MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
blobdddf88b875dbf53afaf0aae02ed9e75304c98f52
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
18 * Other major contributions:
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *-----------------------------------------------------------------------------
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. The name of the author may not be used to endorse or promote products
31 * derived from this software without specific prior written permission.
33 * Where this Software is combined with software released under the terms of
34 * the GNU Public License ("GPL") and the terms of the GPL would require the
35 * combined work to also be released under the terms of the GPL, the terms
36 * and conditions of this License will apply in addition to those of the
37 * GPL with the exception of any terms or conditions of this License that
38 * conflict with, or are expressly prohibited by, the GPL.
40 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
44 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
52 #include "sym_glue.h"
53 #include "sym_nvram.h"
55 #if 0
56 #define SYM_DEBUG_GENERIC_SUPPORT
57 #endif
60 * Needed function prototypes.
62 static void sym_int_ma (hcb_p np);
63 static void sym_int_sir (hcb_p np);
64 static ccb_p sym_alloc_ccb(hcb_p np);
65 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa);
66 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
67 static void sym_complete_error (hcb_p np, ccb_p cp);
68 static void sym_complete_ok (hcb_p np, ccb_p cp);
69 static int sym_compute_residual(hcb_p np, ccb_p cp);
72 * Returns the name of this driver.
74 char *sym_driver_name(void)
76 return SYM_DRIVER_NAME;
79 * Print a buffer in hexadecimal format.
81 static void sym_printb_hex (u_char *p, int n)
83 while (n-- > 0)
84 printf (" %x", *p++);
88 * Same with a label at beginning and .\n at end.
90 static void sym_printl_hex (char *label, u_char *p, int n)
92 printf ("%s", label);
93 sym_printb_hex (p, n);
94 printf (".\n");
98 * Print something which allows to retrieve the controler type,
99 * unit, target, lun concerned by a kernel message.
101 static void sym_print_target (hcb_p np, int target)
103 printf ("%s:%d:", sym_name(np), target);
106 static void sym_print_lun(hcb_p np, int target, int lun)
108 printf ("%s:%d:%d:", sym_name(np), target, lun);
112 * Print out the content of a SCSI message.
114 static int sym_show_msg (u_char * msg)
116 u_char i;
117 printf ("%x",*msg);
118 if (*msg==M_EXTENDED) {
119 for (i=1;i<8;i++) {
120 if (i-1>msg[1]) break;
121 printf ("-%x",msg[i]);
123 return (i+1);
124 } else if ((*msg & 0xf0) == 0x20) {
125 printf ("-%x",msg[1]);
126 return (2);
128 return (1);
131 static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
133 PRINT_ADDR(cp);
134 if (label)
135 printf ("%s: ", label);
137 (void) sym_show_msg (msg);
138 printf (".\n");
141 static void sym_print_nego_msg (hcb_p np, int target, char *label, u_char *msg)
143 PRINT_TARGET(np, target);
144 if (label)
145 printf ("%s: ", label);
147 (void) sym_show_msg (msg);
148 printf (".\n");
152 * Print something that tells about extended errors.
154 void sym_print_xerr(ccb_p cp, int x_status)
156 if (x_status & XE_PARITY_ERR) {
157 PRINT_ADDR(cp);
158 printf ("unrecovered SCSI parity error.\n");
160 if (x_status & XE_EXTRA_DATA) {
161 PRINT_ADDR(cp);
162 printf ("extraneous data discarded.\n");
164 if (x_status & XE_BAD_PHASE) {
165 PRINT_ADDR(cp);
166 printf ("illegal scsi phase (4/5).\n");
168 if (x_status & XE_SODL_UNRUN) {
169 PRINT_ADDR(cp);
170 printf ("ODD transfer in DATA OUT phase.\n");
172 if (x_status & XE_SWIDE_OVRUN) {
173 PRINT_ADDR(cp);
174 printf ("ODD transfer in DATA IN phase.\n");
179 * Return a string for SCSI BUS mode.
181 static char *sym_scsi_bus_mode(int mode)
183 switch(mode) {
184 case SMODE_HVD: return "HVD";
185 case SMODE_SE: return "SE";
186 case SMODE_LVD: return "LVD";
188 return "??";
192 * Soft reset the chip.
194 * Raising SRST when the chip is running may cause
195 * problems on dual function chips (see below).
196 * On the other hand, LVD devices need some delay
197 * to settle and report actual BUS mode in STEST4.
199 static void sym_chip_reset (hcb_p np)
201 OUTB (nc_istat, SRST);
202 UDELAY (10);
203 OUTB (nc_istat, 0);
204 UDELAY(2000); /* For BUS MODE to settle */
208 * Really soft reset the chip.:)
210 * Some 896 and 876 chip revisions may hang-up if we set
211 * the SRST (soft reset) bit at the wrong time when SCRIPTS
212 * are running.
213 * So, we need to abort the current operation prior to
214 * soft resetting the chip.
216 static void sym_soft_reset (hcb_p np)
218 u_char istat = 0;
219 int i;
221 if (!(np->features & FE_ISTAT1) || !(INB (nc_istat1) & SCRUN))
222 goto do_chip_reset;
224 OUTB (nc_istat, CABRT);
225 for (i = 100000 ; i ; --i) {
226 istat = INB (nc_istat);
227 if (istat & SIP) {
228 INW (nc_sist);
230 else if (istat & DIP) {
231 if (INB (nc_dstat) & ABRT)
232 break;
234 UDELAY(5);
236 OUTB (nc_istat, 0);
237 if (!i)
238 printf("%s: unable to abort current chip operation, "
239 "ISTAT=0x%02x.\n", sym_name(np), istat);
240 do_chip_reset:
241 sym_chip_reset (np);
245 * Start reset process.
247 * The interrupt handler will reinitialize the chip.
249 static void sym_start_reset(hcb_p np)
251 (void) sym_reset_scsi_bus(np, 1);
254 int sym_reset_scsi_bus(hcb_p np, int enab_int)
256 u32 term;
257 int retv = 0;
259 sym_soft_reset(np); /* Soft reset the chip */
260 if (enab_int)
261 OUTW (nc_sien, RST);
263 * Enable Tolerant, reset IRQD if present and
264 * properly set IRQ mode, prior to resetting the bus.
266 OUTB (nc_stest3, TE);
267 OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
268 OUTB (nc_scntl1, CRST);
269 UDELAY (200);
271 if (!SYM_SETUP_SCSI_BUS_CHECK)
272 goto out;
274 * Check for no terminators or SCSI bus shorts to ground.
275 * Read SCSI data bus, data parity bits and control signals.
276 * We are expecting RESET to be TRUE and other signals to be
277 * FALSE.
279 term = INB(nc_sstat0);
280 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
281 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
282 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
283 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
284 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
286 if (!np->maxwide)
287 term &= 0x3ffff;
289 if (term != (2<<7)) {
290 printf("%s: suspicious SCSI data while resetting the BUS.\n",
291 sym_name(np));
292 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
293 "0x%lx, expecting 0x%lx\n",
294 sym_name(np),
295 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
296 (u_long)term, (u_long)(2<<7));
297 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
298 retv = 1;
300 out:
301 OUTB (nc_scntl1, 0);
302 /* MDELAY(100); */
303 return retv;
307 * Select SCSI clock frequency
309 static void sym_selectclock(hcb_p np, u_char scntl3)
312 * If multiplier not present or not selected, leave here.
314 if (np->multiplier <= 1) {
315 OUTB(nc_scntl3, scntl3);
316 return;
319 if (sym_verbose >= 2)
320 printf ("%s: enabling clock multiplier\n", sym_name(np));
322 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
324 * Wait for the LCKFRQ bit to be set if supported by the chip.
325 * Otherwise wait 50 micro-seconds (at least).
327 if (np->features & FE_LCKFRQ) {
328 int i = 20;
329 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
330 UDELAY (20);
331 if (!i)
332 printf("%s: the chip cannot lock the frequency\n",
333 sym_name(np));
334 } else
335 UDELAY ((50+10));
336 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
337 OUTB(nc_scntl3, scntl3);
338 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
339 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
344 * Determine the chip's clock frequency.
346 * This is essential for the negotiation of the synchronous
347 * transfer rate.
349 * Note: we have to return the correct value.
350 * THERE IS NO SAFE DEFAULT VALUE.
352 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
353 * 53C860 and 53C875 rev. 1 support fast20 transfers but
354 * do not have a clock doubler and so are provided with a
355 * 80 MHz clock. All other fast20 boards incorporate a doubler
356 * and so should be delivered with a 40 MHz clock.
357 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
358 * clock and provide a clock quadrupler (160 Mhz).
362 * calculate SCSI clock frequency (in KHz)
364 static unsigned getfreq (hcb_p np, int gen)
366 unsigned int ms = 0;
367 unsigned int f;
370 * Measure GEN timer delay in order
371 * to calculate SCSI clock frequency
373 * This code will never execute too
374 * many loop iterations (if DELAY is
375 * reasonably correct). It could get
376 * too low a delay (too high a freq.)
377 * if the CPU is slow executing the
378 * loop for some reason (an NMI, for
379 * example). For this reason we will
380 * if multiple measurements are to be
381 * performed trust the higher delay
382 * (lower frequency returned).
384 OUTW (nc_sien , 0); /* mask all scsi interrupts */
385 (void) INW (nc_sist); /* clear pending scsi interrupt */
386 OUTB (nc_dien , 0); /* mask all dma interrupts */
387 (void) INW (nc_sist); /* another one, just to be sure :) */
389 * The C1010-33 core does not report GEN in SIST,
390 * if this interrupt is masked in SIEN.
391 * I don't know yet if the C1010-66 behaves the same way.
393 if (np->features & FE_C10) {
394 OUTW (nc_sien, GEN);
395 OUTB (nc_istat1, SIRQD);
397 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
398 OUTB (nc_stime1, 0); /* disable general purpose timer */
399 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
400 while (!(INW(nc_sist) & GEN) && ms++ < 100000)
401 UDELAY (1000/4);/* count in 1/4 of ms */
402 OUTB (nc_stime1, 0); /* disable general purpose timer */
404 * Undo C1010-33 specific settings.
406 if (np->features & FE_C10) {
407 OUTW (nc_sien, 0);
408 OUTB (nc_istat1, 0);
411 * set prescaler to divide by whatever 0 means
412 * 0 ought to choose divide by 2, but appears
413 * to set divide by 3.5 mode in my 53c810 ...
415 OUTB (nc_scntl3, 0);
418 * adjust for prescaler, and convert into KHz
420 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
423 * The C1010-33 result is biased by a factor
424 * of 2/3 compared to earlier chips.
426 if (np->features & FE_C10)
427 f = (f * 2) / 3;
429 if (sym_verbose >= 2)
430 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
431 sym_name(np), gen, ms/4, f);
433 return f;
436 static unsigned sym_getfreq (hcb_p np)
438 u_int f1, f2;
439 int gen = 8;
441 (void) getfreq (np, gen); /* throw away first result */
442 f1 = getfreq (np, gen);
443 f2 = getfreq (np, gen);
444 if (f1 > f2) f1 = f2; /* trust lower result */
445 return f1;
449 * Get/probe chip SCSI clock frequency
451 static void sym_getclock (hcb_p np, int mult)
453 unsigned char scntl3 = np->sv_scntl3;
454 unsigned char stest1 = np->sv_stest1;
455 unsigned f1;
457 np->multiplier = 1;
458 f1 = 40000;
460 * True with 875/895/896/895A with clock multiplier selected
462 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
463 if (sym_verbose >= 2)
464 printf ("%s: clock multiplier found\n", sym_name(np));
465 np->multiplier = mult;
469 * If multiplier not found or scntl3 not 7,5,3,
470 * reset chip and get frequency from general purpose timer.
471 * Otherwise trust scntl3 BIOS setting.
473 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
474 OUTB (nc_stest1, 0); /* make sure doubler is OFF */
475 f1 = sym_getfreq (np);
477 if (sym_verbose)
478 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
480 if (f1 < 45000) f1 = 40000;
481 else if (f1 < 55000) f1 = 50000;
482 else f1 = 80000;
484 if (f1 < 80000 && mult > 1) {
485 if (sym_verbose >= 2)
486 printf ("%s: clock multiplier assumed\n",
487 sym_name(np));
488 np->multiplier = mult;
490 } else {
491 if ((scntl3 & 7) == 3) f1 = 40000;
492 else if ((scntl3 & 7) == 5) f1 = 80000;
493 else f1 = 160000;
495 f1 /= np->multiplier;
499 * Compute controller synchronous parameters.
501 f1 *= np->multiplier;
502 np->clock_khz = f1;
506 * Get/probe PCI clock frequency
508 static int sym_getpciclock (hcb_p np)
510 int f = 0;
513 * For now, we only need to know about the actual
514 * PCI BUS clock frequency for C1010-66 chips.
516 #if 1
517 if (np->features & FE_66MHZ) {
518 #else
519 if (1) {
520 #endif
521 OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
522 f = (int) sym_getfreq (np);
523 OUTB (nc_stest1, 0);
525 np->pciclk_khz = f;
527 return f;
531 * SYMBIOS chip clock divisor table.
533 * Divisors are multiplied by 10,000,000 in order to make
534 * calculations more simple.
536 #define _5M 5000000
537 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
540 * Get clock factor and sync divisor for a given
541 * synchronous factor period.
543 static int
544 sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
546 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
547 int div = np->clock_divn; /* Number of divisors supported */
548 u32 fak; /* Sync factor in sxfer */
549 u32 per; /* Period in tenths of ns */
550 u32 kpc; /* (per * clk) */
551 int ret;
554 * Compute the synchronous period in tenths of nano-seconds
556 if (dt && sfac <= 9) per = 125;
557 else if (sfac <= 10) per = 250;
558 else if (sfac == 11) per = 303;
559 else if (sfac == 12) per = 500;
560 else per = 40 * sfac;
561 ret = per;
563 kpc = per * clk;
564 if (dt)
565 kpc <<= 1;
568 * For earliest C10 revision 0, we cannot use extra
569 * clocks for the setting of the SCSI clocking.
570 * Note that this limits the lowest sync data transfer
571 * to 5 Mega-transfers per second and may result in
572 * using higher clock divisors.
574 #if 1
575 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
577 * Look for the lowest clock divisor that allows an
578 * output speed not faster than the period.
580 while (div > 0) {
581 --div;
582 if (kpc > (div_10M[div] << 2)) {
583 ++div;
584 break;
587 fak = 0; /* No extra clocks */
588 if (div == np->clock_divn) { /* Are we too fast ? */
589 ret = -1;
591 *divp = div;
592 *fakp = fak;
593 return ret;
595 #endif
598 * Look for the greatest clock divisor that allows an
599 * input speed faster than the period.
601 while (div-- > 0)
602 if (kpc >= (div_10M[div] << 2)) break;
605 * Calculate the lowest clock factor that allows an output
606 * speed not faster than the period, and the max output speed.
607 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
608 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
610 if (dt) {
611 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
612 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
613 } else {
614 fak = (kpc - 1) / div_10M[div] + 1 - 4;
615 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
619 * Check against our hardware limits, or bugs :).
621 if (fak > 2) {
622 fak = 2;
623 ret = -1;
627 * Compute and return sync parameters.
629 *divp = div;
630 *fakp = fak;
632 return ret;
636 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
637 * 128 transfers. All chips support at least 16 transfers
638 * bursts. The 825A, 875 and 895 chips support bursts of up
639 * to 128 transfers and the 895A and 896 support bursts of up
640 * to 64 transfers. All other chips support up to 16
641 * transfers bursts.
643 * For PCI 32 bit data transfers each transfer is a DWORD.
644 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
646 * We use log base 2 (burst length) as internal code, with
647 * value 0 meaning "burst disabled".
651 * Burst length from burst code.
653 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
656 * Burst code from io register bits.
658 #define burst_code(dmode, ctest4, ctest5) \
659 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
662 * Set initial io register bits from burst code.
664 static __inline void sym_init_burst(hcb_p np, u_char bc)
666 np->rv_ctest4 &= ~0x80;
667 np->rv_dmode &= ~(0x3 << 6);
668 np->rv_ctest5 &= ~0x4;
670 if (!bc) {
671 np->rv_ctest4 |= 0x80;
673 else {
674 --bc;
675 np->rv_dmode |= ((bc & 0x3) << 6);
676 np->rv_ctest5 |= (bc & 0x4);
682 * Print out the list of targets that have some flag disabled by user.
684 static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
686 int cnt;
687 int i;
689 for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
690 if (i == np->myaddr)
691 continue;
692 if (np->target[i].usrflags & mask) {
693 if (!cnt++)
694 printf("%s: %s disabled for targets",
695 sym_name(np), msg);
696 printf(" %d", i);
699 if (cnt)
700 printf(".\n");
704 * Save initial settings of some IO registers.
705 * Assumed to have been set by BIOS.
706 * We cannot reset the chip prior to reading the
707 * IO registers, since informations will be lost.
708 * Since the SCRIPTS processor may be running, this
709 * is not safe on paper, but it seems to work quite
710 * well. :)
712 static void sym_save_initial_setting (hcb_p np)
714 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
715 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
716 np->sv_dmode = INB(nc_dmode) & 0xce;
717 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
718 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
719 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
720 np->sv_gpcntl = INB(nc_gpcntl);
721 np->sv_stest1 = INB(nc_stest1);
722 np->sv_stest2 = INB(nc_stest2) & 0x20;
723 np->sv_stest4 = INB(nc_stest4);
724 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
725 np->sv_scntl4 = INB(nc_scntl4);
726 np->sv_ctest5 = INB(nc_ctest5) & 0x04;
728 else
729 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
732 #ifdef CONFIG_PARISC
733 static u32 parisc_setup_hcb(hcb_p np, u32 period)
735 unsigned long pdc_period;
736 char scsi_mode;
737 struct hardware_path hwpath;
739 /* Host firmware (PDC) keeps a table for crippling SCSI capabilities.
740 * Many newer machines export one channel of 53c896 chip
741 * as SE, 50-pin HD. Also used for Multi-initiator SCSI clusters
742 * to set the SCSI Initiator ID.
744 get_pci_node_path(np->s.device, &hwpath);
745 if (!pdc_get_initiator(&hwpath, &np->myaddr, &pdc_period,
746 &np->maxwide, &scsi_mode))
747 return period;
749 if (scsi_mode >= 0) {
750 /* C3000 PDC reports period/mode */
751 SYM_SETUP_SCSI_DIFF = 0;
752 switch(scsi_mode) {
753 case 0: np->scsi_mode = SMODE_SE; break;
754 case 1: np->scsi_mode = SMODE_HVD; break;
755 case 2: np->scsi_mode = SMODE_LVD; break;
756 default: break;
760 return (u32) pdc_period;
762 #else
763 static inline int parisc_setup_hcb(hcb_p np, u32 period) { return period; }
764 #endif
766 * Prepare io register values used by sym_start_up()
767 * according to selected and supported features.
