1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
4 Copyright 1994, 1995 Digital Equipment Corporation.
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
9 The author may be reached at davies@maniac.ultranet.com.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
38 DE500 10/100 PCI Fasternet
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
50 So far the driver is known to work with the following cards:
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
82 Upto 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
99 To utilise this ability, you have to do 8 things:
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
108 insmod de4x5 io=0xghh where g = bus number
111 NB: autoprobing for modules is now supported by default. You may just
116 to load all available boards. For a specific board, still use
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
207 autosense to set the media/speed; with the following
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
244 Version Date Description
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the SA_SHIRQ flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added SA_INTERRUPT temporary fix from
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
368 Fix type1_infoblock() bug introduced in 0.53, from
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
446 #include <linux/config.h>
447 #include <linux/module.h>
448 #include <linux/kernel.h>
449 #include <linux/string.h>
450 #include <linux/interrupt.h>
451 #include <linux/ptrace.h>
452 #include <linux/errno.h>
453 #include <linux/ioport.h>
454 #include <linux/slab.h>
455 #include <linux/pci.h>
456 #include <linux/eisa.h>
457 #include <linux/delay.h>
458 #include <linux/init.h>
459 #include <linux/spinlock.h>
460 #include <linux/crc32.h>
461 #include <linux/netdevice.h>
462 #include <linux/etherdevice.h>
463 #include <linux/skbuff.h>
464 #include <linux/time.h>
465 #include <linux/types.h>
466 #include <linux/unistd.h>
467 #include <linux/ctype.h>
468 #include <linux/dma-mapping.h>
469 #include <linux/moduleparam.h>
471 #include <asm/bitops.h>
474 #include <asm/byteorder.h>
475 #include <asm/unaligned.h>
476 #include <asm/uaccess.h>
477 #ifdef CONFIG_PPC_MULTIPLATFORM
478 #include <asm/machdep.h>
479 #endif /* CONFIG_PPC_MULTIPLATFORM */
483 static char version
[] __devinitdata
= "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
485 #define c_char const char
486 #define TWIDDLE(a) (u_short)le16_to_cpu(get_unaligned((u_short *)(a)))
492 int reset
; /* Hard reset required? */
493 int id
; /* IEEE OUI */
494 int ta
; /* One cycle TA time - 802.3u is confusing here */
495 struct { /* Non autonegotiation (parallel) speed det. */
503 int reset
; /* Hard reset required? */
504 int id
; /* IEEE OUI */
505 int ta
; /* One cycle TA time */
506 struct { /* Non autonegotiation (parallel) speed det. */
511 int addr
; /* MII address for the PHY */
512 u_char
*gep
; /* Start of GEP sequence block in SROM */
513 u_char
*rst
; /* Start of reset sequence in SROM */
514 u_int mc
; /* Media Capabilities */
515 u_int ana
; /* NWay Advertisement */
516 u_int fdx
; /* Full DupleX capabilites for each media */
517 u_int ttm
; /* Transmit Threshold Mode for each media */
518 u_int mci
; /* 21142 MII Connector Interrupt info */
521 #define DE4X5_MAX_PHY 8 /* Allow upto 8 attached PHY devices per board */
524 u_char mc
; /* Media Code */
525 u_char ext
; /* csr13-15 valid when set */
526 int csr13
; /* SIA Connectivity Register */
527 int csr14
; /* SIA TX/RX Register */
528 int csr15
; /* SIA General Register */
529 int gepc
; /* SIA GEP Control Information */
530 int gep
; /* SIA GEP Data */
534 ** Define the know universe of PHY devices that can be
535 ** recognised by this driver.
537 static struct phy_table phy_info
[] = {
538 {0, NATIONAL_TX
, 1, {0x19, 0x40, 0x00}}, /* National TX */
539 {1, BROADCOM_T4
, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
540 {0, SEEQ_T4
, 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
541 {0, CYPRESS_T4
, 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
542 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
546 ** These GENERIC values assumes that the PHY devices follow 802.3u and
547 ** allow parallel detection to set the link partner ability register.
548 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
550 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
551 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
552 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
555 ** Define special SROM detection cases
557 static c_char enet_det
[][ETH_ALEN
] = {
558 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
559 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
566 ** SROM Repair definitions. If a broken SROM is detected a card may
567 ** use this information to help figure out what to do. This is a
568 ** "stab in the dark" and so far for SMC9332's only.
570 static c_char srom_repair_info
[][100] = {
571 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
572 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
573 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
579 static int de4x5_debug
= DE4X5_DEBUG
;
581 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
582 static int de4x5_debug
= (DEBUG_MEDIA
| DEBUG_VERSION
);
586 ** Allow per adapter set up. For modules this is simply a command line
588 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
590 ** For a compiled in driver, place e.g.
591 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
595 static char *args
= DE4X5_PARM
;
605 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
607 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
610 ** Ethernet PROM defines
612 #define PROBE_LENGTH 32
613 #define ETH_PROM_SIG 0xAA5500FFUL
618 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
619 #define IEEE802_3_SZ 1518 /* Packet + CRC */
620 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
621 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
622 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
623 #define PKT_HDR_LEN 14 /* Addresses and data length info */
624 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
625 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
631 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
632 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
634 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
636 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
637 #define DE4X5_NAME_LENGTH 8
639 static c_char
*de4x5_signatures
[] = DE4X5_SIGNATURE
;
642 ** Ethernet PROM defines for DC21040
644 #define PROBE_LENGTH 32
645 #define ETH_PROM_SIG 0xAA5500FFUL
650 #define PCI_MAX_BUS_NUM 8
651 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
652 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
655 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
656 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
657 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
658 ** and hence the RX descriptor ring's first entry.
660 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
661 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
662 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
663 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
664 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
665 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
667 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
668 #define DE4X5_CACHE_ALIGN CAL_16LONG
669 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
670 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
673 #ifndef DEC_ONLY /* See README.de4x5 for using this */
676 static int dec_only
= 1;
680 ** DE4X5 IRQ ENABLE/DISABLE
682 #define ENABLE_IRQs { \
684 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
687 #define DISABLE_IRQs {\
688 imr = inl(DE4X5_IMR);\
690 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
693 #define UNMASK_IRQs {\
694 imr |= lp->irq_mask;\
695 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
699 imr = inl(DE4X5_IMR);\
700 imr &= ~lp->irq_mask;\
701 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
707 #define START_DE4X5 {\
708 omr = inl(DE4X5_OMR);\
709 omr |= OMR_ST | OMR_SR;\
710 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
713 #define STOP_DE4X5 {\
714 omr = inl(DE4X5_OMR);\
715 omr &= ~(OMR_ST|OMR_SR);\
716 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
722 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
725 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
727 #define DE4X5_AUTOSENSE_MS 250
733 char sub_vendor_id
[2];
734 char sub_system_id
[2];
739 char num_controllers
;
744 #define SUB_VENDOR_ID 0x500a
747 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
748 ** and have sizes of both a power of 2 and a multiple of 4.
749 ** A size of 256 bytes for each buffer could be chosen because over 90% of
750 ** all packets in our network are <256 bytes long and 64 longword alignment
751 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
752 ** descriptors are needed for machines with an ALPHA CPU.
754 #define NUM_RX_DESC 8 /* Number of RX descriptors */
755 #define NUM_TX_DESC 32 /* Number of TX descriptors */
756 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
757 /* Multiple of 4 for DC21040 */
758 /* Allows 512 byte alignment */
768 ** The DE4X5 private structure
770 #define DE4X5_PKT_STAT_SZ 16
771 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
772 increase DE4X5_PKT_STAT_SZ */
775 u_int bins
[DE4X5_PKT_STAT_SZ
]; /* Private stats counters */
779 u_int excessive_collisions
;
781 u_int excessive_underruns
;
782 u_int rx_runt_frames
;
788 struct de4x5_private
{
789 char adapter_name
[80]; /* Adapter name */
790 u_long interrupt
; /* Aligned ISR flag */
791 struct de4x5_desc
*rx_ring
; /* RX descriptor ring */
792 struct de4x5_desc
*tx_ring
; /* TX descriptor ring */
793 struct sk_buff
*tx_skb
[NUM_TX_DESC
]; /* TX skb for freeing when sent */
794 struct sk_buff
*rx_skb
[NUM_RX_DESC
]; /* RX skb's */
795 int rx_new
, rx_old
; /* RX descriptor ring pointers */
796 int tx_new
, tx_old
; /* TX descriptor ring pointers */
797 char setup_frame
[SETUP_FRAME_LEN
]; /* Holds MCA and PA info. */
798 char frame
[64]; /* Min sized packet for loopback*/
799 spinlock_t lock
; /* Adapter specific spinlock */
800 struct net_device_stats stats
; /* Public stats */
801 struct pkt_stats pktStats
; /* Private stats counters */
804 int bus
; /* EISA or PCI */
805 int bus_num
; /* PCI Bus number */
806 int device
; /* Device number on PCI bus */
807 int state
; /* Adapter OPENED or CLOSED */
808 int chipset
; /* DC21040, DC21041 or DC21140 */
809 s32 irq_mask
; /* Interrupt Mask (Enable) bits */
810 s32 irq_en
; /* Summary interrupt bits */
811 int media
; /* Media (eg TP), mode (eg 100B)*/
812 int c_media
; /* Remember the last media conn */
813 int fdx
; /* media full duplex flag */
814 int linkOK
; /* Link is OK */
815 int autosense
; /* Allow/disallow autosensing */
816 int tx_enable
; /* Enable descriptor polling */
817 int setup_f
; /* Setup frame filtering type */
818 int local_state
; /* State within a 'media' state */
819 struct mii_phy phy
[DE4X5_MAX_PHY
]; /* List of attached PHY devices */
820 struct sia_phy sia
; /* SIA PHY Information */
821 int active
; /* Index to active PHY device */
822 int mii_cnt
; /* Number of attached PHY's */
823 int timeout
; /* Scheduling counter */
824 struct timer_list timer
; /* Timer info for kernel */
825 int tmp
; /* Temporary global per card */
827 u_long lock
; /* Lock the cache accesses */
828 s32 csr0
; /* Saved Bus Mode Register */
829 s32 csr6
; /* Saved Operating Mode Reg. */
830 s32 csr7
; /* Saved IRQ Mask Register */
831 s32 gep
; /* Saved General Purpose Reg. */
832 s32 gepc
; /* Control info for GEP */
833 s32 csr13
; /* Saved SIA Connectivity Reg. */
834 s32 csr14
; /* Saved SIA TX/RX Register */
835 s32 csr15
; /* Saved SIA General Register */
836 int save_cnt
; /* Flag if state already saved */
837 struct sk_buff
*skb
; /* Save the (re-ordered) skb's */
839 struct de4x5_srom srom
; /* A copy of the SROM */
840 int cfrv
; /* Card CFRV copy */
841 int rx_ovf
; /* Check for 'RX overflow' tag */
842 int useSROM
; /* For non-DEC card use SROM */
843 int useMII
; /* Infoblock using the MII */
844 int asBitValid
; /* Autosense bits in GEP? */
845 int asPolarity
; /* 0 => asserted high */
846 int asBit
; /* Autosense bit number in GEP */
847 int defMedium
; /* SROM default medium */
848 int tcount
; /* Last infoblock number */
849 int infoblock_init
; /* Initialised this infoblock? */
850 int infoleaf_offset
; /* SROM infoleaf for controller */
851 s32 infoblock_csr6
; /* csr6 value in SROM infoblock */
852 int infoblock_media
; /* infoblock media */
853 int (*infoleaf_fn
)(struct net_device
*); /* Pointer to infoleaf function */
854 u_char
*rst
; /* Pointer to Type 5 reset info */
855 u_char ibn
; /* Infoblock number */
856 struct parameters params
; /* Command line/ #defined params */
857 struct device
*gendev
; /* Generic device */
858 dma_addr_t dma_rings
; /* DMA handle for rings */
859 int dma_size
; /* Size of the DMA area */
860 char *rx_bufs
; /* rx bufs on alpha, sparc, ... */
864 ** To get around certain poxy cards that don't provide an SROM
865 ** for the second and more DECchip, I have to key off the first
866 ** chip's address. I'll assume there's not a bad SROM iff:
868 ** o the chipset is the same
869 ** o the bus number is the same and > 0
870 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
872 ** Also have to save the irq for those cards whose hardware designers
873 ** can't follow the PCI to PCI Bridge Architecture spec.
879 u_char addr
[ETH_ALEN
];
883 ** The transmit ring full condition is described by the tx_old and tx_new
885 ** tx_old = tx_new Empty ring
886 ** tx_old = tx_new+1 Full ring
887 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
889 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
890 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
891 lp->tx_old -lp->tx_new-1)
893 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
898 static int de4x5_open(struct net_device
*dev
);
899 static int de4x5_queue_pkt(struct sk_buff
*skb
, struct net_device
*dev
);
900 static irqreturn_t
de4x5_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
901 static int de4x5_close(struct net_device
*dev
);
902 static struct net_device_stats
*de4x5_get_stats(struct net_device
*dev
);
903 static void de4x5_local_stats(struct net_device
*dev
, char *buf
, int pkt_len
);
904 static void set_multicast_list(struct net_device
*dev
);
905 static int de4x5_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
910 static int de4x5_hw_init(struct net_device
*dev
, u_long iobase
, struct device
*gendev
);
911 static int de4x5_init(struct net_device
*dev
);
912 static int de4x5_sw_reset(struct net_device
*dev
);
913 static int de4x5_rx(struct net_device
*dev
);
914 static int de4x5_tx(struct net_device
*dev
);
915 static int de4x5_ast(struct net_device
*dev
);
916 static int de4x5_txur(struct net_device
*dev
);
917 static int de4x5_rx_ovfc(struct net_device
*dev
);
919 static int autoconf_media(struct net_device
*dev
);
920 static void create_packet(struct net_device
*dev
, char *frame
, int len
);
921 static void load_packet(struct net_device
*dev
, char *buf
, u32 flags
, struct sk_buff
*skb
);
922 static int dc21040_autoconf(struct net_device
*dev
);
923 static int dc21041_autoconf(struct net_device
*dev
);
924 static int dc21140m_autoconf(struct net_device
*dev
);
925 static int dc2114x_autoconf(struct net_device
*dev
);
926 static int srom_autoconf(struct net_device
*dev
);
927 static int de4x5_suspect_state(struct net_device
*dev
, int timeout
, int prev_state
, int (*fn
)(struct net_device
*, int), int (*asfn
)(struct net_device
*));
928 static int dc21040_state(struct net_device
*dev
, int csr13
, int csr14
, int csr15
, int timeout
, int next_state
, int suspect_state
, int (*fn
)(struct net_device
*, int));
929 static int test_media(struct net_device
*dev
, s32 irqs
, s32 irq_mask
, s32 csr13
, s32 csr14
, s32 csr15
, s32 msec
);
930 static int test_for_100Mb(struct net_device
*dev
, int msec
);
931 static int wait_for_link(struct net_device
*dev
);
932 static int test_mii_reg(struct net_device
*dev
, int reg
, int mask
, int pol
, long msec
);
933 static int is_spd_100(struct net_device
*dev
);
934 static int is_100_up(struct net_device
*dev
);
935 static int is_10_up(struct net_device
*dev
);
936 static int is_anc_capable(struct net_device
*dev
);
937 static int ping_media(struct net_device
*dev
, int msec
);
938 static struct sk_buff
*de4x5_alloc_rx_buff(struct net_device
*dev
, int index
, int len
);
939 static void de4x5_free_rx_buffs(struct net_device
*dev
);
940 static void de4x5_free_tx_buffs(struct net_device
*dev
);
941 static void de4x5_save_skbs(struct net_device
*dev
);
942 static void de4x5_rst_desc_ring(struct net_device
*dev
);
943 static void de4x5_cache_state(struct net_device
*dev
, int flag
);
944 static void de4x5_put_cache(struct net_device
*dev
, struct sk_buff
*skb
);
945 static void de4x5_putb_cache(struct net_device
*dev
, struct sk_buff
*skb
);
946 static struct sk_buff
*de4x5_get_cache(struct net_device
*dev
);
947 static void de4x5_setup_intr(struct net_device
*dev
);
948 static void de4x5_init_connection(struct net_device
*dev
);
949 static int de4x5_reset_phy(struct net_device
*dev
);
950 static void reset_init_sia(struct net_device
*dev
, s32 sicr
, s32 strr
, s32 sigr
);
951 static int test_ans(struct net_device
*dev
, s32 irqs
, s32 irq_mask
, s32 msec
);
952 static int test_tp(struct net_device
*dev
, s32 msec
);
953 static int EISA_signature(char *name
, struct device
*device
);
954 static int PCI_signature(char *name
, struct de4x5_private
*lp
);
955 static void DevicePresent(struct net_device
*dev
, u_long iobase
);
956 static void enet_addr_rst(u_long aprom_addr
);
957 static int de4x5_bad_srom(struct de4x5_private
*lp
);
958 static short srom_rd(u_long address
, u_char offset
);
959 static void srom_latch(u_int command
, u_long address
);
960 static void srom_command(u_int command
, u_long address
);
961 static void srom_address(u_int command
, u_long address
, u_char offset
);
962 static short srom_data(u_int command
, u_long address
);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command
, u_long addr
);
965 static int getfrom_srom(u_long addr
);
966 static int srom_map_media(struct net_device
*dev
);
967 static int srom_infoleaf_info(struct net_device
*dev
);
968 static void srom_init(struct net_device
*dev
);
969 static void srom_exec(struct net_device
*dev
, u_char
*p
);
970 static int mii_rd(u_char phyreg
, u_char phyaddr
, u_long ioaddr
);
971 static void mii_wr(int data
, u_char phyreg
, u_char phyaddr
, u_long ioaddr
);
972 static int mii_rdata(u_long ioaddr
);
973 static void mii_wdata(int data
, int len
, u_long ioaddr
);
974 static void mii_ta(u_long rw
, u_long ioaddr
);
975 static int mii_swap(int data
, int len
);
976 static void mii_address(u_char addr
, u_long ioaddr
);
977 static void sendto_mii(u32 command
, int data
, u_long ioaddr
);
978 static int getfrom_mii(u32 command
, u_long ioaddr
);
979 static int mii_get_oui(u_char phyaddr
, u_long ioaddr
);
980 static int mii_get_phy(struct net_device
*dev
);
981 static void SetMulticastFilter(struct net_device
*dev
);
982 static int get_hw_addr(struct net_device
*dev
);
983 static void srom_repair(struct net_device
*dev
, int card
);
984 static int test_bad_enet(struct net_device
*dev
, int status
);
985 static int an_exception(struct de4x5_private
*lp
);
986 static char *build_setup_frame(struct net_device
*dev
, int mode
);
987 static void disable_ast(struct net_device
*dev
);
988 static void enable_ast(struct net_device
*dev
, u32 time_out
);
989 static long de4x5_switch_mac_port(struct net_device
*dev
);
990 static int gep_rd(struct net_device
*dev
);
991 static void gep_wr(s32 data
, struct net_device
*dev
);
992 static void timeout(struct net_device
*dev
, void (*fn
)(u_long data
), u_long data
, u_long msec
);
993 static void yawn(struct net_device
*dev
, int state
);
994 static void de4x5_parse_params(struct net_device
*dev
);
995 static void de4x5_dbg_open(struct net_device
*dev
);
996 static void de4x5_dbg_mii(struct net_device
*dev
, int k
);
997 static void de4x5_dbg_media(struct net_device
*dev
);
998 static void de4x5_dbg_srom(struct de4x5_srom
*p
);
999 static void de4x5_dbg_rx(struct sk_buff
*skb
, int len
);
1000 static int de4x5_strncmp(char *a
, char *b
, int n
);
1001 static int dc21041_infoleaf(struct net_device
*dev
);
1002 static int dc21140_infoleaf(struct net_device
*dev
);
1003 static int dc21142_infoleaf(struct net_device
*dev
);
1004 static int dc21143_infoleaf(struct net_device
*dev
);
1005 static int type0_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1006 static int type1_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1007 static int type2_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1008 static int type3_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1009 static int type4_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1010 static int type5_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1011 static int compact_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
);
1014 ** Note now that module autoprobing is allowed under EISA and PCI. The
1015 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1016 ** to "do the right thing".
1019 static int io
=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1021 module_param(io
, int, 0);
1022 module_param(de4x5_debug
, int, 0);
1023 module_param(dec_only
, int, 0);
1024 module_param(args
, charp
, 0);
1026 MODULE_PARM_DESC(io
, "de4x5 I/O base address");
1027 MODULE_PARM_DESC(de4x5_debug
, "de4x5 debug mask");
1028 MODULE_PARM_DESC(dec_only
, "de4x5 probe only for Digital boards (0-1)");
1029 MODULE_PARM_DESC(args
, "de4x5 full duplex and media type settings; see de4x5.c for details");
1030 MODULE_LICENSE("GPL");
1033 ** List the SROM infoleaf functions and chipsets
1037 int (*fn
)(struct net_device
*);
1039 static struct InfoLeaf infoleaf_array
[] = {
1040 {DC21041
, dc21041_infoleaf
},
1041 {DC21140
, dc21140_infoleaf
},
1042 {DC21142
, dc21142_infoleaf
},
1043 {DC21143
, dc21143_infoleaf
}
1045 #define INFOLEAF_SIZE (sizeof(infoleaf_array)/(sizeof(int)+sizeof(int *)))
1048 ** List the SROM info block functions
1050 static int (*dc_infoblock
[])(struct net_device
*dev
, u_char
, u_char
*) = {
1060 #define COMPACT (sizeof(dc_infoblock)/sizeof(int *) - 1)
1063 ** Miscellaneous defines...
