checksum = ENABLE;
1817 } else {
1818 sc->rx_hw_checksum = DISABLE;
1823 /**********************************************************************
1824 * SBMAC_ADDR2REG(ptr)
1826 * Convert six bytes into the 64-bit register value that
1827 * we typically write into the SBMAC's address/mcast registers
1829 * Input parameters:
1830 * ptr - pointer to 6 bytes
1832 * Return value:
1833 * register value
1834 ********************************************************************* */
1836 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1838 uint64_t reg = 0;
1840 ptr += 6;
1842 reg |= (uint64_t) *(--ptr);
1843 reg <<= 8;
1844 reg |= (uint64_t) *(--ptr);
1845 reg <<= 8;
1846 reg |= (uint64_t) *(--ptr);
1847 reg <<= 8;
1848 reg |= (uint64_t) *(--ptr);
1849 reg <<= 8;
1850 reg |= (uint64_t) *(--ptr);
1851 reg <<= 8;
1852 reg |= (uint64_t) *(--ptr);
1854 return reg;
1858 /**********************************************************************
1859 * SBMAC_SET_SPEED(s,speed)
1861 * Configure LAN speed for the specified MAC.
1862 * Warning: must be called when MAC is off!
1864 * Input parameters:
1865 * s - sbmac structure
1866 * speed - speed to set MAC to (see sbmac_speed_t enum)
1868 * Return value:
1869 * 1 if successful
1870 * 0 indicates invalid parameters
1871 ********************************************************************* */
1873 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
1875 uint64_t cfg;
1876 uint64_t framecfg;
1879 * Save new current values
1882 s->sbm_speed = speed;
1884 if (s->sbm_state == sbmac_state_on)
1885 return 0; /* save for next restart */
1888 * Read current register values
1891 cfg = SBMAC_READCSR(s->sbm_maccfg);
1892 framecfg = SBMAC_READCSR(s->sbm_framecfg);
1895 * Mask out the stuff we want to change
1898 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1899 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1900 M_MAC_SLOT_SIZE);
1903 * Now add in the new bits
1906 switch (speed) {
1907 case sbmac_speed_10:
1908 framecfg |= V_MAC_IFG_RX_10 |
1909 V_MAC_IFG_TX_10 |
1910 K_MAC_IFG_THRSH_10 |
1911 V_MAC_SLOT_SIZE_10;
1912 cfg |= V_MAC_SPEED_SEL_10MBPS;
1913 break;
1915 case sbmac_speed_100:
1916 framecfg |= V_MAC_IFG_RX_100 |
1917 V_MAC_IFG_TX_100 |
1918 V_MAC_IFG_THRSH_100 |
1919 V_MAC_SLOT_SIZE_100;
1920 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1921 break;
1923 case sbmac_speed_1000:
1924 framecfg |= V_MAC_IFG_RX_1000 |
1925 V_MAC_IFG_TX_1000 |
1926 V_MAC_IFG_THRSH_1000 |
1927 V_MAC_SLOT_SIZE_1000;
1928 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1929 break;
1931 case sbmac_speed_auto: /* XXX not implemented */
1932 /* fall through */
1933 default:
1934 return 0;
1938 * Send the bits back to the hardware
1941 SBMAC_WRITECSR(s->sbm_framecfg,framecfg);
1942 SBMAC_WRITECSR(s->sbm_maccfg,cfg);
1944 return 1;
1947 /**********************************************************************
1948 * SBMAC_SET_DUPLEX(s,duplex,fc)
1950 * Set Ethernet duplex and flow control options for this MAC
1951 * Warning: must be called when MAC is off!