769 static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
771 u_char burst_max;
772 u32 period;
773 int i;
776 * Wide ?
778 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
781 * Guess the frequency of the chip's clock.
783 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
784 np->clock_khz = 160000;
785 else if (np->features & FE_ULTRA)
786 np->clock_khz = 80000;
787 else
788 np->clock_khz = 40000;
791 * Get the clock multiplier factor.
793 if (np->features & FE_QUAD)
794 np->multiplier = 4;
795 else if (np->features & FE_DBLR)
796 np->multiplier = 2;
797 else
798 np->multiplier = 1;
801 * Measure SCSI clock frequency for chips
802 * it may vary from assumed one.
804 if (np->features & FE_VARCLK)
805 sym_getclock(np, np->multiplier);
808 * Divisor to be used for async (timer pre-scaler).
810 i = np->clock_divn - 1;
811 while (--i >= 0) {
812 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
813 ++i;
814 break;
817 np->rv_scntl3 = i+1;
820 * The C1010 uses hardwired divisors for async.
821 * So, we just throw away, the async. divisor.:-)
823 if (np->features & FE_C10)
824 np->rv_scntl3 = 0;
827 * Minimum synchronous period factor supported by the chip.
828 * Btw, 'period' is in tenths of nanoseconds.
830 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
832 period = parisc_setup_hcb(np, period);
834 if (period <= 250) np->minsync = 10;
835 else if (period <= 303) np->minsync = 11;
836 else if (period <= 500) np->minsync = 12;
837 else np->minsync = (period + 40 - 1) / 40;
840 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
842 if (np->minsync < 25 &&
843 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
844 np->minsync = 25;
845 else if (np->minsync < 12 &&
846 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
847 np->minsync = 12;
850 * Maximum synchronous period factor supported by the chip.
852 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
853 np->maxsync = period > 2540 ? 254 : period / 10;
856 * If chip is a C1010, guess the sync limits in DT mode.
858 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
859 if (np->clock_khz == 160000) {
860 np->minsync_dt = 9;
861 np->maxsync_dt = 50;
862 np->maxoffs_dt = nvram->type ? 62 : 31;
867 * 64 bit addressing (895A/896/1010) ?
869 if (np->features & FE_DAC) {
870 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
871 np->rv_ccntl1 |= (DDAC);
872 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
873 if (!np->use_dac)
874 np->rv_ccntl1 |= (DDAC);
875 else
876 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
877 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
878 if (!np->use_dac)
879 np->rv_ccntl1 |= (DDAC);
880 else
881 np->rv_ccntl1 |= (0 | EXTIBMV);
882 #endif
886 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
888 if (np->features & FE_NOPM)
889 np->rv_ccntl0 |= (ENPMJ);
892 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
893 * In dual channel mode, contention occurs if internal cycles
894 * are used. Disable internal cycles.
896 if (np->device_id == PCI_ID_LSI53C1010_33 &&
897 np->revision_id < 0x1)
898 np->rv_ccntl0 |= DILS;
901 * Select burst length (dwords)
903 burst_max = SYM_SETUP_BURST_ORDER;
904 if (burst_max == 255)
905 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
906 np->sv_ctest5);
907 if (burst_max > 7)
908 burst_max = 7;
909 if (burst_max > np->maxburst)
910 burst_max = np->maxburst;
913 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
914 * This chip and the 860 Rev 1 may wrongly use PCI cache line
915 * based transactions on LOAD/STORE instructions. So we have
916 * to prevent these chips from using such PCI transactions in
917 * this driver. The generic ncr driver that does not use
918 * LOAD/STORE instructions does not need this work-around.
920 if ((np->device_id == PCI_ID_SYM53C810 &&
921 np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
922 (np->device_id == PCI_ID_SYM53C860 &&
923 np->revision_id <= 0x1))
924 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
927 * Select all supported special features.
928 * If we are using on-board RAM for scripts, prefetch (PFEN)
929 * does not help, but burst op fetch (BOF) does.
930 * Disabling PFEN makes sure BOF will be used.
932 if (np->features & FE_ERL)
933 np->rv_dmode |= ERL; /* Enable Read Line */
934 if (np->features & FE_BOF)
935 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
936 if (np->features & FE_ERMP)
937 np->rv_dmode |= ERMP; /* Enable Read Multiple */
938 #if 1
939 if ((np->features & FE_PFEN) && !np->ram_ba)
940 #else
941 if (np->features & FE_PFEN)
942 #endif
943 np->rv_dcntl |= PFEN; /* Prefetch Enable */
944 if (np->features & FE_CLSE)
945 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
946 if (np->features & FE_WRIE)
947 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
948 if (np->features & FE_DFS)
949 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
952 * Select some other
954 if (SYM_SETUP_PCI_PARITY)
955 np->rv_ctest4 |= MPEE; /* Master parity checking */
956 if (SYM_SETUP_SCSI_PARITY)
957 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
960 * Get parity checking, host ID and verbose mode from NVRAM
962 np->myaddr = 255;
963 sym_nvram_setup_host (np, nvram);
966 * Get SCSI addr of host adapter (set by bios?).
968 if (np->myaddr == 255) {
969 np->myaddr = INB(nc_scid) & 0x07;
970 if (!np->myaddr)
971 np->myaddr = SYM_SETUP_HOST_ID;
975 * Prepare initial io register bits for burst length
977 sym_init_burst(np, burst_max);
980 * Set SCSI BUS mode.
981 * - LVD capable chips (895/895A/896/1010) report the
982 * current BUS mode through the STEST4 IO register.
983 * - For previous generation chips (825/825A/875),
984 * user has to tell us how to check against HVD,
985 * since a 100% safe algorithm is not possible.
987 np->scsi_mode = SMODE_SE;
988 if (np->features & (FE_ULTRA2|FE_ULTRA3))
989 np->scsi_mode = (np->sv_stest4 & SMODE);
990 else if (np->features & FE_DIFF) {
991 if (SYM_SETUP_SCSI_DIFF == 1) {
992 if (np->sv_scntl3) {
993 if (np->sv_stest2 & 0x20)
994 np->scsi_mode = SMODE_HVD;
996 else if (nvram->type == SYM_SYMBIOS_NVRAM) {
997 if (!(INB(nc_gpreg) & 0x08))
998 np->scsi_mode = SMODE_HVD;
1001 else if (SYM_SETUP_SCSI_DIFF == 2)
1002 np->scsi_mode = SMODE_HVD;
1004 if (np->scsi_mode == SMODE_HVD)
1005 np->rv_stest2 |= 0x20;
1008 * Set LED support from SCRIPTS.
1009 * Ignore this feature for boards known to use a
1010 * specific GPIO wiring and for the 895A, 896
1011 * and 1010 that drive the LED directly.
1013 if ((SYM_SETUP_SCSI_LED ||
1014 (nvram->type == SYM_SYMBIOS_NVRAM ||
1015 (nvram->type == SYM_TEKRAM_NVRAM &&
1016 np->device_id == PCI_ID_SYM53C895))) &&
1017 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
1018 np->features |= FE_LED0;
1021 * Set irq mode.
1023 switch(SYM_SETUP_IRQ_MODE & 3) {
1024 case 2:
1025 np->rv_dcntl |= IRQM;
1026 break;
1027 case 1:
1028 np->rv_dcntl |= (np->sv_dcntl & IRQM);
1029 break;
1030 default:
1031 break;
1035 * Configure targets according to driver setup.
1036 * If NVRAM present get targets setup from NVRAM.
1038 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
1039 tcb_p tp = &np->target[i];
1041 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
1042 tp->usrtags = SYM_SETUP_MAX_TAG;
1044 sym_nvram_setup_target (np, i, nvram);
1046 if (!tp->usrtags)
1047 tp->usrflags &= ~SYM_TAGS_ENABLED;
1051 * Let user know about the settings.
1053 i = nvram->type;
1054 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
1055 i == SYM_SYMBIOS_NVRAM ? "Symbios" :
1056 (i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"),
1057 np->myaddr,
1058 (np->features & FE_ULTRA3) ? 80 :
1059 (np->features & FE_ULTRA2) ? 40 :
1060 (np->features & FE_ULTRA) ? 20 : 10,
1061 sym_scsi_bus_mode(np->scsi_mode),
1062 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
1064 * Tell him more on demand.
1066 if (sym_verbose) {
1067 printf("%s: %s IRQ line driver%s\n",
1068 sym_name(np),
1069 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
1070 np->ram_ba ? ", using on-chip SRAM" : "");
1071 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
1072 if (np->features & FE_NOPM)
1073 printf("%s: handling phase mismatch from SCRIPTS.\n",
1074 sym_name(np));
1077 * And still more.
1079 if (sym_verbose >= 2) {
1080 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1081 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1082 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
1083 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
1085 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1086 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1087 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
1088 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
1091 * Let user be aware of targets that have some disable flags set.
1093 sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
1094 if (sym_verbose)
1095 sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
1096 "SCAN FOR LUNS");
1098 return 0;
1102 * Test the pci bus snoop logic :-(
1104 * Has to be called with interrupts disabled.
1106 #ifndef SYM_CONF_IOMAPPED
1107 static int sym_regtest (hcb_p np)
1109 register volatile u32 data;
1111 * chip registers may NOT be cached.
1112 * write 0xffffffff to a read only register area,
1113 * and try to read it back.
1115 data = 0xffffffff;
1116 OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
1117 data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
1118 #if 1
1119 if (data == 0xffffffff) {
1120 #else
1121 if ((data & 0xe2f0fffd) != 0x02000080) {
1122 #endif
1123 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1124 (unsigned) data);
1125 return (0x10);
1127 return (0);
1129 #endif
1131 static int sym_snooptest (hcb_p np)
1133 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1134 int i, err=0;
1135 #ifndef SYM_CONF_IOMAPPED
1136 err |= sym_regtest (np);
1137 if (err) return (err);
1138 #endif
1139 restart_test:
1141 * Enable Master Parity Checking as we intend
1142 * to enable it for normal operations.
1144 OUTB (nc_ctest4, (np->rv_ctest4 & MPEE));
1146 * init
1148 pc = SCRIPTZ_BA (np, snooptest);
1149 host_wr = 1;
1150 sym_wr = 2;
1152 * Set memory and register.
1154 np->scratch = cpu_to_scr(host_wr);
1155 OUTL (nc_temp, sym_wr);
1157 * Start script (exchange values)
1159 OUTL (nc_dsa, np->hcb_ba);
1160 OUTL_DSP (pc);
1162 * Wait 'til done (with timeout)
1164 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1165 if (INB(nc_istat) & (INTF|SIP|DIP))
1166 break;
1167 if (i>=SYM_SNOOP_TIMEOUT) {
1168 printf ("CACHE TEST FAILED: timeout.\n");
1169 return (0x20);
1172 * Check for fatal DMA errors.
1174 dstat = INB (nc_dstat);
1175 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1176 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1177 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1178 "DISABLING MASTER DATA PARITY CHECKING.\n",
1179 sym_name(np));
1180 np->rv_ctest4 &= ~MPEE;
1181 goto restart_test;
1183 #endif
1184 if (dstat & (MDPE|BF|IID)) {
1185 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1186 return (0x80);
1189 * Save termination position.
1191 pc = INL (nc_dsp);
1193 * Read memory and register.
1195 host_rd = scr_to_cpu(np->scratch);
1196 sym_rd = INL (nc_scratcha);
1197 sym_bk = INL (nc_temp);
1199 * Check termination position.
1201 if (pc != SCRIPTZ_BA (np, snoopend)+8) {
1202 printf ("CACHE TEST FAILED: script execution failed.\n");
1203 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1204 (u_long) SCRIPTZ_BA (np, snooptest), (u_long) pc,
1205 (u_long) SCRIPTZ_BA (np, snoopend) +8);
1206 return (0x40);
1209 * Show results.
1211 if (host_wr != sym_rd) {
1212 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1213 (int) host_wr, (int) sym_rd);
1214 err |= 1;
1216 if (host_rd != sym_wr) {
1217 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1218 (int) sym_wr, (int) host_rd);
1219 err |= 2;
1221 if (sym_bk != sym_wr) {
1222 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1223 (int) sym_wr, (int) sym_bk);
1224 err |= 4;
1227 return (err);
1231 * log message for real hard errors
1233 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1234 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1236 * exception register:
1237 * ds: dstat
1238 * si: sist
1240 * SCSI bus lines:
1241 * so: control lines as driven by chip.
1242 * si: control lines as seen by chip.
1243 * sd: scsi data lines as seen by chip.
1245 * wide/fastmode:
1246 * sx: sxfer (see the manual)
1247 * s3: scntl3 (see the manual)
1248 * s4: scntl4 (see the manual)
1250 * current script command:
1251 * dsp: script address (relative to start of script).
1252 * dbc: first word of script command.
1254 * First 24 register of the chip:
1255 * r0..rf
1257 static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
1259 u32 dsp;
1260 int script_ofs;
1261 int script_size;
1262 char *script_name;
1263 u_char *script_base;
1264 int i;
1266 dsp = INL (nc_dsp);
1268 if (dsp > np->scripta_ba &&
1269 dsp <= np->scripta_ba + np->scripta_sz) {
1270 script_ofs = dsp - np->scripta_ba;
1271 script_size = np->scripta_sz;
1272 script_base = (u_char *) np->scripta0;
1273 script_name = "scripta";
1275 else if (np->scriptb_ba < dsp &&
1276 dsp <= np->scriptb_ba + np->scriptb_sz) {
1277 script_ofs = dsp - np->scriptb_ba;
1278 script_size = np->scriptb_sz;
1279 script_base = (u_char *) np->scriptb0;
1280 script_name = "scriptb";
1281 } else {
1282 script_ofs = dsp;
1283 script_size = 0;
1284 script_base = NULL;
1285 script_name = "mem";
1288 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1289 sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
1290 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
1291 (unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
1292 (unsigned)INB (nc_scntl3),
1293 (np->features & FE_C10) ? (unsigned)INB (nc_scntl4) : 0,
1294 script_name, script_ofs, (unsigned)INL (nc_dbc));
1296 if (((script_ofs & 3) == 0) &&
1297 (unsigned)script_ofs < script_size) {
1298 printf ("%s: script cmd = %08x\n", sym_name(np),
1299 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1302 printf ("%s: regdump:", sym_name(np));
1303 for (i=0; i<24;i++)
1304 printf (" %02x", (unsigned)INB_OFF(i));
1305 printf (".\n");
1308 * PCI BUS error.
1310 if (dstat & (MDPE|BF))
1311 sym_log_bus_error(np);
1314 static struct sym_pci_chip sym_pci_dev_table[] = {
1315 {PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 64,
1316 FE_ERL}
1318 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1319 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
1320 FE_BOF}
1322 #else
1323 {PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
1324 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1326 #endif
1327 {PCI_ID_SYM53C815, 0xff, "815", 4, 8, 4, 64,
1328 FE_BOF|FE_ERL}
1330 {PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 64,
1331 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1333 {PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2,
1334 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1336 {PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1,
1337 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1339 {PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
1340 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1341 FE_RAM|FE_DIFF|FE_VARCLK}
1343 {PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
1344 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1345 FE_RAM|FE_DIFF|FE_VARCLK}
1347 {PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
1348 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1349 FE_RAM|FE_DIFF|FE_VARCLK}
1351 {PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
1352 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1353 FE_RAM|FE_DIFF|FE_VARCLK}
1355 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1356 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
1357 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1358 FE_RAM|FE_LCKFRQ}
1360 #else
1361 {PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
1362 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1363 FE_RAM|FE_LCKFRQ}
1365 #endif
1366 {PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
1367 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1368 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1370 {PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
1371 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1372 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1374 {PCI_ID_SYM53C875A, 0xff, "875a", 6, 31, 7, 4,
1375 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1376 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1378 {PCI_ID_LSI53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1379 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1380 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1381 FE_C10}
1383 {PCI_ID_LSI53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1384 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1385 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1386 FE_C10|FE_U3EN}
1388 {PCI_ID_LSI53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1389 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1390 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1391 FE_C10|FE_U3EN}
1393 {PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
1394 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1395 FE_RAM|FE_IO256|FE_LEDC}
1398 #define sym_pci_num_devs \
1399 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
1402 * Look up the chip table.
1404 * Return a pointer to the chip entry if found,
1405 * zero otherwise.
1407 struct sym_pci_chip *
1408 sym_lookup_pci_chip_table (u_short device_id, u_char revision)
1410 struct sym_pci_chip *chip;
1411 int i;
1413 for (i = 0; i < sym_pci_num_devs; i++) {
1414 chip = &sym_pci_dev_table[i];
1415 if (device_id != chip->device_id)
1416 continue;
1417 if (revision > chip->revision_id)
1418 continue;
1419 return chip;
1422 return NULL;
1425 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1427 * Lookup the 64 bit DMA segments map.
1428 * This is only used if the direct mapping
1429 * has been unsuccessful.
1431 int sym_lookup_dmap(hcb_p np, u32 h, int s)
1433 int i;
1435 if (!np->use_dac)
1436 goto weird;
1438 /* Look up existing mappings */
1439 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1440 if (h == np->dmap_bah[i])
1441 return i;
1443 /* If direct mapping is free, get it */
1444 if (!np->dmap_bah[s])
1445 goto new;
1446 /* Collision -> lookup free mappings */
1447 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1448 if (!np->dmap_bah[s])
1449 goto new;
1451 weird:
1452 panic("sym: ran out of 64 bit DMA segment registers");
1453 return -1;
1454 new:
1455 np->dmap_bah[s] = h;
1456 np->dmap_dirty = 1;
1457 return s;
1461 * Update IO registers scratch C..R so they will be
1462 * in sync. with queued CCB expectations.
1464 static void sym_update_dmap_regs(hcb_p np)
1466 int o, i;
1468 if (!np->dmap_dirty)
1469 return;
1470 o = offsetof(struct sym_reg, nc_scrx[0]);
1471 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1472 OUTL_OFF(o, np->dmap_bah[i]);
1473 o += 4;
1475 np->dmap_dirty = 0;
1477 #endif
1479 static void sym_check_goals(struct scsi_device *sdev)
1481 struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb;
1482 struct sym_trans *st = &np->target[sdev->id].tinfo.goal;
1484 /* here we enforce all the fiddly SPI rules */
1486 if (!scsi_device_wide(sdev))
1487 st->width = 0;
1489 if (!scsi_device_sync(sdev)) {
1490 st->options = 0;
1491 st->period = 0;
1492 st->offset = 0;
1493 return;
1496 if (scsi_device_dt(sdev)) {
1497 if (scsi_device_dt_only(sdev))
1498 st->options |= PPR_OPT_DT;
1500 if (st->offset == 0)
1501 st->options &= ~PPR_OPT_DT;
1502 } else {
1503 st->options &= ~PPR_OPT_DT;
1506 if (!(np->features & FE_ULTRA3))
1507 st->options &= ~PPR_OPT_DT;
1509 if (st->options & PPR_OPT_DT) {
1510 /* all DT transfers must be wide */
1511 st->width = 1;
1512 if (st->offset > np->maxoffs_dt)
1513 st->offset = np->maxoffs_dt;
1514 if (st->period < np->minsync_dt)
1515 st->period = np->minsync_dt;
1516 if (st->period > np->maxsync_dt)
1517 st->period = np->maxsync_dt;
1518 } else {
1519 if (st->offset > np->maxoffs)
1520 st->offset = np->maxoffs;
1521 if (st->period < np->minsync)
1522 st->period = np->minsync;
1523 if (st->period > np->maxsync)
1524 st->period = np->maxsync;
1529 * Prepare the next negotiation message if needed.