1065 #define RESET_DE4X5 {\
1069 outl(i | BMR_SWR, DE4X5_BMR);\
1071 outl(i, DE4X5_BMR);\
1073 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1077 #define PHY_HARD_RESET {\
1078 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1079 mdelay(1); /* Assert for 1ms */\
1080 outl(0x00, DE4X5_GEP);\
1081 mdelay(2); /* Wait for 2ms */\
1085 static int __devinit
1086 de4x5_hw_init(struct net_device
*dev
, u_long iobase
, struct device
*gendev
)
1088 char name
[DE4X5_NAME_LENGTH
+ 1];
1089 struct de4x5_private
*lp
= netdev_priv(dev
);
1090 struct pci_dev
*pdev
= NULL
;
1093 gendev
->driver_data
= dev
;
1095 /* Ensure we're not sleeping */
1096 if (lp
->bus
== EISA
) {
1097 outb(WAKEUP
, PCI_CFPM
);
1099 pdev
= to_pci_dev (gendev
);
1100 pci_write_config_byte(pdev
, PCI_CFDA_PSM
, WAKEUP
);
1106 if ((inl(DE4X5_STS
) & (STS_TS
| STS_RS
)) != 0) {
1107 return -ENXIO
; /* Hardware could not reset */
1111 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1113 lp
->useSROM
= FALSE
;
1114 if (lp
->bus
== PCI
) {
1115 PCI_signature(name
, lp
);
1117 EISA_signature(name
, gendev
);
1120 if (*name
== '\0') { /* Not found a board signature */
1124 dev
->base_addr
= iobase
;
1125 printk ("%s: %s at 0x%04lx", gendev
->bus_id
, name
, iobase
);
1127 printk(", h/w address ");
1128 status
= get_hw_addr(dev
);
1129 for (i
= 0; i
< ETH_ALEN
- 1; i
++) { /* get the ethernet addr. */
1130 printk("%2.2x:", dev
->dev_addr
[i
]);
1132 printk("%2.2x,\n", dev
->dev_addr
[i
]);
1135 printk(" which has an Ethernet PROM CRC error.\n");
1138 lp
->cache
.gepc
= GEP_INIT
;
1139 lp
->asBit
= GEP_SLNK
;
1140 lp
->asPolarity
= GEP_SLNK
;
1141 lp
->asBitValid
= TRUE
;
1143 lp
->gendev
= gendev
;
1144 lp
->lock
= SPIN_LOCK_UNLOCKED
;
1145 init_timer(&lp
->timer
);
1146 de4x5_parse_params(dev
);
1149 ** Choose correct autosensing in case someone messed up
1151 lp
->autosense
= lp
->params
.autosense
;
1152 if (lp
->chipset
!= DC21140
) {
1153 if ((lp
->chipset
==DC21040
) && (lp
->params
.autosense
&TP_NW
)) {
1154 lp
->params
.autosense
= TP
;
1156 if ((lp
->chipset
==DC21041
) && (lp
->params
.autosense
&BNC_AUI
)) {
1157 lp
->params
.autosense
= BNC
;
1160 lp
->fdx
= lp
->params
.fdx
;
1161 sprintf(lp
->adapter_name
,"%s (%s)", name
, gendev
->bus_id
);
1163 lp
->dma_size
= (NUM_RX_DESC
+ NUM_TX_DESC
) * sizeof(struct de4x5_desc
);
1164 #if defined(__alpha__) || defined(__powerpc__) || defined(__sparc_v9__) || defined(DE4X5_DO_MEMCPY)
1165 lp
->dma_size
+= RX_BUFF_SZ
* NUM_RX_DESC
+ DE4X5_ALIGN
;
1167 lp
->rx_ring
= dma_alloc_coherent(gendev
, lp
->dma_size
,
1168 &lp
->dma_rings
, GFP_ATOMIC
);
1169 if (lp
->rx_ring
== NULL
) {
1173 lp
->tx_ring
= lp
->rx_ring
+ NUM_RX_DESC
;
1176 ** Set up the RX descriptor ring (Intels)
1177 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1179 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY)
1180 for (i
=0; i
<NUM_RX_DESC
; i
++) {
1181 lp
->rx_ring
[i
].status
= 0;
1182 lp
->rx_ring
[i
].des1
= cpu_to_le32(RX_BUFF_SZ
);
1183 lp
->rx_ring
[i
].buf
= 0;
1184 lp
->rx_ring
[i
].next
= 0;
1185 lp
->rx_skb
[i
] = (struct sk_buff
*) 1; /* Dummy entry */
1190 dma_addr_t dma_rx_bufs
;
1192 dma_rx_bufs
= lp
->dma_rings
+ (NUM_RX_DESC
+ NUM_TX_DESC
)
1193 * sizeof(struct de4x5_desc
);
1194 dma_rx_bufs
= (dma_rx_bufs
+ DE4X5_ALIGN
) & ~DE4X5_ALIGN
;
1195 lp
->rx_bufs
= (char *)(((long)(lp
->rx_ring
+ NUM_RX_DESC
1196 + NUM_TX_DESC
) + DE4X5_ALIGN
) & ~DE4X5_ALIGN
);
1197 for (i
=0; i
<NUM_RX_DESC
; i
++) {
1198 lp
->rx_ring
[i
].status
= 0;
1199 lp
->rx_ring
[i
].des1
= cpu_to_le32(RX_BUFF_SZ
);
1200 lp
->rx_ring
[i
].buf
=
1201 cpu_to_le32(dma_rx_bufs
+i
*RX_BUFF_SZ
);
1202 lp
->rx_ring
[i
].next
= 0;
1203 lp
->rx_skb
[i
] = (struct sk_buff
*) 1; /* Dummy entry */
1211 lp
->rxRingSize
= NUM_RX_DESC
;
1212 lp
->txRingSize
= NUM_TX_DESC
;
1214 /* Write the end of list marker to the descriptor lists */
1215 lp
->rx_ring
[lp
->rxRingSize
- 1].des1
|= cpu_to_le32(RD_RER
);
1216 lp
->tx_ring
[lp
->txRingSize
- 1].des1
|= cpu_to_le32(TD_TER
);
1218 /* Tell the adapter where the TX/RX rings are located. */
1219 outl(lp
->dma_rings
, DE4X5_RRBA
);
1220 outl(lp
->dma_rings
+ NUM_RX_DESC
* sizeof(struct de4x5_desc
),
1223 /* Initialise the IRQ mask and Enable/Disable */
1224 lp
->irq_mask
= IMR_RIM
| IMR_TIM
| IMR_TUM
| IMR_UNM
;
1225 lp
->irq_en
= IMR_NIM
| IMR_AIM
;
1227 /* Create a loopback packet frame for later media probing */
1228 create_packet(dev
, lp
->frame
, sizeof(lp
->frame
));
1230 /* Check if the RX overflow bug needs testing for */
1231 i
= lp
->cfrv
& 0x000000fe;
1232 if ((lp
->chipset
== DC21140
) && (i
== 0x20)) {
1236 /* Initialise the SROM pointers if possible */
1238 lp
->state
= INITIALISED
;
1239 if (srom_infoleaf_info(dev
)) {
1240 dma_free_coherent (gendev
, lp
->dma_size
,
1241 lp
->rx_ring
, lp
->dma_rings
);
1250 ** Check for an MII interface
1252 if ((lp
->chipset
!= DC21040
) && (lp
->chipset
!= DC21041
)) {
1256 #ifndef __sparc_v9__
1257 printk(" and requires IRQ%d (provided by %s).\n", dev
->irq
,
1259 printk(" and requires IRQ%x (provided by %s).\n", dev
->irq
,
1261 ((lp
->bus
== PCI
) ? "PCI BIOS" : "EISA CNFG"));
1264 if (de4x5_debug
& DEBUG_VERSION
) {
1268 /* The DE4X5-specific entries in the device structure. */
1269 SET_MODULE_OWNER(dev
);
1270 SET_NETDEV_DEV(dev
, gendev
);
1271 dev
->open
= &de4x5_open
;
1272 dev
->hard_start_xmit
= &de4x5_queue_pkt
;
1273 dev
->stop
= &de4x5_close
;
1274 dev
->get_stats
= &de4x5_get_stats
;
1275 dev
->set_multicast_list
= &set_multicast_list
;
1276 dev
->do_ioctl
= &de4x5_ioctl
;
1280 /* Fill in the generic fields of the device structure. */
1281 if ((status
= register_netdev (dev
))) {
1282 dma_free_coherent (gendev
, lp
->dma_size
,
1283 lp
->rx_ring
, lp
->dma_rings
);
1287 /* Let the adapter sleep to save power */
1295 de4x5_open(struct net_device
*dev
)
1297 struct de4x5_private
*lp
= netdev_priv(dev
);
1298 u_long iobase
= dev
->base_addr
;
1302 /* Allocate the RX buffers */
1303 for (i
=0; i
<lp
->rxRingSize
; i
++) {
1304 if (de4x5_alloc_rx_buff(dev
, i
, 0) == NULL
) {
1305 de4x5_free_rx_buffs(dev
);
1311 ** Wake up the adapter
1316 ** Re-initialize the DE4X5...
1318 status
= de4x5_init(dev
);
1319 lp
->lock
= SPIN_LOCK_UNLOCKED
;
1321 de4x5_dbg_open(dev
);
1323 if (request_irq(dev
->irq
, (void *)de4x5_interrupt
, SA_SHIRQ
,
1324 lp
->adapter_name
, dev
)) {
1325 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev
->irq
);
1326 if (request_irq(dev
->irq
, de4x5_interrupt
, SA_INTERRUPT
| SA_SHIRQ
,
1327 lp
->adapter_name
, dev
)) {
1328 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1330 de4x5_free_rx_buffs(dev
);
1331 de4x5_free_tx_buffs(dev
);
1336 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1337 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1341 lp
->interrupt
= UNMASK_INTERRUPTS
;
1342 dev
->trans_start
= jiffies
;
1346 de4x5_setup_intr(dev
);
1348 if (de4x5_debug
& DEBUG_OPEN
) {
1349 printk("\tsts: 0x%08x\n", inl(DE4X5_STS
));
1350 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR
));
1351 printk("\timr: 0x%08x\n", inl(DE4X5_IMR
));
1352 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR
));
1353 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR
));
1354 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR
));
1355 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR
));
1356 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR
));
1363 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1364 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1365 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1366 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1367 ** to be data corruption problems if it is larger (UDP errors seen from a
1371 de4x5_init(struct net_device
*dev
)
1373 /* Lock out other processes whilst setting up the hardware */
1374 netif_stop_queue(dev
);
1376 de4x5_sw_reset(dev
);
1378 /* Autoconfigure the connected port */
1379 autoconf_media(dev
);
1385 de4x5_sw_reset(struct net_device
*dev
)
1387 struct de4x5_private
*lp
= netdev_priv(dev
);
1388 u_long iobase
= dev
->base_addr
;
1389 int i
, j
, status
= 0;
1392 /* Select the MII or SRL port now and RESET the MAC */
1394 if (lp
->phy
[lp
->active
].id
!= 0) {
1395 lp
->infoblock_csr6
= OMR_SDP
| OMR_PS
| OMR_HBD
;
1397 lp
->infoblock_csr6
= OMR_SDP
| OMR_TTM
;
1399 de4x5_switch_mac_port(dev
);
1403 ** Set the programmable burst length to 8 longwords for all the DC21140
1404 ** Fasternet chips and 4 longwords for all others: DMA errors result
1405 ** without these values. Cache align 16 long.
1407 bmr
= (lp
->chipset
==DC21140
? PBL_8
: PBL_4
) | DESC_SKIP_LEN
| DE4X5_CACHE_ALIGN
;
1408 bmr
|= ((lp
->chipset
& ~0x00ff)==DC2114x
? BMR_RML
: 0);
1409 outl(bmr
, DE4X5_BMR
);
1411 omr
= inl(DE4X5_OMR
) & ~OMR_PR
; /* Turn off promiscuous mode */
1412 if (lp
->chipset
== DC21140
) {
1413 omr
|= (OMR_SDP
| OMR_SB
);
1415 lp
->setup_f
= PERFECT
;
1416 outl(lp
->dma_rings
, DE4X5_RRBA
);
1417 outl(lp
->dma_rings
+ NUM_RX_DESC
* sizeof(struct de4x5_desc
),
1420 lp
->rx_new
= lp
->rx_old
= 0;
1421 lp
->tx_new
= lp
->tx_old
= 0;
1423 for (i
= 0; i
< lp
->rxRingSize
; i
++) {
1424 lp
->rx_ring
[i
].status
= cpu_to_le32(R_OWN
);
1427 for (i
= 0; i
< lp
->txRingSize
; i
++) {
1428 lp
->tx_ring
[i
].status
= cpu_to_le32(0);
1433 /* Build the setup frame depending on filtering mode */
1434 SetMulticastFilter(dev
);
1436 load_packet(dev
, lp
->setup_frame
, PERFECT_F
|TD_SET
|SETUP_FRAME_LEN
, (struct sk_buff
*)1);
1437 outl(omr
|OMR_ST
, DE4X5_OMR
);
1439 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1441 for (j
=0, i
=0;(i
<500) && (j
==0);i
++) { /* Upto 500ms delay */
1443 if ((s32
)le32_to_cpu(lp
->tx_ring
[lp
->tx_new
].status
) >= 0) j
=1;
1445 outl(omr
, DE4X5_OMR
); /* Stop everything! */
1448 printk("%s: Setup frame timed out, status %08x\n", dev
->name
,
1453 lp
->tx_new
= (++lp
->tx_new
) % lp
->txRingSize
;
1454 lp
->tx_old
= lp
->tx_new
;
1460 ** Writes a socket buffer address to the next available transmit descriptor.
1463 de4x5_queue_pkt(struct sk_buff
*skb
, struct net_device
*dev
)
1465 struct de4x5_private
*lp
= netdev_priv(dev
);
1466 u_long iobase
= dev
->base_addr
;
1470 netif_stop_queue(dev
);
1471 if (lp
->tx_enable
== NO
) { /* Cannot send for now */
1476 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1477 ** interrupts are lost by delayed descriptor status updates relative to
1478 ** the irq assertion, especially with a busy PCI bus.
1480 spin_lock_irqsave(&lp
->lock
, flags
);
1482 spin_unlock_irqrestore(&lp
->lock
, flags
);
1484 /* Test if cache is already locked - requeue skb if so */
1485 if (test_and_set_bit(0, (void *)&lp
->cache
.lock
) && !lp
->interrupt
)
1488 /* Transmit descriptor ring full or stale skb */
1489 if (netif_queue_stopped(dev
) || (u_long
) lp
->tx_skb
[lp
->tx_new
] > 1) {
1490 if (lp
->interrupt
) {
1491 de4x5_putb_cache(dev
, skb
); /* Requeue the buffer */
1493 de4x5_put_cache(dev
, skb
);
1495 if (de4x5_debug
& DEBUG_TX
) {
1496 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev
->name
, inl(DE4X5_STS
), netif_queue_stopped(dev
), inl(DE4X5_IMR
), inl(DE4X5_OMR
), ((u_long
) lp
->tx_skb
[lp
->tx_new
] > 1) ? "YES" : "NO");
1498 } else if (skb
->len
> 0) {
1499 /* If we already have stuff queued locally, use that first */
1500 if (lp
->cache
.skb
&& !lp
->interrupt
) {
1501 de4x5_put_cache(dev
, skb
);
1502 skb
= de4x5_get_cache(dev
);
1505 while (skb
&& !netif_queue_stopped(dev
) &&
1506 (u_long
) lp
->tx_skb
[lp
->tx_new
] <= 1) {
1507 spin_lock_irqsave(&lp
->lock
, flags
);
1508 netif_stop_queue(dev
);
1509 load_packet(dev
, skb
->data
, TD_IC
| TD_LS
| TD_FS
| skb
->len
, skb
);
1510 lp
->stats
.tx_bytes
+= skb
->len
;
1511 outl(POLL_DEMAND
, DE4X5_TPD
);/* Start the TX */
1513 lp
->tx_new
= (++lp
->tx_new
) % lp
->txRingSize
;
1514 dev
->trans_start
= jiffies
;
1516 if (TX_BUFFS_AVAIL
) {
1517 netif_start_queue(dev
); /* Another pkt may be queued */
1519 skb
= de4x5_get_cache(dev
);
1520 spin_unlock_irqrestore(&lp
->lock
, flags
);
1522 if (skb
) de4x5_putb_cache(dev
, skb
);
1531 ** The DE4X5 interrupt handler.
1533 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1534 ** so that the asserted interrupt always has some real data to work with -
1535 ** if these I/O accesses are ever changed to memory accesses, ensure the
1536 ** STS write is read immediately to complete the transaction if the adapter
1537 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1538 ** is high and descriptor status bits cannot be set before the associated
1539 ** interrupt is asserted and this routine entered.
1542 de4x5_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1544 struct net_device
*dev
= (struct net_device
*)dev_id
;
1545 struct de4x5_private
*lp
;
1546 s32 imr
, omr
, sts
, limit
;
1548 unsigned int handled
= 0;
1551 printk ("de4x5_interrupt(): irq %d for unknown device.\n", irq
);
1554 lp
= netdev_priv(dev
);
1555 spin_lock(&lp
->lock
);
1556 iobase
= dev
->base_addr
;
1558 DISABLE_IRQs
; /* Ensure non re-entrancy */
1560 if (test_and_set_bit(MASK_INTERRUPTS
, (void*) &lp
->interrupt
))
1561 printk("%s: Re-entering the interrupt handler.\n", dev
->name
);
1563 synchronize_irq(dev
->irq
);
1565 for (limit
=0; limit
<8; limit
++) {
1566 sts
= inl(DE4X5_STS
); /* Read IRQ status */
1567 outl(sts
, DE4X5_STS
); /* Reset the board interrupts */
1569 if (!(sts
& lp
->irq_mask
)) break;/* All done */
1572 if (sts
& (STS_RI
| STS_RU
)) /* Rx interrupt (packet[s] arrived) */
1575 if (sts
& (STS_TI
| STS_TU
)) /* Tx interrupt (packet sent) */
1578 if (sts
& STS_LNF
) { /* TP Link has failed */
1579 lp
->irq_mask
&= ~IMR_LFM
;
1582 if (sts
& STS_UNF
) { /* Transmit underrun */
1586 if (sts
& STS_SE
) { /* Bus Error */
1588 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1590 spin_unlock(&lp
->lock
);
1595 /* Load the TX ring with any locally stored packets */
1596 if (!test_and_set_bit(0, (void *)&lp
->cache
.lock
)) {
1597 while (lp
->cache
.skb
&& !netif_queue_stopped(dev
) && lp
->tx_enable
) {
1598 de4x5_queue_pkt(de4x5_get_cache(dev
), dev
);
1603 lp
->interrupt
= UNMASK_INTERRUPTS
;
1605 spin_unlock(&lp
->lock
);
1607 return IRQ_RETVAL(handled
);
1611 de4x5_rx(struct net_device
*dev
)
1613 struct de4x5_private
*lp
= netdev_priv(dev
);
1614 u_long iobase
= dev
->base_addr
;
1618 for (entry
=lp
->rx_new
; (s32
)le32_to_cpu(lp
->rx_ring
[entry
].status
)>=0;
1620 status
= (s32
)le32_to_cpu(lp
->rx_ring
[entry
].status
);
1623 if (inl(DE4X5_MFC
) & MFC_FOCM
) {
1629 if (status
& RD_FS
) { /* Remember the start of frame */
1633 if (status
& RD_LS
) { /* Valid frame status */
1634 if (lp
->tx_enable
) lp
->linkOK
++;
1635 if (status
& RD_ES
) { /* There was an error. */
1636 lp
->stats
.rx_errors
++; /* Update the error stats. */
1637 if (status
& (RD_RF
| RD_TL
)) lp
->stats
.rx_frame_errors
++;
1638 if (status
& RD_CE
) lp
->stats
.rx_crc_errors
++;
1639 if (status
& RD_OF
) lp
->stats
.rx_fifo_errors
++;
1640 if (status
& RD_TL
) lp
->stats
.rx_length_errors
++;
1641 if (status
& RD_RF
) lp
->pktStats
.rx_runt_frames
++;
1642 if (status
& RD_CS
) lp
->pktStats
.rx_collision
++;
1643 if (status
& RD_DB
) lp
->pktStats
.rx_dribble
++;
1644 if (status
& RD_OF
) lp
->pktStats
.rx_overflow
++;
1645 } else { /* A valid frame received */
1646 struct sk_buff
*skb
;
1647 short pkt_len
= (short)(le32_to_cpu(lp
->rx_ring
[entry
].status
)
1650 if ((skb
= de4x5_alloc_rx_buff(dev
, entry
, pkt_len
)) == NULL
) {
1651 printk("%s: Insufficient memory; nuking packet.\n",
1653 lp
->stats
.rx_dropped
++;
1655 de4x5_dbg_rx(skb
, pkt_len
);
1657 /* Push up the protocol stack */
1658 skb
->protocol
=eth_type_trans(skb
,dev
);
1659 de4x5_local_stats(dev
, skb
->data
, pkt_len
);
1663 dev
->last_rx
= jiffies
;
1664 lp
->stats
.rx_packets
++;
1665 lp
->stats
.rx_bytes
+= pkt_len
;
1669 /* Change buffer ownership for this frame, back to the adapter */
1670 for (;lp
->rx_old
!=entry
;lp
->rx_old
=(++lp
->rx_old
)%lp
->rxRingSize
) {
1671 lp
->rx_ring
[lp
->rx_old
].status
= cpu_to_le32(R_OWN
);
1674 lp
->rx_ring
[entry
].status
= cpu_to_le32(R_OWN
);
1679 ** Update entry information
1681 lp
->rx_new
= (++lp
->rx_new
) % lp
->rxRingSize
;
1688 de4x5_free_tx_buff(struct de4x5_private
*lp
, int entry
)
1690 dma_unmap_single(lp
->gendev
, le32_to_cpu(lp
->tx_ring
[entry
].buf
),
1691 le32_to_cpu(lp
->tx_ring
[entry
].des1
) & TD_TBS1
,
1693 if ((u_long
) lp
->tx_skb
[entry
] > 1)
1694 dev_kfree_skb_irq(lp
->tx_skb
[entry
]);
1695 lp
->tx_skb
[entry
] = NULL
;
1699 ** Buffer sent - check for TX buffer errors.
