1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
30 Linux kernel version history:
33 - Jeff Garzik: softnet 'n stuff
36 - Justin Guyett: softnet and locking fixes
37 - Jeff Garzik: use PCI interface
40 - Urban Widmark: minor cleanups, merges from Becker 1.03a/1.04 versions
43 - Urban Widmark: use PCI DMA interface (with thanks to the eepro100.c
44 code) update "Theory of Operation" with
45 softnet/locking changes
46 - Dave Miller: PCI DMA and endian fixups
47 - Jeff Garzik: MOD_xxx race fixes, updated PCI resource allocation
50 - Urban Widmark: fix gcc 2.95.2 problem and
51 remove writel's to fixed address 0x7c
54 - Urban Widmark: mdio locking, bounce buffer changes
55 merges from Beckers 1.05 version
56 added netif_running_on/off support
59 - Urban Widmark: merges from Beckers 1.08b version (VT6102 + mdio)
60 set netif_running_on/off on startup, del_timer_sync
63 - Manfred Spraul: added reset into tx_timeout
66 - Urban Widmark: merges from Beckers 1.10 version
67 (media selection + eeprom reload)
68 - David Vrabel: merges from D-Link "1.11" version
69 (disable WOL and PME on startup)
72 - Manfred Spraul: use "singlecopy" for unaligned buffers
73 don't allocate bounce buffers for !ReqTxAlign cards
76 - David Woodhouse: Set dev->base_addr before the first time we call
77 wait_for_reset(). It's a lot happier that way.
78 Free np->tx_bufs only if we actually allocated it.
81 - Martin Eriksson: Allow Memory-Mapped IO to be enabled.
85 - Replace some MII-related magic numbers with constants
88 - fixes comments for Rhine-III
89 - removes W_MAX_TIMEOUT (unused)
90 - adds HasDavicomPhy for Rhine-I (basis: linuxfet driver; my card
91 is R-I and has Davicom chip, flag is referenced in kernel driver)
92 - sends chip_id as a parameter to wait_for_reset since np is not
93 initialized on first call
94 - changes mmio "else if (chip_id==VT6102)" to "else" so it will work
95 for Rhine-III's (documentation says same bit is correct)
96 - transmit frame queue message is off by one - fixed
97 - adds IntrNormalSummary to "Something Wicked" exclusion list
98 so normal interrupts will not trigger the message (src: Donald Becker)
100 - show confused chip where to continue after Tx error
101 - location of collision counter is chip specific
102 - allow selecting backoff algorithm (module parameter)
105 - Use new MII lib helper generic_mii_ioctl
107 LK1.1.16 (Roger Luethi)
109 - Handle Tx buffer underrun
110 - Fix bugs in full duplex handling
111 - New reset code uses "force reset" cmd on Rhine-II
114 LK1.1.17 (Roger Luethi)
115 - Fix race in via_rhine_start_tx()
116 - On errors, wait for Tx engine to turn off before scavenging
117 - Handle Tx descriptor write-back race on Rhine-II
118 - Force flushing for PCI posted writes
119 - More reset code changes
121 LK1.1.18 (Roger Luethi)
122 - No filtering multicast in promisc mode (Edward Peng)
123 - Fix for Rhine-I Tx timeouts
125 LK1.1.19 (Roger Luethi)
126 - Increase Tx threshold for unspecified errors
128 LK1.2.0-2.6 (Roger Luethi)
130 - Rewrite PHY, media handling (remove options, full_duplex, backoff)
131 - Fix Tx engine race for good
135 #define DRV_NAME "via-rhine"
136 #define DRV_VERSION "1.2.0-2.6"
137 #define DRV_RELDATE "June-10-2004"
140 /* A few user-configurable values.
141 These may be modified when a driver module is loaded. */
143 static int debug
= 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
144 static int max_interrupt_work
= 20;
146 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
147 Setting to > 1518 effectively disables this feature. */
148 static int rx_copybreak
;
151 * In case you are looking for 'options[]' or 'full_duplex[]', they
152 * are gone. Use ethtool(8) instead.
155 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
156 The Rhine has a 64 element 8390-like hash table. */
157 static const int multicast_filter_limit
= 32;
160 /* Operational parameters that are set at compile time. */
162 /* Keep the ring sizes a power of two for compile efficiency.
163 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
164 Making the Tx ring too large decreases the effectiveness of channel
165 bonding and packet priority.
166 There are no ill effects from too-large receive rings. */
167 #define TX_RING_SIZE 16
168 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
169 #define RX_RING_SIZE 16
172 /* Operational parameters that usually are not changed. */
174 /* Time in jiffies before concluding the transmitter is hung. */
175 #define TX_TIMEOUT (2*HZ)
177 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
179 #include <linux/module.h>
180 #include <linux/kernel.h>
181 #include <linux/string.h>
182 #include <linux/timer.h>
183 #include <linux/errno.h>
184 #include <linux/ioport.h>
185 #include <linux/slab.h>
186 #include <linux/interrupt.h>
187 #include <linux/pci.h>
188 #include <linux/netdevice.h>
189 #include <linux/etherdevice.h>
190 #include <linux/skbuff.h>
191 #include <linux/init.h>
192 #include <linux/delay.h>
193 #include <linux/mii.h>
194 #include <linux/ethtool.h>
195 #include <linux/crc32.h>
196 #include <asm/processor.h> /* Processor type for cache alignment. */
197 #include <asm/bitops.h>
200 #include <asm/uaccess.h>
202 /* These identify the driver base version and may not be removed. */
203 static char version
[] __devinitdata
=
204 KERN_INFO DRV_NAME
".c:v1.10-LK" DRV_VERSION
" " DRV_RELDATE
" Written by Donald Becker\n";
206 /* This driver was written to use PCI memory space. Some early versions
207 of the Rhine may only work correctly with I/O space accesses. */
208 #ifdef CONFIG_VIA_RHINE_MMIO
225 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
226 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
227 MODULE_LICENSE("GPL");
229 MODULE_PARM(max_interrupt_work
, "i");
230 MODULE_PARM(debug
, "i");
231 MODULE_PARM(rx_copybreak
, "i");
232 MODULE_PARM_DESC(max_interrupt_work
, "VIA Rhine maximum events handled per interrupt");
233 MODULE_PARM_DESC(debug
, "VIA Rhine debug level (0-7)");
234 MODULE_PARM_DESC(rx_copybreak
, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
239 I. Board Compatibility
241 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
244 II. Board-specific settings
246 Boards with this chip are functional only in a bus-master PCI slot.
248 Many operational settings are loaded from the EEPROM to the Config word at
249 offset 0x78. For most of these settings, this driver assumes that they are
251 If this driver is compiled to use PCI memory space operations the EEPROM
252 must be configured to enable memory ops.
254 III. Driver operation
258 This driver uses two statically allocated fixed-size descriptor lists
259 formed into rings by a branch from the final descriptor to the beginning of
260 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
262 IIIb/c. Transmit/Receive Structure
264 This driver attempts to use a zero-copy receive and transmit scheme.
266 Alas, all data buffers are required to start on a 32 bit boundary, so
267 the driver must often copy transmit packets into bounce buffers.
269 The driver allocates full frame size skbuffs for the Rx ring buffers at
270 open() time and passes the skb->data field to the chip as receive data
271 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
272 a fresh skbuff is allocated and the frame is copied to the new skbuff.
273 When the incoming frame is larger, the skbuff is passed directly up the
274 protocol stack. Buffers consumed this way are replaced by newly allocated
275 skbuffs in the last phase of rhine_rx().
277 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
278 using a full-sized skbuff for small frames vs. the copying costs of larger
279 frames. New boards are typically used in generously configured machines
280 and the underfilled buffers have negligible impact compared to the benefit of
281 a single allocation size, so the default value of zero results in never
282 copying packets. When copying is done, the cost is usually mitigated by using
283 a combined copy/checksum routine. Copying also preloads the cache, which is
284 most useful with small frames.
286 Since the VIA chips are only able to transfer data to buffers on 32 bit
287 boundaries, the IP header at offset 14 in an ethernet frame isn't
288 longword aligned for further processing. Copying these unaligned buffers
289 has the beneficial effect of 16-byte aligning the IP header.
291 IIId. Synchronization
293 The driver runs as two independent, single-threaded flows of control. One
294 is the send-packet routine, which enforces single-threaded use by the
295 dev->priv->lock spinlock. The other thread is the interrupt handler, which
296 is single threaded by the hardware and interrupt handling software.
298 The send packet thread has partial control over the Tx ring. It locks the
299 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
300 is not available it stops the transmit queue by calling netif_stop_queue.
302 The interrupt handler has exclusive control over the Rx ring and records stats
303 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
304 empty by incrementing the dirty_tx mark. If at least half of the entries in
305 the Rx ring are available the transmit queue is woken up if it was stopped.