1531 * Fill in the part of message buffer that contains the
1532 * negotiation and the nego_status field of the CCB.
1533 * Returns the size of the message in bytes.
1535 static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
1537 tcb_p tp = &np->target[cp->target];
1538 int msglen = 0;
1539 struct scsi_device *sdev = tp->sdev;
1541 if (likely(sdev))
1542 sym_check_goals(sdev);
1545 * Early C1010 chips need a work-around for DT
1546 * data transfer to work.
1548 if (!(np->features & FE_U3EN))
1549 tp->tinfo.goal.options = 0;
1551 * negotiate using PPR ?
1553 if (scsi_device_dt(sdev)) {
1554 nego = NS_PPR;
1555 } else {
1557 * negotiate wide transfers ?
1559 if (tp->tinfo.curr.width != tp->tinfo.goal.width)
1560 nego = NS_WIDE;
1562 * negotiate synchronous transfers?
1564 else if (tp->tinfo.curr.period != tp->tinfo.goal.period ||
1565 tp->tinfo.curr.offset != tp->tinfo.goal.offset)
1566 nego = NS_SYNC;
1569 switch (nego) {
1570 case NS_SYNC:
1571 msgptr[msglen++] = M_EXTENDED;
1572 msgptr[msglen++] = 3;
1573 msgptr[msglen++] = M_X_SYNC_REQ;
1574 msgptr[msglen++] = tp->tinfo.goal.period;
1575 msgptr[msglen++] = tp->tinfo.goal.offset;
1576 break;
1577 case NS_WIDE:
1578 msgptr[msglen++] = M_EXTENDED;
1579 msgptr[msglen++] = 2;
1580 msgptr[msglen++] = M_X_WIDE_REQ;
1581 msgptr[msglen++] = tp->tinfo.goal.width;
1582 break;
1583 case NS_PPR:
1584 msgptr[msglen++] = M_EXTENDED;
1585 msgptr[msglen++] = 6;
1586 msgptr[msglen++] = M_X_PPR_REQ;
1587 msgptr[msglen++] = tp->tinfo.goal.period;
1588 msgptr[msglen++] = 0;
1589 msgptr[msglen++] = tp->tinfo.goal.offset;
1590 msgptr[msglen++] = tp->tinfo.goal.width;
1591 msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
1592 break;
1595 cp->nego_status = nego;
1597 if (nego) {
1598 tp->nego_cp = cp; /* Keep track a nego will be performed */
1599 if (DEBUG_FLAGS & DEBUG_NEGO) {
1600 sym_print_nego_msg(np, cp->target,
1601 nego == NS_SYNC ? "sync msgout" :
1602 nego == NS_WIDE ? "wide msgout" :
1603 "ppr msgout", msgptr);
1607 return msglen;
1611 * Insert a job into the start queue.
1613 void sym_put_start_queue(hcb_p np, ccb_p cp)
1615 u_short qidx;
1617 #ifdef SYM_CONF_IARB_SUPPORT
1619 * If the previously queued CCB is not yet done,
1620 * set the IARB hint. The SCRIPTS will go with IARB
1621 * for this job when starting the previous one.
1622 * We leave devices a chance to win arbitration by
1623 * not using more than 'iarb_max' consecutive
1624 * immediate arbitrations.
1626 if (np->last_cp && np->iarb_count < np->iarb_max) {
1627 np->last_cp->host_flags |= HF_HINT_IARB;
1628 ++np->iarb_count;
1630 else
1631 np->iarb_count = 0;
1632 np->last_cp = cp;
1633 #endif
1635 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1637 * Make SCRIPTS aware of the 64 bit DMA
1638 * segment registers not being up-to-date.
1640 if (np->dmap_dirty)
1641 cp->host_xflags |= HX_DMAP_DIRTY;
1642 #endif
1645 * Optionnaly, set the IO timeout condition.
1647 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
1648 sym_timeout_ccb(np, cp, sym_cam_timeout(cp->cam_ccb));
1649 #endif
1652 * Insert first the idle task and then our job.
1653 * The MBs should ensure proper ordering.
1655 qidx = np->squeueput + 2;
1656 if (qidx >= MAX_QUEUE*2) qidx = 0;
1658 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1659 MEMORY_WRITE_BARRIER();
1660 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1662 np->squeueput = qidx;
1664 if (DEBUG_FLAGS & DEBUG_QUEUE)
1665 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1668 * Script processor may be waiting for reselect.
1669 * Wake it up.
1671 MEMORY_WRITE_BARRIER();
1672 OUTB (nc_istat, SIGP|np->istat_sem);
1675 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1677 * Start next ready-to-start CCBs.
1679 void sym_start_next_ccbs(hcb_p np, lcb_p lp, int maxn)
1681 SYM_QUEHEAD *qp;
1682 ccb_p cp;
1685 * Paranoia, as usual. :-)
1687 assert(!lp->started_tags || !lp->started_no_tag);
1690 * Try to start as many commands as asked by caller.
1691 * Prevent from having both tagged and untagged
1692 * commands queued to the device at the same time.
1694 while (maxn--) {
1695 qp = sym_remque_head(&lp->waiting_ccbq);
1696 if (!qp)
1697 break;
1698 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1699 if (cp->tag != NO_TAG) {
1700 if (lp->started_no_tag ||
1701 lp->started_tags >= lp->started_max) {
1702 sym_insque_head(qp, &lp->waiting_ccbq);
1703 break;
1705 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1706 lp->head.resel_sa =
1707 cpu_to_scr(SCRIPTA_BA (np, resel_tag));
1708 ++lp->started_tags;
1709 } else {
1710 if (lp->started_no_tag || lp->started_tags) {
1711 sym_insque_head(qp, &lp->waiting_ccbq);
1712 break;
1714 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1715 lp->head.resel_sa =
1716 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
1717 ++lp->started_no_tag;
1719 cp->started = 1;
1720 sym_insque_tail(qp, &lp->started_ccbq);
1721 sym_put_start_queue(np, cp);
1724 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1727 * The chip may have completed jobs. Look at the DONE QUEUE.
1729 * On paper, memory read barriers may be needed here to
1730 * prevent out of order LOADs by the CPU from having
1731 * prefetched stale data prior to DMA having occurred.
1733 static int sym_wakeup_done (hcb_p np)
1735 ccb_p cp;
1736 int i, n;
1737 u32 dsa;
1739 n = 0;
1740 i = np->dqueueget;
1742 /* MEMORY_READ_BARRIER(); */
1743 while (1) {
1744 dsa = scr_to_cpu(np->dqueue[i]);
1745 if (!dsa)
1746 break;
1747 np->dqueue[i] = 0;
1748 if ((i = i+2) >= MAX_QUEUE*2)
1749 i = 0;
1751 cp = sym_ccb_from_dsa(np, dsa);
1752 if (cp) {
1753 MEMORY_READ_BARRIER();
1754 sym_complete_ok (np, cp);
1755 ++n;
1757 else
1758 printf ("%s: bad DSA (%x) in done queue.\n",
1759 sym_name(np), (u_int) dsa);
1761 np->dqueueget = i;
1763 return n;
1767 * Complete all active CCBs with error.
1768 * Used on CHIP/SCSI RESET.
1770 static void sym_flush_busy_queue (hcb_p np, int cam_status)
1773 * Move all active CCBs to the COMP queue
1774 * and flush this queue.
1776 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1777 sym_que_init(&np->busy_ccbq);
1778 sym_flush_comp_queue(np, cam_status);
1782 * Start chip.
1784 * 'reason' means:
1785 * 0: initialisation.
1786 * 1: SCSI BUS RESET delivered or received.
1787 * 2: SCSI BUS MODE changed.
1789 void sym_start_up (hcb_p np, int reason)
1791 int i;
1792 u32 phys;
1795 * Reset chip if asked, otherwise just clear fifos.
1797 if (reason == 1)
1798 sym_soft_reset(np);
1799 else {
1800 OUTB (nc_stest3, TE|CSF);
1801 OUTONB (nc_ctest3, CLF);
1805 * Clear Start Queue
1807 phys = np->squeue_ba;
1808 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1809 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1810 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1812 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1815 * Start at first entry.
1817 np->squeueput = 0;
1820 * Clear Done Queue
1822 phys = np->dqueue_ba;
1823 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1824 np->dqueue[i] = 0;
1825 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1827 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1830 * Start at first entry.
1832 np->dqueueget = 0;
1835 * Install patches in scripts.
1836 * This also let point to first position the start
1837 * and done queue pointers used from SCRIPTS.
1839 np->fw_patch(np);
1842 * Wakeup all pending jobs.
1844 sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
1847 * Init chip.
1849 OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */
1850 UDELAY (2000); /* The 895 needs time for the bus mode to settle */
1852 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
1853 /* full arb., ena parity, par->ATN */
1854 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1856 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1858 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1859 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1860 OUTB (nc_istat , SIGP ); /* Signal Process */
1861 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1862 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1864 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1865 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1866 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
1868 /* Extended Sreq/Sack filtering not supported on the C10 */
1869 if (np->features & FE_C10)
1870 OUTB (nc_stest2, np->rv_stest2);
1871 else
1872 OUTB (nc_stest2, EXT|np->rv_stest2);
1874 OUTB (nc_stest3, TE); /* TolerANT enable */
1875 OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1878 * For now, disable AIP generation on C1010-66.
1880 if (np->device_id == PCI_ID_LSI53C1010_66)
1881 OUTB (nc_aipcntl1, DISAIP);
1884 * C10101 rev. 0 errata.
1885 * Errant SGE's when in narrow. Write bits 4 & 5 of
1886 * STEST1 register to disable SGE. We probably should do
1887 * that from SCRIPTS for each selection/reselection, but
1888 * I just don't want. :)
1890 if (np->device_id == PCI_ID_LSI53C1010_33 &&
1891 np->revision_id < 1)
1892 OUTB (nc_stest1, INB(nc_stest1) | 0x30);
1895 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1896 * Disable overlapped arbitration for some dual function devices,
1897 * regardless revision id (kind of post-chip-design feature. ;-))
1899 if (np->device_id == PCI_ID_SYM53C875)
1900 OUTB (nc_ctest0, (1<<5));
1901 else if (np->device_id == PCI_ID_SYM53C896)
1902 np->rv_ccntl0 |= DPR;
1905 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1906 * and/or hardware phase mismatch, since only such chips
1907 * seem to support those IO registers.
1909 if (np->features & (FE_DAC|FE_NOPM)) {
1910 OUTB (nc_ccntl0, np->rv_ccntl0);
1911 OUTB (nc_ccntl1, np->rv_ccntl1);
1914 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1916 * Set up scratch C and DRS IO registers to map the 32 bit
1917 * DMA address range our data structures are located in.
1919 if (np->use_dac) {
1920 np->dmap_bah[0] = 0; /* ??? */
1921 OUTL (nc_scrx[0], np->dmap_bah[0]);
1922 OUTL (nc_drs, np->dmap_bah[0]);
1924 #endif
1927 * If phase mismatch handled by scripts (895A/896/1010),
1928 * set PM jump addresses.
1930 if (np->features & FE_NOPM) {
1931 OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
1932 OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
1936 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1937 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1939 if (np->features & FE_LED0)
1940 OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
1941 else if (np->features & FE_LEDC)
1942 OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
1945 * enable ints
1947 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1948 OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
1951 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1952 * Try to eat the spurious SBMC interrupt that may occur when
1953 * we reset the chip but not the SCSI BUS (at initialization).
1955 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1956 OUTONW (nc_sien, SBMC);
1957 if (reason == 0) {
1958 MDELAY(100);
1959 INW (nc_sist);
1961 np->scsi_mode = INB (nc_stest4) & SMODE;
1965 * Fill in target structure.
1966 * Reinitialize usrsync.
1967 * Reinitialize usrwide.
1968 * Prepare sync negotiation according to actual SCSI bus mode.
1970 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1971 tcb_p tp = &np->target[i];
1973 tp->to_reset = 0;
1974 tp->head.sval = 0;
1975 tp->head.wval = np->rv_scntl3;
1976 tp->head.uval = 0;
1978 tp->tinfo.curr.period = 0;
1979 tp->tinfo.curr.offset = 0;
1980 tp->tinfo.curr.width = BUS_8_BIT;
1981 tp->tinfo.curr.options = 0;
1985 * Download SCSI SCRIPTS to on-chip RAM if present,
1986 * and start script processor.
1987 * We do the download preferently from the CPU.
1988 * For platforms that may not support PCI memory mapping,
1989 * we use simple SCRIPTS that performs MEMORY MOVEs.
1991 if (np->ram_ba) {
1992 if (sym_verbose >= 2)
1993 printf ("%s: Downloading SCSI SCRIPTS.\n",
1994 sym_name(np));
1995 if (np->ram_ws == 8192) {
1996 OUTRAM_OFF(4096, np->scriptb0, np->scriptb_sz);
1997 phys = scr_to_cpu(np->scr_ram_seg);
1998 OUTL (nc_mmws, phys);
1999 OUTL (nc_mmrs, phys);
2000 OUTL (nc_sfs, phys);
2001 phys = SCRIPTB_BA (np, start64);
2003 else
2004 phys = SCRIPTA_BA (np, init);
2005 OUTRAM_OFF(0, np->scripta0, np->scripta_sz);
2007 else
2008 phys = SCRIPTA_BA (np, init);
2010 np->istat_sem = 0;
2012 OUTL (nc_dsa, np->hcb_ba);
2013 OUTL_DSP (phys);
2016 * Notify the XPT about the RESET condition.
2018 if (reason != 0)
2019 sym_xpt_async_bus_reset(np);
2023 * Switch trans mode for current job and it's target.
2025 static void sym_settrans(hcb_p np, int target, u_char dt, u_char ofs,
2026 u_char per, u_char wide, u_char div, u_char fak)
2028 SYM_QUEHEAD *qp;
2029 u_char sval, wval, uval;
2030 tcb_p tp = &np->target[target];
2032 assert(target == (INB (nc_sdid) & 0x0f));
2034 sval = tp->head.sval;
2035 wval = tp->head.wval;
2036 uval = tp->head.uval;
2038 #if 0
2039 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
2040 sval, wval, uval, np->rv_scntl3);
2041 #endif
2043 * Set the offset.
2045 if (!(np->features & FE_C10))
2046 sval = (sval & ~0x1f) | ofs;
2047 else
2048 sval = (sval & ~0x3f) | ofs;
2051 * Set the sync divisor and extra clock factor.
2053 if (ofs != 0) {
2054 wval = (wval & ~0x70) | ((div+1) << 4);
2055 if (!(np->features & FE_C10))
2056 sval = (sval & ~0xe0) | (fak << 5);
2057 else {
2058 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
2059 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
2060 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
2065 * Set the bus width.
2067 wval = wval & ~EWS;
2068 if (wide != 0)
2069 wval |= EWS;
2072 * Set misc. ultra enable bits.
2074 if (np->features & FE_C10) {
2075 uval = uval & ~(U3EN|AIPCKEN);
2076 if (dt) {
2077 assert(np->features & FE_U3EN);
2078 uval |= U3EN;
2081 else {
2082 wval = wval & ~ULTRA;
2083 if (per <= 12) wval |= ULTRA;
2087 * Stop there if sync parameters are unchanged.
2089 if (tp->head.sval == sval &&
2090 tp->head.wval == wval &&
2091 tp->head.uval == uval)
2092 return;
2093 tp->head.sval = sval;
2094 tp->head.wval = wval;
2095 tp->head.uval = uval;
2098 * Disable extended Sreq/Sack filtering if per < 50.
2099 * Not supported on the C1010.
2101 if (per < 50 && !(np->features & FE_C10))
2102 OUTOFFB (nc_stest2, EXT);
2105 * set actual value and sync_status
2107 OUTB (nc_sxfer, tp->head.sval);
2108 OUTB (nc_scntl3, tp->head.wval);
2110 if (np->features & FE_C10) {
2111 OUTB (nc_scntl4, tp->head.uval);
2115 * patch ALL busy ccbs of this target.
2117 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2118 ccb_p cp;
2119 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2120 if (cp->target != target)
2121 continue;
2122 cp->phys.select.sel_scntl3 = tp->head.wval;
2123 cp->phys.select.sel_sxfer = tp->head.sval;
2124 if (np->features & FE_C10) {
2125 cp->phys.select.sel_scntl4 = tp->head.uval;
2131 * We received a WDTR.
2132 * Let everything be aware of the changes.
2134 static void sym_setwide(hcb_p np, int target, u_char wide)
2136 tcb_p tp = &np->target[target];
2138 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2140 tp->tinfo.goal.width = tp->tinfo.curr.width = wide;
2141 tp->tinfo.curr.offset = 0;
2142 tp->tinfo.curr.period = 0;
2143 tp->tinfo.curr.options = 0;
2145 sym_xpt_async_nego_wide(np, target);
2149 * We received a SDTR.
2150 * Let everything be aware of the changes.
2152 static void
2153 sym_setsync(hcb_p np, int target,
2154 u_char ofs, u_char per, u_char div, u_char fak)
2156 tcb_p tp = &np->target[target];
2157 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2159 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2161 tp->tinfo.curr.period = per;
2162 tp->tinfo.curr.offset = ofs;
2163 tp->tinfo.curr.options = 0;
2165 if (!(tp->tinfo.goal.options & PPR_OPT_MASK)) {
2166 tp->tinfo.goal.period = per;
2167 tp->tinfo.goal.offset = ofs;
2168 tp->tinfo.goal.options = 0;
2171 sym_xpt_async_nego_sync(np, target);
2175 * We received a PPR.
2176 * Let everything be aware of the changes.
2178 static void
2179 sym_setpprot(hcb_p np, int target, u_char dt, u_char ofs,
2180 u_char per, u_char wide, u_char div, u_char fak)
2182 tcb_p tp = &np->target[target];
2184 sym_settrans(np, target, dt, ofs, per, wide, div, fak);
2186 tp->tinfo.goal.width = tp->tinfo.curr.width = wide;
2187 tp->tinfo.goal.period = tp->tinfo.curr.period = per;
2188 tp->tinfo.goal.offset = tp->tinfo.curr.offset = ofs;
2189 tp->tinfo.goal.options = tp->tinfo.curr.options = dt;
2191 sym_xpt_async_nego_ppr(np, target);
2195 * generic recovery from scsi interrupt
2197 * The doc says that when the chip gets an SCSI interrupt,
2198 * it tries to stop in an orderly fashion, by completing
2199 * an instruction fetch that had started or by flushing
2200 * the DMA fifo for a write to memory that was executing.