1702 de4x5_tx(struct net_device
*dev
)
1704 struct de4x5_private
*lp
= netdev_priv(dev
);
1705 u_long iobase
= dev
->base_addr
;
1709 for (entry
= lp
->tx_old
; entry
!= lp
->tx_new
; entry
= lp
->tx_old
) {
1710 status
= (s32
)le32_to_cpu(lp
->tx_ring
[entry
].status
);
1711 if (status
< 0) { /* Buffer not sent yet */
1713 } else if (status
!= 0x7fffffff) { /* Not setup frame */
1714 if (status
& TD_ES
) { /* An error happened */
1715 lp
->stats
.tx_errors
++;
1716 if (status
& TD_NC
) lp
->stats
.tx_carrier_errors
++;
1717 if (status
& TD_LC
) lp
->stats
.tx_window_errors
++;
1718 if (status
& TD_UF
) lp
->stats
.tx_fifo_errors
++;
1719 if (status
& TD_EC
) lp
->pktStats
.excessive_collisions
++;
1720 if (status
& TD_DE
) lp
->stats
.tx_aborted_errors
++;
1722 if (TX_PKT_PENDING
) {
1723 outl(POLL_DEMAND
, DE4X5_TPD
);/* Restart a stalled TX */
1725 } else { /* Packet sent */
1726 lp
->stats
.tx_packets
++;
1727 if (lp
->tx_enable
) lp
->linkOK
++;
1729 /* Update the collision counter */
1730 lp
->stats
.collisions
+= ((status
& TD_EC
) ? 16 :
1731 ((status
& TD_CC
) >> 3));
1733 /* Free the buffer. */
1734 if (lp
->tx_skb
[entry
] != NULL
)
1735 de4x5_free_tx_buff(lp
, entry
);
1738 /* Update all the pointers */
1739 lp
->tx_old
= (++lp
->tx_old
) % lp
->txRingSize
;
1742 /* Any resources available? */
1743 if (TX_BUFFS_AVAIL
&& netif_queue_stopped(dev
)) {
1745 netif_wake_queue(dev
);
1747 netif_start_queue(dev
);
1754 de4x5_ast(struct net_device
*dev
)
1756 struct de4x5_private
*lp
= netdev_priv(dev
);
1757 int next_tick
= DE4X5_AUTOSENSE_MS
;
1762 next_tick
= srom_autoconf(dev
);
1763 } else if (lp
->chipset
== DC21140
) {
1764 next_tick
= dc21140m_autoconf(dev
);
1765 } else if (lp
->chipset
== DC21041
) {
1766 next_tick
= dc21041_autoconf(dev
);
1767 } else if (lp
->chipset
== DC21040
) {
1768 next_tick
= dc21040_autoconf(dev
);
1771 enable_ast(dev
, next_tick
);
1777 de4x5_txur(struct net_device
*dev
)
1779 struct de4x5_private
*lp
= netdev_priv(dev
);
1780 u_long iobase
= dev
->base_addr
;
1783 omr
= inl(DE4X5_OMR
);
1784 if (!(omr
& OMR_SF
) || (lp
->chipset
==DC21041
) || (lp
->chipset
==DC21040
)) {
1785 omr
&= ~(OMR_ST
|OMR_SR
);
1786 outl(omr
, DE4X5_OMR
);
1787 while (inl(DE4X5_STS
) & STS_TS
);
1788 if ((omr
& OMR_TR
) < OMR_TR
) {
1793 outl(omr
| OMR_ST
| OMR_SR
, DE4X5_OMR
);
1800 de4x5_rx_ovfc(struct net_device
*dev
)
1802 struct de4x5_private
*lp
= netdev_priv(dev
);
1803 u_long iobase
= dev
->base_addr
;
1806 omr
= inl(DE4X5_OMR
);
1807 outl(omr
& ~OMR_SR
, DE4X5_OMR
);
1808 while (inl(DE4X5_STS
) & STS_RS
);
1810 for (; (s32
)le32_to_cpu(lp
->rx_ring
[lp
->rx_new
].status
)>=0;) {
1811 lp
->rx_ring
[lp
->rx_new
].status
= cpu_to_le32(R_OWN
);
1812 lp
->rx_new
= (++lp
->rx_new
% lp
->rxRingSize
);
1815 outl(omr
, DE4X5_OMR
);
1821 de4x5_close(struct net_device
*dev
)
1823 struct de4x5_private
*lp
= netdev_priv(dev
);
1824 u_long iobase
= dev
->base_addr
;
1829 netif_stop_queue(dev
);
1831 if (de4x5_debug
& DEBUG_CLOSE
) {
1832 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1833 dev
->name
, inl(DE4X5_STS
));
1837 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1842 /* Free the associated irq */
1843 free_irq(dev
->irq
, dev
);
1846 /* Free any socket buffers */
1847 de4x5_free_rx_buffs(dev
);
1848 de4x5_free_tx_buffs(dev
);
1850 /* Put the adapter to sleep to save power */
1856 static struct net_device_stats
*
1857 de4x5_get_stats(struct net_device
*dev
)
1859 struct de4x5_private
*lp
= netdev_priv(dev
);
1860 u_long iobase
= dev
->base_addr
;
1862 lp
->stats
.rx_missed_errors
= (int)(inl(DE4X5_MFC
) & (MFC_OVFL
| MFC_CNTR
));
1868 de4x5_local_stats(struct net_device
*dev
, char *buf
, int pkt_len
)
1870 struct de4x5_private
*lp
= netdev_priv(dev
);
1873 for (i
=1; i
<DE4X5_PKT_STAT_SZ
-1; i
++) {
1874 if (pkt_len
< (i
*DE4X5_PKT_BIN_SZ
)) {
1875 lp
->pktStats
.bins
[i
]++;
1876 i
= DE4X5_PKT_STAT_SZ
;
1879 if (buf
[0] & 0x01) { /* Multicast/Broadcast */
1880 if ((*(s32
*)&buf
[0] == -1) && (*(s16
*)&buf
[4] == -1)) {
1881 lp
->pktStats
.broadcast
++;
1883 lp
->pktStats
.multicast
++;
1885 } else if ((*(s32
*)&buf
[0] == *(s32
*)&dev
->dev_addr
[0]) &&
1886 (*(s16
*)&buf
[4] == *(s16
*)&dev
->dev_addr
[4])) {
1887 lp
->pktStats
.unicast
++;
1890 lp
->pktStats
.bins
[0]++; /* Duplicates stats.rx_packets */
1891 if (lp
->pktStats
.bins
[0] == 0) { /* Reset counters */
1892 memset((char *)&lp
->pktStats
, 0, sizeof(lp
->pktStats
));
1899 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1900 ** If the flag is changed on a descriptor that is being read by the hardware,
1901 ** I assume PCI transaction ordering will mean you are either successful or
1902 ** just miss asserting the change to the hardware. Anyway you're messing with
1903 ** a descriptor you don't own, but this shouldn't kill the chip provided
1904 ** the descriptor register is read only to the hardware.
1907 load_packet(struct net_device
*dev
, char *buf
, u32 flags
, struct sk_buff
*skb
)
1909 struct de4x5_private
*lp
= netdev_priv(dev
);
1910 int entry
= (lp
->tx_new
? lp
->tx_new
-1 : lp
->txRingSize
-1);
1911 dma_addr_t buf_dma
= dma_map_single(lp
->gendev
, buf
, flags
& TD_TBS1
, DMA_TO_DEVICE
);
1913 lp
->tx_ring
[lp
->tx_new
].buf
= cpu_to_le32(buf_dma
);
1914 lp
->tx_ring
[lp
->tx_new
].des1
&= cpu_to_le32(TD_TER
);
1915 lp
->tx_ring
[lp
->tx_new
].des1
|= cpu_to_le32(flags
);
1916 lp
->tx_skb
[lp
->tx_new
] = skb
;
1917 lp
->tx_ring
[entry
].des1
&= cpu_to_le32(~TD_IC
);
1920 lp
->tx_ring
[lp
->tx_new
].status
= cpu_to_le32(T_OWN
);
1925 ** Set or clear the multicast filter for this adaptor.
1928 set_multicast_list(struct net_device
*dev
)
1930 struct de4x5_private
*lp
= netdev_priv(dev
);
1931 u_long iobase
= dev
->base_addr
;
1933 /* First, double check that the adapter is open */
1934 if (lp
->state
== OPEN
) {
1935 if (dev
->flags
& IFF_PROMISC
) { /* set promiscuous mode */
1937 omr
= inl(DE4X5_OMR
);
1939 outl(omr
, DE4X5_OMR
);
1941 SetMulticastFilter(dev
);
1942 load_packet(dev
, lp
->setup_frame
, TD_IC
| PERFECT_F
| TD_SET
|
1943 SETUP_FRAME_LEN
, (struct sk_buff
*)1);
1945 lp
->tx_new
= (++lp
->tx_new
) % lp
->txRingSize
;
1946 outl(POLL_DEMAND
, DE4X5_TPD
); /* Start the TX */
1947 dev
->trans_start
= jiffies
;
1953 ** Calculate the hash code and update the logical address filter
1954 ** from a list of ethernet multicast addresses.
1955 ** Little endian crc one liner from Matt Thomas, DEC.
1958 SetMulticastFilter(struct net_device
*dev
)
1960 struct de4x5_private
*lp
= netdev_priv(dev
);
1961 struct dev_mc_list
*dmi
=dev
->mc_list
;
1962 u_long iobase
= dev
->base_addr
;
1963 int i
, j
, bit
, byte
;
1967 unsigned char *addrs
;
1969 omr
= inl(DE4X5_OMR
);
1970 omr
&= ~(OMR_PR
| OMR_PM
);
1971 pa
= build_setup_frame(dev
, ALL
); /* Build the basic frame */
1973 if ((dev
->flags
& IFF_ALLMULTI
) || (dev
->mc_count
> 14)) {
1974 omr
|= OMR_PM
; /* Pass all multicasts */
1975 } else if (lp
->setup_f
== HASH_PERF
) { /* Hash Filtering */
1976 for (i
=0;i
<dev
->mc_count
;i
++) { /* for each address in the list */
1977 addrs
=dmi
->dmi_addr
;
1979 if ((*addrs
& 0x01) == 1) { /* multicast address? */
1980 crc
= ether_crc_le(ETH_ALEN
, addrs
);
1981 hashcode
= crc
& HASH_BITS
; /* hashcode is 9 LSb of CRC */
1983 byte
= hashcode
>> 3; /* bit[3-8] -> byte in filter */
1984 bit
= 1 << (hashcode
& 0x07);/* bit[0-2] -> bit in byte */
1986 byte
<<= 1; /* calc offset into setup frame */
1990 lp
->setup_frame
[byte
] |= bit
;
1993 } else { /* Perfect filtering */
1994 for (j
=0; j
<dev
->mc_count
; j
++) {
1995 addrs
=dmi
->dmi_addr
;
1997 for (i
=0; i
<ETH_ALEN
; i
++) {
1998 *(pa
+ (i
&1)) = *addrs
++;
1999 if (i
& 0x01) pa
+= 4;
2003 outl(omr
, DE4X5_OMR
);
2010 static u_char de4x5_irq
[] = EISA_ALLOWED_IRQ_LIST
;
2012 static int __init
de4x5_eisa_probe (struct device
*gendev
)
2014 struct eisa_device
*edev
;
2020 struct net_device
*dev
;
2021 struct de4x5_private
*lp
;
2023 edev
= to_eisa_device (gendev
);
2024 iobase
= edev
->base_addr
;
2026 if (!request_region (iobase
, DE4X5_EISA_TOTAL_SIZE
, "de4x5"))
2029 if (!request_region (iobase
+ DE4X5_EISA_IO_PORTS
,
2030 DE4X5_EISA_TOTAL_SIZE
, "de4x5")) {
2035 if (!(dev
= alloc_etherdev (sizeof (struct de4x5_private
)))) {
2039 lp
= netdev_priv(dev
);
2041 cfid
= (u32
) inl(PCI_CFID
);
2042 lp
->cfrv
= (u_short
) inl(PCI_CFRV
);
2043 device
= (cfid
>> 8) & 0x00ffff00;
2044 vendor
= (u_short
) cfid
;
2046 /* Read the EISA Configuration Registers */
2047 regval
= inb(EISA_REG0
) & (ER0_INTL
| ER0_INTT
);
2049 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2050 * care about the EISA configuration, and thus doesn't
2051 * configure the PLX bridge properly. Oh well... Simply mimic
2052 * the EISA config file to sort it out. */
2054 /* EISA REG1: Assert DecChip 21040 HW Reset */
2055 outb (ER1_IAM
| 1, EISA_REG1
);
2058 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2059 outb (ER1_IAM
, EISA_REG1
);
2062 /* EISA REG3: R/W Burst Transfer Enable */
2063 outb (ER3_BWE
| ER3_BRE
, EISA_REG3
);
2065 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2066 outb (ER0_BSW
| ER0_BMW
| ER0_EPT
| regval
, EISA_REG0
);
2068 irq
= de4x5_irq
[(regval
>> 1) & 0x03];
2071 device
= ((lp
->cfrv
& CFRV_RN
) < DC2114x_BRK
? DC21142
: DC21143
);
2073 lp
->chipset
= device
;
2076 /* Write the PCI Configuration Registers */
2077 outl(PCI_COMMAND_IO
| PCI_COMMAND_MASTER
, PCI_CFCS
);
2078 outl(0x00006000, PCI_CFLT
);
2079 outl(iobase
, PCI_CBIO
);
2081 DevicePresent(dev
, EISA_APROM
);
2085 if (!(status
= de4x5_hw_init (dev
, iobase
, gendev
))) {
2091 release_region (iobase
+ DE4X5_EISA_IO_PORTS
, DE4X5_EISA_TOTAL_SIZE
);
2093 release_region (iobase
, DE4X5_EISA_TOTAL_SIZE
);
2098 static int __devexit
de4x5_eisa_remove (struct device
*device
)
2100 struct net_device
*dev
;
2103 dev
= device
->driver_data
;
2104 iobase
= dev
->base_addr
;
2106 unregister_netdev (dev
);
2108 release_region (iobase
+ DE4X5_EISA_IO_PORTS
, DE4X5_EISA_TOTAL_SIZE
);
2109 release_region (iobase
, DE4X5_EISA_TOTAL_SIZE
);
2114 static struct eisa_device_id de4x5_eisa_ids
[] = {
2115 { "DEC4250", 0 }, /* 0 is the board name index... */
2119 static struct eisa_driver de4x5_eisa_driver
= {
2120 .id_table
= de4x5_eisa_ids
,
2123 .probe
= de4x5_eisa_probe
,
2124 .remove
= __devexit_p (de4x5_eisa_remove
),
2132 ** This function searches the current bus (which is >0) for a DECchip with an
2133 ** SROM, so that in multiport cards that have one SROM shared between multiple
2134 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2135 ** For single port cards this is a time waster...
2137 static void __devinit
2138 srom_search(struct net_device
*dev
, struct pci_dev
*pdev
)
2141 u_short vendor
, status
;
2142 u_int irq
= 0, device
;
2143 u_long iobase
= 0; /* Clear upper 32 bits in Alphas */
2145 struct de4x5_private
*lp
= netdev_priv(dev
);
2146 struct list_head
*walk
= &pdev
->bus_list
;
2148 for (walk
= walk
->next
; walk
!= &pdev
->bus_list
; walk
= walk
->next
) {
2149 struct pci_dev
*this_dev
= pci_dev_b(walk
);
2151 /* Skip the pci_bus list entry */
2152 if (list_entry(walk
, struct pci_bus
, devices
) == pdev
->bus
) continue;
2154 vendor
= this_dev
->vendor
;
2155 device
= this_dev
->device
<< 8;
2156 if (!(is_DC21040
|| is_DC21041
|| is_DC21140
|| is_DC2114x
)) continue;
2158 /* Get the chip configuration revision register */
2159 pb
= this_dev
->bus
->number
;
2160 pci_read_config_dword(this_dev
, PCI_REVISION_ID
, &cfrv
);
2162 /* Set the device number information */
2163 lp
->device
= PCI_SLOT(this_dev
->devfn
);
2166 /* Set the chipset information */
2168 device
= ((cfrv
& CFRV_RN
) < DC2114x_BRK
? DC21142
: DC21143
);
2170 lp
->chipset
= device
;
2172 /* Get the board I/O address (64 bits on sparc64) */
2173 iobase
= pci_resource_start(this_dev
, 0);
2175 /* Fetch the IRQ to be used */
2176 irq
= this_dev
->irq
;
2177 if ((irq
== 0) || (irq
== 0xff) || ((int)irq
== -1)) continue;
2179 /* Check if I/O accesses are enabled */
2180 pci_read_config_word(this_dev
, PCI_COMMAND
, &status
);
2181 if (!(status
& PCI_COMMAND_IO
)) continue;
2183 /* Search for a valid SROM attached to this DECchip */
2184 DevicePresent(dev
, DE4X5_APROM
);
2185 for (j
=0, i
=0; i
<ETH_ALEN
; i
++) {
2186 j
+= (u_char
) *((u_char
*)&lp
->srom
+ SROM_HWADD
+ i
);
2188 if ((j
!= 0) && (j
!= 0x5fa)) {
2189 last
.chipset
= device
;
2192 for (i
=0; i
<ETH_ALEN
; i
++) {
2193 last
.addr
[i
] = (u_char
)*((u_char
*)&lp
->srom
+ SROM_HWADD
+ i
);
2203 ** PCI bus I/O device probe
2204 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2205 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2206 ** enabled by the user first in the set up utility. Hence we just check for
2207 ** enabled features and silently ignore the card if they're not.
2209 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2210 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2211 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2212 ** PC doesn't conform to the PCI standard)!
2214 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2215 ** kernels use the V0.535[n] drivers.