1953 * Input parameters:
1954 * s - sbmac structure
1955 * duplex - duplex setting (see sbmac_duplex_t)
1956 * fc - flow control setting (see sbmac_fc_t)
1958 * Return value:
1959 * 1 if ok
1960 * 0 if an invalid parameter combination was specified
1961 ********************************************************************* */
1963 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
1965 uint64_t cfg;
1968 * Save new current values
1971 s->sbm_duplex = duplex;
1972 s->sbm_fc = fc;
1974 if (s->sbm_state == sbmac_state_on)
1975 return 0; /* save for next restart */
1978 * Read current register values
1981 cfg = SBMAC_READCSR(s->sbm_maccfg);
1984 * Mask off the stuff we're about to change
1987 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1990 switch (duplex) {
1991 case sbmac_duplex_half:
1992 switch (fc) {
1993 case sbmac_fc_disabled:
1994 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1995 break;
1997 case sbmac_fc_collision:
1998 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1999 break;
2001 case sbmac_fc_carrier:
2002 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
2003 break;
2005 case sbmac_fc_auto: /* XXX not implemented */
2006 /* fall through */
2007 case sbmac_fc_frame: /* not valid in half duplex */
2008 default: /* invalid selection */
2009 return 0;
2011 break;
2013 case sbmac_duplex_full:
2014 switch (fc) {
2015 case sbmac_fc_disabled:
2016 cfg |= V_MAC_FC_CMD_DISABLED;
2017 break;
2019 case sbmac_fc_frame:
2020 cfg |= V_MAC_FC_CMD_ENABLED;
2021 break;
2023 case sbmac_fc_collision: /* not valid in full duplex */
2024 case sbmac_fc_carrier: /* not valid in full duplex */
2025 case sbmac_fc_auto: /* XXX not implemented */
2026 /* fall through */
2027 default:
2028 return 0;
2030 break;
2031 case sbmac_duplex_auto:
2032 /* XXX not implemented */
2033 break;
2037 * Send the bits back to the hardware
2040 SBMAC_WRITECSR(s->sbm_maccfg,cfg);
2042 return 1;
2048 /**********************************************************************
2049 * SBMAC_INTR()
2051 * Interrupt handler for MAC interrupts
2053 * Input parameters:
2054 * MAC structure
2056 * Return value:
2057 * nothing
2058 ********************************************************************* */
2059 static irqreturn_t sbmac_intr(int irq,void *dev_instance,struct pt_regs *rgs)
2061 struct net_device *dev = (struct net_device *) dev_instance;
2062 struct sbmac_softc *sc = netdev_priv(dev);
2063 uint64_t isr;
2064 int handled = 0;
2066 for (;;) {
2069 * Read the ISR (this clears the bits in the real
2070 * register, except for counter addr)
2073 isr = SBMAC_READCSR(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2075 if (isr == 0)
2076 break;
2078 handled = 1;
2081 * Transmits on channel 0
2084 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
2085 sbdma_tx_process(sc,&(sc->sbm_txdma));
2089 * Receives on channel 0
2093 * It's important to test all the bits (or at least the
2094 * EOP_SEEN bit) when deciding to do the RX process
2095 * particularly when coalescing, to make sure we
2096 * take care of the following:
2098 * If you have some packets waiting (have been received
2099 * but no interrupt) and get a TX interrupt before
2100 * the RX timer or counter expires, reading the ISR
2101 * above will clear the timer and counter, and you
2102 * won't get another interrupt until a packet shows
2103 * up to start the timer again. Testing
2104 * EOP_SEEN here takes care of this case.
2105 * (EOP_SEEN is part of M_MAC_INT_CHANNEL << S_MAC_RX_CH0)
2109 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2110 sbdma_rx_process(sc,&(sc->sbm_rxdma));
2113 return IRQ_RETVAL(handled);
2117 /**********************************************************************
2118 * SBMAC_START_TX(skb,dev)
2120 * Start output on the specified interface. Basically, we
2121 * queue as many buffers as we can until the ring fills up, or
2122 * we run off the end of the queue, whichever comes first.
2124 * Input parameters:
2127 * Return value:
2128 * nothing
2129 ********************************************************************* */
2130 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2132 struct sbmac_softc *sc = netdev_priv(dev);
2134 /* lock eth irq */
2135 spin_lock_irq (&sc->sbm_lock);
2138 * Put the buffer on the transmit ring. If we
2139 * don't have room, stop the queue.