2201 * Such a fashion is not enough to know if the instruction
2202 * that was just before the current DSP value has been
2203 * executed or not.
2205 * There are some small SCRIPTS sections that deal with
2206 * the start queue and the done queue that may break any
2207 * assomption from the C code if we are interrupted
2208 * inside, so we reset if this happens. Btw, since these
2209 * SCRIPTS sections are executed while the SCRIPTS hasn't
2210 * started SCSI operations, it is very unlikely to happen.
2212 * All the driver data structures are supposed to be
2213 * allocated from the same 4 GB memory window, so there
2214 * is a 1 to 1 relationship between DSA and driver data
2215 * structures. Since we are careful :) to invalidate the
2216 * DSA when we complete a command or when the SCRIPTS
2217 * pushes a DSA into a queue, we can trust it when it
2218 * points to a CCB.
2220 static void sym_recover_scsi_int (hcb_p np, u_char hsts)
2222 u32 dsp = INL (nc_dsp);
2223 u32 dsa = INL (nc_dsa);
2224 ccb_p cp = sym_ccb_from_dsa(np, dsa);
2227 * If we haven't been interrupted inside the SCRIPTS
2228 * critical pathes, we can safely restart the SCRIPTS
2229 * and trust the DSA value if it matches a CCB.
2231 if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
2232 dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
2233 (!(dsp > SCRIPTA_BA (np, ungetjob) &&
2234 dsp < SCRIPTA_BA (np, reselect) + 1)) &&
2235 (!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
2236 dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
2237 (!(dsp > SCRIPTA_BA (np, done) &&
2238 dsp < SCRIPTA_BA (np, done_end) + 1))) {
2239 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2240 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
2242 * If we have a CCB, let the SCRIPTS call us back for
2243 * the handling of the error with SCRATCHA filled with
2244 * STARTPOS. This way, we will be able to freeze the
2245 * device queue and requeue awaiting IOs.
2247 if (cp) {
2248 cp->host_status = hsts;
2249 OUTL_DSP (SCRIPTA_BA (np, complete_error));
2252 * Otherwise just restart the SCRIPTS.
2254 else {
2255 OUTL (nc_dsa, 0xffffff);
2256 OUTL_DSP (SCRIPTA_BA (np, start));
2259 else
2260 goto reset_all;
2262 return;
2264 reset_all:
2265 sym_start_reset(np);
2269 * chip exception handler for selection timeout
2271 static void sym_int_sto (hcb_p np)
2273 u32 dsp = INL (nc_dsp);
2275 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2277 if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
2278 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2279 else
2280 sym_start_reset(np);
2284 * chip exception handler for unexpected disconnect
2286 static void sym_int_udc (hcb_p np)
2288 printf ("%s: unexpected disconnect\n", sym_name(np));
2289 sym_recover_scsi_int(np, HS_UNEXPECTED);
2293 * chip exception handler for SCSI bus mode change
2295 * spi2-r12 11.2.3 says a transceiver mode change must
2296 * generate a reset event and a device that detects a reset
2297 * event shall initiate a hard reset. It says also that a
2298 * device that detects a mode change shall set data transfer
2299 * mode to eight bit asynchronous, etc...
2300 * So, just reinitializing all except chip should be enough.
2302 static void sym_int_sbmc (hcb_p np)
2304 u_char scsi_mode = INB (nc_stest4) & SMODE;
2307 * Notify user.
2309 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2310 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2313 * Should suspend command processing for a few seconds and
2314 * reinitialize all except the chip.
2316 sym_start_up (np, 2);
2320 * chip exception handler for SCSI parity error.
2322 * When the chip detects a SCSI parity error and is
2323 * currently executing a (CH)MOV instruction, it does
2324 * not interrupt immediately, but tries to finish the
2325 * transfer of the current scatter entry before
2326 * interrupting. The following situations may occur:
2328 * - The complete scatter entry has been transferred
2329 * without the device having changed phase.
2330 * The chip will then interrupt with the DSP pointing
2331 * to the instruction that follows the MOV.
2333 * - A phase mismatch occurs before the MOV finished
2334 * and phase errors are to be handled by the C code.
2335 * The chip will then interrupt with both PAR and MA
2336 * conditions set.
2338 * - A phase mismatch occurs before the MOV finished and
2339 * phase errors are to be handled by SCRIPTS.
2340 * The chip will load the DSP with the phase mismatch
2341 * JUMP address and interrupt the host processor.
2343 static void sym_int_par (hcb_p np, u_short sist)
2345 u_char hsts = INB (HS_PRT);
2346 u32 dsp = INL (nc_dsp);
2347 u32 dbc = INL (nc_dbc);
2348 u32 dsa = INL (nc_dsa);
2349 u_char sbcl = INB (nc_sbcl);
2350 u_char cmd = dbc >> 24;
2351 int phase = cmd & 7;
2352 ccb_p cp = sym_ccb_from_dsa(np, dsa);
2354 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2355 sym_name(np), hsts, dbc, sbcl);
2358 * Check that the chip is connected to the SCSI BUS.
2360 if (!(INB (nc_scntl1) & ISCON)) {
2361 sym_recover_scsi_int(np, HS_UNEXPECTED);
2362 return;
2366 * If the nexus is not clearly identified, reset the bus.
2367 * We will try to do better later.
2369 if (!cp)
2370 goto reset_all;
2373 * Check instruction was a MOV, direction was INPUT and
2374 * ATN is asserted.
2376 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2377 goto reset_all;
2380 * Keep track of the parity error.
2382 OUTONB (HF_PRT, HF_EXT_ERR);
2383 cp->xerr_status |= XE_PARITY_ERR;
2386 * Prepare the message to send to the device.
2388 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2391 * If the old phase was DATA IN phase, we have to deal with
2392 * the 3 situations described above.
2393 * For other input phases (MSG IN and STATUS), the device
2394 * must resend the whole thing that failed parity checking
2395 * or signal error. So, jumping to dispatcher should be OK.
2397 if (phase == 1 || phase == 5) {
2398 /* Phase mismatch handled by SCRIPTS */
2399 if (dsp == SCRIPTB_BA (np, pm_handle))
2400 OUTL_DSP (dsp);
2401 /* Phase mismatch handled by the C code */
2402 else if (sist & MA)
2403 sym_int_ma (np);
2404 /* No phase mismatch occurred */
2405 else {
2406 sym_set_script_dp (np, cp, dsp);
2407 OUTL_DSP (SCRIPTA_BA (np, dispatch));
2410 else if (phase == 7) /* We definitely cannot handle parity errors */
2411 #if 1 /* in message-in phase due to the relection */
2412 goto reset_all; /* path and various message anticipations. */
2413 #else
2414 OUTL_DSP (SCRIPTA_BA (np, clrack));
2415 #endif
2416 else
2417 OUTL_DSP (SCRIPTA_BA (np, dispatch));
2418 return;
2420 reset_all:
2421 sym_start_reset(np);
2422 return;
2426 * chip exception handler for phase errors.
2428 * We have to construct a new transfer descriptor,
2429 * to transfer the rest of the current block.
2431 static void sym_int_ma (hcb_p np)
2433 u32 dbc;
2434 u32 rest;
2435 u32 dsp;
2436 u32 dsa;
2437 u32 nxtdsp;
2438 u32 *vdsp;
2439 u32 oadr, olen;
2440 u32 *tblp;
2441 u32 newcmd;
2442 u_int delta;
2443 u_char cmd;
2444 u_char hflags, hflags0;
2445 struct sym_pmc *pm;
2446 ccb_p cp;
2448 dsp = INL (nc_dsp);
2449 dbc = INL (nc_dbc);
2450 dsa = INL (nc_dsa);
2452 cmd = dbc >> 24;
2453 rest = dbc & 0xffffff;
2454 delta = 0;
2457 * locate matching cp if any.
2459 cp = sym_ccb_from_dsa(np, dsa);
2462 * Donnot take into account dma fifo and various buffers in
2463 * INPUT phase since the chip flushes everything before
2464 * raising the MA interrupt for interrupted INPUT phases.
2465 * For DATA IN phase, we will check for the SWIDE later.
2467 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2468 u_char ss0, ss2;
2470 if (np->features & FE_DFBC)
2471 delta = INW (nc_dfbc);
2472 else {
2473 u32 dfifo;
2476 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2478 dfifo = INL(nc_dfifo);
2481 * Calculate remaining bytes in DMA fifo.
2482 * (CTEST5 = dfifo >> 16)
2484 if (dfifo & (DFS << 16))
2485 delta = ((((dfifo >> 8) & 0x300) |
2486 (dfifo & 0xff)) - rest) & 0x3ff;
2487 else
2488 delta = ((dfifo & 0xff) - rest) & 0x7f;
2492 * The data in the dma fifo has not been transfered to
2493 * the target -> add the amount to the rest
2494 * and clear the data.
2495 * Check the sstat2 register in case of wide transfer.
2497 rest += delta;
2498 ss0 = INB (nc_sstat0);
2499 if (ss0 & OLF) rest++;
2500 if (!(np->features & FE_C10))
2501 if (ss0 & ORF) rest++;
2502 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2503 ss2 = INB (nc_sstat2);
2504 if (ss2 & OLF1) rest++;
2505 if (!(np->features & FE_C10))
2506 if (ss2 & ORF1) rest++;
2510 * Clear fifos.
2512 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2513 OUTB (nc_stest3, TE|CSF); /* scsi fifo */
2517 * log the information
2519 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2520 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
2521 (unsigned) rest, (unsigned) delta);
2524 * try to find the interrupted script command,
2525 * and the address at which to continue.
2527 vdsp = NULL;
2528 nxtdsp = 0;
2529 if (dsp > np->scripta_ba &&
2530 dsp <= np->scripta_ba + np->scripta_sz) {
2531 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2532 nxtdsp = dsp;
2534 else if (dsp > np->scriptb_ba &&
2535 dsp <= np->scriptb_ba + np->scriptb_sz) {
2536 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2537 nxtdsp = dsp;
2541 * log the information
2543 if (DEBUG_FLAGS & DEBUG_PHASE) {
2544 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2545 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2548 if (!vdsp) {
2549 printf ("%s: interrupted SCRIPT address not found.\n",
2550 sym_name (np));
2551 goto reset_all;
2554 if (!cp) {
2555 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2556 sym_name (np));
2557 goto reset_all;
2561 * get old startaddress and old length.
2563 oadr = scr_to_cpu(vdsp[1]);
2565 if (cmd & 0x10) { /* Table indirect */
2566 tblp = (u32 *) ((char*) &cp->phys + oadr);
2567 olen = scr_to_cpu(tblp[0]);
2568 oadr = scr_to_cpu(tblp[1]);
2569 } else {
2570 tblp = (u32 *) 0;
2571 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2574 if (DEBUG_FLAGS & DEBUG_PHASE) {
2575 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2576 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2577 tblp,
2578 (unsigned) olen,
2579 (unsigned) oadr);
2583 * check cmd against assumed interrupted script command.
2584 * If dt data phase, the MOVE instruction hasn't bit 4 of
2585 * the phase.
2587 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2588 PRINT_ADDR(cp);
2589 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2590 (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
2592 goto reset_all;
2596 * if old phase not dataphase, leave here.
2598 if (cmd & 2) {
2599 PRINT_ADDR(cp);
2600 printf ("phase change %x-%x %d@%08x resid=%d.\n",
2601 cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
2602 (unsigned)oadr, (unsigned)rest);
2603 goto unexpected_phase;
2607 * Choose the correct PM save area.
2609 * Look at the PM_SAVE SCRIPT if you want to understand
2610 * this stuff. The equivalent code is implemented in
2611 * SCRIPTS for the 895A, 896 and 1010 that are able to
2612 * handle PM from the SCRIPTS processor.
2614 hflags0 = INB (HF_PRT);
2615 hflags = hflags0;
2617 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2618 if (hflags & HF_IN_PM0)
2619 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2620 else if (hflags & HF_IN_PM1)
2621 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2623 if (hflags & HF_DP_SAVED)
2624 hflags ^= HF_ACT_PM;
2627 if (!(hflags & HF_ACT_PM)) {
2628 pm = &cp->phys.pm0;
2629 newcmd = SCRIPTA_BA (np, pm0_data);
2631 else {
2632 pm = &cp->phys.pm1;
2633 newcmd = SCRIPTA_BA (np, pm1_data);
2636 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2637 if (hflags != hflags0)
2638 OUTB (HF_PRT, hflags);
2641 * fillin the phase mismatch context
2643 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2644 pm->sg.size = cpu_to_scr(rest);
2645 pm->ret = cpu_to_scr(nxtdsp);
2648 * If we have a SWIDE,
2649 * - prepare the address to write the SWIDE from SCRIPTS,
2650 * - compute the SCRIPTS address to restart from,
2651 * - move current data pointer context by one byte.
2653 nxtdsp = SCRIPTA_BA (np, dispatch);
2654 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2655 (INB (nc_scntl2) & WSR)) {
2656 u32 tmp;
2659 * Set up the table indirect for the MOVE
2660 * of the residual byte and adjust the data
2661 * pointer context.
2663 tmp = scr_to_cpu(pm->sg.addr);
2664 cp->phys.wresid.addr = cpu_to_scr(tmp);
2665 pm->sg.addr = cpu_to_scr(tmp + 1);
2666 tmp = scr_to_cpu(pm->sg.size);
2667 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2668 pm->sg.size = cpu_to_scr(tmp - 1);
2671 * If only the residual byte is to be moved,
2672 * no PM context is needed.
2674 if ((tmp&0xffffff) == 1)
2675 newcmd = pm->ret;
2678 * Prepare the address of SCRIPTS that will
2679 * move the residual byte to memory.
2681 nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
2684 if (DEBUG_FLAGS & DEBUG_PHASE) {
2685 PRINT_ADDR(cp);
2686 printf ("PM %x %x %x / %x %x %x.\n",
2687 hflags0, hflags, newcmd,
2688 (unsigned)scr_to_cpu(pm->sg.addr),
2689 (unsigned)scr_to_cpu(pm->sg.size),
2690 (unsigned)scr_to_cpu(pm->ret));
2694 * Restart the SCRIPTS processor.
2696 sym_set_script_dp (np, cp, newcmd);
2697 OUTL_DSP (nxtdsp);
2698 return;
2701 * Unexpected phase changes that occurs when the current phase
2702 * is not a DATA IN or DATA OUT phase are due to error conditions.
2703 * Such event may only happen when the SCRIPTS is using a
2704 * multibyte SCSI MOVE.
2706 * Phase change Some possible cause
2708 * COMMAND --> MSG IN SCSI parity error detected by target.
2709 * COMMAND --> STATUS Bad command or refused by target.
2710 * MSG OUT --> MSG IN Message rejected by target.
2711 * MSG OUT --> COMMAND Bogus target that discards extended
2712 * negotiation messages.
2714 * The code below does not care of the new phase and so
2715 * trusts the target. Why to annoy it ?
2716 * If the interrupted phase is COMMAND phase, we restart at
2717 * dispatcher.
2718 * If a target does not get all the messages after selection,
2719 * the code assumes blindly that the target discards extended
2720 * messages and clears the negotiation status.
2721 * If the target does not want all our response to negotiation,
2722 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2723 * bloat for such a should_not_happen situation).
2724 * In all other situation, we reset the BUS.
2725 * Are these assumptions reasonnable ? (Wait and see ...)
2727 unexpected_phase:
2728 dsp -= 8;
2729 nxtdsp = 0;
2731 switch (cmd & 7) {
2732 case 2: /* COMMAND phase */
2733 nxtdsp = SCRIPTA_BA (np, dispatch);
2734 break;
2735 #if 0
2736 case 3: /* STATUS phase */
2737 nxtdsp = SCRIPTA_BA (np, dispatch);
2738 break;
2739 #endif
2740 case 6: /* MSG OUT phase */
2742 * If the device may want to use untagged when we want
2743 * tagged, we prepare an IDENTIFY without disc. granted,
2744 * since we will not be able to handle reselect.
2745 * Otherwise, we just don't care.
2747 if (dsp == SCRIPTA_BA (np, send_ident)) {
2748 if (cp->tag != NO_TAG && olen - rest <= 3) {
2749 cp->host_status = HS_BUSY;
2750 np->msgout[0] = M_IDENTIFY | cp->lun;
2751 nxtdsp = SCRIPTB_BA (np, ident_break_atn);
2753 else
2754 nxtdsp = SCRIPTB_BA (np, ident_break);
2756 else if (dsp == SCRIPTB_BA (np, send_wdtr) ||
2757 dsp == SCRIPTB_BA (np, send_sdtr) ||
2758 dsp == SCRIPTB_BA (np, send_ppr)) {
2759 nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
2761 break;
2762 #if 0
2763 case 7: /* MSG IN phase */
2764 nxtdsp = SCRIPTA_BA (np, clrack);
2765 break;
2766 #endif
2769 if (nxtdsp) {
2770 OUTL_DSP (nxtdsp);
2771 return;
2774 reset_all:
2775 sym_start_reset(np);
2779 * chip interrupt handler
2781 * In normal situations, interrupt conditions occur one at
2782 * a time. But when something bad happens on the SCSI BUS,
2783 * the chip may raise several interrupt flags before
2784 * stopping and interrupting the CPU. The additionnal
2785 * interrupt flags are stacked in some extra registers
2786 * after the SIP and/or DIP flag has been raised in the
2787 * ISTAT. After the CPU has read the interrupt condition
2788 * flag from SIST or DSTAT, the chip unstacks the other
2789 * interrupt flags and sets the corresponding bits in
2790 * SIST or DSTAT. Since the chip starts stacking once the
2791 * SIP or DIP flag is set, there is a small window of time
2792 * where the stacking does not occur.
2794 * Typically, multiple interrupt conditions may happen in
2795 * the following situations:
2797 * - SCSI parity error + Phase mismatch (PAR|MA)
2798 * When an parity error is detected in input phase
2799 * and the device switches to msg-in phase inside a
2800 * block MOV.
2801 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2802 * When a stupid device does not want to handle the
2803 * recovery of an SCSI parity error.
2804 * - Some combinations of STO, PAR, UDC, ...
2805 * When using non compliant SCSI stuff, when user is
2806 * doing non compliant hot tampering on the BUS, when
2807 * something really bad happens to a device, etc ...
2809 * The heuristic suggested by SYMBIOS to handle
2810 * multiple interrupts is to try unstacking all
2811 * interrupts conditions and to handle them on some
2812 * priority based on error severity.
2813 * This will work when the unstacking has been
2814 * successful, but we cannot be 100 % sure of that,
2815 * since the CPU may have been faster to unstack than
2816 * the chip is able to stack. Hmmm ... But it seems that
2817 * such a situation is very unlikely to happen.
2819 * If this happen, for example STO caught by the CPU
2820 * then UDC happenning before the CPU have restarted
2821 * the SCRIPTS, the driver may wrongly complete the
2822 * same command on UDC, since the SCRIPTS didn't restart
2823 * and the DSA still points to the same command.