2218 static int __devinit
de4x5_pci_probe (struct pci_dev
*pdev
,
2219 const struct pci_device_id
*ent
)
2221 u_char pb
, pbus
= 0, dev_num
, dnum
= 0, timer
;
2222 u_short vendor
, status
;
2223 u_int irq
= 0, device
;
2224 u_long iobase
= 0; /* Clear upper 32 bits in Alphas */
2226 struct net_device
*dev
;
2227 struct de4x5_private
*lp
;
2229 dev_num
= PCI_SLOT(pdev
->devfn
);
2230 pb
= pdev
->bus
->number
;
2232 if (io
) { /* probe a single PCI device */
2233 pbus
= (u_short
)(io
>> 8);
2234 dnum
= (u_short
)(io
& 0xff);
2235 if ((pbus
!= pb
) || (dnum
!= dev_num
))
2239 vendor
= pdev
->vendor
;
2240 device
= pdev
->device
<< 8;
2241 if (!(is_DC21040
|| is_DC21041
|| is_DC21140
|| is_DC2114x
))
2244 /* Ok, the device seems to be for us. */
2245 if (pci_enable_device (pdev
))
2248 if (!(dev
= alloc_etherdev (sizeof (struct de4x5_private
)))) {
2253 lp
= netdev_priv(dev
);
2257 /* Search for an SROM on this bus */
2258 if (lp
->bus_num
!= pb
) {
2260 srom_search(dev
, pdev
);
2263 /* Get the chip configuration revision register */
2264 pci_read_config_dword(pdev
, PCI_REVISION_ID
, &lp
->cfrv
);
2266 /* Set the device number information */
2267 lp
->device
= dev_num
;
2270 /* Set the chipset information */
2272 device
= ((lp
->cfrv
& CFRV_RN
) < DC2114x_BRK
? DC21142
: DC21143
);
2274 lp
->chipset
= device
;
2276 /* Get the board I/O address (64 bits on sparc64) */
2277 iobase
= pci_resource_start(pdev
, 0);
2279 /* Fetch the IRQ to be used */
2281 if ((irq
== 0) || (irq
== 0xff) || ((int)irq
== -1)) {
2286 /* Check if I/O accesses and Bus Mastering are enabled */
2287 pci_read_config_word(pdev
, PCI_COMMAND
, &status
);
2289 if (!(status
& PCI_COMMAND_IO
)) {
2290 status
|= PCI_COMMAND_IO
;
2291 pci_write_config_word(pdev
, PCI_COMMAND
, status
);
2292 pci_read_config_word(pdev
, PCI_COMMAND
, &status
);
2294 #endif /* __powerpc__ */
2295 if (!(status
& PCI_COMMAND_IO
)) {
2300 if (!(status
& PCI_COMMAND_MASTER
)) {
2301 status
|= PCI_COMMAND_MASTER
;
2302 pci_write_config_word(pdev
, PCI_COMMAND
, status
);
2303 pci_read_config_word(pdev
, PCI_COMMAND
, &status
);
2305 if (!(status
& PCI_COMMAND_MASTER
)) {
2310 /* Check the latency timer for values >= 0x60 */
2311 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &timer
);
2313 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x60);
2316 DevicePresent(dev
, DE4X5_APROM
);
2318 if (!request_region (iobase
, DE4X5_PCI_TOTAL_SIZE
, "de4x5")) {
2325 if ((error
= de4x5_hw_init(dev
, iobase
, &pdev
->dev
))) {
2332 release_region (iobase
, DE4X5_PCI_TOTAL_SIZE
);
2336 pci_disable_device (pdev
);
2340 static void __devexit
de4x5_pci_remove (struct pci_dev
*pdev
)
2342 struct net_device
*dev
;
2345 dev
= pdev
->dev
.driver_data
;
2346 iobase
= dev
->base_addr
;
2348 unregister_netdev (dev
);
2350 release_region (iobase
, DE4X5_PCI_TOTAL_SIZE
);
2351 pci_disable_device (pdev
);
2354 static struct pci_device_id de4x5_pci_tbl
[] = {
2355 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_TULIP
,
2356 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0 },
2357 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_TULIP_PLUS
,
2358 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 1 },
2359 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_TULIP_FAST
,
2360 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 2 },
2361 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_21142
,
2362 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 3 },
2366 static struct pci_driver de4x5_pci_driver
= {
2368 .id_table
= de4x5_pci_tbl
,
2369 .probe
= de4x5_pci_probe
,
2370 .remove
= __devexit_p (de4x5_pci_remove
),
2376 ** Auto configure the media here rather than setting the port at compile
2377 ** time. This routine is called by de4x5_init() and when a loss of media is
2378 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2379 ** [TP] or no recent receive activity) to check whether the user has been
2380 ** sneaky and changed the port on us.
2383 autoconf_media(struct net_device
*dev
)
2385 struct de4x5_private
*lp
= netdev_priv(dev
);
2386 u_long iobase
= dev
->base_addr
;
2387 int next_tick
= DE4X5_AUTOSENSE_MS
;
2390 lp
->c_media
= AUTO
; /* Bogus last media */
2392 inl(DE4X5_MFC
); /* Zero the lost frames counter */
2397 next_tick
= srom_autoconf(dev
);
2398 } else if (lp
->chipset
== DC21040
) {
2399 next_tick
= dc21040_autoconf(dev
);
2400 } else if (lp
->chipset
== DC21041
) {
2401 next_tick
= dc21041_autoconf(dev
);
2402 } else if (lp
->chipset
== DC21140
) {
2403 next_tick
= dc21140m_autoconf(dev
);
2406 enable_ast(dev
, next_tick
);
2412 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2413 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2414 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2415 ** The only way to test for that is to place a loopback packet onto the
2416 ** network and watch for errors. Since we're messing with the interrupt mask
2417 ** register, disable the board interrupts and do not allow any more packets to
2418 ** be queued to the hardware. Re-enable everything only when the media is
2420 ** I may have to "age out" locally queued packets so that the higher layer
2421 ** timeouts don't effectively duplicate packets on the network.
2424 dc21040_autoconf(struct net_device
*dev
)
2426 struct de4x5_private
*lp
= netdev_priv(dev
);
2427 u_long iobase
= dev
->base_addr
;
2428 int next_tick
= DE4X5_AUTOSENSE_MS
;
2431 switch (lp
->media
) {
2436 de4x5_save_skbs(dev
);
2437 if ((lp
->autosense
== AUTO
) || (lp
->autosense
== TP
)) {
2439 } else if ((lp
->autosense
== BNC
) || (lp
->autosense
== AUI
) || (lp
->autosense
== BNC_AUI
)) {
2440 lp
->media
= BNC_AUI
;
2441 } else if (lp
->autosense
== EXT_SIA
) {
2442 lp
->media
= EXT_SIA
;
2446 lp
->local_state
= 0;
2447 next_tick
= dc21040_autoconf(dev
);
2451 next_tick
= dc21040_state(dev
, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI
,
2452 TP_SUSPECT
, test_tp
);
2456 next_tick
= de4x5_suspect_state(dev
, 1000, TP
, test_tp
, dc21040_autoconf
);
2462 next_tick
= dc21040_state(dev
, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA
,
2463 BNC_AUI_SUSPECT
, ping_media
);
2466 case BNC_AUI_SUSPECT
:
2467 next_tick
= de4x5_suspect_state(dev
, 1000, BNC_AUI
, ping_media
, dc21040_autoconf
);
2471 next_tick
= dc21040_state(dev
, 0x3041, 0x0000, 0x0006, 3000,
2472 NC
, EXT_SIA_SUSPECT
, ping_media
);
2475 case EXT_SIA_SUSPECT
:
2476 next_tick
= de4x5_suspect_state(dev
, 1000, EXT_SIA
, ping_media
, dc21040_autoconf
);
2480 /* default to TP for all */
2481 reset_init_sia(dev
, 0x8f01, 0xffff, 0x0000);
2482 if (lp
->media
!= lp
->c_media
) {
2483 de4x5_dbg_media(dev
);
2484 lp
->c_media
= lp
->media
;
2495 dc21040_state(struct net_device
*dev
, int csr13
, int csr14
, int csr15
, int timeout
,
2496 int next_state
, int suspect_state
,
2497 int (*fn
)(struct net_device
*, int))
2499 struct de4x5_private
*lp
= netdev_priv(dev
);
2500 int next_tick
= DE4X5_AUTOSENSE_MS
;
2503 switch (lp
->local_state
) {
2505 reset_init_sia(dev
, csr13
, csr14
, csr15
);
2511 if (!lp
->tx_enable
) {
2512 linkBad
= fn(dev
, timeout
);
2514 next_tick
= linkBad
& ~TIMER_CB
;
2516 if (linkBad
&& (lp
->autosense
== AUTO
)) {
2517 lp
->local_state
= 0;
2518 lp
->media
= next_state
;
2520 de4x5_init_connection(dev
);
2523 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2524 lp
->media
= suspect_state
;
2534 de4x5_suspect_state(struct net_device
*dev
, int timeout
, int prev_state
,
2535 int (*fn
)(struct net_device
*, int),
2536 int (*asfn
)(struct net_device
*))
2538 struct de4x5_private
*lp
= netdev_priv(dev
);
2539 int next_tick
= DE4X5_AUTOSENSE_MS
;
2542 switch (lp
->local_state
) {
2545 lp
->media
= prev_state
;
2548 next_tick
= asfn(dev
);
2553 linkBad
= fn(dev
, timeout
);
2555 next_tick
= linkBad
& ~TIMER_CB
;
2556 } else if (!linkBad
) {
2558 lp
->media
= prev_state
;
2569 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2570 ** before BNC, because the BNC port will indicate activity if it's not
2571 ** terminated correctly. The only way to test for that is to place a loopback
2572 ** packet onto the network and watch for errors. Since we're messing with
2573 ** the interrupt mask register, disable the board interrupts and do not allow
2574 ** any more packets to be queued to the hardware. Re-enable everything only
2575 ** when the media is found.
2578 dc21041_autoconf(struct net_device
*dev
)
2580 struct de4x5_private
*lp
= netdev_priv(dev
);
2581 u_long iobase
= dev
->base_addr
;
2582 s32 sts
, irqs
, irq_mask
, imr
, omr
;
2583 int next_tick
= DE4X5_AUTOSENSE_MS
;
2585 switch (lp
->media
) {
2590 de4x5_save_skbs(dev
); /* Save non transmitted skb's */
2591 if ((lp
->autosense
== AUTO
) || (lp
->autosense
== TP_NW
)) {
2592 lp
->media
= TP
; /* On chip auto negotiation is broken */
2593 } else if (lp
->autosense
== TP
) {
2595 } else if (lp
->autosense
== BNC
) {
2597 } else if (lp
->autosense
== AUI
) {
2602 lp
->local_state
= 0;
2603 next_tick
= dc21041_autoconf(dev
);
2607 if (lp
->timeout
< 0) {
2608 omr
= inl(DE4X5_OMR
);/* Set up full duplex for the autonegotiate */
2609 outl(omr
| OMR_FDX
, DE4X5_OMR
);
2611 irqs
= STS_LNF
| STS_LNP
;
2612 irq_mask
= IMR_LFM
| IMR_LPM
;
2613 sts
= test_media(dev
, irqs
, irq_mask
, 0xef01, 0xffff, 0x0008, 2400);
2615 next_tick
= sts
& ~TIMER_CB
;
2617 if (sts
& STS_LNP
) {
2622 next_tick
= dc21041_autoconf(dev
);
2627 if (!lp
->tx_enable
) {
2630 sts
= test_ans(dev
, irqs
, irq_mask
, 3000);
2632 next_tick
= sts
& ~TIMER_CB
;
2634 if (!(sts
& STS_LNP
) && (lp
->autosense
== AUTO
)) {
2636 next_tick
= dc21041_autoconf(dev
);
2638 lp
->local_state
= 1;
2639 de4x5_init_connection(dev
);
2642 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2643 lp
->media
= ANS_SUSPECT
;
2649 next_tick
= de4x5_suspect_state(dev
, 1000, ANS
, test_tp
, dc21041_autoconf
);
2653 if (!lp
->tx_enable
) {
2654 if (lp
->timeout
< 0) {
2655 omr
= inl(DE4X5_OMR
); /* Set up half duplex for TP */
2656 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
2658 irqs
= STS_LNF
| STS_LNP
;
2659 irq_mask
= IMR_LFM
| IMR_LPM
;
2660 sts
= test_media(dev
,irqs
, irq_mask
, 0xef01, 0xff3f, 0x0008, 2400);
2662 next_tick
= sts
& ~TIMER_CB
;
2664 if (!(sts
& STS_LNP
) && (lp
->autosense
== AUTO
)) {
2665 if (inl(DE4X5_SISR
) & SISR_NRA
) {
2666 lp
->media
= AUI
; /* Non selected port activity */
2670 next_tick
= dc21041_autoconf(dev
);
2672 lp
->local_state
= 1;
2673 de4x5_init_connection(dev
);
2676 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2677 lp
->media
= TP_SUSPECT
;
2683 next_tick
= de4x5_suspect_state(dev
, 1000, TP
, test_tp
, dc21041_autoconf
);
2687 if (!lp
->tx_enable
) {
2688 if (lp
->timeout
< 0) {
2689 omr
= inl(DE4X5_OMR
); /* Set up half duplex for AUI */
2690 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
2694 sts
= test_media(dev
,irqs
, irq_mask
, 0xef09, 0xf73d, 0x000e, 1000);
2696 next_tick
= sts
& ~TIMER_CB
;
2698 if (!(inl(DE4X5_SISR
) & SISR_SRA
) && (lp
->autosense
== AUTO
)) {
2700 next_tick
= dc21041_autoconf(dev
);
2702 lp
->local_state
= 1;
2703 de4x5_init_connection(dev
);
2706 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2707 lp
->media
= AUI_SUSPECT
;
2713 next_tick
= de4x5_suspect_state(dev
, 1000, AUI
, ping_media
, dc21041_autoconf
);
2717 switch (lp
->local_state
) {
2719 if (lp
->timeout
< 0) {
2720 omr
= inl(DE4X5_OMR
); /* Set up half duplex for BNC */
2721 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
2725 sts
= test_media(dev
,irqs
, irq_mask
, 0xef09, 0xf73d, 0x0006, 1000);
2727 next_tick
= sts
& ~TIMER_CB
;
2729 lp
->local_state
++; /* Ensure media connected */
2730 next_tick
= dc21041_autoconf(dev
);
2735 if (!lp
->tx_enable
) {
2736 if ((sts
= ping_media(dev
, 3000)) < 0) {
2737 next_tick
= sts
& ~TIMER_CB
;
2740 lp
->local_state
= 0;
2743 de4x5_init_connection(dev
);
2746 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2747 lp
->media
= BNC_SUSPECT
;
2755 next_tick
= de4x5_suspect_state(dev
, 1000, BNC
, ping_media
, dc21041_autoconf
);
2759 omr
= inl(DE4X5_OMR
); /* Set up full duplex for the autonegotiate */
2760 outl(omr
| OMR_FDX
, DE4X5_OMR
);
2761 reset_init_sia(dev
, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2762 if (lp
->media
!= lp
->c_media
) {
2763 de4x5_dbg_media(dev
);
2764 lp
->c_media
= lp
->media
;
2775 ** Some autonegotiation chips are broken in that they do not return the
2776 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2777 ** register, except at the first power up negotiation.
2780 dc21140m_autoconf(struct net_device
*dev
)
2782 struct de4x5_private
*lp
= netdev_priv(dev
);
2783 int ana
, anlpa
, cap
, cr
, slnk
, sr
;
2784 int next_tick
= DE4X5_AUTOSENSE_MS
;
2785 u_long imr
, omr
, iobase
= dev
->base_addr
;
2789 if (lp
->timeout
< 0) {
2791 lp
->tx_enable
= FALSE
;
2793 de4x5_save_skbs(dev
); /* Save non transmitted skb's */
2795 if ((next_tick
= de4x5_reset_phy(dev
)) < 0) {
2796 next_tick
&= ~TIMER_CB
;
2799 if (srom_map_media(dev
) < 0) {
2803 srom_exec(dev
, lp
->phy
[lp
->active
].gep
);
2804 if (lp
->infoblock_media
== ANS
) {
2805 ana
= lp
->phy
[lp
->active
].ana
| MII_ANA_CSMA
;
2806 mii_wr(ana
, MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2809 lp
->tmp
= MII_SR_ASSC
; /* Fake out the MII speed set */
2811 if (lp
->autosense
== _100Mb
) {
2813 } else if (lp
->autosense
== _10Mb
) {
2815 } else if ((lp
->autosense
== AUTO
) &&
2816 ((sr
=is_anc_capable(dev
)) & MII_SR_ANC
)) {
2817 ana
= (((sr
>> 6) & MII_ANA_TAF
) | MII_ANA_CSMA
);
2818 ana
&= (lp
->fdx
? ~0 : ~MII_ANA_FDAM
);
2819 mii_wr(ana
, MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2821 } else if (lp
->autosense
== AUTO
) {
2822 lp
->media
= SPD_DET
;
2823 } else if (is_spd_100(dev
) && is_100_up(dev
)) {
2829 lp
->local_state
= 0;
2830 next_tick
= dc21140m_autoconf(dev
);
2835 switch (lp
->local_state
) {
2837 if (lp
->timeout
< 0) {
2838 mii_wr(MII_CR_ASSE
| MII_CR_RAN
, MII_CR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2840 cr
= test_mii_reg(dev
, MII_CR
, MII_CR_RAN
, FALSE
, 500);
2842 next_tick
= cr
& ~TIMER_CB
;
2845 lp
->local_state
= 0;
2846 lp
->media
= SPD_DET
;
2850 next_tick
= dc21140m_autoconf(dev
);
2855 if ((sr
=test_mii_reg(dev
, MII_SR
, MII_SR_ASSC
, TRUE
, 2000)) < 0) {
2856 next_tick
= sr
& ~TIMER_CB
;
2858 lp
->media
= SPD_DET
;
2859 lp
->local_state
= 0;
2860 if (sr
) { /* Success! */
2861 lp
->tmp
= MII_SR_ASSC
;
2862 anlpa
= mii_rd(MII_ANLPA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2863 ana
= mii_rd(MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
2864 if (!(anlpa
& MII_ANLPA_RF
) &&
2865 (cap
= anlpa
& MII_ANLPA_TAF
& ana
)) {
2866 if (cap
& MII_ANA_100M
) {
2867 lp
->fdx
= ((ana
& anlpa
& MII_ANA_FDAM
& MII_ANA_100M
) ? TRUE
: FALSE
);
2869 } else if (cap
& MII_ANA_10M
) {
2870 lp
->fdx
= ((ana
& anlpa
& MII_ANA_FDAM
& MII_ANA_10M
) ? TRUE
: FALSE
);
2875 } /* Auto Negotiation failed to finish */
2876 next_tick
= dc21140m_autoconf(dev
);
2877 } /* Auto Negotiation failed to start */
2882 case SPD_DET
: /* Choose 10Mb/s or 100Mb/s */
2883 if (lp
->timeout
< 0) {
2884 lp
->tmp
= (lp
->phy
[lp
->active
].id
? MII_SR_LKS
:
2885 (~gep_rd(dev
) & GEP_LNP
));
2888 if ((slnk
= test_for_100Mb(dev
, 6500)) < 0) {
2889 next_tick
= slnk
& ~TIMER_CB
;
2891 if (is_spd_100(dev
) && is_100_up(dev
)) {
2893 } else if ((!is_spd_100(dev
) && (is_10_up(dev
) & lp
->tmp
))) {
2898 next_tick
= dc21140m_autoconf(dev
);
2902 case _100Mb
: /* Set 100Mb/s */
2904 if (!lp
->tx_enable
) {
2906 de4x5_init_connection(dev
);
2908 if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2909 if (!is_100_up(dev
) || (!lp
->useSROM
&& !is_spd_100(dev
))) {
2912 next_tick
= DE4X5_AUTOSENSE_MS
;
2920 case _10Mb
: /* Set 10Mb/s */
2922 if (!lp
->tx_enable
) {
2924 de4x5_init_connection(dev
);
2926 if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
2927 if (!is_10_up(dev
) || (!lp
->useSROM
&& is_spd_100(dev
))) {
2930 next_tick
= DE4X5_AUTOSENSE_MS
;
2937 if (lp
->media
!= lp
->c_media
) {
2938 de4x5_dbg_media(dev
);
2939 lp
->c_media
= lp
->media
;
2942 lp
->tx_enable
= FALSE
;
2950 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2951 ** changing how I figure out the media - but trying to keep it backwards
2952 ** compatible with the de500-xa and de500-aa.
2953 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2954 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2955 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2957 ** When autonegotiation is working, the ANS part searches the SROM for
2958 ** the highest common speed (TP) link that both can run and if that can
2959 ** be full duplex. That infoblock is executed and then the link speed set.
2961 ** Only _10Mb and _100Mb are tested here.