2142 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2143 /* XXX save skb that we could not send */
2144 netif_stop_queue(dev);
2145 spin_unlock_irq(&sc->sbm_lock);
2147 return 1;
2150 dev->trans_start = jiffies;
2152 spin_unlock_irq (&sc->sbm_lock);
2154 return 0;
2157 /**********************************************************************
2158 * SBMAC_SETMULTI(sc)
2160 * Reprogram the multicast table into the hardware, given
2161 * the list of multicasts associated with the interface
2162 * structure.
2164 * Input parameters:
2165 * sc - softc
2167 * Return value:
2168 * nothing
2169 ********************************************************************* */
2171 static void sbmac_setmulti(struct sbmac_softc *sc)
2173 uint64_t reg;
2174 sbmac_port_t port;
2175 int idx;
2176 struct dev_mc_list *mclist;
2177 struct net_device *dev = sc->sbm_dev;
2180 * Clear out entire multicast table. We do this by nuking
2181 * the entire hash table and all the direct matches except
2182 * the first one, which is used for our station address
2185 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2186 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2187 SBMAC_WRITECSR(port,0);
2190 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2191 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2192 SBMAC_WRITECSR(port,0);
2196 * Clear the filter to say we don't want any multicasts.
2199 reg = SBMAC_READCSR(sc->sbm_rxfilter);
2200 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2201 SBMAC_WRITECSR(sc->sbm_rxfilter,reg);
2203 if (dev->flags & IFF_ALLMULTI) {
2205 * Enable ALL multicasts. Do this by inverting the
2206 * multicast enable bit.
2208 reg = SBMAC_READCSR(sc->sbm_rxfilter);
2209 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2210 SBMAC_WRITECSR(sc->sbm_rxfilter,reg);
2211 return;
2216 * Progam new multicast entries. For now, only use the
2217 * perfect filter. In the future we'll need to use the
2218 * hash filter if the perfect filter overflows
2221 /* XXX only using perfect filter for now, need to use hash
2222 * XXX if the table overflows */
2224 idx = 1; /* skip station address */
2225 mclist = dev->mc_list;
2226 while (mclist && (idx < MAC_ADDR_COUNT)) {
2227 reg = sbmac_addr2reg(mclist->dmi_addr);
2228 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2229 SBMAC_WRITECSR(port,reg);
2230 idx++;
2231 mclist = mclist->next;
2235 * Enable the "accept multicast bits" if we programmed at least one
2236 * multicast.
2239 if (idx > 1) {
2240 reg = SBMAC_READCSR(sc->sbm_rxfilter);
2241 reg |= M_MAC_MCAST_EN;
2242 SBMAC_WRITECSR(sc->sbm_rxfilter,reg);
2248 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR)
2249 /**********************************************************************
2250 * SBMAC_PARSE_XDIGIT(str)
2252 * Parse a hex digit, returning its value
2254 * Input parameters:
2255 * str - character
2257 * Return value:
2258 * hex value, or -1 if invalid
2259 ********************************************************************* */
2261 static int sbmac_parse_xdigit(char str)
2263 int digit;
2265 if ((str >= '0') && (str <= '9'))
2266 digit = str - '0';
2267 else if ((str >= 'a') && (str <= 'f'))
2268 digit = str - 'a' + 10;
2269 else if ((str >= 'A') && (str <= 'F'))
2270 digit = str - 'A' + 10;
2271 else
2272 return -1;
2274 return digit;
2277 /**********************************************************************
2278 * SBMAC_PARSE_HWADDR(str,hwaddr)
2280 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2281 * Ethernet address.