2824 * We avoid this situation by setting the DSA to an
2825 * invalid value when the CCB is completed and before
2826 * restarting the SCRIPTS.
2828 * Another issue is that we need some section of our
2829 * recovery procedures to be somehow uninterruptible but
2830 * the SCRIPTS processor does not provides such a
2831 * feature. For this reason, we handle recovery preferently
2832 * from the C code and check against some SCRIPTS critical
2833 * sections from the C code.
2835 * Hopefully, the interrupt handling of the driver is now
2836 * able to resist to weird BUS error conditions, but donnot
2837 * ask me for any guarantee that it will never fail. :-)
2838 * Use at your own decision and risk.
2841 void sym_interrupt (hcb_p np)
2843 u_char istat, istatc;
2844 u_char dstat;
2845 u_short sist;
2848 * interrupt on the fly ?
2849 * (SCRIPTS may still be running)
2851 * A `dummy read' is needed to ensure that the
2852 * clear of the INTF flag reaches the device
2853 * and that posted writes are flushed to memory
2854 * before the scanning of the DONE queue.
2855 * Note that SCRIPTS also (dummy) read to memory
2856 * prior to deliver the INTF interrupt condition.
2858 istat = INB (nc_istat);
2859 if (istat & INTF) {
2860 OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2861 istat = INB (nc_istat); /* DUMMY READ */
2862 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2863 (void)sym_wakeup_done (np);
2866 if (!(istat & (SIP|DIP)))
2867 return;
2869 #if 0 /* We should never get this one */
2870 if (istat & CABRT)
2871 OUTB (nc_istat, CABRT);
2872 #endif
2875 * PAR and MA interrupts may occur at the same time,
2876 * and we need to know of both in order to handle
2877 * this situation properly. We try to unstack SCSI
2878 * interrupts for that reason. BTW, I dislike a LOT
2879 * such a loop inside the interrupt routine.
2880 * Even if DMA interrupt stacking is very unlikely to
2881 * happen, we also try unstacking these ones, since
2882 * this has no performance impact.
2884 sist = 0;
2885 dstat = 0;
2886 istatc = istat;
2887 do {
2888 if (istatc & SIP)
2889 sist |= INW (nc_sist);
2890 if (istatc & DIP)
2891 dstat |= INB (nc_dstat);
2892 istatc = INB (nc_istat);
2893 istat |= istatc;
2894 } while (istatc & (SIP|DIP));
2896 if (DEBUG_FLAGS & DEBUG_TINY)
2897 printf ("<%d|%x:%x|%x:%x>",
2898 (int)INB(nc_scr0),
2899 dstat,sist,
2900 (unsigned)INL(nc_dsp),
2901 (unsigned)INL(nc_dbc));
2903 * On paper, a memory read barrier may be needed here to
2904 * prevent out of order LOADs by the CPU from having
2905 * prefetched stale data prior to DMA having occurred.
2906 * And since we are paranoid ... :)
2908 MEMORY_READ_BARRIER();
2911 * First, interrupts we want to service cleanly.
2913 * Phase mismatch (MA) is the most frequent interrupt
2914 * for chip earlier than the 896 and so we have to service
2915 * it as quickly as possible.
2916 * A SCSI parity error (PAR) may be combined with a phase
2917 * mismatch condition (MA).
2918 * Programmed interrupts (SIR) are used to call the C code
2919 * from SCRIPTS.
2920 * The single step interrupt (SSI) is not used in this
2921 * driver.
2923 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2924 !(dstat & (MDPE|BF|ABRT|IID))) {
2925 if (sist & PAR) sym_int_par (np, sist);
2926 else if (sist & MA) sym_int_ma (np);
2927 else if (dstat & SIR) sym_int_sir (np);
2928 else if (dstat & SSI) OUTONB_STD ();
2929 else goto unknown_int;
2930 return;
2934 * Now, interrupts that donnot happen in normal
2935 * situations and that we may need to recover from.
2937 * On SCSI RESET (RST), we reset everything.
2938 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2939 * active CCBs with RESET status, prepare all devices
2940 * for negotiating again and restart the SCRIPTS.
2941 * On STO and UDC, we complete the CCB with the corres-
2942 * ponding status and restart the SCRIPTS.
2944 if (sist & RST) {
2945 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2946 sym_start_up (np, 1);
2947 return;
2950 OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2951 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
2953 if (!(sist & (GEN|HTH|SGE)) &&
2954 !(dstat & (MDPE|BF|ABRT|IID))) {
2955 if (sist & SBMC) sym_int_sbmc (np);
2956 else if (sist & STO) sym_int_sto (np);
2957 else if (sist & UDC) sym_int_udc (np);
2958 else goto unknown_int;
2959 return;
2963 * Now, interrupts we are not able to recover cleanly.
2965 * Log message for hard errors.
2966 * Reset everything.
2969 sym_log_hard_error(np, sist, dstat);
2971 if ((sist & (GEN|HTH|SGE)) ||
2972 (dstat & (MDPE|BF|ABRT|IID))) {
2973 sym_start_reset(np);
2974 return;
2977 unknown_int:
2979 * We just miss the cause of the interrupt. :(
2980 * Print a message. The timeout will do the real work.
2982 printf( "%s: unknown interrupt(s) ignored, "
2983 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2984 sym_name(np), istat, dstat, sist);
2988 * Dequeue from the START queue all CCBs that match
2989 * a given target/lun/task condition (-1 means all),
2990 * and move them from the BUSY queue to the COMP queue
2991 * with CAM_REQUEUE_REQ status condition.
2992 * This function is used during error handling/recovery.
2993 * It is called with SCRIPTS not running.
2995 static int
2996 sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
2998 int j;
2999 ccb_p cp;
3002 * Make sure the starting index is within range.
3004 assert((i >= 0) && (i < 2*MAX_QUEUE));
3007 * Walk until end of START queue and dequeue every job
3008 * that matches the target/lun/task condition.
3010 j = i;
3011 while (i != np->squeueput) {
3012 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
3013 assert(cp);
3014 #ifdef SYM_CONF_IARB_SUPPORT
3015 /* Forget hints for IARB, they may be no longer relevant */
3016 cp->host_flags &= ~HF_HINT_IARB;
3017 #endif
3018 if ((target == -1 || cp->target == target) &&
3019 (lun == -1 || cp->lun == lun) &&
3020 (task == -1 || cp->tag == task)) {
3021 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
3022 sym_remque(&cp->link_ccbq);
3023 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3025 else {
3026 if (i != j)
3027 np->squeue[j] = np->squeue[i];
3028 if ((j += 2) >= MAX_QUEUE*2) j = 0;
3030 if ((i += 2) >= MAX_QUEUE*2) i = 0;
3032 if (i != j) /* Copy back the idle task if needed */
3033 np->squeue[j] = np->squeue[i];
3034 np->squeueput = j; /* Update our current start queue pointer */
3036 return (i - j) / 2;
3040 * Complete all CCBs queued to the COMP queue.
3042 * These CCBs are assumed:
3043 * - Not to be referenced either by devices or
3044 * SCRIPTS-related queues and datas.
3045 * - To have to be completed with an error condition
3046 * or requeued.
3048 * The device queue freeze count is incremented
3049 * for each CCB that does not prevent this.
3050 * This function is called when all CCBs involved
3051 * in error handling/recovery have been reaped.
3053 void sym_flush_comp_queue(hcb_p np, int cam_status)
3055 SYM_QUEHEAD *qp;
3056 ccb_p cp;
3058 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
3059 cam_ccb_p ccb;
3060 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3061 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3062 /* Leave quiet CCBs waiting for resources */
3063 if (cp->host_status == HS_WAIT)
3064 continue;
3065 ccb = cp->cam_ccb;
3066 if (cam_status)
3067 sym_set_cam_status(ccb, cam_status);
3068 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
3069 if (sym_get_cam_status(ccb) == CAM_REQUEUE_REQ) {
3070 tcb_p tp = &np->target[cp->target];
3071 lcb_p lp = sym_lp(np, tp, cp->lun);
3072 if (lp) {
3073 sym_remque(&cp->link2_ccbq);
3074 sym_insque_tail(&cp->link2_ccbq,
3075 &lp->waiting_ccbq);
3076 if (cp->started) {
3077 if (cp->tag != NO_TAG)
3078 --lp->started_tags;
3079 else
3080 --lp->started_no_tag;
3083 cp->started = 0;
3084 continue;
3086 #endif
3087 sym_free_ccb(np, cp);
3088 sym_freeze_cam_ccb(ccb);
3089 sym_xpt_done(np, ccb);
3094 * chip handler for bad SCSI status condition
3096 * In case of bad SCSI status, we unqueue all the tasks
3097 * currently queued to the controller but not yet started
3098 * and then restart the SCRIPTS processor immediately.
3100 * QUEUE FULL and BUSY conditions are handled the same way.
3101 * Basically all the not yet started tasks are requeued in
3102 * device queue and the queue is frozen until a completion.
3104 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3105 * the CCB of the failed command to prepare a REQUEST SENSE
3106 * SCSI command and queue it to the controller queue.
3108 * SCRATCHA is assumed to have been loaded with STARTPOS
3109 * before the SCRIPTS called the C code.
3111 static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
3113 tcb_p tp = &np->target[cp->target];
3114 u32 startp;
3115 u_char s_status = cp->ssss_status;
3116 u_char h_flags = cp->host_flags;
3117 int msglen;
3118 int nego;
3119 int i;
3122 * Compute the index of the next job to start from SCRIPTS.
3124 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
3127 * The last CCB queued used for IARB hint may be
3128 * no longer relevant. Forget it.
3130 #ifdef SYM_CONF_IARB_SUPPORT
3131 if (np->last_cp)
3132 np->last_cp = 0;
3133 #endif
3136 * Now deal with the SCSI status.
3138 switch(s_status) {
3139 case S_BUSY:
3140 case S_QUEUE_FULL:
3141 if (sym_verbose >= 2) {
3142 PRINT_ADDR(cp);
3143 printf ("%s\n",
3144 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3146 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3147 sym_complete_error (np, cp);
3148 break;
3149 case S_TERMINATED:
3150 case S_CHECK_COND:
3152 * If we get an SCSI error when requesting sense, give up.
3154 if (h_flags & HF_SENSE) {
3155 sym_complete_error (np, cp);
3156 break;
3160 * Dequeue all queued CCBs for that device not yet started,
3161 * and restart the SCRIPTS processor immediately.
3163 (void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3164 OUTL_DSP (SCRIPTA_BA (np, start));
3167 * Save some info of the actual IO.
3168 * Compute the data residual.
3170 cp->sv_scsi_status = cp->ssss_status;
3171 cp->sv_xerr_status = cp->xerr_status;
3172 cp->sv_resid = sym_compute_residual(np, cp);
3175 * Prepare all needed data structures for
3176 * requesting sense data.
3180 * identify message
3182 cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
3183 msglen = 1;
3186 * If we are currently using anything different from
3187 * async. 8 bit data transfers with that target,
3188 * start a negotiation, since the device may want
3189 * to report us a UNIT ATTENTION condition due to
3190 * a cause we currently ignore, and we donnot want
3191 * to be stuck with WIDE and/or SYNC data transfer.
3193 * cp->nego_status is filled by sym_prepare_nego().
3195 cp->nego_status = 0;
3196 nego = 0;
3197 if (tp->tinfo.curr.options & PPR_OPT_MASK)
3198 nego = NS_PPR;
3199 else if (tp->tinfo.curr.width != BUS_8_BIT)
3200 nego = NS_WIDE;
3201 else if (tp->tinfo.curr.offset != 0)
3202 nego = NS_SYNC;
3203 if (nego)
3204 msglen +=
3205 sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
3207 * Message table indirect structure.
3209 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2));
3210 cp->phys.smsg.size = cpu_to_scr(msglen);
3213 * sense command
3215 cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd));
3216 cp->phys.cmd.size = cpu_to_scr(6);
3219 * patch requested size into sense command
3221 cp->sensecmd[0] = REQUEST_SENSE;
3222 cp->sensecmd[1] = 0;
3223 if (tp->tinfo.curr.scsi_version <= 2 && cp->lun <= 7)
3224 cp->sensecmd[1] = cp->lun << 5;
3225 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3226 cp->data_len = SYM_SNS_BBUF_LEN;
3229 * sense data
3231 bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
3232 cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf));
3233 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3236 * requeue the command.
3238 startp = SCRIPTB_BA (np, sdata_in);
3240 cp->phys.head.savep = cpu_to_scr(startp);
3241 cp->phys.head.lastp = cpu_to_scr(startp);
3242 cp->startp = cpu_to_scr(startp);
3243 cp->goalp = cpu_to_scr(startp + 16);
3245 cp->host_xflags = 0;
3246 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3247 cp->ssss_status = S_ILLEGAL;
3248 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3249 cp->xerr_status = 0;
3250 cp->extra_bytes = 0;
3252 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
3255 * Requeue the command.
3257 sym_put_start_queue(np, cp);
3260 * Give back to upper layer everything we have dequeued.
3262 sym_flush_comp_queue(np, 0);
3263 break;
3268 * After a device has accepted some management message
3269 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3270 * a device signals a UNIT ATTENTION condition, some
3271 * tasks are thrown away by the device. We are required
3272 * to reflect that on our tasks list since the device
3273 * will never complete these tasks.
3275 * This function move from the BUSY queue to the COMP
3276 * queue all disconnected CCBs for a given target that
3277 * match the following criteria:
3278 * - lun=-1 means any logical UNIT otherwise a given one.
3279 * - task=-1 means any task, otherwise a given one.
3281 int sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
3283 SYM_QUEHEAD qtmp, *qp;
3284 int i = 0;
3285 ccb_p cp;
3288 * Move the entire BUSY queue to our temporary queue.
3290 sym_que_init(&qtmp);
3291 sym_que_splice(&np->busy_ccbq, &qtmp);
3292 sym_que_init(&np->busy_ccbq);
3295 * Put all CCBs that matches our criteria into
3296 * the COMP queue and put back other ones into
3297 * the BUSY queue.
3299 while ((qp = sym_remque_head(&qtmp)) != 0) {
3300 cam_ccb_p ccb;
3301 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3302 ccb = cp->cam_ccb;
3303 if (cp->host_status != HS_DISCONNECT ||
3304 cp->target != target ||
3305 (lun != -1 && cp->lun != lun) ||
3306 (task != -1 &&
3307 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3308 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3309 continue;
3311 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3313 /* Preserve the software timeout condition */
3314 if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
3315 sym_set_cam_status(ccb, cam_status);
3316 ++i;
3317 #if 0
3318 printf("XXXX TASK @%p CLEARED\n", cp);
3319 #endif
3321 return i;
3325 * chip handler for TASKS recovery
3327 * We cannot safely abort a command, while the SCRIPTS
3328 * processor is running, since we just would be in race
3329 * with it.
3331 * As long as we have tasks to abort, we keep the SEM
3332 * bit set in the ISTAT. When this bit is set, the
3333 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3334 * each time it enters the scheduler.
3336 * If we have to reset a target, clear tasks of a unit,
3337 * or to perform the abort of a disconnected job, we
3338 * restart the SCRIPTS for selecting the target. Once
3339 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3340 * If it loses arbitration, the SCRIPTS will interrupt again
3341 * the next time it will enter its scheduler, and so on ...
3343 * On SIR_TARGET_SELECTED, we scan for the more
3344 * appropriate thing to do:
3346 * - If nothing, we just sent a M_ABORT message to the
3347 * target to get rid of the useless SCSI bus ownership.
3348 * According to the specs, no tasks shall be affected.
3349 * - If the target is to be reset, we send it a M_RESET
3350 * message.
3351 * - If a logical UNIT is to be cleared , we send the
3352 * IDENTIFY(lun) + M_ABORT.
3353 * - If an untagged task is to be aborted, we send the
3354 * IDENTIFY(lun) + M_ABORT.
3355 * - If a tagged task is to be aborted, we send the
3356 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3358 * Once our 'kiss of death' :) message has been accepted
3359 * by the target, the SCRIPTS interrupts again
3360 * (SIR_ABORT_SENT). On this interrupt, we complete
3361 * all the CCBs that should have been aborted by the
3362 * target according to our message.
3364 static void sym_sir_task_recovery(hcb_p np, int num)
3366 SYM_QUEHEAD *qp;
3367 ccb_p cp;
3368 tcb_p tp;
3369 int target=-1, lun=-1, task;
3370 int i, k;
3372 switch(num) {
3374 * The SCRIPTS processor stopped before starting
3375 * the next command in order to allow us to perform
3376 * some task recovery.
3378 case SIR_SCRIPT_STOPPED:
3380 * Do we have any target to reset or unit to clear ?
3382 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3383 tp = &np->target[i];
3384 if (tp->to_reset ||
3385 (tp->lun0p && tp->lun0p->to_clear)) {
3386 target = i;
3387 break;
3389 if (!tp->lunmp)
3390 continue;
3391 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3392 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3393 target = i;
3394 break;
3397 if (target != -1)
3398 break;
3402 * If not, walk the busy queue for any
3403 * disconnected CCB to be aborted.
3405 if (target == -1) {
3406 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3407 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3408 if (cp->host_status != HS_DISCONNECT)
3409 continue;
3410 if (cp->to_abort) {
3411 target = cp->target;
3412 break;
3418 * If some target is to be selected,
3419 * prepare and start the selection.
3421 if (target != -1) {
3422 tp = &np->target[target];
3423 np->abrt_sel.sel_id = target;
3424 np->abrt_sel.sel_scntl3 = tp->head.wval;
3425 np->abrt_sel.sel_sxfer = tp->head.sval;
3426 OUTL(nc_dsa, np->hcb_ba);
3427 OUTL_DSP (SCRIPTB_BA (np, sel_for_abort));
3428 return;
3432 * Now look for a CCB to abort that haven't started yet.
3433 * Btw, the SCRIPTS processor is still stopped, so
3434 * we are not in race.
3436 i = 0;
3437 cp = NULL;
3438 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3439 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3440 if (cp->host_status != HS_BUSY &&
3441 cp->host_status != HS_NEGOTIATE)
3442 continue;
3443 if (!cp->to_abort)
3444 continue;
3445 #ifdef SYM_CONF_IARB_SUPPORT
3447 * If we are using IMMEDIATE ARBITRATION, we donnot
3448 * want to cancel the last queued CCB, since the
3449 * SCRIPTS may have anticipated the selection.
3451 if (cp == np->last_cp) {
3452 cp->to_abort = 0;
3453 continue;
3455 #endif
3456 i = 1; /* Means we have found some */
3457 break;
3459 if (!i) {
3461 * We are done, so we donnot need
3462 * to synchronize with the SCRIPTS anylonger.
3463 * Remove the SEM flag from the ISTAT.
3465 np->istat_sem = 0;
3466 OUTB (nc_istat, SIGP);
3467 break;
3470 * Compute index of next position in the start
3471 * queue the SCRIPTS intends to start and dequeue
3472 * all CCBs for that device that haven't been started.