311 Preliminary VT86C100A manual from http://www.via.com.tw/
312 http://www.scyld.com/expert/100mbps.html
313 http://www.scyld.com/expert/NWay.html
314 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
315 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
320 The VT86C100A manual is not reliable information.
321 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
322 in significant performance degradation for bounce buffer copies on transmit
323 and unaligned IP headers on receive.
324 The chip does not pad to minimum transmit length.
329 /* This table drives the PCI probe routines. It's mostly boilerplate in all
330 of the drivers, and will likely be provided by some future kernel.
331 Note the matching code -- the first table entry matchs all 56** cards but
332 second only the 1234 card.
339 VT8231
= 0x50, /* Integrated MAC */
340 VT8233
= 0x60, /* Integrated MAC */
341 VT8235
= 0x74, /* Integrated MAC */
342 VT8237
= 0x78, /* Integrated MAC */
349 VT6105M
= 0x90, /* Management adapter */
353 rqWOL
= 0x0001, /* Wake-On-LAN support */
354 rqForceReset
= 0x0002,
355 rq6patterns
= 0x0040, /* 6 instead of 4 patterns for WOL */
356 rqStatusWBRace
= 0x0080, /* Tx Status Writeback Error possible */
357 rqRhineI
= 0x0100, /* See comment below */
360 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
361 * MMIO as well as for the collision counter and the Tx FIFO underflow
362 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
365 /* Beware of PCI posted writes */
366 #define IOSYNC do { readb(dev->base_addr + StationAddr); } while (0)
368 static struct pci_device_id rhine_pci_tbl
[] =
370 {0x1106, 0x3043, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, }, /* VT86C100A */
371 {0x1106, 0x3065, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, }, /* VT6102 */
372 {0x1106, 0x3106, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, }, /* 6105{,L,LOM} */
373 {0x1106, 0x3053, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, }, /* VT6105M */
374 { } /* terminate list */
376 MODULE_DEVICE_TABLE(pci
, rhine_pci_tbl
);
379 /* Offsets to the device registers. */
380 enum register_offsets
{
381 StationAddr
=0x00, RxConfig
=0x06, TxConfig
=0x07, ChipCmd
=0x08,
383 IntrStatus
=0x0C, IntrEnable
=0x0E,
384 MulticastFilter0
=0x10, MulticastFilter1
=0x14,
385 RxRingPtr
=0x18, TxRingPtr
=0x1C, GFIFOTest
=0x54,
386 MIIPhyAddr
=0x6C, MIIStatus
=0x6D, PCIBusConfig
=0x6E,
387 MIICmd
=0x70, MIIRegAddr
=0x71, MIIData
=0x72, MACRegEEcsr
=0x74,
388 ConfigA
=0x78, ConfigB
=0x79, ConfigC
=0x7A, ConfigD
=0x7B,
389 RxMissed
=0x7C, RxCRCErrs
=0x7E, MiscCmd
=0x81,
390 StickyHW
=0x83, IntrStatus2
=0x84,
391 WOLcrSet
=0xA0, PwcfgSet
=0xA1, WOLcgSet
=0xA3, WOLcrClr
=0xA4,
392 WOLcrClr1
=0xA6, WOLcgClr
=0xA7,
393 PwrcsrSet
=0xA8, PwrcsrSet1
=0xA9, PwrcsrClr
=0xAC, PwrcsrClr1
=0xAD,
396 /* Bits in ConfigD */
398 BackOptional
=0x01, BackModify
=0x02,
399 BackCaptureEffect
=0x04, BackRandom
=0x08
403 /* Registers we check that mmio and reg are the same. */
404 int mmio_verify_registers
[] = {
405 RxConfig
, TxConfig
, IntrEnable
, ConfigA
, ConfigB
, ConfigC
, ConfigD
,
410 /* Bits in the interrupt status/mask registers. */
411 enum intr_status_bits
{
412 IntrRxDone
=0x0001, IntrRxErr
=0x0004, IntrRxEmpty
=0x0020,
413 IntrTxDone
=0x0002, IntrTxError
=0x0008, IntrTxUnderrun
=0x0210,
415 IntrStatsMax
=0x0080, IntrRxEarly
=0x0100,
416 IntrRxOverflow
=0x0400, IntrRxDropped
=0x0800, IntrRxNoBuf
=0x1000,
417 IntrTxAborted
=0x2000, IntrLinkChange
=0x4000,
419 IntrNormalSummary
=0x0003, IntrAbnormalSummary
=0xC260,
420 IntrTxDescRace
=0x080000, /* mapped from IntrStatus2 */
421 IntrTxErrSummary
=0x082218,
424 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
433 /* The Rx and Tx buffer descriptors. */
436 u32 desc_length
; /* Chain flag, Buffer/frame length */
442 u32 desc_length
; /* Chain flag, Tx Config, Frame length */
447 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
448 #define TXDESC 0x00e08000
450 enum rx_status_bits
{
451 RxOK
=0x8000, RxWholePkt
=0x0300, RxErr
=0x008F
454 /* Bits in *_desc.*_status */
455 enum desc_status_bits
{
459 /* Bits in ChipCmd. */
461 CmdInit
=0x01, CmdStart
=0x02, CmdStop
=0x04, CmdRxOn
=0x08,
462 CmdTxOn
=0x10, Cmd1TxDemand
=0x20, CmdRxDemand
=0x40,
463 Cmd1EarlyRx
=0x01, Cmd1EarlyTx
=0x02, Cmd1FDuplex
=0x04,
464 Cmd1NoTxPoll
=0x08, Cmd1Reset
=0x80,
467 struct rhine_private
{
468 /* Descriptor rings */
469 struct rx_desc
*rx_ring
;
470 struct tx_desc
*tx_ring
;
471 dma_addr_t rx_ring_dma
;
472 dma_addr_t tx_ring_dma
;
474 /* The addresses of receive-in-place skbuffs. */
475 struct sk_buff
*rx_skbuff
[RX_RING_SIZE
];
476 dma_addr_t rx_skbuff_dma
[RX_RING_SIZE
];
478 /* The saved address of a sent-in-place packet/buffer, for later free(). */
479 struct sk_buff
*tx_skbuff
[TX_RING_SIZE
];
480 dma_addr_t tx_skbuff_dma
[TX_RING_SIZE
];
482 /* Tx bounce buffers */
483 unsigned char *tx_buf
[TX_RING_SIZE
];
484 unsigned char *tx_bufs
;
485 dma_addr_t tx_bufs_dma
;
487 struct pci_dev
*pdev
;
489 struct net_device_stats stats
;
492 /* Frequently used values: keep some adjacent for cache effect. */
494 struct rx_desc
*rx_head_desc
;
495 unsigned int cur_rx
, dirty_rx
; /* Producer/consumer ring indices */
496 unsigned int cur_tx
, dirty_tx
;
497 unsigned int rx_buf_sz
; /* Based on MTU+slack. */
500 u8 tx_thresh
, rx_thresh
;
502 struct mii_if_info mii_if
;
505 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
);
506 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
, int value
);
507 static int rhine_open(struct net_device
*dev
);
508 static void rhine_tx_timeout(struct net_device
*dev
);
509 static int rhine_start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
510 static irqreturn_t
rhine_interrupt(int irq
, void *dev_instance
, struct pt_regs
*regs
);
511 static void rhine_tx(struct net_device
*dev
);
512 static void rhine_rx(struct net_device
*dev
);
513 static void rhine_error(struct net_device
*dev
, int intr_status
);
514 static void rhine_set_rx_mode(struct net_device
*dev
);
515 static struct net_device_stats
*rhine_get_stats(struct net_device
*dev
);
516 static int netdev_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
517 static struct ethtool_ops netdev_ethtool_ops
;
518 static int rhine_close(struct net_device
*dev
);
519 static void rhine_shutdown (struct device
*gdev
);
521 #define RHINE_WAIT_FOR(condition) do { \
523 while (!(condition) && --i) \
525 if (debug > 1 && i < 512) \
526 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
527 DRV_NAME, 1024-i, __func__, __LINE__); \
530 static inline u32
get_intr_status(struct net_device
*dev
)
532 long ioaddr
= dev
->base_addr
;
533 struct rhine_private
*rp
= netdev_priv(dev
);
536 intr_status
= readw(ioaddr
+ IntrStatus
);
537 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
538 if (rp
->quirks
& rqStatusWBRace
)
539 intr_status
|= readb(ioaddr
+ IntrStatus2
) << 16;
544 * Get power related registers into sane state.
545 * Notify user about past WOL event.