2283 * Input parameters:
2284 * str - string
2285 * hwaddr - pointer to hardware address
2287 * Return value:
2288 * 0 if ok, else -1
2289 ********************************************************************* */
2291 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2293 int digit1,digit2;
2294 int idx = 6;
2296 while (*str && (idx > 0)) {
2297 digit1 = sbmac_parse_xdigit(*str);
2298 if (digit1 < 0)
2299 return -1;
2300 str++;
2301 if (!*str)
2302 return -1;
2304 if ((*str == ':') || (*str == '-')) {
2305 digit2 = digit1;
2306 digit1 = 0;
2308 else {
2309 digit2 = sbmac_parse_xdigit(*str);
2310 if (digit2 < 0)
2311 return -1;
2312 str++;
2315 *hwaddr++ = (digit1 << 4) | digit2;
2316 idx--;
2318 if (*str == '-')
2319 str++;
2320 if (*str == ':')
2321 str++;
2323 return 0;
2325 #endif
2327 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2329 if (new_mtu > ENET_PACKET_SIZE)
2330 return -EINVAL;
2331 _dev->mtu = new_mtu;
2332 printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
2333 return 0;
2336 /**********************************************************************
2337 * SBMAC_INIT(dev)
2339 * Attach routine - init hardware and hook ourselves into linux
2341 * Input parameters:
2342 * dev - net_device structure
2344 * Return value:
2345 * status
2346 ********************************************************************* */
2348 static int sbmac_init(struct net_device *dev, int idx)
2350 struct sbmac_softc *sc;
2351 unsigned char *eaddr;
2352 uint64_t ea_reg;
2353 int i;
2354 int err;
2356 sc = netdev_priv(dev);
2358 /* Determine controller base address */
2360 sc->sbm_base = IOADDR(dev->base_addr);
2361 sc->sbm_dev = dev;
2362 sc->sbe_idx = idx;
2364 eaddr = sc->sbm_hwaddr;
2367 * Read the ethernet address. The firwmare left this programmed
2368 * for us in the ethernet address register for each mac.
2371 ea_reg = SBMAC_READCSR(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2372 SBMAC_WRITECSR(sc->sbm_base + R_MAC_ETHERNET_ADDR, 0);
2373 for (i = 0; i < 6; i++) {
2374 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2375 ea_reg >>= 8;
2378 for (i = 0; i < 6; i++) {
2379 dev->dev_addr[i] = eaddr[i];
2384 * Init packet size
2387 sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
2390 * Initialize context (get pointers to registers and stuff), then
2391 * allocate the memory for the descriptor tables.
2394 sbmac_initctx(sc);
2397 * Set up Linux device callins
2400 spin_lock_init(&(sc->sbm_lock));
2402 dev->open = sbmac_open;
2403 dev->hard_start_xmit = sbmac_start_tx;
2404 dev->stop = sbmac_close;
2405 dev->get_stats = sbmac_get_stats;
2406 dev->set_multicast_list = sbmac_set_rx_mode;
2407 dev->do_ioctl = sbmac_mii_ioctl;
2408 dev->tx_timeout = sbmac_tx_timeout;
2409 dev->watchdog_timeo = TX_TIMEOUT;
2411 dev->change_mtu = sb1250_change_mtu;
2413 /* This is needed for PASS2 for Rx H/W checksum feature */
2414 sbmac_set_iphdr_offset(sc);
2416 err = register_netdev(dev);
2417 if (err)
2418 goto out_uninit;
2421 * Display Ethernet address (this is called during the config
2422 * process so we need to finish off the config message that
2423 * was being displayed)
2425 printk(KERN_INFO
2426 "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2427 dev->name, dev->base_addr,
2428 eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
2431 return 0;
2433 out_uninit:
2434 sbmac_uninitctx(sc);
2436 return err;
2440 static int sbmac_open(struct net_device *dev)
2442 struct sbmac_softc *sc = netdev_priv(dev);
2444 if (debug > 1) {
2445 printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2449 * map/route interrupt (clear status first, in case something
2450 * weird is pending; we haven't initialized the mac registers
2451 * yet)
2454 SBMAC_READCSR(sc->sbm_isr);
2455 if (request_irq(dev->irq, &sbmac_intr, SA_SHIRQ, dev->name, dev))
2456 return -EBUSY;
2459 * Configure default speed
2462 sbmac_mii_poll(sc,noisy_mii);
2465 * Turn on the channel
2468 sbmac_set_channel_state(sc,sbmac_state_on);