3474 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
3475 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3478 * Make sure at least our IO to abort has been dequeued.
3480 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3481 assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
3482 #else
3483 sym_remque(&cp->link_ccbq);
3484 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3485 #endif
3487 * Keep track in cam status of the reason of the abort.
3489 if (cp->to_abort == 2)
3490 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
3491 else
3492 sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
3495 * Complete with error everything that we have dequeued.
3497 sym_flush_comp_queue(np, 0);
3498 break;
3500 * The SCRIPTS processor has selected a target
3501 * we may have some manual recovery to perform for.
3503 case SIR_TARGET_SELECTED:
3504 target = (INB (nc_sdid) & 0xf);
3505 tp = &np->target[target];
3507 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3510 * If the target is to be reset, prepare a
3511 * M_RESET message and clear the to_reset flag
3512 * since we donnot expect this operation to fail.
3514 if (tp->to_reset) {
3515 np->abrt_msg[0] = M_RESET;
3516 np->abrt_tbl.size = 1;
3517 tp->to_reset = 0;
3518 break;
3522 * Otherwise, look for some logical unit to be cleared.
3524 if (tp->lun0p && tp->lun0p->to_clear)
3525 lun = 0;
3526 else if (tp->lunmp) {
3527 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3528 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3529 lun = k;
3530 break;
3536 * If a logical unit is to be cleared, prepare
3537 * an IDENTIFY(lun) + ABORT MESSAGE.
3539 if (lun != -1) {
3540 lcb_p lp = sym_lp(np, tp, lun);
3541 lp->to_clear = 0; /* We donnot expect to fail here */
3542 np->abrt_msg[0] = M_IDENTIFY | lun;
3543 np->abrt_msg[1] = M_ABORT;
3544 np->abrt_tbl.size = 2;
3545 break;
3549 * Otherwise, look for some disconnected job to
3550 * abort for this target.
3552 i = 0;
3553 cp = NULL;
3554 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3555 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3556 if (cp->host_status != HS_DISCONNECT)
3557 continue;
3558 if (cp->target != target)
3559 continue;
3560 if (!cp->to_abort)
3561 continue;
3562 i = 1; /* Means we have some */
3563 break;
3567 * If we have none, probably since the device has
3568 * completed the command before we won abitration,
3569 * send a M_ABORT message without IDENTIFY.
3570 * According to the specs, the device must just
3571 * disconnect the BUS and not abort any task.
3573 if (!i) {
3574 np->abrt_msg[0] = M_ABORT;
3575 np->abrt_tbl.size = 1;
3576 break;
3580 * We have some task to abort.
3581 * Set the IDENTIFY(lun)
3583 np->abrt_msg[0] = M_IDENTIFY | cp->lun;
3586 * If we want to abort an untagged command, we
3587 * will send a IDENTIFY + M_ABORT.
3588 * Otherwise (tagged command), we will send
3589 * a IDENTITFY + task attributes + ABORT TAG.
3591 if (cp->tag == NO_TAG) {
3592 np->abrt_msg[1] = M_ABORT;
3593 np->abrt_tbl.size = 2;
3595 else {
3596 np->abrt_msg[1] = cp->scsi_smsg[1];
3597 np->abrt_msg[2] = cp->scsi_smsg[2];
3598 np->abrt_msg[3] = M_ABORT_TAG;
3599 np->abrt_tbl.size = 4;
3602 * Keep track of software timeout condition, since the
3603 * peripheral driver may not count retries on abort
3604 * conditions not due to timeout.
3606 if (cp->to_abort == 2)
3607 sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
3608 cp->to_abort = 0; /* We donnot expect to fail here */
3609 break;
3612 * The target has accepted our message and switched
3613 * to BUS FREE phase as we expected.
3615 case SIR_ABORT_SENT:
3616 target = (INB (nc_sdid) & 0xf);
3617 tp = &np->target[target];
3620 ** If we didn't abort anything, leave here.
3622 if (np->abrt_msg[0] == M_ABORT)
3623 break;
3626 * If we sent a M_RESET, then a hardware reset has
3627 * been performed by the target.
3628 * - Reset everything to async 8 bit
3629 * - Tell ourself to negotiate next time :-)
3630 * - Prepare to clear all disconnected CCBs for
3631 * this target from our task list (lun=task=-1)
3633 lun = -1;
3634 task = -1;
3635 if (np->abrt_msg[0] == M_RESET) {
3636 tp->head.sval = 0;
3637 tp->head.wval = np->rv_scntl3;
3638 tp->head.uval = 0;
3639 tp->tinfo.curr.period = 0;
3640 tp->tinfo.curr.offset = 0;
3641 tp->tinfo.curr.width = BUS_8_BIT;
3642 tp->tinfo.curr.options = 0;
3646 * Otherwise, check for the LUN and TASK(s)
3647 * concerned by the cancelation.
3648 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3649 * or an ABORT message :-)
3651 else {
3652 lun = np->abrt_msg[0] & 0x3f;
3653 if (np->abrt_msg[1] == M_ABORT_TAG)
3654 task = np->abrt_msg[2];
3658 * Complete all the CCBs the device should have
3659 * aborted due to our 'kiss of death' message.
3661 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
3662 (void) sym_dequeue_from_squeue(np, i, target, lun, -1);
3663 (void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
3664 sym_flush_comp_queue(np, 0);
3667 * If we sent a BDR, make upper layer aware of that.
3669 if (np->abrt_msg[0] == M_RESET)
3670 sym_xpt_async_sent_bdr(np, target);
3671 break;
3675 * Print to the log the message we intend to send.
3677 if (num == SIR_TARGET_SELECTED) {
3678 PRINT_TARGET(np, target);
3679 sym_printl_hex("control msgout:", np->abrt_msg,
3680 np->abrt_tbl.size);
3681 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3685 * Let the SCRIPTS processor continue.
3687 OUTONB_STD ();
3691 * Gerard's alchemy:) that deals with with the data
3692 * pointer for both MDP and the residual calculation.
3694 * I didn't want to bloat the code by more than 200
3695 * lignes for the handling of both MDP and the residual.
3696 * This has been achieved by using a data pointer
3697 * representation consisting in an index in the data
3698 * array (dp_sg) and a negative offset (dp_ofs) that
3699 * have the following meaning:
3701 * - dp_sg = SYM_CONF_MAX_SG
3702 * we are at the end of the data script.
3703 * - dp_sg < SYM_CONF_MAX_SG
3704 * dp_sg points to the next entry of the scatter array
3705 * we want to transfer.
3706 * - dp_ofs < 0
3707 * dp_ofs represents the residual of bytes of the
3708 * previous entry scatter entry we will send first.
3709 * - dp_ofs = 0
3710 * no residual to send first.
3712 * The function sym_evaluate_dp() accepts an arbitray
3713 * offset (basically from the MDP message) and returns
3714 * the corresponding values of dp_sg and dp_ofs.
3717 static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
3719 u32 dp_scr;
3720 int dp_ofs, dp_sg, dp_sgmin;
3721 int tmp;
3722 struct sym_pmc *pm;
3725 * Compute the resulted data pointer in term of a script
3726 * address within some DATA script and a signed byte offset.
3728 dp_scr = scr;
3729 dp_ofs = *ofs;
3730 if (dp_scr == SCRIPTA_BA (np, pm0_data))
3731 pm = &cp->phys.pm0;
3732 else if (dp_scr == SCRIPTA_BA (np, pm1_data))
3733 pm = &cp->phys.pm1;
3734 else
3735 pm = NULL;
3737 if (pm) {
3738 dp_scr = scr_to_cpu(pm->ret);
3739 dp_ofs -= scr_to_cpu(pm->sg.size);
3743 * If we are auto-sensing, then we are done.
3745 if (cp->host_flags & HF_SENSE) {
3746 *ofs = dp_ofs;
3747 return 0;
3751 * Deduce the index of the sg entry.
3752 * Keep track of the index of the first valid entry.
3753 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3754 * end of the data.
3756 tmp = scr_to_cpu(sym_goalp(cp));
3757 dp_sg = SYM_CONF_MAX_SG;
3758 if (dp_scr != tmp)
3759 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3760 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3763 * Move to the sg entry the data pointer belongs to.
3765 * If we are inside the data area, we expect result to be:
3767 * Either,
3768 * dp_ofs = 0 and dp_sg is the index of the sg entry
3769 * the data pointer belongs to (or the end of the data)
3770 * Or,
3771 * dp_ofs < 0 and dp_sg is the index of the sg entry
3772 * the data pointer belongs to + 1.
3774 if (dp_ofs < 0) {
3775 int n;
3776 while (dp_sg > dp_sgmin) {
3777 --dp_sg;
3778 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3779 n = dp_ofs + (tmp & 0xffffff);
3780 if (n > 0) {
3781 ++dp_sg;
3782 break;
3784 dp_ofs = n;
3787 else if (dp_ofs > 0) {
3788 while (dp_sg < SYM_CONF_MAX_SG) {
3789 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3790 dp_ofs -= (tmp & 0xffffff);
3791 ++dp_sg;
3792 if (dp_ofs <= 0)
3793 break;
3798 * Make sure the data pointer is inside the data area.
3799 * If not, return some error.
3801 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3802 goto out_err;
3803 else if (dp_sg > SYM_CONF_MAX_SG ||
3804 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3805 goto out_err;
3808 * Save the extreme pointer if needed.
3810 if (dp_sg > cp->ext_sg ||
3811 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3812 cp->ext_sg = dp_sg;
3813 cp->ext_ofs = dp_ofs;
3817 * Return data.
3819 *ofs = dp_ofs;
3820 return dp_sg;
3822 out_err:
3823 return -1;
3827 * chip handler for MODIFY DATA POINTER MESSAGE
3829 * We also call this function on IGNORE WIDE RESIDUE
3830 * messages that do not match a SWIDE full condition.
3831 * Btw, we assume in that situation that such a message
3832 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3835 static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
3837 int dp_ofs = ofs;
3838 u32 dp_scr = sym_get_script_dp (np, cp);
3839 u32 dp_ret;
3840 u32 tmp;
3841 u_char hflags;
3842 int dp_sg;
3843 struct sym_pmc *pm;
3846 * Not supported for auto-sense.
3848 if (cp->host_flags & HF_SENSE)
3849 goto out_reject;
3852 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3853 * to the resulted data pointer.
3855 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3856 if (dp_sg < 0)
3857 goto out_reject;
3860 * And our alchemy:) allows to easily calculate the data
3861 * script address we want to return for the next data phase.
3863 dp_ret = cpu_to_scr(sym_goalp(cp));
3864 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3867 * If offset / scatter entry is zero we donnot need
3868 * a context for the new current data pointer.
3870 if (dp_ofs == 0) {
3871 dp_scr = dp_ret;
3872 goto out_ok;
3876 * Get a context for the new current data pointer.
3878 hflags = INB (HF_PRT);
3880 if (hflags & HF_DP_SAVED)
3881 hflags ^= HF_ACT_PM;
3883 if (!(hflags & HF_ACT_PM)) {
3884 pm = &cp->phys.pm0;
3885 dp_scr = SCRIPTA_BA (np, pm0_data);
3887 else {
3888 pm = &cp->phys.pm1;
3889 dp_scr = SCRIPTA_BA (np, pm1_data);
3892 hflags &= ~(HF_DP_SAVED);
3894 OUTB (HF_PRT, hflags);
3897 * Set up the new current data pointer.
3898 * ofs < 0 there, and for the next data phase, we
3899 * want to transfer part of the data of the sg entry
3900 * corresponding to index dp_sg-1 prior to returning
3901 * to the main data script.
3903 pm->ret = cpu_to_scr(dp_ret);
3904 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3905 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3906 pm->sg.addr = cpu_to_scr(tmp);
3907 pm->sg.size = cpu_to_scr(-dp_ofs);
3909 out_ok:
3910 sym_set_script_dp (np, cp, dp_scr);
3911 OUTL_DSP (SCRIPTA_BA (np, clrack));
3912 return;
3914 out_reject:
3915 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
3920 * chip calculation of the data residual.
3922 * As I used to say, the requirement of data residual
3923 * in SCSI is broken, useless and cannot be achieved
3924 * without huge complexity.
3925 * But most OSes and even the official CAM require it.
3926 * When stupidity happens to be so widely spread inside
3927 * a community, it gets hard to convince.
3929 * Anyway, I don't care, since I am not going to use
3930 * any software that considers this data residual as
3931 * a relevant information. :)
3934 int sym_compute_residual(hcb_p np, ccb_p cp)
3936 int dp_sg, dp_sgmin, resid = 0;
3937 int dp_ofs = 0;
3940 * Check for some data lost or just thrown away.
3941 * We are not required to be quite accurate in this
3942 * situation. Btw, if we are odd for output and the
3943 * device claims some more data, it may well happen
3944 * than our residual be zero. :-)
3946 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3947 if (cp->xerr_status & XE_EXTRA_DATA)
3948 resid -= cp->extra_bytes;
3949 if (cp->xerr_status & XE_SODL_UNRUN)
3950 ++resid;
3951 if (cp->xerr_status & XE_SWIDE_OVRUN)
3952 --resid;
3956 * If all data has been transferred,
3957 * there is no residual.
3959 if (cp->phys.head.lastp == sym_goalp(cp))
3960 return resid;
3963 * If no data transfer occurs, or if the data
3964 * pointer is weird, return full residual.
3966 if (cp->startp == cp->phys.head.lastp ||
3967 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3968 &dp_ofs) < 0) {
3969 return cp->data_len;
3973 * If we were auto-sensing, then we are done.
3975 if (cp->host_flags & HF_SENSE) {
3976 return -dp_ofs;
3980 * We are now full comfortable in the computation
3981 * of the data residual (2's complement).
3983 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3984 resid = -cp->ext_ofs;
3985 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3986 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3987 resid += (tmp & 0xffffff);
3991 * Hopefully, the result is not too wrong.
3993 return resid;
3997 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3999 * When we try to negotiate, we append the negotiation message
4000 * to the identify and (maybe) simple tag message.
4001 * The host status field is set to HS_NEGOTIATE to mark this
4002 * situation.
4004 * If the target doesn't answer this message immediately
4005 * (as required by the standard), the SIR_NEGO_FAILED interrupt
4006 * will be raised eventually.
4007 * The handler removes the HS_NEGOTIATE status, and sets the
4008 * negotiated value to the default (async / nowide).
4010 * If we receive a matching answer immediately, we check it
4011 * for validity, and set the values.
4013 * If we receive a Reject message immediately, we assume the
4014 * negotiation has failed, and fall back to standard values.
4016 * If we receive a negotiation message while not in HS_NEGOTIATE
4017 * state, it's a target initiated negotiation. We prepare a
4018 * (hopefully) valid answer, set our parameters, and send back
4019 * this answer to the target.
4021 * If the target doesn't fetch the answer (no message out phase),
4022 * we assume the negotiation has failed, and fall back to default
4023 * settings (SIR_NEGO_PROTO interrupt).
4025 * When we set the values, we adjust them in all ccbs belonging
4026 * to this target, in the controller's register, and in the "phys"
4027 * field of the controller's struct sym_hcb.
4031 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
4033 static int
4034 sym_sync_nego_check(hcb_p np, int req, int target)
4036 u_char chg, ofs, per, fak, div;
4038 if (DEBUG_FLAGS & DEBUG_NEGO) {
4039 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
4043 * Get requested values.
4045 chg = 0;
4046 per = np->msgin[3];
4047 ofs = np->msgin[4];
4050 * Check values against our limits.
4052 if (ofs) {
4053 if (ofs > np->maxoffs)
4054 {chg = 1; ofs = np->maxoffs;}
4057 if (ofs) {
4058 if (per < np->minsync)
4059 {chg = 1; per = np->minsync;}
4063 * Get new chip synchronous parameters value.
4065 div = fak = 0;
4066 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
4067 goto reject_it;
4069 if (DEBUG_FLAGS & DEBUG_NEGO) {
4070 PRINT_TARGET(np, target);
4071 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
4072 ofs, per, div, fak, chg);
4076 * If it was an answer we want to change,
4077 * then it isn't acceptable. Reject it.
4079 if (!req && chg)
4080 goto reject_it;
4083 * Apply new values.
4085 sym_setsync (np, target, ofs, per, div, fak);
4088 * It was an answer. We are done.
4090 if (!req)
4091 return 0;
4094 * It was a request. Prepare an answer message.
4096 np->msgout[0] = M_EXTENDED;
4097 np->msgout[1] = 3;
4098 np->msgout[2] = M_X_SYNC_REQ;
4099 np->msgout[3] = per;
4100 np->msgout[4] = ofs;
4102 if (DEBUG_FLAGS & DEBUG_NEGO) {
4103 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4106 np->msgin [0] = M_NOOP;
4108 return 0;
4110 reject_it:
4111 sym_setsync (np, target, 0, 0, 0, 0);
4112 return -1;
4115 static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
4117 int req = 1;
4118 int result;
4121 * Request or answer ?
4123 if (INB (HS_PRT) == HS_NEGOTIATE) {
4124 OUTB (HS_PRT, HS_BUSY);
4125 if (cp->nego_status && cp->nego_status != NS_SYNC)
4126 goto reject_it;
4127 req = 0;
4131 * Check and apply new values.
4133 result = sym_sync_nego_check(np, req, cp->target);
4134 if (result) /* Not acceptable, reject it */
4135 goto reject_it;
4136 if (req) { /* Was a request, send response. */
4137 cp->nego_status = NS_SYNC;
4138 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
4140 else /* Was a response, we are done. */
4141 OUTL_DSP (SCRIPTA_BA (np, clrack));
4142 return;
4144 reject_it:
4145 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
4149 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4151 static int
4152 sym_ppr_nego_check(hcb_p np, int req, int target)
4154 tcb_p tp = &np->target[target];
4155 u_char chg, ofs, per, fak, dt, div, wide;
4157 if (DEBUG_FLAGS & DEBUG_NEGO) {
4158 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4162 * Get requested values.
4164 chg = 0;
4165 per = np->msgin[3];
4166 ofs = np->msgin[5];
4167 wide = np->msgin[6];
4168 dt = np->msgin[7] & PPR_OPT_DT;
4171 * Check values against our limits.
4173 if (wide > np->maxwide) {
4174 chg = 1;
4175 wide = np->maxwide;
4177 if (!wide || !(np->features & FE_ULTRA3))
4178 dt &= ~PPR_OPT_DT;
4180 if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */
4181 dt &= ~PPR_OPT_DT;
4183 if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
4185 if (ofs) {
4186 if (dt) {
4187 if (ofs > np->maxoffs_dt)
4188 {chg = 1; ofs = np->maxoffs_dt;}
4190 else if (ofs > np->maxoffs)
4191 {chg = 1; ofs = np->maxoffs;}
4194 if (ofs) {
4195 if (dt) {
4196 if (per < np->minsync_dt)
4197 {chg = 1; per = np->minsync_dt;}
4199 else if (per < np->minsync)
4200 {chg = 1; per = np->minsync;}
4204 * Get new chip synchronous parameters value.