547 static void rhine_power_init(struct net_device
*dev
)
549 long ioaddr
= dev
->base_addr
;
550 struct rhine_private
*rp
= netdev_priv(dev
);
553 if (rp
->quirks
& rqWOL
) {
554 /* Make sure chip is in power state D0 */
555 writeb(readb(ioaddr
+ StickyHW
) & 0xFC, ioaddr
+ StickyHW
);
557 /* Disable "force PME-enable" */
558 writeb(0x80, ioaddr
+ WOLcgClr
);
560 /* Clear power-event config bits (WOL) */
561 writeb(0xFF, ioaddr
+ WOLcrClr
);
562 /* More recent cards can manage two additional patterns */
563 if (rp
->quirks
& rq6patterns
)
564 writeb(0x03, ioaddr
+ WOLcrClr1
);
566 /* Save power-event status bits */
567 wolstat
= readb(ioaddr
+ PwrcsrSet
);
568 if (rp
->quirks
& rq6patterns
)
569 wolstat
|= (readb(ioaddr
+ PwrcsrSet1
) & 0x03) << 8;
571 /* Clear power-event status bits */
572 writeb(0xFF, ioaddr
+ PwrcsrClr
);
573 if (rp
->quirks
& rq6patterns
)
574 writeb(0x03, ioaddr
+ PwrcsrClr1
);
580 reason
= "Magic packet";
583 reason
= "Link went up";
586 reason
= "Link went down";
589 reason
= "Unicast packet";
592 reason
= "Multicast/broadcast packet";
597 printk(KERN_INFO
"%s: Woke system up. Reason: %s.\n",
603 static void rhine_chip_reset(struct net_device
*dev
)
605 long ioaddr
= dev
->base_addr
;
606 struct rhine_private
*rp
= netdev_priv(dev
);
608 writeb(Cmd1Reset
, ioaddr
+ ChipCmd1
);
611 if (readb(ioaddr
+ ChipCmd1
) & Cmd1Reset
) {
612 printk(KERN_INFO
"%s: Reset not complete yet. "
613 "Trying harder.\n", DRV_NAME
);
616 if (rp
->quirks
& rqForceReset
)
617 writeb(0x40, ioaddr
+ MiscCmd
);
619 /* Reset can take somewhat longer (rare) */
620 RHINE_WAIT_FOR(!(readb(ioaddr
+ ChipCmd1
) & Cmd1Reset
));
624 printk(KERN_INFO
"%s: Reset %s.\n", dev
->name
,
625 (readb(ioaddr
+ ChipCmd1
) & Cmd1Reset
) ?
626 "failed" : "succeeded");
630 static void __devinit
enable_mmio(long pioaddr
, u32 quirks
)
633 if (quirks
& rqRhineI
) {
634 /* More recent docs say that this bit is reserved ... */
635 n
= inb(pioaddr
+ ConfigA
) | 0x20;
636 outb(n
, pioaddr
+ ConfigA
);
638 n
= inb(pioaddr
+ ConfigD
) | 0x80;
639 outb(n
, pioaddr
+ ConfigD
);
645 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
646 * (plus 0x6C for Rhine-I/II)
648 static void __devinit
rhine_reload_eeprom(long pioaddr
, struct net_device
*dev
)
650 long ioaddr
= dev
->base_addr
;
651 struct rhine_private
*rp
= netdev_priv(dev
);
653 outb(0x20, pioaddr
+ MACRegEEcsr
);
654 RHINE_WAIT_FOR(!(inb(pioaddr
+ MACRegEEcsr
) & 0x20));
658 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
659 * MMIO. If reloading EEPROM was done first this could be avoided, but
660 * it is not known if that still works with the "win98-reboot" problem.
662 enable_mmio(pioaddr
, rp
->quirks
);
665 /* Turn off EEPROM-controlled wake-up (magic packet) */
666 if (rp
->quirks
& rqWOL
)
667 writeb(readb(ioaddr
+ ConfigA
) & 0xFE, ioaddr
+ ConfigA
);
671 #ifdef CONFIG_NET_POLL_CONTROLLER
672 static void rhine_poll(struct net_device
*dev
)
674 disable_irq(dev
->irq
);
675 rhine_interrupt(dev
->irq
, (void *)dev
, NULL
);
676 enable_irq(dev
->irq
);
680 static void rhine_hw_init(struct net_device
*dev
, long pioaddr
)
682 struct rhine_private
*rp
= netdev_priv(dev
);
684 /* Reset the chip to erase previous misconfiguration. */
685 rhine_chip_reset(dev
);
687 /* Rhine-I needs extra time to recuperate before EEPROM reload */
688 if (rp
->quirks
& rqRhineI
)
691 /* Reload EEPROM controlled bytes cleared by soft reset */
692 rhine_reload_eeprom(pioaddr
, dev
);
695 static int __devinit
rhine_init_one(struct pci_dev
*pdev
,
696 const struct pci_device_id
*ent
)
698 struct net_device
*dev
;
699 struct rhine_private
*rp
;
709 /* when built into the kernel, we only print version if device is found */
711 static int printed_version
;
712 if (!printed_version
++)
716 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &pci_rev
);
722 if (pci_rev
< VTunknown0
) {
726 else if (pci_rev
>= VT6102
) {
727 quirks
= rqWOL
| rqForceReset
;
728 if (pci_rev
< VT6105
) {
730 quirks
|= rqStatusWBRace
; /* Rhine-II exclusive */
733 phy_id
= 1; /* Integrated PHY, phy_id fixed to 1 */
734 if (pci_rev
>= VT6105_B0
)
735 quirks
|= rq6patterns
;
736 if (pci_rev
< VT6105M
)
739 name
= "Rhine III (Management Adapter)";
743 rc
= pci_enable_device(pdev
);
747 /* this should always be supported */
748 rc
= pci_set_dma_mask(pdev
, 0xffffffff);
750 printk(KERN_ERR
"32-bit PCI DMA addresses not supported by "
756 if ((pci_resource_len(pdev
, 0) < io_size
) ||
757 (pci_resource_len(pdev
, 1) < io_size
)) {
759 printk(KERN_ERR
"Insufficient PCI resources, aborting\n");
763 pioaddr
= pci_resource_start(pdev
, 0);
764 memaddr
= pci_resource_start(pdev
, 1);
766 pci_set_master(pdev
);
768 dev
= alloc_etherdev(sizeof(struct rhine_private
));
771 printk(KERN_ERR
"alloc_etherdev failed\n");
774 SET_MODULE_OWNER(dev
);
775 SET_NETDEV_DEV(dev
, &pdev
->dev
);
777 rp
= netdev_priv(dev
);
779 rp
->pioaddr
= pioaddr
;
782 rc
= pci_request_regions(pdev
, DRV_NAME
);
784 goto err_out_free_netdev
;
787 enable_mmio(pioaddr
, quirks
);
789 ioaddr
= (long) ioremap(memaddr
, io_size
);
792 printk(KERN_ERR
"ioremap failed for device %s, region 0x%X "
793 "@ 0x%lX\n", pci_name(pdev
), io_size
, memaddr
);
794 goto err_out_free_res
;
797 /* Check that selected MMIO registers match the PIO ones */
799 while (mmio_verify_registers
[i
]) {
800 int reg
= mmio_verify_registers
[i
++];
801 unsigned char a
= inb(pioaddr
+reg
);
802 unsigned char b
= readb(ioaddr
+reg
);
805 printk(KERN_ERR
"MMIO do not match PIO [%02x] "
806 "(%02x != %02x)\n", reg
, a
, b
);
812 #endif /* USE_MMIO */
814 dev
->base_addr
= ioaddr
;
816 /* Get chip registers into a sane state */
817 rhine_power_init(dev
);
818 rhine_hw_init(dev
, pioaddr
);
820 for (i
= 0; i
< 6; i
++)
821 dev
->dev_addr
[i
] = readb(ioaddr
+ StationAddr
+ i
);
823 if (!is_valid_ether_addr(dev
->dev_addr
)) {
825 printk(KERN_ERR
"Invalid MAC address\n");
829 /* For Rhine-I/II, phy_id is loaded from EEPROM */
831 phy_id
= readb(ioaddr
+ 0x6C);
833 dev
->irq
= pdev
->irq
;
835 spin_lock_init(&rp
->lock
);
836 rp
->mii_if
.dev
= dev
;
837 rp
->mii_if
.mdio_read
= mdio_read
;
838 rp
->mii_if
.mdio_write
= mdio_write
;
839 rp
->mii_if
.phy_id_mask
= 0x1f;
840 rp
->mii_if
.reg_num_mask
= 0x1f;
842 /* The chip-specific entries in the device structure. */
843 dev
->open
= rhine_open
;
844 dev
->hard_start_xmit
= rhine_start_tx
;
845 dev
->stop
= rhine_close
;
846 dev
->get_stats
= rhine_get_stats
;
847 dev
->set_multicast_list
= rhine_set_rx_mode
;
848 dev
->do_ioctl
= netdev_ioctl