2471 * XXX Station address is in dev->dev_addr
2474 if (dev->if_port == 0)
2475 dev->if_port = 0;
2477 netif_start_queue(dev);
2479 sbmac_set_rx_mode(dev);
2481 /* Set the timer to check for link beat. */
2482 init_timer(&sc->sbm_timer);
2483 sc->sbm_timer.expires = jiffies + 2 * HZ/100;
2484 sc->sbm_timer.data = (unsigned long)dev;
2485 sc->sbm_timer.function = &sbmac_timer;
2486 add_timer(&sc->sbm_timer);
2488 return 0;
2493 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
2495 int bmsr,bmcr,k1stsr,anlpar;
2496 int chg;
2497 char buffer[100];
2498 char *p = buffer;
2500 /* Read the mode status and mode control registers. */
2501 bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
2502 bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
2504 /* get the link partner status */
2505 anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
2507 /* if supported, read the 1000baseT register */
2508 if (bmsr & BMSR_1000BT_XSR) {
2509 k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
2511 else {
2512 k1stsr = 0;
2515 chg = 0;
2517 if ((bmsr & BMSR_LINKSTAT) == 0) {
2519 * If link status is down, clear out old info so that when
2520 * it comes back up it will force us to reconfigure speed
2522 s->sbm_phy_oldbmsr = 0;
2523 s->sbm_phy_oldanlpar = 0;
2524 s->sbm_phy_oldk1stsr = 0;
2525 return 0;
2528 if ((s->sbm_phy_oldbmsr != bmsr) ||
2529 (s->sbm_phy_oldanlpar != anlpar) ||
2530 (s->sbm_phy_oldk1stsr != k1stsr)) {
2531 if (debug > 1) {
2532 printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
2533 s->sbm_dev->name,
2534 s->sbm_phy_oldbmsr,bmsr,
2535 s->sbm_phy_oldanlpar,anlpar,
2536 s->sbm_phy_oldk1stsr,k1stsr);
2538 s->sbm_phy_oldbmsr = bmsr;
2539 s->sbm_phy_oldanlpar = anlpar;
2540 s->sbm_phy_oldk1stsr = k1stsr;
2541 chg = 1;
2544 if (chg == 0)
2545 return 0;
2547 p += sprintf(p,"Link speed: ");
2549 if (k1stsr & K1STSR_LP1KFD) {
2550 s->sbm_speed = sbmac_speed_1000;
2551 s->sbm_duplex = sbmac_duplex_full;
2552 s->sbm_fc = sbmac_fc_frame;
2553 p += sprintf(p,"1000BaseT FDX");
2555 else if (k1stsr & K1STSR_LP1KHD) {
2556 s->sbm_speed = sbmac_speed_1000;
2557 s->sbm_duplex = sbmac_duplex_half;
2558 s->sbm_fc = sbmac_fc_disabled;
2559 p += sprintf(p,"1000BaseT HDX");
2561 else if (anlpar & ANLPAR_TXFD) {
2562 s->sbm_speed = sbmac_speed_100;
2563 s->sbm_duplex = sbmac_duplex_full;
2564 s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
2565 p += sprintf(p,"100BaseT FDX");
2567 else if (anlpar & ANLPAR_TXHD) {
2568 s->sbm_speed = sbmac_speed_100;
2569 s->sbm_duplex = sbmac_duplex_half;
2570 s->sbm_fc = sbmac_fc_disabled;
2571 p += sprintf(p,"100BaseT HDX");
2573 else if (anlpar & ANLPAR_10FD) {
2574 s->sbm_speed = sbmac_speed_10;
2575 s->sbm_duplex = sbmac_duplex_full;
2576 s->sbm_fc = sbmac_fc_frame;
2577 p += sprintf(p,"10BaseT FDX");
2579 else if (anlpar & ANLPAR_10HD) {
2580 s->sbm_speed = sbmac_speed_10;
2581 s->sbm_duplex = sbmac_duplex_half;
2582 s->sbm_fc = sbmac_fc_collision;
2583 p += sprintf(p,"10BaseT HDX");
2585 else {
2586 p += sprintf(p,"Unknown");
2589 if (noisy) {
2590 printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
2593 return 1;
2597 static void sbmac_timer(unsigned long data)
2599 struct net_device *dev = (struct net_device *)data;
2600 struct sbmac_softc *sc = netdev_priv(dev);
2601 int next_tick = HZ;
2602 int mii_status;
2604 spin_lock_irq (&sc->sbm_lock);
2606 /* make IFF_RUNNING follow the MII status bit "Link established" */
2607 mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
2609 if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
2610 sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
2611 if (mii_status & BMSR_LINKSTAT) {
2612 netif_carrier_on(dev);
2614 else {
2615 netif_carrier_off(dev);
2620 * Poll the PHY to see what speed we should be running at
2623 if (sbmac_mii_poll(sc,noisy_mii)) {
2624 if (sc->sbm_state != sbmac_state_off) {
2626 * something changed, restart the channel
2628 if (debug > 1) {
2629 printk("%s: restarting channel because speed changed\n",