4206 div = fak = 0;
4207 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4208 goto reject_it;
4211 * If it was an answer we want to change,
4212 * then it isn't acceptable. Reject it.
4214 if (!req && chg)
4215 goto reject_it;
4218 * Apply new values.
4220 sym_setpprot (np, target, dt, ofs, per, wide, div, fak);
4223 * It was an answer. We are done.
4225 if (!req)
4226 return 0;
4229 * It was a request. Prepare an answer message.
4231 np->msgout[0] = M_EXTENDED;
4232 np->msgout[1] = 6;
4233 np->msgout[2] = M_X_PPR_REQ;
4234 np->msgout[3] = per;
4235 np->msgout[4] = 0;
4236 np->msgout[5] = ofs;
4237 np->msgout[6] = wide;
4238 np->msgout[7] = dt;
4240 if (DEBUG_FLAGS & DEBUG_NEGO) {
4241 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4244 np->msgin [0] = M_NOOP;
4246 return 0;
4248 reject_it:
4249 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4251 * If it is a device response that should result in
4252 * ST, we may want to try a legacy negotiation later.
4254 if (!req && !dt) {
4255 tp->tinfo.goal.options = 0;
4256 tp->tinfo.goal.width = wide;
4257 tp->tinfo.goal.period = per;
4258 tp->tinfo.goal.offset = ofs;
4260 return -1;
4263 static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
4265 int req = 1;
4266 int result;
4269 * Request or answer ?
4271 if (INB (HS_PRT) == HS_NEGOTIATE) {
4272 OUTB (HS_PRT, HS_BUSY);
4273 if (cp->nego_status && cp->nego_status != NS_PPR)
4274 goto reject_it;
4275 req = 0;
4279 * Check and apply new values.
4281 result = sym_ppr_nego_check(np, req, cp->target);
4282 if (result) /* Not acceptable, reject it */
4283 goto reject_it;
4284 if (req) { /* Was a request, send response. */
4285 cp->nego_status = NS_PPR;
4286 OUTL_DSP (SCRIPTB_BA (np, ppr_resp));
4288 else /* Was a response, we are done. */
4289 OUTL_DSP (SCRIPTA_BA (np, clrack));
4290 return;
4292 reject_it:
4293 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
4297 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4299 static int
4300 sym_wide_nego_check(hcb_p np, int req, int target)
4302 u_char chg, wide;
4304 if (DEBUG_FLAGS & DEBUG_NEGO) {
4305 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4309 * Get requested values.
4311 chg = 0;
4312 wide = np->msgin[3];
4315 * Check values against our limits.
4317 if (wide > np->maxwide) {
4318 chg = 1;
4319 wide = np->maxwide;
4322 if (DEBUG_FLAGS & DEBUG_NEGO) {
4323 PRINT_TARGET(np, target);
4324 printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
4328 * If it was an answer we want to change,
4329 * then it isn't acceptable. Reject it.
4331 if (!req && chg)
4332 goto reject_it;
4335 * Apply new values.
4337 sym_setwide (np, target, wide);
4340 * It was an answer. We are done.
4342 if (!req)
4343 return 0;
4346 * It was a request. Prepare an answer message.
4348 np->msgout[0] = M_EXTENDED;
4349 np->msgout[1] = 2;
4350 np->msgout[2] = M_X_WIDE_REQ;
4351 np->msgout[3] = wide;
4353 np->msgin [0] = M_NOOP;
4355 if (DEBUG_FLAGS & DEBUG_NEGO) {
4356 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4359 return 0;
4361 reject_it:
4362 return -1;
4365 static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
4367 int req = 1;
4368 int result;
4371 * Request or answer ?
4373 if (INB (HS_PRT) == HS_NEGOTIATE) {
4374 OUTB (HS_PRT, HS_BUSY);
4375 if (cp->nego_status && cp->nego_status != NS_WIDE)
4376 goto reject_it;
4377 req = 0;
4381 * Check and apply new values.
4383 result = sym_wide_nego_check(np, req, cp->target);
4384 if (result) /* Not acceptable, reject it */
4385 goto reject_it;
4386 if (req) { /* Was a request, send response. */
4387 cp->nego_status = NS_WIDE;
4388 OUTL_DSP (SCRIPTB_BA (np, wdtr_resp));
4390 else { /* Was a response. */
4392 * Negotiate for SYNC immediately after WIDE response.
4393 * This allows to negotiate for both WIDE and SYNC on
4394 * a single SCSI command (Suggested by Justin Gibbs).
4396 if (tp->tinfo.goal.offset) {
4397 np->msgout[0] = M_EXTENDED;
4398 np->msgout[1] = 3;
4399 np->msgout[2] = M_X_SYNC_REQ;
4400 np->msgout[3] = tp->tinfo.goal.period;
4401 np->msgout[4] = tp->tinfo.goal.offset;
4403 if (DEBUG_FLAGS & DEBUG_NEGO) {
4404 sym_print_nego_msg(np, cp->target,
4405 "sync msgout", np->msgout);
4408 cp->nego_status = NS_SYNC;
4409 OUTB (HS_PRT, HS_NEGOTIATE);
4410 OUTL_DSP (SCRIPTB_BA (np, sdtr_resp));
4411 return;
4413 else
4414 OUTL_DSP (SCRIPTA_BA (np, clrack));
4417 return;
4419 reject_it:
4420 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
4424 * Reset DT, SYNC or WIDE to default settings.
4426 * Called when a negotiation does not succeed either
4427 * on rejection or on protocol error.
4429 * A target that understands a PPR message should never
4430 * reject it, and messing with it is very unlikely.
4431 * So, if a PPR makes problems, we may just want to
4432 * try a legacy negotiation later.
4434 static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
4436 switch (cp->nego_status) {
4437 case NS_PPR:
4438 #if 0
4439 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4440 #else
4441 tp->tinfo.goal.options = 0;
4442 if (tp->tinfo.goal.period < np->minsync)
4443 tp->tinfo.goal.period = np->minsync;
4444 if (tp->tinfo.goal.offset > np->maxoffs)
4445 tp->tinfo.goal.offset = np->maxoffs;
4446 #endif
4447 break;
4448 case NS_SYNC:
4449 sym_setsync (np, cp->target, 0, 0, 0, 0);
4450 break;
4451 case NS_WIDE:
4452 sym_setwide (np, cp->target, 0);
4453 break;
4455 np->msgin [0] = M_NOOP;
4456 np->msgout[0] = M_NOOP;
4457 cp->nego_status = 0;
4461 * chip handler for MESSAGE REJECT received in response to
4462 * PPR, WIDE or SYNCHRONOUS negotiation.
4464 static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
4466 sym_nego_default(np, tp, cp);
4467 OUTB (HS_PRT, HS_BUSY);
4471 * chip exception handler for programmed interrupts.
4473 static void sym_int_sir (hcb_p np)
4475 u_char num = INB (nc_dsps);
4476 u32 dsa = INL (nc_dsa);
4477 ccb_p cp = sym_ccb_from_dsa(np, dsa);
4478 u_char target = INB (nc_sdid) & 0x0f;
4479 tcb_p tp = &np->target[target];
4480 int tmp;
4482 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4484 switch (num) {
4485 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4487 * SCRIPTS tell us that we may have to update
4488 * 64 bit DMA segment registers.
4490 case SIR_DMAP_DIRTY:
4491 sym_update_dmap_regs(np);
4492 goto out;
4493 #endif
4495 * Command has been completed with error condition
4496 * or has been auto-sensed.
4498 case SIR_COMPLETE_ERROR:
4499 sym_complete_error(np, cp);
4500 return;
4502 * The C code is currently trying to recover from something.
4503 * Typically, user want to abort some command.
4505 case SIR_SCRIPT_STOPPED:
4506 case SIR_TARGET_SELECTED:
4507 case SIR_ABORT_SENT:
4508 sym_sir_task_recovery(np, num);
4509 return;
4511 * The device didn't go to MSG OUT phase after having
4512 * been selected with ATN. We donnot want to handle
4513 * that.
4515 case SIR_SEL_ATN_NO_MSG_OUT:
4516 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4517 sym_name (np), target);
4518 goto out_stuck;
4520 * The device didn't switch to MSG IN phase after
4521 * having reseleted the initiator.
4523 case SIR_RESEL_NO_MSG_IN:
4524 printf ("%s:%d: No MSG IN phase after reselection.\n",
4525 sym_name (np), target);
4526 goto out_stuck;
4528 * After reselection, the device sent a message that wasn't
4529 * an IDENTIFY.
4531 case SIR_RESEL_NO_IDENTIFY:
4532 printf ("%s:%d: No IDENTIFY after reselection.\n",
4533 sym_name (np), target);
4534 goto out_stuck;
4536 * The device reselected a LUN we donnot know about.
4538 case SIR_RESEL_BAD_LUN:
4539 np->msgout[0] = M_RESET;
4540 goto out;
4542 * The device reselected for an untagged nexus and we
4543 * haven't any.
4545 case SIR_RESEL_BAD_I_T_L:
4546 np->msgout[0] = M_ABORT;
4547 goto out;
4549 * The device reselected for a tagged nexus that we donnot
4550 * have.
4552 case SIR_RESEL_BAD_I_T_L_Q:
4553 np->msgout[0] = M_ABORT_TAG;
4554 goto out;
4556 * The SCRIPTS let us know that the device has grabbed
4557 * our message and will abort the job.
4559 case SIR_RESEL_ABORTED:
4560 np->lastmsg = np->msgout[0];
4561 np->msgout[0] = M_NOOP;
4562 printf ("%s:%d: message %x sent on bad reselection.\n",
4563 sym_name (np), target, np->lastmsg);
4564 goto out;
4566 * The SCRIPTS let us know that a message has been
4567 * successfully sent to the device.
4569 case SIR_MSG_OUT_DONE:
4570 np->lastmsg = np->msgout[0];
4571 np->msgout[0] = M_NOOP;
4572 /* Should we really care of that */
4573 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4574 if (cp) {
4575 cp->xerr_status &= ~XE_PARITY_ERR;
4576 if (!cp->xerr_status)
4577 OUTOFFB (HF_PRT, HF_EXT_ERR);
4580 goto out;
4582 * The device didn't send a GOOD SCSI status.
4583 * We may have some work to do prior to allow
4584 * the SCRIPTS processor to continue.
4586 case SIR_BAD_SCSI_STATUS:
4587 if (!cp)
4588 goto out;
4589 sym_sir_bad_scsi_status(np, num, cp);
4590 return;
4592 * We are asked by the SCRIPTS to prepare a
4593 * REJECT message.
4595 case SIR_REJECT_TO_SEND:
4596 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4597 np->msgout[0] = M_REJECT;
4598 goto out;
4600 * We have been ODD at the end of a DATA IN
4601 * transfer and the device didn't send a
4602 * IGNORE WIDE RESIDUE message.
4603 * It is a data overrun condition.
4605 case SIR_SWIDE_OVERRUN:
4606 if (cp) {
4607 OUTONB (HF_PRT, HF_EXT_ERR);
4608 cp->xerr_status |= XE_SWIDE_OVRUN;
4610 goto out;
4612 * We have been ODD at the end of a DATA OUT
4613 * transfer.
4614 * It is a data underrun condition.
4616 case SIR_SODL_UNDERRUN:
4617 if (cp) {
4618 OUTONB (HF_PRT, HF_EXT_ERR);
4619 cp->xerr_status |= XE_SODL_UNRUN;
4621 goto out;
4623 * The device wants us to tranfer more data than
4624 * expected or in the wrong direction.
4625 * The number of extra bytes is in scratcha.
4626 * It is a data overrun condition.
4628 case SIR_DATA_OVERRUN:
4629 if (cp) {
4630 OUTONB (HF_PRT, HF_EXT_ERR);
4631 cp->xerr_status |= XE_EXTRA_DATA;
4632 cp->extra_bytes += INL (nc_scratcha);
4634 goto out;
4636 * The device switched to an illegal phase (4/5).
4638 case SIR_BAD_PHASE:
4639 if (cp) {
4640 OUTONB (HF_PRT, HF_EXT_ERR);
4641 cp->xerr_status |= XE_BAD_PHASE;
4643 goto out;
4645 * We received a message.
4647 case SIR_MSG_RECEIVED:
4648 if (!cp)
4649 goto out_stuck;
4650 switch (np->msgin [0]) {
4652 * We received an extended message.
4653 * We handle MODIFY DATA POINTER, SDTR, WDTR
4654 * and reject all other extended messages.
4656 case M_EXTENDED:
4657 switch (np->msgin [2]) {
4658 case M_X_MODIFY_DP:
4659 if (DEBUG_FLAGS & DEBUG_POINTER)
4660 sym_print_msg(cp,"modify DP",np->msgin);
4661 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4662 (np->msgin[5]<<8) + (np->msgin[6]);
4663 sym_modify_dp(np, tp, cp, tmp);
4664 return;
4665 case M_X_SYNC_REQ:
4666 sym_sync_nego(np, tp, cp);
4667 return;
4668 case M_X_PPR_REQ:
4669 sym_ppr_nego(np, tp, cp);
4670 return;
4671 case M_X_WIDE_REQ:
4672 sym_wide_nego(np, tp, cp);
4673 return;
4674 default:
4675 goto out_reject;
4677 break;
4679 * We received a 1/2 byte message not handled from SCRIPTS.
4680 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4681 * RESIDUE messages that haven't been anticipated by
4682 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4683 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4685 case M_IGN_RESIDUE:
4686 if (DEBUG_FLAGS & DEBUG_POINTER)
4687 sym_print_msg(cp,"ign wide residue", np->msgin);
4688 if (cp->host_flags & HF_SENSE)
4689 OUTL_DSP (SCRIPTA_BA (np, clrack));
4690 else
4691 sym_modify_dp(np, tp, cp, -1);
4692 return;
4693 case M_REJECT:
4694 if (INB (HS_PRT) == HS_NEGOTIATE)
4695 sym_nego_rejected(np, tp, cp);
4696 else {
4697 PRINT_ADDR(cp);
4698 printf ("M_REJECT received (%x:%x).\n",
4699 scr_to_cpu(np->lastmsg), np->msgout[0]);
4701 goto out_clrack;
4702 break;
4703 default:
4704 goto out_reject;
4706 break;
4708 * We received an unknown message.
4709 * Ignore all MSG IN phases and reject it.
4711 case SIR_MSG_WEIRD:
4712 sym_print_msg(cp, "WEIRD message received", np->msgin);
4713 OUTL_DSP (SCRIPTB_BA (np, msg_weird));
4714 return;
4716 * Negotiation failed.
4717 * Target does not send us the reply.
4718 * Remove the HS_NEGOTIATE status.
4720 case SIR_NEGO_FAILED:
4721 OUTB (HS_PRT, HS_BUSY);
4723 * Negotiation failed.
4724 * Target does not want answer message.
4726 case SIR_NEGO_PROTO:
4727 sym_nego_default(np, tp, cp);
4728 goto out;
4731 out:
4732 OUTONB_STD ();
4733 return;
4734 out_reject:
4735 OUTL_DSP (SCRIPTB_BA (np, msg_bad));
4736 return;
4737 out_clrack:
4738 OUTL_DSP (SCRIPTA_BA (np, clrack));
4739 return;
4740 out_stuck:
4741 return;
4745 * Acquire a control block
4747 ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
4749 tcb_p tp = &np->target[tn];
4750 lcb_p lp = sym_lp(np, tp, ln);
4751 u_short tag = NO_TAG;
4752 SYM_QUEHEAD *qp;
4753 ccb_p cp = (ccb_p) 0;
4756 * Look for a free CCB
4758 if (sym_que_empty(&np->free_ccbq))
4759 (void) sym_alloc_ccb(np);
4760 qp = sym_remque_head(&np->free_ccbq);
4761 if (!qp)
4762 goto out;
4763 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4765 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4767 * If the LCB is not yet available and the LUN
4768 * has been probed ok, try to allocate the LCB.
4770 if (!lp && sym_is_bit(tp->lun_map, ln)) {
4771 lp = sym_alloc_lcb(np, tn, ln);
4772 if (!lp)
4773 goto out_free;
4775 #endif
4778 * If the LCB is not available here, then the
4779 * logical unit is not yet discovered. For those
4780 * ones only accept 1 SCSI IO per logical unit,
4781 * since we cannot allow disconnections.
4783 if (!lp) {
4784 if (!sym_is_bit(tp->busy0_map, ln))
4785 sym_set_bit(tp->busy0_map, ln);
4786 else
4787 goto out_free;
4788 } else {
4790 * If we have been asked for a tagged command.
4792 if (tag_order) {
4794 * Debugging purpose.
4796 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4797 assert(lp->busy_itl == 0);
4798 #endif
4800 * Allocate resources for tags if not yet.
4802 if (!lp->cb_tags) {
4803 sym_alloc_lcb_tags(np, tn, ln);
4804 if (!lp->cb_tags)
4805 goto out_free;
4808 * Get a tag for this SCSI IO and set up
4809 * the CCB bus address for reselection,
4810 * and count it for this LUN.
4811 * Toggle reselect path to tagged.
4813 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4814 tag = lp->cb_tags[lp->ia_tag];
4815 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4816 lp->ia_tag = 0;
4817 ++lp->busy_itlq;
4818 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4819 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4820 lp->head.resel_sa =
4821 cpu_to_scr(SCRIPTA_BA (np, resel_tag));
4822 #endif
4823 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4824 cp->tags_si = lp->tags_si;
4825 ++lp->tags_sum[cp->tags_si];
4826 ++lp->tags_since;
4827 #endif
4829 else
4830 goto out_free;
4833 * This command will not be tagged.
4834 * If we already have either a tagged or untagged
4835 * one, refuse to overlap this untagged one.
4837 else {
4839 * Debugging purpose.
4841 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4842 assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4843 #endif
4845 * Count this nexus for this LUN.
4846 * Set up the CCB bus address for reselection.
4847 * Toggle reselect path to untagged.
4849 ++lp->busy_itl;
4850 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4851 if (lp->busy_itl == 1) {
4852 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4853 lp->head.resel_sa =
4854 cpu_to_scr(SCRIPTA_BA (np, resel_no_tag));
4856 else
4857 goto out_free;
4858 #endif
4862 * Put the CCB into the busy queue.
4864 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4865 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4866 if (lp) {
4867 sym_remque(&cp->link2_ccbq);
4868 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4871 #endif
4873 * Remember all informations needed to free this CCB.