2964 dc2114x_autoconf(struct net_device
*dev
)
2966 struct de4x5_private
*lp
= netdev_priv(dev
);
2967 u_long iobase
= dev
->base_addr
;
2968 s32 cr
, anlpa
, ana
, cap
, irqs
, irq_mask
, imr
, omr
, slnk
, sr
, sts
;
2969 int next_tick
= DE4X5_AUTOSENSE_MS
;
2971 switch (lp
->media
) {
2973 if (lp
->timeout
< 0) {
2975 lp
->tx_enable
= FALSE
;
2978 de4x5_save_skbs(dev
); /* Save non transmitted skb's */
2979 if (lp
->params
.autosense
& ~AUTO
) {
2980 srom_map_media(dev
); /* Fixed media requested */
2981 if (lp
->media
!= lp
->params
.autosense
) {
2989 if ((next_tick
= de4x5_reset_phy(dev
)) < 0) {
2990 next_tick
&= ~TIMER_CB
;
2992 if (lp
->autosense
== _100Mb
) {
2994 } else if (lp
->autosense
== _10Mb
) {
2996 } else if (lp
->autosense
== TP
) {
2998 } else if (lp
->autosense
== BNC
) {
3000 } else if (lp
->autosense
== AUI
) {
3003 lp
->media
= SPD_DET
;
3004 if ((lp
->infoblock_media
== ANS
) &&
3005 ((sr
=is_anc_capable(dev
)) & MII_SR_ANC
)) {
3006 ana
= (((sr
>> 6) & MII_ANA_TAF
) | MII_ANA_CSMA
);
3007 ana
&= (lp
->fdx
? ~0 : ~MII_ANA_FDAM
);
3008 mii_wr(ana
, MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3012 lp
->local_state
= 0;
3013 next_tick
= dc2114x_autoconf(dev
);
3018 switch (lp
->local_state
) {
3020 if (lp
->timeout
< 0) {
3021 mii_wr(MII_CR_ASSE
| MII_CR_RAN
, MII_CR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3023 cr
= test_mii_reg(dev
, MII_CR
, MII_CR_RAN
, FALSE
, 500);
3025 next_tick
= cr
& ~TIMER_CB
;
3028 lp
->local_state
= 0;
3029 lp
->media
= SPD_DET
;
3033 next_tick
= dc2114x_autoconf(dev
);
3038 if ((sr
=test_mii_reg(dev
, MII_SR
, MII_SR_ASSC
, TRUE
, 2000)) < 0) {
3039 next_tick
= sr
& ~TIMER_CB
;
3041 lp
->media
= SPD_DET
;
3042 lp
->local_state
= 0;
3043 if (sr
) { /* Success! */
3044 lp
->tmp
= MII_SR_ASSC
;
3045 anlpa
= mii_rd(MII_ANLPA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3046 ana
= mii_rd(MII_ANA
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3047 if (!(anlpa
& MII_ANLPA_RF
) &&
3048 (cap
= anlpa
& MII_ANLPA_TAF
& ana
)) {
3049 if (cap
& MII_ANA_100M
) {
3050 lp
->fdx
= ((ana
& anlpa
& MII_ANA_FDAM
& MII_ANA_100M
) ? TRUE
: FALSE
);
3052 } else if (cap
& MII_ANA_10M
) {
3053 lp
->fdx
= ((ana
& anlpa
& MII_ANA_FDAM
& MII_ANA_10M
) ? TRUE
: FALSE
);
3057 } /* Auto Negotiation failed to finish */
3058 next_tick
= dc2114x_autoconf(dev
);
3059 } /* Auto Negotiation failed to start */
3065 if (!lp
->tx_enable
) {
3066 if (lp
->timeout
< 0) {
3067 omr
= inl(DE4X5_OMR
); /* Set up half duplex for AUI */
3068 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
3072 sts
= test_media(dev
,irqs
, irq_mask
, 0, 0, 0, 1000);
3074 next_tick
= sts
& ~TIMER_CB
;
3076 if (!(inl(DE4X5_SISR
) & SISR_SRA
) && (lp
->autosense
== AUTO
)) {
3078 next_tick
= dc2114x_autoconf(dev
);
3080 lp
->local_state
= 1;
3081 de4x5_init_connection(dev
);
3084 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
3085 lp
->media
= AUI_SUSPECT
;
3091 next_tick
= de4x5_suspect_state(dev
, 1000, AUI
, ping_media
, dc2114x_autoconf
);
3095 switch (lp
->local_state
) {
3097 if (lp
->timeout
< 0) {
3098 omr
= inl(DE4X5_OMR
); /* Set up half duplex for BNC */
3099 outl(omr
& ~OMR_FDX
, DE4X5_OMR
);
3103 sts
= test_media(dev
,irqs
, irq_mask
, 0, 0, 0, 1000);
3105 next_tick
= sts
& ~TIMER_CB
;
3107 lp
->local_state
++; /* Ensure media connected */
3108 next_tick
= dc2114x_autoconf(dev
);
3113 if (!lp
->tx_enable
) {
3114 if ((sts
= ping_media(dev
, 3000)) < 0) {
3115 next_tick
= sts
& ~TIMER_CB
;
3118 lp
->local_state
= 0;
3122 de4x5_init_connection(dev
);
3125 } else if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
3126 lp
->media
= BNC_SUSPECT
;
3134 next_tick
= de4x5_suspect_state(dev
, 1000, BNC
, ping_media
, dc2114x_autoconf
);
3137 case SPD_DET
: /* Choose 10Mb/s or 100Mb/s */
3138 if (srom_map_media(dev
) < 0) {
3143 if (lp
->media
== _100Mb
) {
3144 if ((slnk
= test_for_100Mb(dev
, 6500)) < 0) {
3145 lp
->media
= SPD_DET
;
3146 return (slnk
& ~TIMER_CB
);
3149 if (wait_for_link(dev
) < 0) {
3150 lp
->media
= SPD_DET
;
3151 return PDET_LINK_WAIT
;
3154 if (lp
->media
== ANS
) { /* Do MII parallel detection */
3155 if (is_spd_100(dev
)) {
3160 next_tick
= dc2114x_autoconf(dev
);
3161 } else if (((lp
->media
== _100Mb
) && is_100_up(dev
)) ||
3162 (((lp
->media
== _10Mb
) || (lp
->media
== TP
) ||
3163 (lp
->media
== BNC
) || (lp
->media
== AUI
)) &&
3165 next_tick
= dc2114x_autoconf(dev
);
3174 if (!lp
->tx_enable
) {
3176 de4x5_init_connection(dev
);
3178 if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
3179 if (!is_10_up(dev
) || (!lp
->useSROM
&& is_spd_100(dev
))) {
3182 next_tick
= DE4X5_AUTOSENSE_MS
;
3190 if (!lp
->tx_enable
) {
3192 de4x5_init_connection(dev
);
3194 if (!lp
->linkOK
&& (lp
->autosense
== AUTO
)) {
3195 if (!is_100_up(dev
) || (!lp
->useSROM
&& !is_spd_100(dev
))) {
3198 next_tick
= DE4X5_AUTOSENSE_MS
;
3206 printk("Huh?: media:%02x\n", lp
->media
);
3215 srom_autoconf(struct net_device
*dev
)
3217 struct de4x5_private
*lp
= netdev_priv(dev
);
3219 return lp
->infoleaf_fn(dev
);
3223 ** This mapping keeps the original media codes and FDX flag unchanged.
3224 ** While it isn't strictly necessary, it helps me for the moment...
3225 ** The early return avoids a media state / SROM media space clash.
3228 srom_map_media(struct net_device
*dev
)
3230 struct de4x5_private
*lp
= netdev_priv(dev
);
3233 if (lp
->infoblock_media
== lp
->media
)
3236 switch(lp
->infoblock_media
) {
3238 if (!lp
->params
.fdx
) return -1;
3241 if (lp
->params
.fdx
&& !lp
->fdx
) return -1;
3242 if ((lp
->chipset
== DC21140
) || ((lp
->chipset
& ~0x00ff) == DC2114x
)) {
3257 case SROM_100BASETF
:
3258 if (!lp
->params
.fdx
) return -1;
3261 if (lp
->params
.fdx
&& !lp
->fdx
) return -1;
3265 case SROM_100BASET4
:
3269 case SROM_100BASEFF
:
3270 if (!lp
->params
.fdx
) return -1;
3273 if (lp
->params
.fdx
&& !lp
->fdx
) return -1;
3279 lp
->fdx
= lp
->params
.fdx
;
3283 printk("%s: Bad media code [%d] detected in SROM!\n", dev
->name
,
3284 lp
->infoblock_media
);
3293 de4x5_init_connection(struct net_device
*dev
)
3295 struct de4x5_private
*lp
= netdev_priv(dev
);
3296 u_long iobase
= dev
->base_addr
;
3299 if (lp
->media
!= lp
->c_media
) {
3300 de4x5_dbg_media(dev
);
3301 lp
->c_media
= lp
->media
; /* Stop scrolling media messages */
3304 spin_lock_irqsave(&lp
->lock
, flags
);
3305 de4x5_rst_desc_ring(dev
);
3306 de4x5_setup_intr(dev
);
3307 lp
->tx_enable
= YES
;
3308 spin_unlock_irqrestore(&lp
->lock
, flags
);
3309 outl(POLL_DEMAND
, DE4X5_TPD
);
3311 netif_wake_queue(dev
);
3317 ** General PHY reset function. Some MII devices don't reset correctly
3318 ** since their MII address pins can float at voltages that are dependent
3319 ** on the signal pin use. Do a double reset to ensure a reset.
3322 de4x5_reset_phy(struct net_device
*dev
)
3324 struct de4x5_private
*lp
= netdev_priv(dev
);
3325 u_long iobase
= dev
->base_addr
;
3328 if ((lp
->useSROM
) || (lp
->phy
[lp
->active
].id
)) {
3329 if (lp
->timeout
< 0) {
3331 if (lp
->phy
[lp
->active
].rst
) {
3332 srom_exec(dev
, lp
->phy
[lp
->active
].rst
);
3333 srom_exec(dev
, lp
->phy
[lp
->active
].rst
);
3334 } else if (lp
->rst
) { /* Type 5 infoblock reset */
3335 srom_exec(dev
, lp
->rst
);
3336 srom_exec(dev
, lp
->rst
);
3342 mii_wr(MII_CR_RST
, MII_CR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3346 next_tick
= test_mii_reg(dev
, MII_CR
, MII_CR_RST
, FALSE
, 500);
3348 } else if (lp
->chipset
== DC21140
) {
3356 test_media(struct net_device
*dev
, s32 irqs
, s32 irq_mask
, s32 csr13
, s32 csr14
, s32 csr15
, s32 msec
)
3358 struct de4x5_private
*lp
= netdev_priv(dev
);
3359 u_long iobase
= dev
->base_addr
;
3362 if (lp
->timeout
< 0) {
3363 lp
->timeout
= msec
/100;
3364 if (!lp
->useSROM
) { /* Already done if by SROM, else dc2104[01] */
3365 reset_init_sia(dev
, csr13
, csr14
, csr15
);
3368 /* set up the interrupt mask */
3369 outl(irq_mask
, DE4X5_IMR
);
3371 /* clear all pending interrupts */
3372 sts
= inl(DE4X5_STS
);
3373 outl(sts
, DE4X5_STS
);
3375 /* clear csr12 NRA and SRA bits */
3376 if ((lp
->chipset
== DC21041
) || lp
->useSROM
) {
3377 csr12
= inl(DE4X5_SISR
);
3378 outl(csr12
, DE4X5_SISR
);
3382 sts
= inl(DE4X5_STS
) & ~TIMER_CB
;
3384 if (!(sts
& irqs
) && --lp
->timeout
) {
3385 sts
= 100 | TIMER_CB
;
3394 test_tp(struct net_device
*dev
, s32 msec
)
3396 struct de4x5_private
*lp
= netdev_priv(dev
);
3397 u_long iobase
= dev
->base_addr
;
3400 if (lp
->timeout
< 0) {
3401 lp
->timeout
= msec
/100;
3404 sisr
= (inl(DE4X5_SISR
) & ~TIMER_CB
) & (SISR_LKF
| SISR_NCR
);
3406 if (sisr
&& --lp
->timeout
) {
3407 sisr
= 100 | TIMER_CB
;
3416 ** Samples the 100Mb Link State Signal. The sample interval is important
3417 ** because too fast a rate can give erroneous results and confuse the
3418 ** speed sense algorithm.
3420 #define SAMPLE_INTERVAL 500 /* ms */
3421 #define SAMPLE_DELAY 2000 /* ms */
3423 test_for_100Mb(struct net_device
*dev
, int msec
)
3425 struct de4x5_private
*lp
= netdev_priv(dev
);
3426 int gep
= 0, ret
= ((lp
->chipset
& ~0x00ff)==DC2114x
? -1 :GEP_SLNK
);
3428 if (lp
->timeout
< 0) {
3429 if ((msec
/SAMPLE_INTERVAL
) <= 0) return 0;
3430 if (msec
> SAMPLE_DELAY
) {
3431 lp
->timeout
= (msec
- SAMPLE_DELAY
)/SAMPLE_INTERVAL
;
3432 gep
= SAMPLE_DELAY
| TIMER_CB
;
3435 lp
->timeout
= msec
/SAMPLE_INTERVAL
;
3439 if (lp
->phy
[lp
->active
].id
|| lp
->useSROM
) {
3440 gep
= is_100_up(dev
) | is_spd_100(dev
);
3442 gep
= (~gep_rd(dev
) & (GEP_SLNK
| GEP_LNP
));
3444 if (!(gep
& ret
) && --lp
->timeout
) {
3445 gep
= SAMPLE_INTERVAL
| TIMER_CB
;
3454 wait_for_link(struct net_device
*dev
)
3456 struct de4x5_private
*lp
= netdev_priv(dev
);
3458 if (lp
->timeout
< 0) {
3462 if (lp
->timeout
--) {
3476 test_mii_reg(struct net_device
*dev
, int reg
, int mask
, int pol
, long msec
)
3478 struct de4x5_private
*lp
= netdev_priv(dev
);
3480 u_long iobase
= dev
->base_addr
;
3482 if (lp
->timeout
< 0) {
3483 lp
->timeout
= msec
/100;
3487 reg
= mii_rd((u_char
)reg
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
) & mask
;
3488 test
= (reg
^ pol
) & mask
;
3490 if (test
&& --lp
->timeout
) {
3491 reg
= 100 | TIMER_CB
;
3500 is_spd_100(struct net_device
*dev
)
3502 struct de4x5_private
*lp
= netdev_priv(dev
);
3503 u_long iobase
= dev
->base_addr
;
3507 spd
= mii_rd(lp
->phy
[lp
->active
].spd
.reg
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3508 spd
= ~(spd
^ lp
->phy
[lp
->active
].spd
.value
);
3509 spd
&= lp
->phy
[lp
->active
].spd
.mask
;
3510 } else if (!lp
->useSROM
) { /* de500-xa */
3511 spd
= ((~gep_rd(dev
)) & GEP_SLNK
);
3513 if ((lp
->ibn
== 2) || !lp
->asBitValid
)
3514 return ((lp
->chipset
== DC21143
)?(~inl(DE4X5_SISR
)&SISR_LS100
):0);
3516 spd
= (lp
->asBitValid
& (lp
->asPolarity
^ (gep_rd(dev
) & lp
->asBit
))) |
3517 (lp
->linkOK
& ~lp
->asBitValid
);
3524 is_100_up(struct net_device
*dev
)
3526 struct de4x5_private
*lp
= netdev_priv(dev
);
3527 u_long iobase
= dev
->base_addr
;
3530 /* Double read for sticky bits & temporary drops */
3531 mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3532 return (mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
) & MII_SR_LKS
);
3533 } else if (!lp
->useSROM
) { /* de500-xa */
3534 return ((~gep_rd(dev
)) & GEP_SLNK
);
3536 if ((lp
->ibn
== 2) || !lp
->asBitValid
)
3537 return ((lp
->chipset
== DC21143
)?(~inl(DE4X5_SISR
)&SISR_LS100
):0);
3539 return ((lp
->asBitValid
&(lp
->asPolarity
^(gep_rd(dev
)&lp
->asBit
))) |
3540 (lp
->linkOK
& ~lp
->asBitValid
));
3545 is_10_up(struct net_device
*dev
)
3547 struct de4x5_private
*lp
= netdev_priv(dev
);
3548 u_long iobase
= dev
->base_addr
;
3551 /* Double read for sticky bits & temporary drops */
3552 mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
);
3553 return (mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
) & MII_SR_LKS
);
3554 } else if (!lp
->useSROM
) { /* de500-xa */
3555 return ((~gep_rd(dev
)) & GEP_LNP
);
3557 if ((lp
->ibn
== 2) || !lp
->asBitValid
)
3558 return (((lp
->chipset
& ~0x00ff) == DC2114x
) ?
3559 (~inl(DE4X5_SISR
)&SISR_LS10
):
3562 return ((lp
->asBitValid
&(lp
->asPolarity
^(gep_rd(dev
)&lp
->asBit
))) |
3563 (lp
->linkOK
& ~lp
->asBitValid
));
3568 is_anc_capable(struct net_device
*dev
)
3570 struct de4x5_private
*lp
= netdev_priv(dev
);
3571 u_long iobase
= dev
->base_addr
;
3573 if (lp
->phy
[lp
->active
].id
&& (!lp
->useSROM
|| lp
->useMII
)) {
3574 return (mii_rd(MII_SR
, lp
->phy
[lp
->active
].addr
, DE4X5_MII
));
3575 } else if ((lp
->chipset
& ~0x00ff) == DC2114x
) {
3576 return (inl(DE4X5_SISR
) & SISR_LPN
) >> 12;
3583 ** Send a packet onto the media and watch for send errors that indicate the
3584 ** media is bad or unconnected.
3587 ping_media(struct net_device
*dev
, int msec
)
3589 struct de4x5_private
*lp
= netdev_priv(dev
);
3590 u_long iobase
= dev
->base_addr
;
3593 if (lp
->timeout
< 0) {
3594 lp
->timeout
= msec
/100;
3596 lp
->tmp
= lp
->tx_new
; /* Remember the ring position */
3597 load_packet(dev
, lp
->frame
, TD_LS
| TD_FS
| sizeof(lp
->frame
), (struct sk_buff
*)1);
3598 lp
->tx_new
= (++lp
->tx_new
) % lp
->txRingSize
;
3599 outl(POLL_DEMAND
, DE4X5_TPD
);
3602 sisr
= inl(DE4X5_SISR
);
3604 if ((!(sisr
& SISR_NCR
)) &&
3605 ((s32
)le32_to_cpu(lp
->tx_ring
[lp
->tmp
].status
) < 0) &&
3607 sisr
= 100 | TIMER_CB
;
3609 if ((!(sisr
& SISR_NCR
)) &&
3610 !(le32_to_cpu(lp
->tx_ring
[lp
->tmp
].status
) & (T_OWN
| TD_ES
)) &&
3623 ** This function does 2 things: on Intels it kmalloc's another buffer to
3624 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3625 ** into which the packet is copied.
3627 static struct sk_buff
*
3628 de4x5_alloc_rx_buff(struct net_device
*dev
, int index
, int len
)
3630 struct de4x5_private
*lp
= netdev_priv(dev
);
3633 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY)
3634 struct sk_buff
*ret
;
3637 p
= dev_alloc_skb(IEEE802_3_SZ
+ DE4X5_ALIGN
+ 2);
3638 if (!p
) return NULL
;
3641 tmp
= virt_to_bus(p
->data
);
3642 i
= ((tmp
+ DE4X5_ALIGN
) & ~DE4X5_ALIGN
) - tmp
;
3644 lp
->rx_ring
[index
].buf
= cpu_to_le32(tmp
+ i
);
3646 ret
= lp
->rx_skb
[index
];
3647 lp
->rx_skb
[index
] = p
;
3649 if ((u_long
) ret
> 1) {
3656 if (lp
->state
!= OPEN
) return (struct sk_buff
*)1; /* Fake out the open */
3658 p
= dev_alloc_skb(len
+ 2);
3659 if (!p
) return NULL
;
3662 skb_reserve(p
, 2); /* Align */
3663 if (index
< lp
->rx_old
) { /* Wrapped buffer */
3664 short tlen
= (lp
->rxRingSize
- lp
->rx_old
) * RX_BUFF_SZ
;
3665 memcpy(skb_put(p
,tlen
),lp
->rx_bufs
+ lp
->rx_old
* RX_BUFF_SZ
,tlen
);
3666 memcpy(skb_put(p
,len
-tlen
),lp
->rx_bufs
,len
-tlen
);
3667 } else { /* Linear buffer */
3668 memcpy(skb_put(p
,len
),lp
->rx_bufs
+ lp
->rx_old
* RX_BUFF_SZ
,len
);
3676 de4x5_free_rx_buffs(struct net_device
*dev
)
3678 struct de4x5_private
*lp
= netdev_priv(dev
);
3681 for (i
=0; i
<lp
->rxRingSize
; i
++) {
3682 if ((u_long
) lp
->rx_skb
[i
] > 1) {
3683 dev_kfree_skb(lp
->rx_skb
[i
]);
3685 lp
->rx_ring
[i
].status
= 0;
3686 lp
->rx_skb
[i
] = (struct sk_buff
*)1; /* Dummy entry */
3693 de4x5_free_tx_buffs(struct net_device
*dev
)
3695 struct de4x5_private
*lp
= netdev_priv(dev
);
3698 for (i
=0; i
<lp
->txRingSize
; i
++) {
3700 de4x5_free_tx_buff(lp
, i
);
3701 lp
->tx_ring
[i
].status
= 0;
3704 /* Unload the locally queued packets */
3705 while (lp
->cache
.skb
) {
3706 dev_kfree_skb(de4x5_get_cache(dev
));
3713 ** When a user pulls a connection, the DECchip can end up in a
3714 ** 'running - waiting for end of transmission' state. This means that we
3715 ** have to perform a chip soft reset to ensure that we can synchronize
3716 ** the hardware and software and make any media probes using a loopback
3717 ** packet meaningful.