2630 sc->sbm_dev->name);
2632 sbmac_channel_stop(sc);
2633 sbmac_channel_start(sc);
2637 spin_unlock_irq (&sc->sbm_lock);
2639 sc->sbm_timer.expires = jiffies + next_tick;
2640 add_timer(&sc->sbm_timer);
2644 static void sbmac_tx_timeout (struct net_device *dev)
2646 struct sbmac_softc *sc = netdev_priv(dev);
2648 spin_lock_irq (&sc->sbm_lock);
2651 dev->trans_start = jiffies;
2652 sc->sbm_stats.tx_errors++;
2654 spin_unlock_irq (&sc->sbm_lock);
2656 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2662 static struct net_device_stats *sbmac_get_stats(struct net_device *dev)
2664 struct sbmac_softc *sc = netdev_priv(dev);
2665 unsigned long flags;
2667 spin_lock_irqsave(&sc->sbm_lock, flags);
2669 /* XXX update other stats here */
2671 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2673 return &sc->sbm_stats;
2678 static void sbmac_set_rx_mode(struct net_device *dev)
2680 unsigned long flags;
2681 int msg_flag = 0;
2682 struct sbmac_softc *sc = netdev_priv(dev);
2684 spin_lock_irqsave(&sc->sbm_lock, flags);
2685 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2687 * Promiscuous changed.
2690 if (dev->flags & IFF_PROMISC) {
2691 /* Unconditionally log net taps. */
2692 msg_flag = 1;
2693 sbmac_promiscuous_mode(sc,1);
2695 else {
2696 msg_flag = 2;
2697 sbmac_promiscuous_mode(sc,0);
2700 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2702 if (msg_flag) {
2703 printk(KERN_NOTICE "%s: Promiscuous mode %sabled.\n",
2704 dev->name,(msg_flag==1)?"en":"dis");
2708 * Program the multicasts. Do this every time.
2711 sbmac_setmulti(sc);
2715 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2717 struct sbmac_softc *sc = netdev_priv(dev);
2718 u16 *data = (u16 *)&rq->ifr_ifru;
2719 unsigned long flags;
2720 int retval;
2722 spin_lock_irqsave(&sc->sbm_lock, flags);
2723 retval = 0;
2725 switch(cmd) {
2726 case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
2727 data[0] = sc->sbm_phys[0] & 0x1f;
2728 /* Fall Through */
2729 case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
2730 data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
2731 break;
2732 case SIOCDEVPRIVATE+2: /* Write the specified MII register */
2733 if (!capable(CAP_NET_ADMIN)) {
2734 retval = -EPERM;
2735 break;
2737 if (debug > 1) {
2738 printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
2739 data[0],data[1],data[2]);
2741 sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
2742 break;
2743 default:
2744 retval = -EOPNOTSUPP;
2747 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2748 return retval;
2751 static int sbmac_close(struct net_device *dev)
2753 struct sbmac_softc *sc = netdev_priv(dev);
2754 unsigned long flags;
2755 int irq;
2757 sbmac_set_channel_state(sc,sbmac_state_off);
2759 del_timer_sync(&sc->sbm_timer);
2761 spin_lock_irqsave(&sc->sbm_lock, flags);
2763 netif_stop_queue(dev);
2765 if (debug > 1) {
2766 printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
2769 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2771 irq = dev->irq;
2772 synchronize_irq(irq);
2773 free_irq(irq, dev);
2775 sbdma_emptyring(&(sc->sbm_txdma));
2776 sbdma_emptyring(&(sc->sbm_rxdma));
2778 return 0;
2783 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR)
2784 static void
2785 sbmac_setup_hwaddr(int chan,char *addr)
2787 uint8_t eaddr[6];
2788 uint64_t val;
2789 sbmac_port_t port;
2791 port = A_MAC_CHANNEL_BASE(chan);
2792 sbmac_parse_hwaddr(addr,eaddr);
2793 val = sbmac_addr2reg(eaddr);
2794 SBMAC_WRITECSR(IOADDR(port+R_MAC_ETHERNET_ADDR),val);
2795 val = SBMAC_READCSR(IOADDR(port+R_MAC_ETHERNET_ADDR));
2797 #endif
2799 static struct net_device *dev_sbmac[MAX_UNITS];
2801 static int __init
2802 sbmac_init_module(void)
2804 int idx;
2805 struct net_device *dev;
2806 sbmac_port_t port;
2807 int chip_max_units;
2810 * For bringup when not using the firmware, we can pre-fill
2811 * the MAC addresses using the environment variables
2812 * specified in this file (or maybe from the config file?)