;
849 dev
->ethtool_ops
= &netdev_ethtool_ops
;
850 dev
->tx_timeout
= rhine_tx_timeout
;
851 dev
->watchdog_timeo
= TX_TIMEOUT
;
852 #ifdef CONFIG_NET_POLL_CONTROLLER
853 dev
->poll_controller
= rhine_poll
;
855 if (rp
->quirks
& rqRhineI
)
856 dev
->features
|= NETIF_F_SG
|NETIF_F_HW_CSUM
;
858 /* dev->name not defined before register_netdev()! */
859 rc
= register_netdev(dev
);
863 printk(KERN_INFO
"%s: VIA %s at 0x%lx, ",
872 for (i
= 0; i
< 5; i
++)
873 printk("%2.2x:", dev
->dev_addr
[i
]);
874 printk("%2.2x, IRQ %d.\n", dev
->dev_addr
[i
], pdev
->irq
);
876 pci_set_drvdata(pdev
, dev
);
880 int mii_status
= mdio_read(dev
, phy_id
, 1);
881 mii_cmd
= mdio_read(dev
, phy_id
, MII_BMCR
) & ~BMCR_ISOLATE
;
882 mdio_write(dev
, phy_id
, MII_BMCR
, mii_cmd
);
883 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
884 rp
->mii_if
.advertising
= mdio_read(dev
, phy_id
, 4);
885 printk(KERN_INFO
"%s: MII PHY found at address "
886 "%d, status 0x%4.4x advertising %4.4x "
887 "Link %4.4x.\n", dev
->name
, phy_id
,
888 mii_status
, rp
->mii_if
.advertising
,
889 mdio_read(dev
, phy_id
, 5));
891 /* set IFF_RUNNING */
892 if (mii_status
& BMSR_LSTATUS
)
893 netif_carrier_on(dev
);
895 netif_carrier_off(dev
);
899 rp
->mii_if
.phy_id
= phy_id
;
905 iounmap((void *)ioaddr
);
908 pci_release_regions(pdev
);
915 static int alloc_ring(struct net_device
* dev
)
917 struct rhine_private
*rp
= netdev_priv(dev
);
921 ring
= pci_alloc_consistent(rp
->pdev
,
922 RX_RING_SIZE
* sizeof(struct rx_desc
) +
923 TX_RING_SIZE
* sizeof(struct tx_desc
),
926 printk(KERN_ERR
"Could not allocate DMA memory.\n");
929 if (rp
->quirks
& rqRhineI
) {
930 rp
->tx_bufs
= pci_alloc_consistent(rp
->pdev
,
931 PKT_BUF_SZ
* TX_RING_SIZE
,
933 if (rp
->tx_bufs
== NULL
) {
934 pci_free_consistent(rp
->pdev
,
935 RX_RING_SIZE
* sizeof(struct rx_desc
) +
936 TX_RING_SIZE
* sizeof(struct tx_desc
),
943 rp
->tx_ring
= ring
+ RX_RING_SIZE
* sizeof(struct rx_desc
);
944 rp
->rx_ring_dma
= ring_dma
;
945 rp
->tx_ring_dma
= ring_dma
+ RX_RING_SIZE
* sizeof(struct rx_desc
);
950 void free_ring(struct net_device
* dev
)
952 struct rhine_private
*rp
= netdev_priv(dev
);
954 pci_free_consistent(rp
->pdev
,
955 RX_RING_SIZE
* sizeof(struct rx_desc
) +
956 TX_RING_SIZE
* sizeof(struct tx_desc
),
957 rp
->rx_ring
, rp
->rx_ring_dma
);
961 pci_free_consistent(rp
->pdev
, PKT_BUF_SZ
* TX_RING_SIZE
,
962 rp
->tx_bufs
, rp
->tx_bufs_dma
);
968 static void alloc_rbufs(struct net_device
*dev
)
970 struct rhine_private
*rp
= netdev_priv(dev
);
974 rp
->dirty_rx
= rp
->cur_rx
= 0;
976 rp
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PKT_BUF_SZ
: dev
->mtu
+ 32);
977 rp
->rx_head_desc
= &rp
->rx_ring
[0];
978 next
= rp
->rx_ring_dma
;
980 /* Init the ring entries */
981 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
982 rp
->rx_ring
[i
].rx_status
= 0;
983 rp
->rx_ring
[i
].desc_length
= cpu_to_le32(rp
->rx_buf_sz
);
984 next
+= sizeof(struct rx_desc
);
985 rp
->rx_ring
[i
].next_desc
= cpu_to_le32(next
);
986 rp
->rx_skbuff
[i
] = NULL
;
988 /* Mark the last entry as wrapping the ring. */
989 rp
->rx_ring
[i
-1].next_desc
= cpu_to_le32(rp
->rx_ring_dma
);
991 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
992 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
993 struct sk_buff
*skb
= dev_alloc_skb(rp
->rx_buf_sz
);
994 rp
->rx_skbuff
[i
] = skb
;
997 skb
->dev
= dev
; /* Mark as being used by this device. */
999 rp
->rx_skbuff_dma
[i
] =
1000 pci_map_single(rp
->pdev
, skb
->tail
, rp
->rx_buf_sz
,
1001 PCI_DMA_FROMDEVICE
);
1003 rp
->rx_ring
[i
].addr
= cpu_to_le32(rp
->rx_skbuff_dma
[i
]);
1004 rp
->rx_ring
[i
].rx_status
= cpu_to_le32(DescOwn
);
1006 rp
->dirty_rx
= (unsigned int)(i
- RX_RING_SIZE
);
1009 static void free_rbufs(struct net_device
* dev
)
1011 struct rhine_private
*rp
= netdev_priv(dev
);
1014 /* Free all the skbuffs in the Rx queue. */
1015 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1016 rp
->rx_ring
[i
].rx_status
= 0;
1017 rp
->rx_ring
[i
].addr
= cpu_to_le32(0xBADF00D0); /* An invalid address. */
1018 if (rp
->rx_skbuff
[i
]) {
1019 pci_unmap_single(rp
->pdev
,
1020 rp
->rx_skbuff_dma
[i
],
1021 rp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1022 dev_kfree_skb(rp
->rx_skbuff
[i
]);
1024 rp
->rx_skbuff
[i
] = NULL
;
1028 static void alloc_tbufs(struct net_device
* dev
)
1030 struct rhine_private
*rp
= netdev_priv(dev
);
1034 rp
->dirty_tx
= rp
->cur_tx
= 0;
1035 next
= rp
->tx_ring_dma
;
1036 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1037 rp
->tx_skbuff
[i
] = NULL
;
1038 rp
->tx_ring
[i
].tx_status
= 0;
1039 rp
->tx_ring
[i
].desc_length
= cpu_to_le32(TXDESC
);
1040 next
+= sizeof(struct tx_desc
);
1041 rp
->tx_ring
[i
].next_desc
= cpu_to_le32(next
);
1042 rp
->tx_buf
[i
] = &rp
->tx_bufs
[i
* PKT_BUF_SZ
];
1044 rp
->tx_ring
[i
-1].next_desc
= cpu_to_le32(rp
->tx_ring_dma
);
1048 static void free_tbufs(struct net_device
* dev
)
1050 struct rhine_private
*rp
= netdev_priv(dev
);
1053 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1054 rp
->tx_ring
[i
].tx_status
= 0;
1055 rp
->tx_ring
[i
].desc_length
= cpu_to_le32(TXDESC
);
1056 rp
->tx_ring
[i
].addr
= cpu_to_le32(0xBADF00D0); /* An invalid address. */
1057 if (rp
->tx_skbuff
[i
]) {
1058 if (rp
->tx_skbuff_dma
[i
]) {
1059 pci_unmap_single(rp
->pdev
,
1060 rp
->tx_skbuff_dma
[i
],
1061 rp
->tx_skbuff
[i
]->len
,
1064 dev_kfree_skb(rp
->tx_skbuff
[i
]);
1066 rp
->tx_skbuff
[i
] = NULL
;
1067 rp
->tx_buf
[i
] = NULL
;
1071 static void rhine_check_media(struct net_device
*dev
, unsigned int init_media
)
1073 struct rhine_private
*rp
= netdev_priv(dev
);
1074 long ioaddr
= dev
->base_addr
;
1076 mii_check_media(&rp
->mii_if
, debug
, init_media
);
1078 if (rp
->mii_if
.full_duplex
)
1079 writeb(readb(ioaddr
+ ChipCmd1
) | Cmd1FDuplex
,
1082 writeb(readb(ioaddr
+ ChipCmd1
) & ~Cmd1FDuplex
,
1086 static void init_registers(struct net_device
*dev
)
1088 struct rhine_private
*rp
= netdev_priv(dev
);
1089 long ioaddr
= dev
->base_addr
;
1092 for (i
= 0; i
< 6; i
++)
1093 writeb(dev
->dev_addr
[i
], ioaddr
+ StationAddr
+ i
);
1095 /* Initialize other registers. */
1096 writew(0x0006, ioaddr
+ PCIBusConfig
); /* Tune configuration??? */
1097 /* Configure initial FIFO thresholds. */
1098 writeb(0x20, ioaddr
+ TxConfig
);
1099 rp
->tx_thresh
= 0x20;
1100 rp
->rx_thresh
= 0x60; /* Written in rhine_set_rx_mode(). */
1102 writel(rp
->rx_ring_dma
, ioaddr
+ RxRingPtr
);
1103 writel(rp
->tx_ring_dma
, ioaddr
+ TxRingPtr
);
1105 rhine_set_rx_mode(dev