3720 de4x5_save_skbs(struct net_device
*dev
)
3722 struct de4x5_private
*lp
= netdev_priv(dev
);
3723 u_long iobase
= dev
->base_addr
;
3726 if (!lp
->cache
.save_cnt
) {
3728 de4x5_tx(dev
); /* Flush any sent skb's */
3729 de4x5_free_tx_buffs(dev
);
3730 de4x5_cache_state(dev
, DE4X5_SAVE_STATE
);
3731 de4x5_sw_reset(dev
);
3732 de4x5_cache_state(dev
, DE4X5_RESTORE_STATE
);
3733 lp
->cache
.save_cnt
++;
3741 de4x5_rst_desc_ring(struct net_device
*dev
)
3743 struct de4x5_private
*lp
= netdev_priv(dev
);
3744 u_long iobase
= dev
->base_addr
;
3748 if (lp
->cache
.save_cnt
) {
3750 outl(lp
->dma_rings
, DE4X5_RRBA
);
3751 outl(lp
->dma_rings
+ NUM_RX_DESC
* sizeof(struct de4x5_desc
),
3754 lp
->rx_new
= lp
->rx_old
= 0;
3755 lp
->tx_new
= lp
->tx_old
= 0;
3757 for (i
= 0; i
< lp
->rxRingSize
; i
++) {
3758 lp
->rx_ring
[i
].status
= cpu_to_le32(R_OWN
);
3761 for (i
= 0; i
< lp
->txRingSize
; i
++) {
3762 lp
->tx_ring
[i
].status
= cpu_to_le32(0);
3766 lp
->cache
.save_cnt
--;
3774 de4x5_cache_state(struct net_device
*dev
, int flag
)
3776 struct de4x5_private
*lp
= netdev_priv(dev
);
3777 u_long iobase
= dev
->base_addr
;
3780 case DE4X5_SAVE_STATE
:
3781 lp
->cache
.csr0
= inl(DE4X5_BMR
);
3782 lp
->cache
.csr6
= (inl(DE4X5_OMR
) & ~(OMR_ST
| OMR_SR
));
3783 lp
->cache
.csr7
= inl(DE4X5_IMR
);
3786 case DE4X5_RESTORE_STATE
:
3787 outl(lp
->cache
.csr0
, DE4X5_BMR
);
3788 outl(lp
->cache
.csr6
, DE4X5_OMR
);
3789 outl(lp
->cache
.csr7
, DE4X5_IMR
);
3790 if (lp
->chipset
== DC21140
) {
3791 gep_wr(lp
->cache
.gepc
, dev
);
3792 gep_wr(lp
->cache
.gep
, dev
);
3794 reset_init_sia(dev
, lp
->cache
.csr13
, lp
->cache
.csr14
,
3804 de4x5_put_cache(struct net_device
*dev
, struct sk_buff
*skb
)
3806 struct de4x5_private
*lp
= netdev_priv(dev
);
3809 if (lp
->cache
.skb
) {
3810 for (p
=lp
->cache
.skb
; p
->next
; p
=p
->next
);
3813 lp
->cache
.skb
= skb
;
3821 de4x5_putb_cache(struct net_device
*dev
, struct sk_buff
*skb
)
3823 struct de4x5_private
*lp
= netdev_priv(dev
);
3824 struct sk_buff
*p
= lp
->cache
.skb
;
3826 lp
->cache
.skb
= skb
;
3832 static struct sk_buff
*
3833 de4x5_get_cache(struct net_device
*dev
)
3835 struct de4x5_private
*lp
= netdev_priv(dev
);
3836 struct sk_buff
*p
= lp
->cache
.skb
;
3839 lp
->cache
.skb
= p
->next
;
3847 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3848 ** is received and the auto-negotiation status is NWAY OK.
3851 test_ans(struct net_device
*dev
, s32 irqs
, s32 irq_mask
, s32 msec
)
3853 struct de4x5_private
*lp
= netdev_priv(dev
);
3854 u_long iobase
= dev
->base_addr
;
3857 if (lp
->timeout
< 0) {
3858 lp
->timeout
= msec
/100;
3859 outl(irq_mask
, DE4X5_IMR
);
3861 /* clear all pending interrupts */
3862 sts
= inl(DE4X5_STS
);
3863 outl(sts
, DE4X5_STS
);
3866 ans
= inl(DE4X5_SISR
) & SISR_ANS
;
3867 sts
= inl(DE4X5_STS
) & ~TIMER_CB
;
3869 if (!(sts
& irqs
) && (ans
^ ANS_NWOK
) && --lp
->timeout
) {
3870 sts
= 100 | TIMER_CB
;
3879 de4x5_setup_intr(struct net_device
*dev
)
3881 struct de4x5_private
*lp
= netdev_priv(dev
);
3882 u_long iobase
= dev
->base_addr
;
3885 if (inl(DE4X5_OMR
) & OMR_SR
) { /* Only unmask if TX/RX is enabled */
3888 sts
= inl(DE4X5_STS
); /* Reset any pending (stale) interrupts */
3889 outl(sts
, DE4X5_STS
);
3900 reset_init_sia(struct net_device
*dev
, s32 csr13
, s32 csr14
, s32 csr15
)
3902 struct de4x5_private
*lp
= netdev_priv(dev
);
3903 u_long iobase
= dev
->base_addr
;
3908 srom_exec(dev
, lp
->phy
[lp
->active
].rst
);
3909 srom_exec(dev
, lp
->phy
[lp
->active
].gep
);
3910 outl(1, DE4X5_SICR
);
3913 csr15
= lp
->cache
.csr15
;
3914 csr14
= lp
->cache
.csr14
;
3915 csr13
= lp
->cache
.csr13
;
3916 outl(csr15
| lp
->cache
.gepc
, DE4X5_SIGR
);
3917 outl(csr15
| lp
->cache
.gep
, DE4X5_SIGR
);
3920 outl(csr15
, DE4X5_SIGR
);
3922 outl(csr14
, DE4X5_STRR
);
3923 outl(csr13
, DE4X5_SICR
);
3931 ** Create a loopback ethernet packet
3934 create_packet(struct net_device
*dev
, char *frame
, int len
)
3939 for (i
=0; i
<ETH_ALEN
; i
++) { /* Use this source address */
3940 *buf
++ = dev
->dev_addr
[i
];
3942 for (i
=0; i
<ETH_ALEN
; i
++) { /* Use this destination address */
3943 *buf
++ = dev
->dev_addr
[i
];
3946 *buf
++ = 0; /* Packet length (2 bytes) */
3953 ** Look for a particular board name in the EISA configuration space
3956 EISA_signature(char *name
, struct device
*device
)
3958 int i
, status
= 0, siglen
= sizeof(de4x5_signatures
)/sizeof(c_char
*);
3959 struct eisa_device
*edev
;
3962 edev
= to_eisa_device (device
);
3963 i
= edev
->id
.driver_data
;
3965 if (i
>= 0 && i
< siglen
) {
3966 strcpy (name
, de4x5_signatures
[i
]);
3970 return status
; /* return the device name string */
3974 ** Look for a particular board name in the PCI configuration space
3977 PCI_signature(char *name
, struct de4x5_private
*lp
)
3979 int i
, status
= 0, siglen
= sizeof(de4x5_signatures
)/sizeof(c_char
*);
3981 if (lp
->chipset
== DC21040
) {
3982 strcpy(name
, "DE434/5");
3984 } else { /* Search for a DEC name in the SROM */
3985 int i
= *((char *)&lp
->srom
+ 19) * 3;
3986 strncpy(name
, (char *)&lp
->srom
+ 26 + i
, 8);
3989 for (i
=0; i
<siglen
; i
++) {
3990 if (strstr(name
,de4x5_signatures
[i
])!=NULL
) break;
3995 } else { /* Use chip name to avoid confusion */
3996 strcpy(name
, (((lp
->chipset
== DC21040
) ? "DC21040" :
3997 ((lp
->chipset
== DC21041
) ? "DC21041" :
3998 ((lp
->chipset
== DC21140
) ? "DC21140" :
3999 ((lp
->chipset
== DC21142
) ? "DC21142" :
4000 ((lp
->chipset
== DC21143
) ? "DC21143" : "UNKNOWN"
4003 if (lp
->chipset
!= DC21041
) {
4004 lp
->useSROM
= TRUE
; /* card is not recognisably DEC */
4006 } else if ((lp
->chipset
& ~0x00ff) == DC2114x
) {
4014 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
4015 ** the DC21040, else read the SROM for the other chips.
4016 ** The SROM may not be present in a multi-MAC card, so first read the
4017 ** MAC address and check for a bad address. If there is a bad one then exit
4018 ** immediately with the prior srom contents intact (the h/w address will
4019 ** be fixed up later).
4022 DevicePresent(struct net_device
*dev
, u_long aprom_addr
)
4025 struct de4x5_private
*lp
= netdev_priv(dev
);
4027 if (lp
->chipset
== DC21040
) {
4028 if (lp
->bus
== EISA
) {
4029 enet_addr_rst(aprom_addr
); /* Reset Ethernet Address ROM Pointer */
4031 outl(0, aprom_addr
); /* Reset Ethernet Address ROM Pointer */
4033 } else { /* Read new srom */
4034 u_short tmp
, *p
= (short *)((char *)&lp
->srom
+ SROM_HWADD
);
4035 for (i
=0; i
<(ETH_ALEN
>>1); i
++) {
4036 tmp
= srom_rd(aprom_addr
, (SROM_HWADD
>>1) + i
);
4037 *p
= le16_to_cpu(tmp
);
4040 if ((j
== 0) || (j
== 0x2fffd)) {
4044 p
=(short *)&lp
->srom
;
4045 for (i
=0; i
<(sizeof(struct de4x5_srom
)>>1); i
++) {
4046 tmp
= srom_rd(aprom_addr
, i
);
4047 *p
++ = le16_to_cpu(tmp
);
4049 de4x5_dbg_srom((struct de4x5_srom
*)&lp
->srom
);
4056 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
4057 ** pointer correctly (at least on my DE425 EISA card), this routine should do
4058 ** it...from depca.c.
4061 enet_addr_rst(u_long aprom_addr
)
4068 char Sig
[sizeof(u32
) << 1];
4074 dev
.llsig
.a
= ETH_PROM_SIG
;
4075 dev
.llsig
.b
= ETH_PROM_SIG
;
4076 sigLength
= sizeof(u32
) << 1;
4078 for (i
=0,j
=0;j
<sigLength
&& i
<PROBE_LENGTH
+sigLength
-1;i
++) {
4079 data
= inb(aprom_addr
);
4080 if (dev
.Sig
[j
] == data
) { /* track signature */
4082 } else { /* lost signature; begin search again */
4083 if (data
== dev
.Sig
[0]) { /* rare case.... */
4095 ** For the bad status case and no SROM, then add one to the previous
4096 ** address. However, need to add one backwards in case we have 0xff
4097 ** as one or more of the bytes. Only the last 3 bytes should be checked
4098 ** as the first three are invariant - assigned to an organisation.
4101 get_hw_addr(struct net_device
*dev
)
4103 u_long iobase
= dev
->base_addr
;
4104 int broken
, i
, k
, tmp
, status
= 0;
4106 struct de4x5_private
*lp
= netdev_priv(dev
);
4108 broken
= de4x5_bad_srom(lp
);
4110 for (i
=0,k
=0,j
=0;j
<3;j
++) {
4112 if (k
> 0xffff) k
-=0xffff;
4114 if (lp
->bus
== PCI
) {
4115 if (lp
->chipset
== DC21040
) {
4116 while ((tmp
= inl(DE4X5_APROM
)) < 0);
4118 dev
->dev_addr
[i
++] = (u_char
) tmp
;
4119 while ((tmp
= inl(DE4X5_APROM
)) < 0);
4120 k
+= (u_short
) (tmp
<< 8);
4121 dev
->dev_addr
[i
++] = (u_char
) tmp
;
4122 } else if (!broken
) {
4123 dev
->dev_addr
[i
] = (u_char
) lp
->srom
.ieee_addr
[i
]; i
++;
4124 dev
->dev_addr
[i
] = (u_char
) lp
->srom
.ieee_addr
[i
]; i
++;
4125 } else if ((broken
== SMC
) || (broken
== ACCTON
)) {
4126 dev
->dev_addr
[i
] = *((u_char
*)&lp
->srom
+ i
); i
++;
4127 dev
->dev_addr
[i
] = *((u_char
*)&lp
->srom
+ i
); i
++;
4130 k
+= (u_char
) (tmp
= inb(EISA_APROM
));
4131 dev
->dev_addr
[i
++] = (u_char
) tmp
;
4132 k
+= (u_short
) ((tmp
= inb(EISA_APROM
)) << 8);
4133 dev
->dev_addr
[i
++] = (u_char
) tmp
;
4136 if (k
> 0xffff) k
-=0xffff;
4138 if (k
== 0xffff) k
=0;
4140 if (lp
->bus
== PCI
) {
4141 if (lp
->chipset
== DC21040
) {
4142 while ((tmp
= inl(DE4X5_APROM
)) < 0);
4143 chksum
= (u_char
) tmp
;
4144 while ((tmp
= inl(DE4X5_APROM
)) < 0);
4145 chksum
|= (u_short
) (tmp
<< 8);
4146 if ((k
!= chksum
) && (dec_only
)) status
= -1;
4149 chksum
= (u_char
) inb(EISA_APROM
);
4150 chksum
|= (u_short
) (inb(EISA_APROM
) << 8);
4151 if ((k
!= chksum
) && (dec_only
)) status
= -1;
4154 /* If possible, try to fix a broken card - SMC only so far */
4155 srom_repair(dev
, broken
);
4157 #ifdef CONFIG_PPC_MULTIPLATFORM
4159 ** If the address starts with 00 a0, we have to bit-reverse
4160 ** each byte of the address.
4162 if ( (_machine
& _MACH_Pmac
) &&
4163 (dev
->dev_addr
[0] == 0) &&
4164 (dev
->dev_addr
[1] == 0xa0) )
4166 for (i
= 0; i
< ETH_ALEN
; ++i
)
4168 int x
= dev
->dev_addr
[i
];
4169 x
= ((x
& 0xf) << 4) + ((x
& 0xf0) >> 4);
4170 x
= ((x
& 0x33) << 2) + ((x
& 0xcc) >> 2);
4171 dev
->dev_addr
[i
] = ((x
& 0x55) << 1) + ((x
& 0xaa) >> 1);
4174 #endif /* CONFIG_PPC_MULTIPLATFORM */
4176 /* Test for a bad enet address */
4177 status
= test_bad_enet(dev
, status
);
4183 ** Test for enet addresses in the first 32 bytes. The built-in strncmp
4184 ** didn't seem to work here...?
4187 de4x5_bad_srom(struct de4x5_private
*lp
)
4191 for (i
=0; i
<sizeof(enet_det
)/ETH_ALEN
; i
++) {
4192 if (!de4x5_strncmp((char *)&lp
->srom
, (char *)&enet_det
[i
], 3) &&
4193 !de4x5_strncmp((char *)&lp
->srom
+0x10, (char *)&enet_det
[i
], 3)) {
4196 } else if (i
== 1) {
4207 de4x5_strncmp(char *a
, char *b
, int n
)
4211 for (;n
&& !ret
;n
--) {
4219 srom_repair(struct net_device
*dev
, int card
)
4221 struct de4x5_private
*lp
= netdev_priv(dev
);
4225 memset((char *)&lp
->srom
, 0, sizeof(struct de4x5_srom
));
4226 memcpy(lp
->srom
.ieee_addr
, (char *)dev
->dev_addr
, ETH_ALEN
);
4227 memcpy(lp
->srom
.info
, (char *)&srom_repair_info
[SMC
-1], 100);
4236 ** Assume that the irq's do not follow the PCI spec - this is seems
4237 ** to be true so far (2 for 2).
4240 test_bad_enet(struct net_device
*dev
, int status
)
4242 struct de4x5_private
*lp
= netdev_priv(dev
);
4245 for (tmp
=0,i
=0; i
<ETH_ALEN
; i
++) tmp
+= (u_char
)dev
->dev_addr
[i
];
4246 if ((tmp
== 0) || (tmp
== 0x5fa)) {
4247 if ((lp
->chipset
== last
.chipset
) &&
4248 (lp
->bus_num
== last
.bus
) && (lp
->bus_num
> 0)) {
4249 for (i
=0; i
<ETH_ALEN
; i
++) dev
->dev_addr
[i
] = last
.addr
[i
];
4250 for (i
=ETH_ALEN
-1; i
>2; --i
) {
4251 dev
->dev_addr
[i
] += 1;
4252 if (dev
->dev_addr
[i
] != 0) break;
4254 for (i
=0; i
<ETH_ALEN
; i
++) last
.addr
[i
] = dev
->dev_addr
[i
];
4255 if (!an_exception(lp
)) {
4256 dev
->irq
= last
.irq
;
4261 } else if (!status
) {
4262 last
.chipset
= lp
->chipset
;
4263 last
.bus
= lp
->bus_num
;
4264 last
.irq
= dev
->irq
;
4265 for (i
=0; i
<ETH_ALEN
; i
++) last
.addr
[i
] = dev
->dev_addr
[i
];
4272 ** List of board exceptions with correctly wired IRQs
4275 an_exception(struct de4x5_private
*lp
)
4277 if ((*(u_short
*)lp
->srom
.sub_vendor_id
== 0x00c0) &&
4278 (*(u_short
*)lp
->srom
.sub_system_id
== 0x95e0)) {
4289 srom_rd(u_long addr
, u_char offset
)
4291 sendto_srom(SROM_RD
| SROM_SR
, addr
);
4293 srom_latch(SROM_RD
| SROM_SR
| DT_CS
, addr
);
4294 srom_command(SROM_RD
| SROM_SR
| DT_IN
| DT_CS
, addr
);
4295 srom_address(SROM_RD
| SROM_SR
| DT_CS
, addr
, offset
);
4297 return srom_data(SROM_RD
| SROM_SR
| DT_CS
, addr
);
4301 srom_latch(u_int command
, u_long addr
)
4303 sendto_srom(command
, addr
);
4304 sendto_srom(command
| DT_CLK
, addr
);
4305 sendto_srom(command
, addr
);
4311 srom_command(u_int command
, u_long addr
)
4313 srom_latch(command
, addr
);
4314 srom_latch(command
, addr
);
4315 srom_latch((command
& 0x0000ff00) | DT_CS
, addr
);
4321 srom_address(u_int command
, u_long addr
, u_char offset
)
4326 for (i
=0; i
<6; i
++, a
<<= 1) {
4327 srom_latch(command
| ((a
& 0x80) ? DT_IN
: 0), addr
);
4331 i
= (getfrom_srom(addr
) >> 3) & 0x01;
4337 srom_data(u_int command
, u_long addr
)
4343 for (i
=0; i
<16; i
++) {
4344 sendto_srom(command
| DT_CLK
, addr
);
4345 tmp
= getfrom_srom(addr
);
4346 sendto_srom(command
, addr
);
4348 word
= (word
<< 1) | ((tmp
>> 3) & 0x01);
4351 sendto_srom(command
& 0x0000ff00, addr
);
4358 srom_busy(u_int command, u_long addr)
4360 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4362 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4366 sendto_srom(command & 0x0000ff00, addr);
4373 sendto_srom(u_int command
, u_long addr
)
4375 outl(command
, addr
);
4382 getfrom_srom(u_long addr
)
4393 srom_infoleaf_info(struct net_device
*dev
)
4395 struct de4x5_private
*lp
= netdev_priv(dev
);
4399 /* Find the infoleaf decoder function that matches this chipset */
4400 for (i
=0; i
<INFOLEAF_SIZE
; i
++) {
4401 if (lp
->chipset
== infoleaf_array
[i
].chipset
) break;
4403 if (i
== INFOLEAF_SIZE
) {
4404 lp
->useSROM
= FALSE
;
4405 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4410 lp
->infoleaf_fn
= infoleaf_array
[i
].fn
;
4412 /* Find the information offset that this function should use */
4413 count
= *((u_char
*)&lp
->srom
+ 19);
4414 p
= (u_char
*)&lp
->srom
+ 26;
4417 for (i
=count
; i
; --i
, p
+=3) {
4418 if (lp
->device
== *p
) break;
4421 lp
->useSROM
= FALSE
;
4422 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4423 dev
->name
, lp
->device
);
4428 lp
->infoleaf_offset
= TWIDDLE(p
+1);
4434 ** This routine loads any type 1 or 3 MII info into the mii device
4435 ** struct and executes any type 5 code to reset PHY devices for this
4437 ** The info for the MII devices will be valid since the index used
4438 ** will follow the discovery process from MII address 1-31 then 0.