2814 #ifdef SBMAC_ETH0_HWADDR
2815 sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
2816 #endif
2817 #ifdef SBMAC_ETH1_HWADDR
2818 sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
2819 #endif
2820 #ifdef SBMAC_ETH2_HWADDR
2821 sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
2822 #endif
2825 * Walk through the Ethernet controllers and find
2826 * those who have their MAC addresses set.
2828 switch (soc_type) {
2829 case K_SYS_SOC_TYPE_BCM1250:
2830 case K_SYS_SOC_TYPE_BCM1250_ALT:
2831 chip_max_units = 3;
2832 break;
2833 case K_SYS_SOC_TYPE_BCM1120:
2834 case K_SYS_SOC_TYPE_BCM1125:
2835 case K_SYS_SOC_TYPE_BCM1125H:
2836 case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2837 chip_max_units = 2;
2838 break;
2839 default:
2840 chip_max_units = 0;
2841 break;
2843 if (chip_max_units > MAX_UNITS)
2844 chip_max_units = MAX_UNITS;
2846 for (idx = 0; idx < chip_max_units; idx++) {
2849 * This is the base address of the MAC.
2852 port = A_MAC_CHANNEL_BASE(idx);
2855 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2856 * value for us by the firmware if we're going to use this MAC.
2857 * If we find a zero, skip this MAC.
2860 sbmac_orig_hwaddr[idx] = SBMAC_READCSR(IOADDR(port+R_MAC_ETHERNET_ADDR));
2861 if (sbmac_orig_hwaddr[idx] == 0) {
2862 printk(KERN_DEBUG "sbmac: not configuring MAC at "
2863 "%lx\n", port);
2864 continue;
2868 * Okay, cool. Initialize this MAC.
2871 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2872 if (!dev)
2873 return -ENOMEM; /* return ENOMEM */
2875 printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
2877 dev->irq = K_INT_MAC_0 + idx;
2878 dev->base_addr = port;
2879 dev->mem_end = 0;
2880 if (sbmac_init(dev, idx)) {
2881 port = A_MAC_CHANNEL_BASE(idx);
2882 SBMAC_WRITECSR(KSEG1ADDR(port+R_MAC_ETHERNET_ADDR),
2883 sbmac_orig_hwaddr[idx] );
2884 free_netdev(dev);
2885 continue;
2887 dev_sbmac[idx++] = dev;
2889 return 0;
2893 static void __exit
2894 sbmac_cleanup_module(void)
2896 struct net_device *dev;
2897 int idx;
2899 for (idx = 0; idx < MAX_UNITS; idx++) {
2900 struct sbmac_softc *sc;
2901 dev = dev_sbmac[idx];
2902 if (!dev)
2903 continue;
2905 sc = netdev_priv(dev);
2906 unregister_netdev(dev);
2907 sbmac_uninitctx(sc);
2908 free_netdev(dev);
2912 module_init(sbmac_init_module);
2913 module_exit(sbmac_cleanup_module);