);
1107 /* Enable interrupts by setting the interrupt mask. */
1108 writew(IntrRxDone
| IntrRxErr
| IntrRxEmpty
| IntrRxOverflow
|
1109 IntrRxDropped
| IntrRxNoBuf
| IntrTxAborted
|
1110 IntrTxDone
| IntrTxError
| IntrTxUnderrun
|
1111 IntrPCIErr
| IntrStatsMax
| IntrLinkChange
,
1112 ioaddr
+ IntrEnable
);
1114 writew(CmdStart
| CmdTxOn
| CmdRxOn
| (Cmd1NoTxPoll
<< 8),
1116 rhine_check_media(dev
, 1);
1119 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1120 static void rhine_enable_linkmon(long ioaddr
)
1122 writeb(0, ioaddr
+ MIICmd
);
1123 writeb(MII_BMSR
, ioaddr
+ MIIRegAddr
);
1124 writeb(0x80, ioaddr
+ MIICmd
);
1126 RHINE_WAIT_FOR((readb(ioaddr
+ MIIRegAddr
) & 0x20));
1128 writeb(MII_BMSR
| 0x40, ioaddr
+ MIIRegAddr
);
1131 /* Disable MII link status auto-polling (required for MDIO access) */
1132 static void rhine_disable_linkmon(long ioaddr
, u32 quirks
)
1134 writeb(0, ioaddr
+ MIICmd
);
1136 if (quirks
& rqRhineI
) {
1137 writeb(0x01, ioaddr
+ MIIRegAddr
); // MII_BMSR
1139 /* Can be called from ISR. Evil. */
1142 /* 0x80 must be set immediately before turning it off */
1143 writeb(0x80, ioaddr
+ MIICmd
);
1145 RHINE_WAIT_FOR(readb(ioaddr
+ MIIRegAddr
) & 0x20);
1147 /* Heh. Now clear 0x80 again. */
1148 writeb(0, ioaddr
+ MIICmd
);
1151 RHINE_WAIT_FOR(readb(ioaddr
+ MIIRegAddr
) & 0x80);
1154 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1156 static int mdio_read(struct net_device
*dev
, int phy_id
, int regnum
)
1158 long ioaddr
= dev
->base_addr
;
1159 struct rhine_private
*rp
= netdev_priv(dev
);
1162 rhine_disable_linkmon(ioaddr
, rp
->quirks
);
1164 /* rhine_disable_linkmon already cleared MIICmd */
1165 writeb(phy_id
, ioaddr
+ MIIPhyAddr
);
1166 writeb(regnum
, ioaddr
+ MIIRegAddr
);
1167 writeb(0x40, ioaddr
+ MIICmd
); /* Trigger read */
1168 RHINE_WAIT_FOR(!(readb(ioaddr
+ MIICmd
) & 0x40));
1169 result
= readw(ioaddr
+ MIIData
);
1171 rhine_enable_linkmon(ioaddr
);
1175 static void mdio_write(struct net_device
*dev
, int phy_id
, int regnum
, int value
)
1177 struct rhine_private
*rp
= netdev_priv(dev
);
1178 long ioaddr
= dev
->base_addr
;
1180 rhine_disable_linkmon(ioaddr
, rp
->quirks
);
1182 /* rhine_disable_linkmon already cleared MIICmd */
1183 writeb(phy_id
, ioaddr
+ MIIPhyAddr
);
1184 writeb(regnum
, ioaddr
+ MIIRegAddr
);
1185 writew(value
, ioaddr
+ MIIData
);
1186 writeb(0x20, ioaddr
+ MIICmd
); /* Trigger write */
1187 RHINE_WAIT_FOR(!(readb(ioaddr
+ MIICmd
) & 0x20));
1189 rhine_enable_linkmon(ioaddr
);
1192 static int rhine_open(struct net_device
*dev
)
1194 struct rhine_private
*rp
= netdev_priv(dev
);
1195 long ioaddr
= dev
->base_addr
;
1198 rc
= request_irq(rp
->pdev
->irq
, &rhine_interrupt
, SA_SHIRQ
, dev
->name
,
1204 printk(KERN_DEBUG
"%s: rhine_open() irq %d.\n",
1205 dev
->name
, rp
->pdev
->irq
);
1207 rc
= alloc_ring(dev
);
1212 rhine_chip_reset(dev
);
1213 init_registers(dev
);
1215 printk(KERN_DEBUG
"%s: Done rhine_open(), status %4.4x "
1216 "MII status: %4.4x.\n",
1217 dev
->name
, readw(ioaddr
+ ChipCmd
),
1218 mdio_read(dev
, rp
->mii_if
.phy_id
, MII_BMSR
));
1220 netif_start_queue(dev
);
1225 static void rhine_tx_timeout(struct net_device
*dev
)
1227 struct rhine_private
*rp
= netdev_priv(dev
);
1228 long ioaddr
= dev
->base_addr
;
1230 printk(KERN_WARNING
"%s: Transmit timed out, status %4.4x, PHY status "
1231 "%4.4x, resetting...\n",
1232 dev
->name
, readw(ioaddr
+ IntrStatus
),
1233 mdio_read(dev
, rp
->mii_if
.phy_id
, MII_BMSR
));
1235 /* protect against concurrent rx interrupts */
1236 disable_irq(rp
->pdev
->irq
);
1238 spin_lock(&rp
->lock
);
1240 /* clear all descriptors */
1246 /* Reinitialize the hardware. */
1247 rhine_chip_reset(dev
);
1248 init_registers(dev
);
1250 spin_unlock(&rp
->lock
);
1251 enable_irq(rp
->pdev
->irq
);
1253 dev
->trans_start
= jiffies
;
1254 rp
->stats
.tx_errors
++;
1255 netif_wake_queue(dev
);
1258 static int rhine_start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1260 struct rhine_private
*rp
= netdev_priv(dev
);
1261 long ioaddr
= dev
->base_addr
;
1264 /* Caution: the write order is important here, set the field
1265 with the "ownership" bits last. */
1267 /* Calculate the next Tx descriptor entry. */
1268 entry
= rp
->cur_tx
% TX_RING_SIZE
;
1270 if (skb
->len
< ETH_ZLEN
) {
1271 skb
= skb_padto(skb
, ETH_ZLEN
);
1276 rp
->tx_skbuff
[entry
] = skb
;
1278 if ((rp
->quirks
& rqRhineI
) &&
1279 (((long)skb
->data
& 3) || skb_shinfo(skb
)->nr_frags
!= 0 || skb
->ip_summed
== CHECKSUM_HW
)) {
1280 /* Must use alignment buffer. */
1281 if (skb
->len
> PKT_BUF_SZ
) {
1282 /* packet too long, drop it */
1284 rp
->tx_skbuff
[entry
] = NULL
;
1285 rp
->stats
.tx_dropped
++;
1288 skb_copy_and_csum_dev(skb
, rp
->tx_buf
[entry
]);
1289 rp
->tx_skbuff_dma
[entry
] = 0;
1290 rp
->tx_ring
[entry
].addr
= cpu_to_le32(rp
->tx_bufs_dma
+
1291 (rp
->tx_buf
[entry
] -
1294 rp
->tx_skbuff_dma
[entry
] =
1295 pci_map_single(rp
->pdev
, skb
->data
, skb
->len
,
1297 rp
->tx_ring
[entry
].addr
= cpu_to_le32(rp
->tx_skbuff_dma
[entry
]);
1300 rp
->tx_ring
[entry
].desc_length
=
1301 cpu_to_le32(TXDESC
| (skb
->len
>= ETH_ZLEN
? skb
->len
: ETH_ZLEN
));
1304 spin_lock_irq(&rp
->lock
);
1306 rp
->tx_ring
[entry
].tx_status
= cpu_to_le32(DescOwn
);
1311 /* Non-x86 Todo: explicitly flush cache lines here. */
1313 /* Wake the potentially-idle transmit channel */
1314 writeb(readb(ioaddr
+ ChipCmd1
) | Cmd1TxDemand
,
1318 if (rp
->cur_tx
== rp
->dirty_tx
+ TX_QUEUE_LEN
)
1319 netif_stop_queue(dev
);
1321 dev
->trans_start
= jiffies
;
1323 spin_unlock_irq(&rp
->lock
);
1326 printk(KERN_DEBUG
"%s: Transmit frame #%d queued in slot %d.\n",
1327 dev
->name
, rp
->cur_tx
-1, entry
);
1332 /* The interrupt handler does all of the Rx thread work and cleans up
1333 after the Tx thread. */
1334 static irqreturn_t
rhine_interrupt(int irq
, void *dev_instance
, struct pt_regs
*rgs
)
1336 struct net_device
*dev
= dev_instance
;
1339 int boguscnt
= max_interrupt_work
;
1342 ioaddr
= dev
->base_addr
;
1344 while ((intr_status
= get_intr_status(dev
))) {
1347 /* Acknowledge all of the current interrupt sources ASAP. */
1348 if (intr_status
& IntrTxDescRace
)
1349 writeb(0x08, ioaddr
+ IntrStatus2
);
1350 writew(intr_status
& 0xffff, ioaddr
+ IntrStatus
);
1354 printk(KERN_DEBUG
"%s: Interrupt, status %8.8x.\n",
1355 dev
->name
, intr_status
);
1357 if (intr_status
& (IntrRxDone
| IntrRxErr
| IntrRxDropped
|
1358 IntrRxWakeUp
| IntrRxEmpty
| IntrRxNoBuf
))
1361 if (intr_status
& (IntrTxErrSummary
| IntrTxDone