4441 srom_init(struct net_device
*dev
)
4443 struct de4x5_private
*lp
= netdev_priv(dev
);
4444 u_char
*p
= (u_char
*)&lp
->srom
+ lp
->infoleaf_offset
;
4448 if (lp
->chipset
== DC21140
) {
4449 lp
->cache
.gepc
= (*p
++ | GEP_CTRL
);
4450 gep_wr(lp
->cache
.gepc
, dev
);
4456 /* Jump the infoblocks to find types */
4457 for (;count
; --count
) {
4460 } else if (*(p
+1) == 5) {
4461 type5_infoblock(dev
, 1, p
);
4462 p
+= ((*p
& BLOCK_LEN
) + 1);
4463 } else if (*(p
+1) == 4) {
4464 p
+= ((*p
& BLOCK_LEN
) + 1);
4465 } else if (*(p
+1) == 3) {
4466 type3_infoblock(dev
, 1, p
);
4467 p
+= ((*p
& BLOCK_LEN
) + 1);
4468 } else if (*(p
+1) == 2) {
4469 p
+= ((*p
& BLOCK_LEN
) + 1);
4470 } else if (*(p
+1) == 1) {
4471 type1_infoblock(dev
, 1, p
);
4472 p
+= ((*p
& BLOCK_LEN
) + 1);
4474 p
+= ((*p
& BLOCK_LEN
) + 1);
4482 ** A generic routine that writes GEP control, data and reset information
4483 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4486 srom_exec(struct net_device
*dev
, u_char
*p
)
4488 struct de4x5_private
*lp
= netdev_priv(dev
);
4489 u_long iobase
= dev
->base_addr
;
4490 u_char count
= (p
? *p
++ : 0);
4491 u_short
*w
= (u_short
*)p
;
4493 if (((lp
->ibn
!= 1) && (lp
->ibn
!= 3) && (lp
->ibn
!= 5)) || !count
) return;
4495 if (lp
->chipset
!= DC21140
) RESET_SIA
;
4498 gep_wr(((lp
->chipset
==DC21140
) && (lp
->ibn
!=5) ?
4499 *p
++ : TWIDDLE(w
++)), dev
);
4500 mdelay(2); /* 2ms per action */
4503 if (lp
->chipset
!= DC21140
) {
4504 outl(lp
->cache
.csr14
, DE4X5_STRR
);
4505 outl(lp
->cache
.csr13
, DE4X5_SICR
);
4512 ** Basically this function is a NOP since it will never be called,
4513 ** unless I implement the DC21041 SROM functions. There's no need
4514 ** since the existing code will be satisfactory for all boards.
4517 dc21041_infoleaf(struct net_device
*dev
)
4519 return DE4X5_AUTOSENSE_MS
;
4523 dc21140_infoleaf(struct net_device
*dev
)
4525 struct de4x5_private
*lp
= netdev_priv(dev
);
4527 u_char
*p
= (u_char
*)&lp
->srom
+ lp
->infoleaf_offset
;
4528 int next_tick
= DE4X5_AUTOSENSE_MS
;
4530 /* Read the connection type */
4534 lp
->cache
.gepc
= (*p
++ | GEP_CTRL
);
4539 /* Recursively figure out the info blocks */
4541 next_tick
= dc_infoblock
[COMPACT
](dev
, count
, p
);
4543 next_tick
= dc_infoblock
[*(p
+1)](dev
, count
, p
);
4546 if (lp
->tcount
== count
) {
4548 if (lp
->media
!= lp
->c_media
) {
4549 de4x5_dbg_media(dev
);
4550 lp
->c_media
= lp
->media
;
4554 lp
->tx_enable
= FALSE
;
4557 return next_tick
& ~TIMER_CB
;
4561 dc21142_infoleaf(struct net_device
*dev
)
4563 struct de4x5_private
*lp
= netdev_priv(dev
);
4565 u_char
*p
= (u_char
*)&lp
->srom
+ lp
->infoleaf_offset
;
4566 int next_tick
= DE4X5_AUTOSENSE_MS
;
4568 /* Read the connection type */
4574 /* Recursively figure out the info blocks */
4576 next_tick
= dc_infoblock
[COMPACT
](dev
, count
, p
);
4578 next_tick
= dc_infoblock
[*(p
+1)](dev
, count
, p
);
4581 if (lp
->tcount
== count
) {
4583 if (lp
->media
!= lp
->c_media
) {
4584 de4x5_dbg_media(dev
);
4585 lp
->c_media
= lp
->media
;
4589 lp
->tx_enable
= FALSE
;
4592 return next_tick
& ~TIMER_CB
;
4596 dc21143_infoleaf(struct net_device
*dev
)
4598 struct de4x5_private
*lp
= netdev_priv(dev
);
4600 u_char
*p
= (u_char
*)&lp
->srom
+ lp
->infoleaf_offset
;
4601 int next_tick
= DE4X5_AUTOSENSE_MS
;
4603 /* Read the connection type */
4609 /* Recursively figure out the info blocks */
4611 next_tick
= dc_infoblock
[COMPACT
](dev
, count
, p
);
4613 next_tick
= dc_infoblock
[*(p
+1)](dev
, count
, p
);
4615 if (lp
->tcount
== count
) {
4617 if (lp
->media
!= lp
->c_media
) {
4618 de4x5_dbg_media(dev
);
4619 lp
->c_media
= lp
->media
;
4623 lp
->tx_enable
= FALSE
;
4626 return next_tick
& ~TIMER_CB
;
4630 ** The compact infoblock is only designed for DC21140[A] chips, so
4631 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4634 compact_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4636 struct de4x5_private
*lp
= netdev_priv(dev
);
4639 /* Recursively figure out the info blocks */
4640 if (--count
> lp
->tcount
) {
4641 if (*(p
+COMPACT_LEN
) < 128) {
4642 return dc_infoblock
[COMPACT
](dev
, count
, p
+COMPACT_LEN
);
4644 return dc_infoblock
[*(p
+COMPACT_LEN
+1)](dev
, count
, p
+COMPACT_LEN
);
4648 if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4651 gep_wr(lp
->cache
.gepc
, dev
);
4652 lp
->infoblock_media
= (*p
++) & COMPACT_MC
;
4653 lp
->cache
.gep
= *p
++;
4657 lp
->asBitValid
= (flags
& 0x80) ? 0 : -1;
4658 lp
->defMedium
= (flags
& 0x40) ? -1 : 0;
4659 lp
->asBit
= 1 << ((csr6
>> 1) & 0x07);
4660 lp
->asPolarity
= ((csr6
& 0x80) ? -1 : 0) & lp
->asBit
;
4661 lp
->infoblock_csr6
= OMR_DEF
| ((csr6
& 0x71) << 18);
4664 de4x5_switch_mac_port(dev
);
4667 return dc21140m_autoconf(dev
);
4671 ** This block describes non MII media for the DC21140[A] only.
4674 type0_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4676 struct de4x5_private
*lp
= netdev_priv(dev
);
4677 u_char flags
, csr6
, len
= (*p
& BLOCK_LEN
)+1;
4679 /* Recursively figure out the info blocks */
4680 if (--count
> lp
->tcount
) {
4681 if (*(p
+len
) < 128) {
4682 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4684 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4688 if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4691 gep_wr(lp
->cache
.gepc
, dev
);
4693 lp
->infoblock_media
= (*p
++) & BLOCK0_MC
;
4694 lp
->cache
.gep
= *p
++;
4698 lp
->asBitValid
= (flags
& 0x80) ? 0 : -1;
4699 lp
->defMedium
= (flags
& 0x40) ? -1 : 0;
4700 lp
->asBit
= 1 << ((csr6
>> 1) & 0x07);
4701 lp
->asPolarity
= ((csr6
& 0x80) ? -1 : 0) & lp
->asBit
;
4702 lp
->infoblock_csr6
= OMR_DEF
| ((csr6
& 0x71) << 18);
4705 de4x5_switch_mac_port(dev
);
4708 return dc21140m_autoconf(dev
);
4711 /* These functions are under construction! */
4714 type1_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4716 struct de4x5_private
*lp
= netdev_priv(dev
);
4717 u_char len
= (*p
& BLOCK_LEN
)+1;
4719 /* Recursively figure out the info blocks */
4720 if (--count
> lp
->tcount
) {
4721 if (*(p
+len
) < 128) {
4722 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4724 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4729 if (lp
->state
== INITIALISED
) {
4732 lp
->phy
[lp
->active
].gep
= (*p
? p
: NULL
); p
+= (*p
+ 1);
4733 lp
->phy
[lp
->active
].rst
= (*p
? p
: NULL
); p
+= (*p
+ 1);
4734 lp
->phy
[lp
->active
].mc
= TWIDDLE(p
); p
+= 2;
4735 lp
->phy
[lp
->active
].ana
= TWIDDLE(p
); p
+= 2;
4736 lp
->phy
[lp
->active
].fdx
= TWIDDLE(p
); p
+= 2;
4737 lp
->phy
[lp
->active
].ttm
= TWIDDLE(p
);
4739 } else if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4742 lp
->infoblock_csr6
= OMR_MII_100
;
4744 lp
->infoblock_media
= ANS
;
4746 de4x5_switch_mac_port(dev
);
4749 return dc21140m_autoconf(dev
);
4753 type2_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4755 struct de4x5_private
*lp
= netdev_priv(dev
);
4756 u_char len
= (*p
& BLOCK_LEN
)+1;
4758 /* Recursively figure out the info blocks */
4759 if (--count
> lp
->tcount
) {
4760 if (*(p
+len
) < 128) {
4761 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4763 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4767 if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4771 lp
->infoblock_media
= (*p
) & MEDIA_CODE
;
4773 if ((*p
++) & EXT_FIELD
) {
4774 lp
->cache
.csr13
= TWIDDLE(p
); p
+= 2;
4775 lp
->cache
.csr14
= TWIDDLE(p
); p
+= 2;
4776 lp
->cache
.csr15
= TWIDDLE(p
); p
+= 2;
4778 lp
->cache
.csr13
= CSR13
;
4779 lp
->cache
.csr14
= CSR14
;
4780 lp
->cache
.csr15
= CSR15
;
4782 lp
->cache
.gepc
= ((s32
)(TWIDDLE(p
)) << 16); p
+= 2;
4783 lp
->cache
.gep
= ((s32
)(TWIDDLE(p
)) << 16);
4784 lp
->infoblock_csr6
= OMR_SIA
;
4787 de4x5_switch_mac_port(dev
);
4790 return dc2114x_autoconf(dev
);
4794 type3_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4796 struct de4x5_private
*lp
= netdev_priv(dev
);
4797 u_char len
= (*p
& BLOCK_LEN
)+1;
4799 /* Recursively figure out the info blocks */
4800 if (--count
> lp
->tcount
) {
4801 if (*(p
+len
) < 128) {
4802 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4804 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4809 if (lp
->state
== INITIALISED
) {
4812 if (MOTO_SROM_BUG
) lp
->active
= 0;
4813 lp
->phy
[lp
->active
].gep
= (*p
? p
: NULL
); p
+= (2 * (*p
) + 1);
4814 lp
->phy
[lp
->active
].rst
= (*p
? p
: NULL
); p
+= (2 * (*p
) + 1);
4815 lp
->phy
[lp
->active
].mc
= TWIDDLE(p
); p
+= 2;
4816 lp
->phy
[lp
->active
].ana
= TWIDDLE(p
); p
+= 2;
4817 lp
->phy
[lp
->active
].fdx
= TWIDDLE(p
); p
+= 2;
4818 lp
->phy
[lp
->active
].ttm
= TWIDDLE(p
); p
+= 2;
4819 lp
->phy
[lp
->active
].mci
= *p
;
4821 } else if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4824 if (MOTO_SROM_BUG
) lp
->active
= 0;
4825 lp
->infoblock_csr6
= OMR_MII_100
;
4827 lp
->infoblock_media
= ANS
;
4829 de4x5_switch_mac_port(dev
);
4832 return dc2114x_autoconf(dev
);
4836 type4_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4838 struct de4x5_private
*lp
= netdev_priv(dev
);
4839 u_char flags
, csr6
, len
= (*p
& BLOCK_LEN
)+1;
4841 /* Recursively figure out the info blocks */
4842 if (--count
> lp
->tcount
) {
4843 if (*(p
+len
) < 128) {
4844 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4846 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4850 if ((lp
->media
== INIT
) && (lp
->timeout
< 0)) {
4854 lp
->infoblock_media
= (*p
++) & MEDIA_CODE
;
4855 lp
->cache
.csr13
= CSR13
; /* Hard coded defaults */
4856 lp
->cache
.csr14
= CSR14
;
4857 lp
->cache
.csr15
= CSR15
;
4858 lp
->cache
.gepc
= ((s32
)(TWIDDLE(p
)) << 16); p
+= 2;
4859 lp
->cache
.gep
= ((s32
)(TWIDDLE(p
)) << 16); p
+= 2;
4863 lp
->asBitValid
= (flags
& 0x80) ? 0 : -1;
4864 lp
->defMedium
= (flags
& 0x40) ? -1 : 0;
4865 lp
->asBit
= 1 << ((csr6
>> 1) & 0x07);
4866 lp
->asPolarity
= ((csr6
& 0x80) ? -1 : 0) & lp
->asBit
;
4867 lp
->infoblock_csr6
= OMR_DEF
| ((csr6
& 0x71) << 18);
4870 de4x5_switch_mac_port(dev
);
4873 return dc2114x_autoconf(dev
);
4877 ** This block type provides information for resetting external devices
4878 ** (chips) through the General Purpose Register.
4881 type5_infoblock(struct net_device
*dev
, u_char count
, u_char
*p
)
4883 struct de4x5_private
*lp
= netdev_priv(dev
);
4884 u_char len
= (*p
& BLOCK_LEN
)+1;
4886 /* Recursively figure out the info blocks */
4887 if (--count
> lp
->tcount
) {
4888 if (*(p
+len
) < 128) {
4889 return dc_infoblock
[COMPACT
](dev
, count
, p
+len
);
4891 return dc_infoblock
[*(p
+len
+1)](dev
, count
, p
+len
);
4895 /* Must be initializing to run this code */
4896 if ((lp
->state
== INITIALISED
) || (lp
->media
== INIT
)) {
4899 srom_exec(dev
, lp
->rst
);
4902 return DE4X5_AUTOSENSE_MS
;
4910 mii_rd(u_char phyreg
, u_char phyaddr
, u_long ioaddr
)
4912 mii_wdata(MII_PREAMBLE
, 2, ioaddr
); /* Start of 34 bit preamble... */
4913 mii_wdata(MII_PREAMBLE
, 32, ioaddr
); /* ...continued */
4914 mii_wdata(MII_STRD
, 4, ioaddr
); /* SFD and Read operation */
4915 mii_address(phyaddr
, ioaddr
); /* PHY address to be accessed */
4916 mii_address(phyreg
, ioaddr
); /* PHY Register to read */
4917 mii_ta(MII_STRD
, ioaddr
); /* Turn around time - 2 MDC */
4919 return mii_rdata(ioaddr
); /* Read data */
4923 mii_wr(int data
, u_char phyreg
, u_char phyaddr
, u_long ioaddr
)
4925 mii_wdata(MII_PREAMBLE
, 2, ioaddr
); /* Start of 34 bit preamble... */
4926 mii_wdata(MII_PREAMBLE
, 32, ioaddr
); /* ...continued */
4927 mii_wdata(MII_STWR
, 4, ioaddr
); /* SFD and Write operation */
4928 mii_address(phyaddr
, ioaddr
); /* PHY address to be accessed */
4929 mii_address(phyreg
, ioaddr
); /* PHY Register to write */
4930 mii_ta(MII_STWR
, ioaddr
); /* Turn around time - 2 MDC */
4931 data
= mii_swap(data
, 16); /* Swap data bit ordering */
4932 mii_wdata(data
, 16, ioaddr
); /* Write data */
4938 mii_rdata(u_long ioaddr
)
4943 for (i
=0; i
<16; i
++) {
4945 tmp
|= getfrom_mii(MII_MRD
| MII_RD
, ioaddr
);
4952 mii_wdata(int data
, int len
, u_long ioaddr
)
4956 for (i
=0; i
<len
; i
++) {
4957 sendto_mii(MII_MWR
| MII_WR
, data
, ioaddr
);
4965 mii_address(u_char addr
, u_long ioaddr
)
4969 addr
= mii_swap(addr
, 5);
4970 for (i
=0; i
<5; i
++) {
4971 sendto_mii(MII_MWR
| MII_WR
, addr
, ioaddr
);
4979 mii_ta(u_long rw
, u_long ioaddr
)
4981 if (rw
== MII_STWR
) {
4982 sendto_mii(MII_MWR
| MII_WR
, 1, ioaddr
);
4983 sendto_mii(MII_MWR
| MII_WR
, 0, ioaddr
);
4985 getfrom_mii(MII_MRD
| MII_RD
, ioaddr
); /* Tri-state MDIO */
4992 mii_swap(int data
, int len
)
4996 for (i
=0; i
<len
; i
++) {
5006 sendto_mii(u32 command
, int data
, u_long ioaddr
)
5010 j
= (data
& 1) << 17;
5011 outl(command
| j
, ioaddr
);
5013 outl(command
| MII_MDC
| j
, ioaddr
);
5020 getfrom_mii(u32 command
, u_long ioaddr
)
5022 outl(command
, ioaddr
);
5024 outl(command
| MII_MDC
, ioaddr
);
5027 return ((inl(ioaddr
) >> 19) & 1);
5031 ** Here's 3 ways to calculate the OUI from the ID registers.
5034 mii_get_oui(u_char phyaddr
, u_long ioaddr
)
5041 int i, r2, r3, ret=0;*/
5044 /* Read r2 and r3 */
5045 r2
= mii_rd(MII_ID0
, phyaddr
, ioaddr
);
5046 r3
= mii_rd(MII_ID1
, phyaddr
, ioaddr
);
5047 /* SEEQ and Cypress way * /
5048 / * Shuffle r2 and r3 * /
5050 r3 = ((r3>>10)|(r2<<6))&0x0ff;
5051 r2 = ((r2>>2)&0x3fff);
5053 / * Bit reverse r3 * /
5060 / * Bit reverse r2 * /
5061 for (i=0;i<16;i++) {
5067 / * Swap r2 bytes * /
5069 a.breg[0]=a.breg[1];
5072 return ((a.reg<<8)|ret); */ /* SEEQ and Cypress way */
5073 /* return ((r2<<6)|(u_int)(r3>>10)); */ /* NATIONAL and BROADCOM way */
5074 return r2
; /* (I did it) My way */
5078 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
5081 mii_get_phy(struct net_device
*dev
)
5083 struct de4x5_private
*lp
= netdev_priv(dev
);
5084 u_long iobase
= dev
->base_addr
;
5085 int i
, j
, k
, n
, limit
=sizeof(phy_info
)/sizeof(struct phy_table
);
5091 /* Search the MII address space for possible PHY devices */
5092 for (n
=0, lp
->mii_cnt
=0, i
=1; !((i
==1) && (n
==1)); i
=(++i
)%DE4X5_MAX_MII
) {
5093 lp
->phy
[lp
->active
].addr
= i
;
5094 if (i
==0) n
++; /* Count cycles */
5095 while (de4x5_reset_phy(dev
)<0) udelay(100);/* Wait for reset */
5096 id
= mii_get_oui(i
, DE4X5_MII
);
5097 if ((id
== 0) || (id
== 65535)) continue; /* Valid ID? */
5098 for (j
=0; j
<limit
; j
++) { /* Search PHY table */
5099 if (id
!= phy_info
[j
].id
) continue; /* ID match? */
5100 for (k
=0; lp
->phy
[k
].id
&& (k
< DE4X5_MAX_PHY
); k
++);
5101 if (k
< DE4X5_MAX_PHY
) {
5102 memcpy((char *)&lp
->phy
[k
],
5103 (char *)&phy_info
[j
], sizeof(struct phy_table
));
5104 lp
->phy
[k
].addr
= i
;
5108 goto purgatory
; /* Stop the search */
5112 if ((j
== limit
) && (i
< DE4X5_MAX_MII
)) {
5113 for (k
=0; lp
->phy
[k
].id
&& (k
< DE4X5_MAX_PHY
); k
++);
5114 lp
->phy
[k
].addr
= i
;
5116 lp
->phy
[k
].spd
.reg
= GENERIC_REG
; /* ANLPA register */
5117 lp
->phy
[k
].spd
.mask
= GENERIC_MASK
; /* 100Mb/s technologies */
5118 lp
->phy
[k
].spd
.value
= GENERIC_VALUE
; /* TX & T4, H/F Duplex */
5121 printk("%s: Using generic MII device control. If the board doesn't operate, \nplease mail the following dump to the author:\n", dev
->name
);
5123 de4x5_debug
|= DEBUG_MII
;
5124 de4x5_dbg_mii(dev
, k
);
5131 if (lp
->phy
[0].id
) { /* Reset the PHY devices */
5132 for (k
=0; lp
->phy
[k
].id
&& (k
< DE4X5_MAX_PHY
); k
++) { /*For each PHY*/
5133 mii_wr(MII_CR_RST
, MII_CR
, lp
->phy
[k
].addr
, DE4X5_MII
);
5134 while (mii_rd(MII_CR
, lp
->phy
[k
].addr
, DE4X5_MII
) & MII_CR_RST
);
5136 de4x5_dbg_mii(dev
, k
);
5139 if (!lp
->mii_cnt
) lp
->useMII
= FALSE
;
5145 build_setup_frame(struct net_device
*dev
, int mode
)
5147 struct de4x5_private
*lp
= netdev_priv(dev
);
5149 char *pa
= lp
->setup_frame
;
5151 /* Initialise the setup frame */
5153 memset(lp
->setup_frame
, 0, SETUP_FRAME_LEN
);
5156 if (lp
->setup_f
== HASH_PERF
) {
5157 for (pa
=lp
->setup_frame
+IMPERF_PA_OFFSET
, i
=0; i
<ETH_ALEN
; i
++) {
5158 *(pa
+ i
) = dev
->dev_addr
[i
]; /* Host address */
5159 if (i
& 0x01) pa
+= 2;
5161 *(lp
->setup_frame
+ (HASH_TABLE_LEN
>> 3) - 3) = 0x80;
5163 for (i
=0; i
<ETH_ALEN
; i
++) { /* Host address */
5164 *(pa
+ (i
&1)) = dev
->dev_addr
[i
];
5165 if (i
& 0x01) pa
+= 4;
5167 for (i
=0; i
<ETH_ALEN
; i
++) { /* Broadcast address */
5168 *(pa
+ (i
&1)) = (char) 0xff;
5169 if (i
& 0x01) pa
+= 4;
5173 return pa
; /* Points to the next entry */
5177 enable_ast(struct net_device
*dev
, u32 time_out
)
5179 timeout(dev
, (void *)&de4x5_ast
, (u_long
)dev
, time_out
);
5185 disable_ast(struct net_device
*dev
)
5187 struct de4x5_private
*lp
= netdev_priv(dev
);
5189 del_timer(&lp
->timer
);
5195 de4x5_switch_mac_port(struct net_device
*dev
)
5197 struct de4x5_private
*lp
= netdev_priv(dev
);
5198 u_long iobase
= dev
->base_addr
;
5203 /* Assert the OMR_PS bit in CSR6 */
5204 omr
= (inl(DE4X5_OMR
) & ~(OMR_PS
| OMR_HBD
| OMR_TTM
| OMR_PCS
| OMR_SCR
|
5206 omr
|= lp
->infoblock_csr6
;
5207 if (omr
& OMR_PS
) omr
|= OMR_HBD
;
5208 outl(omr
, DE4X5_OMR
);
5213 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5214 if (lp
->chipset
== DC21140
) {
5215 gep_wr(lp
->cache
.gepc
, dev
);
5216 gep_wr(lp
->cache
.gep
, dev
);
5217 } else if ((lp
->chipset
& ~0x0ff) == DC2114x
) {
5218 reset_init_sia(dev
, lp
->cache
.csr13
, lp
->cache
.csr14
, lp
->cache
.csr15
);
5222 outl(omr
, DE4X5_OMR
);
5231 gep_wr(s32 data
, struct net_device
*dev
)
5233 struct de4x5_private
*lp
= netdev_priv(dev
);
5234 u_long iobase
= dev
->base_addr
;
5236 if (lp
->chipset
== DC21140
) {
5237 outl(data
, DE4X5_GEP
);
5238 } else if ((lp
->chipset
& ~0x00ff) == DC2114x
) {
5239 outl((data
<<16) | lp
->cache
.csr15
, DE4X5_SIGR
);
5246 gep_rd(struct net_device
*dev
)
5248 struct de4x5_private
*lp
= netdev_priv(dev
);
5249 u_long iobase
= dev
->base_addr
;
5251 if (lp
->chipset
== DC21140
) {
5252 return inl(DE4X5_GEP
);
5253 } else if ((lp
->chipset
& ~0x00ff) == DC2114x
) {
5254 return (inl(DE4X5_SIGR
) & 0x000fffff);
5261 timeout(struct net_device
*dev
, void (*fn
)(u_long data
), u_long data
, u_long msec
)
5263 struct de4x5_private
*lp
= netdev_priv(dev
);
5266 /* First, cancel any pending timer events */
5267 del_timer(&lp
->timer
);
5269 /* Convert msec to ticks */
5270 dt
= (msec
* HZ
) / 1000;
5274 init_timer(&lp
->timer
);
5275 lp
->timer
.expires
= jiffies
+ dt
;
5276 lp
->timer
.function
= fn
;
5277 lp
->timer
.data
= data
;
5278 add_timer(&lp
->timer
);
5284 yawn(struct net_device
*dev
, int state
)
5286 struct de4x5_private
*lp
= netdev_priv(dev
);
5287 u_long iobase
= dev
->base_addr
;
5289 if ((lp
->chipset
== DC21040
) || (lp
->chipset
== DC21140
)) return;
5291 if(lp
->bus
== EISA
) {
5294 outb(WAKEUP
, PCI_CFPM
);
5299 outb(SNOOZE
, PCI_CFPM
);
5303 outl(0, DE4X5_SICR
);
5304 outb(SLEEP
, PCI_CFPM
);
5308 struct pci_dev
*pdev
= to_pci_dev (lp
->gendev
);
5311 pci_write_config_byte(pdev
, PCI_CFDA_PSM
, WAKEUP
);
5316 pci_write_config_byte(pdev
, PCI_CFDA_PSM
, SNOOZE
);
5320 outl(0, DE4X5_SICR
);
5321 pci_write_config_byte(pdev
, PCI_CFDA_PSM
, SLEEP
);
5330 de4x5_parse_params(struct net_device
*dev
)
5332 struct de4x5_private
*lp
= netdev_priv(dev
);
5336 lp
->params
.autosense
= AUTO
;
5338 if (args
== NULL
) return;
5340 if ((p
= strstr(args
, dev
->name
))) {
5341 if (!(q
= strstr(p
+strlen(dev
->name
), "eth"))) q
= p
+ strlen(p
);
5345 if (strstr(p
, "fdx") || strstr(p
, "FDX")) lp
->params
.fdx
= 1;
5347 if (strstr(p
, "autosense") || strstr(p
, "AUTOSENSE")) {
5348 if (strstr(p
, "TP")) {
5349 lp
->params
.autosense
= TP
;
5350 } else if (strstr(p
, "TP_NW")) {
5351 lp
->params
.autosense
= TP_NW
;
5352 } else if (strstr(p
, "BNC")) {
5353 lp
->params
.autosense
= BNC
;
5354 } else if (strstr(p
, "AUI")) {
5355 lp
->params
.autosense
= AUI
;
5356 } else if (strstr(p
, "BNC_AUI")) {
5357 lp
->params
.autosense
= BNC
;
5358 } else if (strstr(p
, "10Mb")) {
5359 lp
->params
.autosense
= _10Mb
;
5360 } else if (strstr(p
, "100Mb")) {
5361 lp
->params
.autosense
= _100Mb
;
5362 } else if (strstr(p
, "AUTO")) {
5363 lp
->params
.autosense
= AUTO
;
5373 de4x5_dbg_open(struct net_device
*dev
)
5375 struct de4x5_private
*lp
= netdev_priv(dev
);
5378 if (de4x5_debug
& DEBUG_OPEN
) {
5379 printk("%s: de4x5 opening with irq %d\n",dev
->name
,dev
->irq
);
5380 printk("\tphysical address: ");
5382 printk("%2.2x:",(short)dev
->dev_addr
[i
]);
5385 printk("Descriptor head addresses:\n");
5386 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long
)lp
->rx_ring
,(u_long
)lp
->tx_ring
);
5387 printk("Descriptor addresses:\nRX: ");
5388 for (i
=0;i
<lp
->rxRingSize
-1;i
++){
5390 printk("0x%8.8lx ",(u_long
)&lp
->rx_ring
[i
].status
);
5393 printk("...0x%8.8lx\n",(u_long
)&lp
->rx_ring
[i
].status
);
5395 for (i
=0;i
<lp
->txRingSize
-1;i
++){
5397 printk("0x%8.8lx ", (u_long
)&lp
->tx_ring
[i
].status
);
5400 printk("...0x%8.8lx\n", (u_long
)&lp
->tx_ring
[i
].status
);
5401 printk("Descriptor buffers:\nRX: ");
5402 for (i
=0;i
<lp
->rxRingSize
-1;i
++){
5404 printk("0x%8.8x ",le32_to_cpu(lp
->rx_ring
[i
].buf
));
5407 printk("...0x%8.8x\n",le32_to_cpu(lp
->rx_ring
[i
].buf
));
5409 for (i
=0;i
<lp
->txRingSize
-1;i
++){
5411 printk("0x%8.8x ", le32_to_cpu(lp
->tx_ring
[i
].buf
));
5414 printk("...0x%8.8x\n", le32_to_cpu(lp
->tx_ring
[i
].buf
));
5415 printk("Ring size: \nRX: %d\nTX: %d\n",
5416 (short)lp
->rxRingSize
,
5417 (short)lp
->txRingSize
);
5424 de4x5_dbg_mii(struct net_device
*dev
, int k
)
5426 struct de4x5_private
*lp
= netdev_priv(dev
);
5427 u_long iobase
= dev
->base_addr
;
5429 if (de4x5_debug
& DEBUG_MII
) {
5430 printk("\nMII device address: %d\n", lp
->phy
[k
].addr
);
5431 printk("MII CR: %x\n",mii_rd(MII_CR
,lp
->phy
[k
].addr
,DE4X5_MII
));
5432 printk("MII SR: %x\n",mii_rd(MII_SR
,lp
->phy
[k
].addr
,DE4X5_MII
));
5433 printk("MII ID0: %x\n",mii_rd(MII_ID0
,lp
->phy
[k
].addr
,DE4X5_MII
));
5434 printk("MII ID1: %x\n",mii_rd(MII_ID1
,lp
->phy
[k
].addr
,DE4X5_MII
));
5435 if (lp
->phy
[k
].id
!= BROADCOM_T4
) {
5436 printk("MII ANA: %x\n",mii_rd(0x04,lp
->phy
[k
].addr
,DE4X5_MII
));
5437 printk("MII ANC: %x\n",mii_rd(0x05,lp
->phy
[k
].addr
,DE4X5_MII
));
5439 printk("MII 16: %x\n",mii_rd(0x10,lp
->phy
[k
].addr
,DE4X5_MII
));
5440 if (lp
->phy
[k
].id
!= BROADCOM_T4
) {
5441 printk("MII 17: %x\n",mii_rd(0x11,lp
->phy
[k
].addr
,DE4X5_MII
));
5442 printk("MII 18: %x\n",mii_rd(0x12,lp
->phy
[k
].addr
,DE4X5_MII
));
5444 printk("MII 20: %x\n",mii_rd(0x14,lp
->phy
[k
].addr
,DE4X5_MII
));
5452 de4x5_dbg_media(struct net_device
*dev
)
5454 struct de4x5_private
*lp
= netdev_priv(dev
);
5456 if (lp
->media
!= lp
->c_media
) {
5457 if (de4x5_debug
& DEBUG_MEDIA
) {
5458 printk("%s: media is %s%s\n", dev
->name
,
5459 (lp
->media
== NC
? "unconnected, link down or incompatible connection" :
5460 (lp
->media
== TP
? "TP" :
5461 (lp
->media
== ANS
? "TP/Nway" :
5462 (lp
->media
== BNC
? "BNC" :
5463 (lp
->media
== AUI
? "AUI" :
5464 (lp
->media
== BNC_AUI
? "BNC/AUI" :
5465 (lp
->media
== EXT_SIA
? "EXT SIA" :
5466 (lp
->media
== _100Mb
? "100Mb/s" :
5467 (lp
->media
== _10Mb
? "10Mb/s" :
5469 ))))))))), (lp
->fdx
?" full duplex.":"."));
5471 lp
->c_media
= lp
->media
;
5478 de4x5_dbg_srom(struct de4x5_srom
*p
)
5482 if (de4x5_debug
& DEBUG_SROM
) {
5483 printk("Sub-system Vendor ID: %04x\n", *((u_short
*)p
->sub_vendor_id
));
5484 printk("Sub-system ID: %04x\n", *((u_short
*)p
->sub_system_id
));
5485 printk("ID Block CRC: %02x\n", (u_char
)(p
->id_block_crc
));
5486 printk("SROM version: %02x\n", (u_char
)(p
->version
));
5487 printk("# controllers: %02x\n", (u_char
)(p
->num_controllers
));
5489 printk("Hardware Address: ");
5490 for (i
=0;i
<ETH_ALEN
-1;i
++) {
5491 printk("%02x:", (u_char
)*(p
->ieee_addr
+i
));
5493 printk("%02x\n", (u_char
)*(p
->ieee_addr
+i
));
5494 printk("CRC checksum: %04x\n", (u_short
)(p
->chksum
));
5495 for (i
=0; i
<64; i
++) {
5496 printk("%3d %04x\n", i
<<1, (u_short
)*((u_short
*)p
+i
));
5504 de4x5_dbg_rx(struct sk_buff
*skb
, int len
)
5508 if (de4x5_debug
& DEBUG_RX
) {
5509 printk("R: %02x:%02x:%02x:%02x:%02x:%02x <- %02x:%02x:%02x:%02x:%02x:%02x len/SAP:%02x%02x [%d]\n",
5510 (u_char
)skb
->data
[0],
5511 (u_char
)skb
->data
[1],
5512 (u_char
)skb
->data
[2],
5513 (u_char
)skb
->data
[3],
5514 (u_char
)skb
->data
[4],
5515 (u_char
)skb
->data
[5],
5516 (u_char
)skb
->data
[6],
5517 (u_char
)skb
->data
[7],
5518 (u_char
)skb
->data
[8],
5519 (u_char
)skb
->data
[9],
5520 (u_char
)skb
->data
[10],
5521 (u_char
)skb
->data
[11],
5522 (u_char
)skb
->data
[12],
5523 (u_char
)skb
->data
[13],
5525 for (j
=0; len
>0;j
+=16, len
-=16) {
5526 printk(" %03x: ",j
);
5527 for (i
=0; i
<16 && i
<len
; i
++) {
5528 printk("%02x ",(u_char
)skb
->data
[i
+j
]);
5538 ** Perform IOCTL call functions here. Some are privileged operations and the
5539 ** effective uid is checked in those cases. In the normal course of events
5540 ** this function is only used for my testing.
5543 de4x5_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
5545 struct de4x5_private
*lp
= netdev_priv(dev
);
5546 struct de4x5_ioctl
*ioc
= (struct de4x5_ioctl
*) &rq
->ifr_ifru
;
5547 u_long iobase
= dev
->base_addr
;
5548 int i
, j
, status
= 0;
5558 case DE4X5_GET_HWADDR
: /* Get the hardware address */
5559 ioc
->len
= ETH_ALEN
;
5560 for (i
=0; i
<ETH_ALEN
; i
++) {
5561 tmp
.addr
[i
] = dev
->dev_addr
[i
];
5563 if (copy_to_user(ioc
->data
, tmp
.addr
, ioc
->len
)) return -EFAULT
;
5566 case DE4X5_SET_HWADDR
: /* Set the hardware address */
5567 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5568 if (copy_from_user(tmp
.addr
, ioc
->data
, ETH_ALEN
)) return -EFAULT
;
5569 if (netif_queue_stopped(dev
))
5571 netif_stop_queue(dev
);
5572 for (i
=0; i
<ETH_ALEN
; i
++) {
5573 dev
->dev_addr
[i
] = tmp
.addr
[i
];
5575 build_setup_frame(dev
, PHYS_ADDR_ONLY
);
5576 /* Set up the descriptor and give ownership to the card */
5577 load_packet(dev
, lp
->setup_frame
, TD_IC
| PERFECT_F
| TD_SET
|
5578 SETUP_FRAME_LEN
, (struct sk_buff
*)1);
5579 lp
->tx_new
= (++lp
->tx_new
) % lp
->txRingSize
;
5580 outl(POLL_DEMAND
, DE4X5_TPD
); /* Start the TX */
5581 netif_wake_queue(dev
); /* Unlock the TX ring */
5584 case DE4X5_SET_PROM
: /* Set Promiscuous Mode */
5585 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5586 omr
= inl(DE4X5_OMR
);
5588 outl(omr
, DE4X5_OMR
);
5589 dev
->flags
|= IFF_PROMISC
;
5592 case DE4X5_CLR_PROM
: /* Clear Promiscuous Mode */
5593 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5594 omr
= inl(DE4X5_OMR
);
5596 outl(omr
, DE4X5_OMR
);
5597 dev
->flags
&= ~IFF_PROMISC
;
5600 case DE4X5_SAY_BOO
: /* Say "Boo!" to the kernel log file */
5601 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5602 printk("%s: Boo!\n", dev
->name
);
5605 case DE4X5_MCA_EN
: /* Enable pass all multicast addressing */
5606 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5607 omr
= inl(DE4X5_OMR
);
5609 outl(omr
, DE4X5_OMR
);
5612 case DE4X5_GET_STATS
: /* Get the driver statistics */
5614 struct pkt_stats statbuf
;
5615 ioc
->len
= sizeof(statbuf
);
5616 spin_lock_irqsave(&lp
->lock
, flags
);
5617 memcpy(&statbuf
, &lp
->pktStats
, ioc
->len
);
5618 spin_unlock_irqrestore(&lp
->lock
, flags
);
5619 if (copy_to_user(ioc
->data
, &statbuf
, ioc
->len
))
5623 case DE4X5_CLR_STATS
: /* Zero out the driver statistics */
5624 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5625 spin_lock_irqsave(&lp
->lock
, flags
);
5626 memset(&lp
->pktStats
, 0, sizeof(lp
->pktStats
));
5627 spin_unlock_irqrestore(&lp
->lock
, flags
);
5630 case DE4X5_GET_OMR
: /* Get the OMR Register contents */
5631 tmp
.addr
[0] = inl(DE4X5_OMR
);
5632 if (copy_to_user(ioc
->data
, tmp
.addr
, 1)) return -EFAULT
;
5635 case DE4X5_SET_OMR
: /* Set the OMR Register contents */
5636 if (!capable(CAP_NET_ADMIN
)) return -EPERM
;
5637 if (copy_from_user(tmp
.addr
, ioc
->data
, 1)) return -EFAULT
;
5638 outl(tmp
.addr
[0], DE4X5_OMR
);
5641 case DE4X5_GET_REG
: /* Get the DE4X5 Registers */
5643 tmp
.lval
[0] = inl(DE4X5_STS
); j
+=4;
5644 tmp
.lval
[1] = inl(DE4X5_BMR
); j
+=4;
5645 tmp
.lval
[2] = inl(DE4X5_IMR
); j
+=4;
5646 tmp
.lval
[3] = inl(DE4X5_OMR
); j
+=4;
5647 tmp
.lval
[4] = inl(DE4X5_SISR
); j
+=4;
5648 tmp
.lval
[5] = inl(DE4X5_SICR
); j
+=4;
5649 tmp
.lval
[6] = inl(DE4X5_STRR
); j
+=4;
5650 tmp
.lval
[7] = inl(DE4X5_SIGR
); j
+=4;
5652 if (copy_to_user(ioc
->data
, tmp
.addr
, ioc
->len
)) return -EFAULT
;
5655 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5659 tmp.addr[j++] = dev->irq;
5660 for (i=0; i<ETH_ALEN; i++) {
5661 tmp.addr[j++] = dev->dev_addr[i];
5663 tmp.addr[j++] = lp->rxRingSize;
5664 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5665 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5667 for (i=0;i<lp->rxRingSize-1;i++){
5669 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5672 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5673 for (i=0;i<lp->txRingSize-1;i++){
5675 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5678 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5680 for (i=0;i<lp->rxRingSize-1;i++){
5682 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5685 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5686 for (i=0;i<lp->txRingSize-1;i++){
5688 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5691 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5693 for (i=0;i<lp->rxRingSize;i++){
5694 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5696 for (i=0;i<lp->txRingSize;i++){
5697 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5700 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5701 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5702 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5703 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5704 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5705 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5706 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5707 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5708 tmp.lval[j>>2] = lp->chipset; j+=4;
5709 if (lp->chipset == DC21140) {
5710 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5712 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5713 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5714 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5715 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5717 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5718 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5719 tmp.lval[j>>2] = lp->active; j+=4;
5720 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5721 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5722 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5723 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5724 if (lp->phy[lp->active].id != BROADCOM_T4) {
5725 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5726 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5728 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5729 if (lp->phy[lp->active].id != BROADCOM_T4) {
5730 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5731 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5733 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5737 tmp.addr[j++] = lp->txRingSize;
5738 tmp.addr[j++] = netif_queue_stopped(dev);
5741 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5752 static int __init
de4x5_module_init (void)
5757 err
= pci_module_init (&de4x5_pci_driver
);
5760 err
|= eisa_driver_register (&de4x5_eisa_driver
);
5766 static void __exit
de4x5_module_exit (void)
5769 pci_unregister_driver (&de4x5_pci_driver
);
5772 eisa_driver_unregister (&de4x5_eisa_driver
);
5776 module_init (de4x5_module_init
);
5777 module_exit (de4x5_module_exit
);