)) {
1362 if (intr_status
& IntrTxErrSummary
) {
1363 /* Avoid scavenging before Tx engine turned off */
1364 RHINE_WAIT_FOR(!(readb(ioaddr
+ChipCmd
) & CmdTxOn
));
1366 readb(ioaddr
+ChipCmd
) & CmdTxOn
)
1367 printk(KERN_WARNING
"%s: "
1368 "rhine_interrupt() Tx engine"
1369 "still on.\n", dev
->name
);
1374 /* Abnormal error summary/uncommon events handlers. */
1375 if (intr_status
& (IntrPCIErr
| IntrLinkChange
|
1376 IntrStatsMax
| IntrTxError
| IntrTxAborted
|
1377 IntrTxUnderrun
| IntrTxDescRace
))
1378 rhine_error(dev
, intr_status
);
1380 if (--boguscnt
< 0) {
1381 printk(KERN_WARNING
"%s: Too much work at interrupt, "
1383 dev
->name
, intr_status
);
1389 printk(KERN_DEBUG
"%s: exiting interrupt, status=%8.8x.\n",
1390 dev
->name
, readw(ioaddr
+ IntrStatus
));
1391 return IRQ_RETVAL(handled
);
1394 /* This routine is logically part of the interrupt handler, but isolated
1396 static void rhine_tx(struct net_device
*dev
)
1398 struct rhine_private
*rp
= netdev_priv(dev
);
1399 int txstatus
= 0, entry
= rp
->dirty_tx
% TX_RING_SIZE
;
1401 spin_lock(&rp
->lock
);
1403 /* find and cleanup dirty tx descriptors */
1404 while (rp
->dirty_tx
!= rp
->cur_tx
) {
1405 txstatus
= le32_to_cpu(rp
->tx_ring
[entry
].tx_status
);
1407 printk(KERN_DEBUG
" Tx scavenge %d status %8.8x.\n",
1409 if (txstatus
& DescOwn
)
1411 if (txstatus
& 0x8000) {
1413 printk(KERN_DEBUG
"%s: Transmit error, "
1414 "Tx status %8.8x.\n",
1415 dev
->name
, txstatus
);
1416 rp
->stats
.tx_errors
++;
1417 if (txstatus
& 0x0400) rp
->stats
.tx_carrier_errors
++;
1418 if (txstatus
& 0x0200) rp
->stats
.tx_window_errors
++;
1419 if (txstatus
& 0x0100) rp
->stats
.tx_aborted_errors
++;
1420 if (txstatus
& 0x0080) rp
->stats
.tx_heartbeat_errors
++;
1421 if (((rp
->quirks
& rqRhineI
) && txstatus
& 0x0002) ||
1422 (txstatus
& 0x0800) || (txstatus
& 0x1000)) {
1423 rp
->stats
.tx_fifo_errors
++;
1424 rp
->tx_ring
[entry
].tx_status
= cpu_to_le32(DescOwn
);
1425 break; /* Keep the skb - we try again */
1427 /* Transmitter restarted in 'abnormal' handler. */
1429 if (rp
->quirks
& rqRhineI
)
1430 rp
->stats
.collisions
+= (txstatus
>> 3) & 0x0F;
1432 rp
->stats
.collisions
+= txstatus
& 0x0F;
1434 printk(KERN_DEBUG
"collisions: %1.1x:%1.1x\n",
1435 (txstatus
>> 3) & 0xF,
1437 rp
->stats
.tx_bytes
+= rp
->tx_skbuff
[entry
]->len
;
1438 rp
->stats
.tx_packets
++;
1440 /* Free the original skb. */
1441 if (rp
->tx_skbuff_dma
[entry
]) {
1442 pci_unmap_single(rp
->pdev
,
1443 rp
->tx_skbuff_dma
[entry
],
1444 rp
->tx_skbuff
[entry
]->len
,
1447 dev_kfree_skb_irq(rp
->tx_skbuff
[entry
]);
1448 rp
->tx_skbuff
[entry
] = NULL
;
1449 entry
= (++rp
->dirty_tx
) % TX_RING_SIZE
;
1451 if ((rp
->cur_tx
- rp
->dirty_tx
) < TX_QUEUE_LEN
- 4)
1452 netif_wake_queue(dev
);
1454 spin_unlock(&rp
->lock
);
1457 /* This routine is logically part of the interrupt handler, but isolated
1458 for clarity and better register allocation. */
1459 static void rhine_rx(struct net_device
*dev
)
1461 struct rhine_private
*rp
= netdev_priv(dev
);
1462 int entry
= rp
->cur_rx
% RX_RING_SIZE
;
1463 int boguscnt
= rp
->dirty_rx
+ RX_RING_SIZE
- rp
->cur_rx
;
1466 printk(KERN_DEBUG
"%s: rhine_rx(), entry %d status %8.8x.\n",
1468 le32_to_cpu(rp
->rx_head_desc
->rx_status
));
1471 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1472 while (!(rp
->rx_head_desc
->rx_status
& cpu_to_le32(DescOwn
))) {
1473 struct rx_desc
*desc
= rp
->rx_head_desc
;
1474 u32 desc_status
= le32_to_cpu(desc
->rx_status
);
1475 int data_size
= desc_status
>> 16;
1478 printk(KERN_DEBUG
" rhine_rx() status is %8.8x.\n",
1482 if ((desc_status
& (RxWholePkt
| RxErr
)) != RxWholePkt
) {
1483 if ((desc_status
& RxWholePkt
) != RxWholePkt
) {
1484 printk(KERN_WARNING
"%s: Oversized Ethernet "
1485 "frame spanned multiple buffers, entry "
1486 "%#x length %d status %8.8x!\n",
1487 dev
->name
, entry
, data_size
,
1489 printk(KERN_WARNING
"%s: Oversized Ethernet "
1490 "frame %p vs %p.\n", dev
->name
,
1491 rp
->rx_head_desc
, &rp
->rx_ring
[entry
]);
1492 rp
->stats
.rx_length_errors
++;
1493 } else if (desc_status
& RxErr
) {
1494 /* There was a error. */
1496 printk(KERN_DEBUG
" rhine_rx() Rx "
1497 "error was %8.8x.\n",
1499 rp
->stats
.rx_errors
++;
1500 if (desc_status
& 0x0030) rp
->stats
.rx_length_errors
++;
1501 if (desc_status
& 0x0048) rp
->stats
.rx_fifo_errors
++;
1502 if (desc_status
& 0x0004) rp
->stats
.rx_frame_errors
++;
1503 if (desc_status
& 0x0002) {
1504 /* this can also be updated outside the interrupt handler */
1505 spin_lock(&rp
->lock
);
1506 rp
->stats
.rx_crc_errors
++;
1507 spin_unlock(&rp
->lock
);
1511 struct sk_buff
*skb
;
1512 /* Length should omit the CRC */
1513 int pkt_len
= data_size
- 4;
1515 /* Check if the packet is long enough to accept without
1516 copying to a minimally-sized skbuff. */
1517 if (pkt_len
< rx_copybreak
&&
1518 (skb
= dev_alloc_skb(pkt_len
+ 2)) != NULL
) {
1520 skb_reserve(skb
, 2); /* 16 byte align the IP header */
1521 pci_dma_sync_single_for_cpu(rp
->pdev
,
1522 rp
->rx_skbuff_dma
[entry
],
1524 PCI_DMA_FROMDEVICE
);
1526 eth_copy_and_sum(skb
,
1527 rp
->rx_skbuff
[entry
]->tail
,
1529 skb_put(skb
, pkt_len
);
1530 pci_dma_sync_single_for_device(rp
->pdev
,
1531 rp
->rx_skbuff_dma
[entry
],
1533 PCI_DMA_FROMDEVICE
);
1535 skb
= rp
->rx_skbuff
[entry
];
1537 printk(KERN_ERR
"%s: Inconsistent Rx "
1538 "descriptor chain.\n",
1542 rp
->rx_skbuff
[entry
] = NULL
;
1543 skb_put(skb
, pkt_len
);
1544 pci_unmap_single(rp
->pdev
,
1545 rp
->rx_skbuff_dma
[entry
],
1547 PCI_DMA_FROMDEVICE
);
1549 skb
->protocol
= eth_type_trans(skb
, dev
);
1551 dev
->last_rx
= jiffies
;
1552 rp
->stats
.rx_bytes
+= pkt_len
;
1553 rp
->stats
.rx_packets
++;
1555 entry
= (++rp
->cur_rx
) % RX_RING_SIZE
;
1556 rp
->rx_head_desc
= &rp
->rx_ring
[entry
];
1559 /* Refill the Rx ring buffers. */
1560 for (; rp
->cur_rx
- rp
->dirty_rx
> 0; rp
->dirty_rx
++) {
1561 struct sk_buff
*skb
;
1562 entry
= rp
->dirty_rx
% RX_RING_SIZE
;
1563 if (rp
->rx_skbuff
[entry
] == NULL
) {
1564 skb
= dev_alloc_skb(rp
->rx_buf_sz
);
1565 rp
->rx_skbuff
[entry
] = skb
;
1567 break; /* Better luck next round. */
1568 skb
->dev
= dev
; /* Mark as being used by this device. */
1569 rp
->rx_skbuff_dma
[entry
] =
1570 pci_map_single(rp
->pdev
, skb
->tail
,
1572 PCI_DMA_FROMDEVICE
);
1573 rp
->rx_ring
[entry
].addr
= cpu_to_le32(rp
->rx_skbuff_dma
[entry
]);
1575 rp
->rx_ring
[entry
].rx_status
= cpu_to_le32(DescOwn
);
1580 * Clears the "tally counters" for CRC errors and missed frames(?).
1581 * It has been reported that some chips need a write of 0 to clear
1582 * these, for others the counters are set to 1 when written to and
1583 * instead cleared when read. So we clear them both ways ...
1585 static inline void clear_tally_counters(const long ioaddr
)
1587 writel(0, ioaddr
+ RxMissed
);
1588 readw(ioaddr
+ RxCRCErrs
);
1589 readw(ioaddr
+ RxMissed
);
1592 static void rhine_restart_tx(struct net_device
*dev
) {
1593 struct rhine_private
*rp
= netdev_priv(dev
);
1594 long ioaddr
= dev
->base_addr
;
1595 int entry
= rp
->dirty_tx
% TX_RING_SIZE
;
1599 * If new errors occured, we need to sort them out before doing Tx.
1600 * In that case the ISR will be back here RSN anyway.
1602 intr_status
= get_intr_status(dev
);
1604 if ((intr_status
& IntrTxErrSummary
) == 0) {
1606 /* We know better than the chip where it should continue. */
1607 writel(rp
->tx_ring_dma
+ entry
* sizeof(struct tx_desc
),
1608 ioaddr
+ TxRingPtr
);
1610 writeb(readb(ioaddr
+ ChipCmd
) | CmdTxOn
,
1612 writeb(readb(ioaddr
+ ChipCmd1
) | Cmd1TxDemand
,
1617 /* This should never happen */
1619 printk(KERN_WARNING
"%s: rhine_restart_tx() "
1620 "Another error occured %8.8x.\n",
1621 dev
->name
, intr_status
);
1626 static void rhine_error(struct net_device
*dev
, int intr_status
)
1628 struct rhine_private
*rp
= netdev_priv(dev
);
1629 long ioaddr
= dev
->base_addr
;
1631 spin_lock(&rp
->lock
);
1633 if (intr_status
& IntrLinkChange
)
1634 rhine_check_media(dev
, 0);
1635 if (intr_status
& IntrStatsMax
) {
1636 rp
->stats
.rx_crc_errors
+= readw(ioaddr
+ RxCRCErrs
);
1637 rp
->stats
.rx_missed_errors
+= readw(ioaddr
+ RxMissed
);
1638 clear_tally_counters(ioaddr
);
1640 if (intr_status
& IntrTxAborted
) {
1642 printk(KERN_INFO
"%s: Abort %8.8x, frame dropped.\n",
1643 dev
->name
, intr_status
);
1645 if (intr_status
& IntrTxUnderrun
) {
1646 if (rp
->tx_thresh
< 0xE0)
1647 writeb(rp
->tx_thresh
+= 0x20, ioaddr
+ TxConfig
);
1649 printk(KERN_INFO
"%s: Transmitter underrun, Tx "
1650 "threshold now %2.2x.\n",
1651 dev
->name
, rp
->tx_thresh
);
1653 if (intr_status
& IntrTxDescRace
) {
1655 printk(KERN_INFO
"%s: Tx descriptor write-back race.\n",
1658 if ((intr_status
& IntrTxError
) &&
1659 (intr_status
& (IntrTxAborted
|
1660 IntrTxUnderrun
| IntrTxDescRace
)) == 0) {
1661 if (rp
->tx_thresh
< 0xE0) {
1662 writeb(rp
->tx_thresh
+= 0x20, ioaddr
+ TxConfig
);
1665 printk(KERN_INFO
"%s: Unspecified error. Tx "
1666 "threshold now %2.2x.\n",
1667 dev
->name
, rp
->tx_thresh
);
1669 if (intr_status
& (IntrTxAborted
| IntrTxUnderrun
| IntrTxDescRace
|
1671 rhine_restart_tx(dev
);
1673 if (intr_status
& ~(IntrLinkChange
| IntrStatsMax
| IntrTxUnderrun
|
1674 IntrTxError
| IntrTxAborted
| IntrNormalSummary
|
1677 printk(KERN_ERR
"%s: Something Wicked happened! "
1678 "%8.8x.\n", dev
->name
, intr_status
);
1681 spin_unlock(&rp
->lock
);
1684 static struct net_device_stats
*rhine_get_stats(struct net_device
*dev
)
1686 struct rhine_private
*rp
= netdev_priv(dev
);
1687 long ioaddr
= dev
->base_addr
;
1688 unsigned long flags
;
1690 spin_lock_irqsave(&rp
->lock
, flags
);
1691 rp
->stats
.rx_crc_errors
+= readw(ioaddr
+ RxCRCErrs
);
1692 rp
->stats
.rx_missed_errors
+= readw(ioaddr
+ RxMissed
);
1693 clear_tally_counters(ioaddr
);
1694 spin_unlock_irqrestore(&rp
->lock
, flags
);
1699 static void rhine_set_rx_mode(struct net_device
*dev
)
1701 struct rhine_private
*rp
= netdev_priv(dev
);
1702 long ioaddr
= dev
->base_addr
;
1703 u32 mc_filter
[2]; /* Multicast hash filter */
1704 u8 rx_mode
; /* Note: 0x02=accept runt, 0x01=accept errs */
1706 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1707 /* Unconditionally log net taps. */
1708 printk(KERN_NOTICE
"%s: Promiscuous mode enabled.\n",
1711 writel(0xffffffff, ioaddr
+ MulticastFilter0
);
1712 writel(0xffffffff, ioaddr
+ MulticastFilter1
);
1713 } else if ((dev
->mc_count
> multicast_filter_limit
)
1714 || (dev
->flags
& IFF_ALLMULTI
)) {
1715 /* Too many to match, or accept all multicasts. */
1716 writel(0xffffffff, ioaddr
+ MulticastFilter0
);
1717 writel(0xffffffff, ioaddr
+ MulticastFilter1
);
1720 struct dev_mc_list
*mclist
;
1722 memset(mc_filter
, 0, sizeof(mc_filter
));
1723 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1724 i
++, mclist
= mclist
->next
) {
1725 int bit_nr
= ether_crc(ETH_ALEN
, mclist
->dmi_addr
) >> 26;
1727 mc_filter
[bit_nr
>> 5] |= 1 << (bit_nr
& 31);
1729 writel(mc_filter
[0], ioaddr
+ MulticastFilter0
);
1730 writel(mc_filter
[1], ioaddr
+ MulticastFilter1
);
1733 writeb(rp
->rx_thresh
| rx_mode
, ioaddr
+ RxConfig
);
1736 static void netdev_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1738 struct rhine_private
*rp
= netdev_priv(dev
);
1740 strcpy(info
->driver
, DRV_NAME
);
1741 strcpy(info
->version
, DRV_VERSION
);
1742 strcpy(info
->bus_info
, pci_name(rp
->pdev
));
1745 static int netdev_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1747 struct rhine_private
*rp
= netdev_priv(dev
);
1750 spin_lock_irq(&rp
->lock
);
1751 rc
= mii_ethtool_gset(&rp
->mii_if
, cmd
);
1752 spin_unlock_irq(&rp
->lock
);
1757 static int netdev_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1759 struct rhine_private
*rp
= netdev_priv(dev
);
1762 spin_lock_irq(&rp
->lock
);
1763 rc
= mii_ethtool_sset(&rp
->mii_if
, cmd
);
1764 spin_unlock_irq(&rp
->lock
);
1769 static int netdev_nway_reset(struct net_device
*dev
)
1771 struct rhine_private
*rp
= netdev_priv(dev
);
1773 return mii_nway_restart(&rp
->mii_if
);
1776 static u32
netdev_get_link(struct net_device
*dev
)
1778 struct rhine_private
*rp
= netdev_priv(dev
);
1780 return mii_link_ok(&rp
->mii_if
);
1783 static u32
netdev_get_msglevel(struct net_device
*dev
)
1788 static void netdev_set_msglevel(struct net_device
*dev
, u32 value
)
1793 static void rhine_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
1795 struct rhine_private
*rp
= netdev_priv(dev
);
1797 if (!(rp
->quirks
& rqWOL
))
1800 spin_lock_irq(&rp
->lock
);
1801 wol
->supported
= WAKE_PHY
| WAKE_MAGIC
|
1802 WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
; /* Untested */
1803 wol
->wolopts
= rp
->wolopts
;
1804 spin_unlock_irq(&rp
->lock
);
1807 static int rhine_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
1809 struct rhine_private
*rp
= netdev_priv(dev
);
1810 u32 support
= WAKE_PHY
| WAKE_MAGIC
|
1811 WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
; /* Untested */
1813 if (!(rp
->quirks
& rqWOL
))
1816 if (wol
->wolopts
& ~support
)
1819 spin_lock_irq(&rp
->lock
);
1820 rp
->wolopts
= wol
->wolopts
;
1821 spin_unlock_irq(&rp
->lock
);
1826 static struct ethtool_ops netdev_ethtool_ops
= {
1827 .get_drvinfo
= netdev_get_drvinfo
,
1828 .get_settings
= netdev_get_settings
,
1829 .set_settings
= netdev_set_settings
,
1830 .nway_reset
= netdev_nway_reset
,
1831 .get_link
= netdev_get_link
,
1832 .get_msglevel
= netdev_get_msglevel
,
1833 .set_msglevel
= netdev_set_msglevel
,
1834 .get_wol
= rhine_get_wol
,
1835 .set_wol
= rhine_set_wol
,
1836 .get_sg
= ethtool_op_get_sg
,
1837 .get_tx_csum
= ethtool_op_get_tx_csum
,
1840 static int netdev_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1842 struct rhine_private
*rp
= netdev_priv(dev
);
1845 if (!netif_running(dev
))
1848 spin_lock_irq(&rp
->lock
);
1849 rc
= generic_mii_ioctl(&rp
->mii_if
, if_mii(rq
), cmd
, NULL
);
1850 spin_unlock_irq(&rp
->lock
);
1855 static int rhine_close(struct net_device
*dev
)
1857 long ioaddr
= dev
->base_addr
;
1858 struct rhine_private
*rp
= netdev_priv(dev
);
1860 spin_lock_irq(&rp
->lock
);
1862 netif_stop_queue(dev
);
1865 printk(KERN_DEBUG
"%s: Shutting down ethercard, "
1866 "status was %4.4x.\n",
1867 dev
->name
, readw(ioaddr
+ ChipCmd
));
1869 /* Switch to loopback mode to avoid hardware races. */
1870 writeb(rp
->tx_thresh
| 0x02, ioaddr
+ TxConfig
);
1872 /* Disable interrupts by clearing the interrupt mask. */
1873 writew(0x0000, ioaddr
+ IntrEnable
);
1875 /* Stop the chip's Tx and Rx processes. */
1876 writew(CmdStop
, ioaddr
+ ChipCmd
);
1878 spin_unlock_irq(&rp
->lock
);
1880 free_irq(rp
->pdev
->irq
, dev
);
1889 static void __devexit
rhine_remove_one(struct pci_dev
*pdev
)
1891 struct net_device
*dev
= pci_get_drvdata(pdev
);
1893 unregister_netdev(dev
);
1895 pci_release_regions(pdev
);
1898 iounmap((char *)(dev
->base_addr
));
1902 pci_disable_device(pdev
);
1903 pci_set_drvdata(pdev
, NULL
);
1906 static void rhine_shutdown (struct device
*gendev
)
1908 struct pci_dev
*pdev
= to_pci_dev(gendev
);
1909 struct net_device
*dev
= pci_get_drvdata(pdev
);
1910 struct rhine_private
*rp
= netdev_priv(dev
);
1912 long ioaddr
= dev
->base_addr
;
1914 rhine_power_init(dev
);
1916 /* Make sure we use pattern 0, 1 and not 4, 5 */
1917 if (rp
->quirks
& rq6patterns
)
1918 writeb(0x04, ioaddr
+ 0xA7);
1920 if (rp
->wolopts
& WAKE_MAGIC
)
1921 writeb(WOLmagic
, ioaddr
+ WOLcrSet
);
1923 if (rp
->wolopts
& (WAKE_BCAST
|WAKE_MCAST
))
1924 writeb(WOLbmcast
, ioaddr
+ WOLcgSet
);
1926 if (rp
->wolopts
& WAKE_PHY
)
1927 writeb(WOLlnkon
| WOLlnkoff
, ioaddr
+ WOLcrSet
);
1929 if (rp
->wolopts
& WAKE_UCAST
)
1930 writeb(WOLucast
, ioaddr
+ WOLcrSet
);
1932 /* Enable legacy WOL (for old motherboards) */
1933 writeb(0x01, ioaddr
+ PwcfgSet
);
1934 writeb(readb(ioaddr
+ StickyHW
) | 0x04, ioaddr
+ StickyHW
);
1936 /* Hit power state D3 (sleep) */
1937 writeb(readb(ioaddr
+ StickyHW
) | 0x03, ioaddr
+ StickyHW
);
1939 /* TODO: Check use of pci_enable_wake() */
1944 static int rhine_suspend(struct pci_dev
*pdev
, u32 state
)
1946 struct net_device
*dev
= pci_get_drvdata(pdev
);
1947 struct rhine_private
*rp
= netdev_priv(dev
);
1948 unsigned long flags
;
1950 if (!netif_running(dev
))
1953 netif_device_detach(dev
);
1954 pci_save_state(pdev
, pdev
->saved_config_space
);
1956 spin_lock_irqsave(&rp
->lock
, flags
);
1957 rhine_shutdown(&pdev
->dev
);
1958 spin_unlock_irqrestore(&rp
->lock
, flags
);
1963 static int rhine_resume(struct pci_dev
*pdev
)
1965 struct net_device
*dev
= pci_get_drvdata(pdev
);
1966 struct rhine_private
*rp
= netdev_priv(dev
);
1967 unsigned long flags
;
1970 if (!netif_running(dev
))
1973 ret
= pci_set_power_state(pdev
, 0);
1975 printk(KERN_INFO
"%s: Entering power state D0 %s (%d).\n",
1976 dev
->name
, ret
? "failed" : "succeeded", ret
);
1978 pci_restore_state(pdev
, pdev
->saved_config_space
);
1980 spin_lock_irqsave(&rp
->lock
, flags
);
1982 enable_mmio(rp
->pioaddr
, rp
->quirks
);
1984 rhine_power_init(dev
);
1989 init_registers(dev
);
1990 spin_unlock_irqrestore(&rp
->lock
, flags
);
1992 netif_device_attach(dev
);
1996 #endif /* CONFIG_PM */
1998 static struct pci_driver rhine_driver
= {
2000 .id_table
= rhine_pci_tbl
,
2001 .probe
= rhine_init_one
,
2002 .remove
= __devexit_p(rhine_remove_one
),
2004 .suspend
= rhine_suspend
,
2005 .resume
= rhine_resume
,
2006 #endif /* CONFIG_PM */
2008 .shutdown
= rhine_shutdown
,
2013 static int __init
rhine_init(void)
2015 /* when a module, this is printed whether or not devices are found in probe */
2019 return pci_module_init(&rhine_driver
);
2023 static void __exit
rhine_cleanup(void)
2025 pci_unregister_driver(&rhine_driver
);
2029 module_init(rhine_init
);
2030 module_exit(rhine_cleanup
);