4875 cp->to_abort = 0;
4876 cp->tag = tag;
4877 cp->order = tag_order;
4878 cp->target = tn;
4879 cp->lun = ln;
4881 if (DEBUG_FLAGS & DEBUG_TAGS) {
4882 PRINT_LUN(np, tn, ln);
4883 printf ("ccb @%p using tag %d.\n", cp, tag);
4886 out:
4887 return cp;
4888 out_free:
4889 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4890 return (ccb_p) 0;
4894 * Release one control block
4896 void sym_free_ccb (hcb_p np, ccb_p cp)
4898 tcb_p tp = &np->target[cp->target];
4899 lcb_p lp = sym_lp(np, tp, cp->lun);
4901 if (DEBUG_FLAGS & DEBUG_TAGS) {
4902 PRINT_LUN(np, cp->target, cp->lun);
4903 printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
4907 * If LCB available,
4909 if (lp) {
4911 * If tagged, release the tag, set the relect path
4913 if (cp->tag != NO_TAG) {
4914 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4915 --lp->tags_sum[cp->tags_si];
4916 #endif
4918 * Free the tag value.
4920 lp->cb_tags[lp->if_tag] = cp->tag;
4921 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4922 lp->if_tag = 0;
4924 * Make the reselect path invalid,
4925 * and uncount this CCB.
4927 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4928 --lp->busy_itlq;
4929 } else { /* Untagged */
4931 * Make the reselect path invalid,
4932 * and uncount this CCB.
4934 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4935 --lp->busy_itl;
4938 * If no JOB active, make the LUN reselect path invalid.
4940 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4941 lp->head.resel_sa =
4942 cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
4945 * Otherwise, we only accept 1 IO per LUN.
4946 * Clear the bit that keeps track of this IO.
4948 else
4949 sym_clr_bit(tp->busy0_map, cp->lun);
4952 * We donnot queue more than 1 ccb per target
4953 * with negotiation at any time. If this ccb was
4954 * used for negotiation, clear this info in the tcb.
4956 if (cp == tp->nego_cp)
4957 tp->nego_cp = NULL;
4959 #ifdef SYM_CONF_IARB_SUPPORT
4961 * If we just complete the last queued CCB,
4962 * clear this info that is no longer relevant.
4964 if (cp == np->last_cp)
4965 np->last_cp = 0;
4966 #endif
4969 * Unmap user data from DMA map if needed.
4971 sym_data_dmamap_unload(np, cp);
4974 * Make this CCB available.
4976 cp->cam_ccb = NULL;
4977 cp->host_status = HS_IDLE;
4978 sym_remque(&cp->link_ccbq);
4979 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4981 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
4983 * Cancel any pending timeout condition.
4985 sym_untimeout_ccb(np, cp);
4986 #endif
4988 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4989 if (lp) {
4990 sym_remque(&cp->link2_ccbq);
4991 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4992 if (cp->started) {
4993 if (cp->tag != NO_TAG)
4994 --lp->started_tags;
4995 else
4996 --lp->started_no_tag;
4999 cp->started = 0;
5000 #endif
5004 * Allocate a CCB from memory and initialize its fixed part.
5006 static ccb_p sym_alloc_ccb(hcb_p np)
5008 ccb_p cp = NULL;
5009 int hcode;
5012 * Prevent from allocating more CCBs than we can
5013 * queue to the controller.
5015 if (np->actccbs >= SYM_CONF_MAX_START)
5016 return NULL;
5019 * Allocate memory for this CCB.
5021 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
5022 if (!cp)
5023 goto out_free;
5026 * Allocate a bounce buffer for sense data.
5028 cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
5029 if (!cp->sns_bbuf)
5030 goto out_free;
5033 * Allocate a map for the DMA of user data.
5035 if (sym_data_dmamap_create(np, cp))
5036 goto out_free;
5039 * Count it.
5041 np->actccbs++;
5044 * Compute the bus address of this ccb.
5046 cp->ccb_ba = vtobus(cp);
5049 * Insert this ccb into the hashed list.
5051 hcode = CCB_HASH_CODE(cp->ccb_ba);
5052 cp->link_ccbh = np->ccbh[hcode];
5053 np->ccbh[hcode] = cp;
5056 * Initialyze the start and restart actions.
5058 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5059 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
5062 * Initilialyze some other fields.
5064 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
5067 * Chain into free ccb queue.
5069 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
5072 * Chain into optionnal lists.
5074 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
5075 sym_insque_head(&cp->tmo_linkq, &np->tmo0_ccbq);
5076 #endif
5077 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5078 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
5079 #endif
5080 return cp;
5081 out_free:
5082 if (cp) {
5083 if (cp->sns_bbuf)
5084 sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
5085 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5087 return NULL;
5091 * Look up a CCB from a DSA value.
5093 static ccb_p sym_ccb_from_dsa(hcb_p np, u32 dsa)
5095 int hcode;
5096 ccb_p cp;
5098 hcode = CCB_HASH_CODE(dsa);
5099 cp = np->ccbh[hcode];
5100 while (cp) {
5101 if (cp->ccb_ba == dsa)
5102 break;
5103 cp = cp->link_ccbh;
5106 return cp;
5110 * Target control block initialisation.
5111 * Nothing important to do at the moment.
5113 static void sym_init_tcb (hcb_p np, u_char tn)
5115 #if 0 /* Hmmm... this checking looks paranoid. */
5117 * Check some alignments required by the chip.
5119 assert (((offsetof(struct sym_reg, nc_sxfer) ^
5120 offsetof(struct sym_tcb, head.sval)) &3) == 0);
5121 assert (((offsetof(struct sym_reg, nc_scntl3) ^
5122 offsetof(struct sym_tcb, head.wval)) &3) == 0);
5123 #endif
5127 * Lun control block allocation and initialization.
5129 lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
5131 tcb_p tp = &np->target[tn];
5132 lcb_p lp = sym_lp(np, tp, ln);
5135 * Already done, just return.
5137 if (lp)
5138 return lp;
5141 * Donnot allow LUN control block
5142 * allocation for not probed LUNs.
5144 if (!sym_is_bit(tp->lun_map, ln))
5145 return NULL;
5148 * Initialize the target control block if not yet.
5150 sym_init_tcb (np, tn);
5153 * Allocate the LCB bus address array.
5154 * Compute the bus address of this table.
5156 if (ln && !tp->luntbl) {
5157 int i;
5159 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
5160 if (!tp->luntbl)
5161 goto fail;
5162 for (i = 0 ; i < 64 ; i++)
5163 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5164 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
5168 * Allocate the table of pointers for LUN(s) > 0, if needed.
5170 if (ln && !tp->lunmp) {
5171 tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
5172 "LUNMP");
5173 if (!tp->lunmp)
5174 goto fail;
5178 * Allocate the lcb.
5179 * Make it available to the chip.
5181 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5182 if (!lp)
5183 goto fail;
5184 if (ln) {
5185 tp->lunmp[ln] = lp;
5186 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5188 else {
5189 tp->lun0p = lp;
5190 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5194 * Let the itl task point to error handling.
5196 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5199 * Set the reselect pattern to our default. :)
5201 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
5204 * Set user capabilities.
5206 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5208 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5210 * Initialize device queueing.
5212 sym_que_init(&lp->waiting_ccbq);
5213 sym_que_init(&lp->started_ccbq);
5214 lp->started_max = SYM_CONF_MAX_TASK;
5215 lp->started_limit = SYM_CONF_MAX_TASK;
5216 #endif
5218 * If we are busy, count the IO.
5220 if (sym_is_bit(tp->busy0_map, ln)) {
5221 lp->busy_itl = 1;
5222 sym_clr_bit(tp->busy0_map, ln);
5224 fail:
5225 return lp;
5229 * Allocate LCB resources for tagged command queuing.
5231 static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
5233 tcb_p tp = &np->target[tn];
5234 lcb_p lp = sym_lp(np, tp, ln);
5235 int i;
5238 * If LCB not available, try to allocate it.
5240 if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
5241 goto fail;
5244 * Allocate the task table and and the tag allocation
5245 * circular buffer. We want both or none.
5247 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5248 if (!lp->itlq_tbl)
5249 goto fail;
5250 lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
5251 if (!lp->cb_tags) {
5252 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5253 lp->itlq_tbl = NULL;
5254 goto fail;
5258 * Initialize the task table with invalid entries.
5260 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5261 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5264 * Fill up the tag buffer with tag numbers.
5266 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5267 lp->cb_tags[i] = i;
5270 * Make the task table available to SCRIPTS,
5271 * And accept tagged commands now.
5273 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5275 return;
5276 fail:
5277 return;
5281 * Queue a SCSI IO to the controller.
5283 int sym_queue_scsiio(hcb_p np, cam_scsiio_p csio, ccb_p cp)
5285 tcb_p tp;
5286 lcb_p lp;
5287 u_char idmsg, *msgptr;
5288 u_int msglen;
5291 * Keep track of the IO in our CCB.
5293 cp->cam_ccb = (cam_ccb_p) csio;
5296 * Retreive the target descriptor.
5298 tp = &np->target[cp->target];
5301 * Retreive the lun descriptor.
5303 lp = sym_lp(np, tp, cp->lun);
5306 * Build the IDENTIFY message.
5308 idmsg = M_IDENTIFY | cp->lun;
5309 if (cp->tag != NO_TAG || (lp && (lp->curr_flags & SYM_DISC_ENABLED)))
5310 idmsg |= 0x40;
5312 msgptr = cp->scsi_smsg;
5313 msglen = 0;
5314 msgptr[msglen++] = idmsg;
5317 * Build the tag message if present.
5319 if (cp->tag != NO_TAG) {
5320 u_char order = cp->order;
5322 switch(order) {
5323 case M_ORDERED_TAG:
5324 break;
5325 case M_HEAD_TAG:
5326 break;
5327 default:
5328 order = M_SIMPLE_TAG;
5330 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5332 * Avoid too much reordering of SCSI commands.
5333 * The algorithm tries to prevent completion of any
5334 * tagged command from being delayed against more
5335 * than 3 times the max number of queued commands.
5337 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5338 lp->tags_si = !(lp->tags_si);
5339 if (lp->tags_sum[lp->tags_si]) {
5340 order = M_ORDERED_TAG;
5341 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5342 PRINT_ADDR(cp);
5343 printf("ordered tag forced.\n");
5346 lp->tags_since = 0;
5348 #endif
5349 msgptr[msglen++] = order;
5352 * For less than 128 tags, actual tags are numbered
5353 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5354 * with devices that have problems with #TAG 0 or too
5355 * great #TAG numbers. For more tags (up to 256),
5356 * we use directly our tag number.
5358 #if SYM_CONF_MAX_TASK > (512/4)
5359 msgptr[msglen++] = cp->tag;
5360 #else
5361 msgptr[msglen++] = (cp->tag << 1) + 1;
5362 #endif
5366 * Build a negotiation message if needed.
5367 * (nego_status is filled by sym_prepare_nego())
5369 cp->nego_status = 0;
5370 if (tp->tinfo.curr.width != tp->tinfo.goal.width ||
5371 tp->tinfo.curr.period != tp->tinfo.goal.period ||
5372 tp->tinfo.curr.offset != tp->tinfo.goal.offset ||
5373 tp->tinfo.curr.options != tp->tinfo.goal.options) {
5374 if (!tp->nego_cp && lp)
5375 msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
5379 * Startqueue
5381 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
5382 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
5385 * select
5387 cp->phys.select.sel_id = cp->target;
5388 cp->phys.select.sel_scntl3 = tp->head.wval;
5389 cp->phys.select.sel_sxfer = tp->head.sval;
5390 cp->phys.select.sel_scntl4 = tp->head.uval;
5393 * message
5395 cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg));
5396 cp->phys.smsg.size = cpu_to_scr(msglen);
5399 * status
5401 cp->host_xflags = 0;
5402 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5403 cp->ssss_status = S_ILLEGAL;
5404 cp->xerr_status = 0;
5405 cp->host_flags = 0;
5406 cp->extra_bytes = 0;
5409 * extreme data pointer.
5410 * shall be positive, so -1 is lower than lowest.:)
5412 cp->ext_sg = -1;
5413 cp->ext_ofs = 0;
5416 * Build the CDB and DATA descriptor block
5417 * and start the IO.
5419 return sym_setup_data_and_start(np, csio, cp);
5423 * Reset a SCSI target (all LUNs of this target).
5425 int sym_reset_scsi_target(hcb_p np, int target)
5427 tcb_p tp;
5429 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5430 return -1;
5432 tp = &np->target[target];
5433 tp->to_reset = 1;
5435 np->istat_sem = SEM;
5436 OUTB (nc_istat, SIGP|SEM);
5438 return 0;
5442 * Abort a SCSI IO.
5444 int sym_abort_ccb(hcb_p np, ccb_p cp, int timed_out)
5447 * Check that the IO is active.
5449 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5450 return -1;
5453 * If a previous abort didn't succeed in time,
5454 * perform a BUS reset.
5456 if (cp->to_abort) {
5457 sym_reset_scsi_bus(np, 1);
5458 return 0;
5462 * Mark the CCB for abort and allow time for.
5464 cp->to_abort = timed_out ? 2 : 1;
5467 * Tell the SCRIPTS processor to stop and synchronize with us.
5469 np->istat_sem = SEM;
5470 OUTB (nc_istat, SIGP|SEM);
5471 return 0;
5474 int sym_abort_scsiio(hcb_p np, cam_ccb_p ccb, int timed_out)
5476 ccb_p cp;
5477 SYM_QUEHEAD *qp;
5480 * Look up our CCB control block.
5482 cp = NULL;
5483 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5484 ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5485 if (cp2->cam_ccb == ccb) {
5486 cp = cp2;
5487 break;
5491 return sym_abort_ccb(np, cp, timed_out);
5495 * Complete execution of a SCSI command with extented
5496 * error, SCSI status error, or having been auto-sensed.
5498 * The SCRIPTS processor is not running there, so we
5499 * can safely access IO registers and remove JOBs from
5500 * the START queue.
5501 * SCRATCHA is assumed to have been loaded with STARTPOS
5502 * before the SCRIPTS called the C code.
5504 void sym_complete_error (hcb_p np, ccb_p cp)
5506 tcb_p tp;
5507 lcb_p lp;
5508 int resid;
5509 int i;
5512 * Paranoid check. :)
5514 if (!cp || !cp->cam_ccb)
5515 return;
5517 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5518 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
5519 cp->host_status, cp->ssss_status, cp->host_flags,
5520 cp->target, cp->lun);
5521 MDELAY(100);
5525 * Get target and lun pointers.
5527 tp = &np->target[cp->target];
5528 lp = sym_lp(np, tp, cp->lun);
5531 * Check for extended errors.
5533 if (cp->xerr_status) {
5534 if (sym_verbose)
5535 sym_print_xerr(cp, cp->xerr_status);
5536 if (cp->host_status == HS_COMPLETE)
5537 cp->host_status = HS_COMP_ERR;
5541 * Calculate the residual.
5543 resid = sym_compute_residual(np, cp);
5545 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5546 resid = 0; /* throw them away. :) */
5547 cp->sv_resid = 0;
5549 #ifdef DEBUG_2_0_X
5550 if (resid)
5551 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5552 #endif
5555 * Dequeue all queued CCBs for that device
5556 * not yet started by SCRIPTS.
5558 i = (INL (nc_scratcha) - np->squeue_ba) / 4;
5559 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
5562 * Restart the SCRIPTS processor.
5564 OUTL_DSP (SCRIPTA_BA (np, start));
5566 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5567 if (cp->host_status == HS_COMPLETE &&
5568 cp->ssss_status == S_QUEUE_FULL) {
5569 if (!lp || lp->started_tags - i < 2)
5570 goto weirdness;
5572 * Decrease queue depth as needed.
5574 lp->started_max = lp->started_tags - i - 1;
5575 lp->num_sgood = 0;
5577 if (sym_verbose >= 2) {
5578 PRINT_LUN(np, cp->target, cp->lun);
5579 printf(" queue depth is now %d\n", lp->started_max);
5583 * Repair the CCB.
5585 cp->host_status = HS_BUSY;
5586 cp->ssss_status = S_ILLEGAL;
5589 * Let's requeue it to device.
5591 sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
5592 goto finish;
5594 weirdness:
5595 #endif
5597 * Synchronize DMA map if needed.
5599 sym_data_dmamap_postsync(np, cp);
5602 * Build result in CAM ccb.
5604 sym_set_cam_result_error(np, cp, resid);
5606 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5607 finish:
5608 #endif
5610 * Add this one to the COMP queue.
5612 sym_remque(&cp->link_ccbq);
5613 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5616 * Complete all those commands with either error
5617 * or requeue condition.
5619 sym_flush_comp_queue(np, 0);
5621 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5623 * Donnot start more than 1 command after an error.
5625 if (lp)
5626 sym_start_next_ccbs(np, lp, 1);
5627 #endif
5631 * Complete execution of a successful SCSI command.
5633 * Only successful commands go to the DONE queue,
5634 * since we need to have the SCRIPTS processor
5635 * stopped on any error condition.
5636 * The SCRIPTS processor is running while we are
5637 * completing successful commands.
5639 void sym_complete_ok (hcb_p np, ccb_p cp)
5641 tcb_p tp;
5642 lcb_p lp;
5643 cam_ccb_p ccb;
5644 int resid;
5647 * Paranoid check. :)
5649 if (!cp || !cp->cam_ccb)
5650 return;
5651 assert (cp->host_status == HS_COMPLETE);
5654 * Get user command.
5656 ccb = cp->cam_ccb;
5659 * Get target and lun pointers.
5661 tp = &np->target[cp->target];
5662 lp = sym_lp(np, tp, cp->lun);
5665 * Assume device discovered on first success.
5667 if (!lp)
5668 sym_set_bit(tp->lun_map, cp->lun);
5671 * If all data have been transferred, given than no
5672 * extended error did occur, there is no residual.
5674 resid = 0;
5675 if (cp->phys.head.lastp != sym_goalp(cp))
5676 resid = sym_compute_residual(np, cp);
5679 * Wrong transfer residuals may be worse than just always
5680 * returning zero. User can disable this feature from
5681 * sym_conf.h. Residual support is enabled by default.
5683 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5684 resid = 0;
5685 #ifdef DEBUG_2_0_X
5686 if (resid)
5687 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5688 #endif
5691 * Synchronize DMA map if needed.
5693 sym_data_dmamap_postsync(np, cp);
5696 * Build result in CAM ccb.
5698 sym_set_cam_result_ok(np, cp, resid);
5700 #ifdef SYM_OPT_SNIFF_INQUIRY
5702 * On standard INQUIRY response (EVPD and CmDt
5703 * not set), sniff out device capabilities.
5705 if (cp->cdb_buf[0] == INQUIRY && !(cp->cdb_buf[1] & 0x3))
5706 sym_sniff_inquiry(np, cp->cam_ccb, resid);
5707 #endif
5709 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5711 * If max number of started ccbs had been reduced,
5712 * increase it if 200 good status received.
5714 if (lp && lp->started_max < lp->started_limit) {
5715 ++lp->num_sgood;
5716 if (lp->num_sgood >= 200) {
5717 lp->num_sgood = 0;
5718 ++lp->started_max;
5719 if (sym_verbose >= 2) {
5720 PRINT_LUN(np, cp->target, cp->lun);
5721 printf(" queue depth is now %d\n",
5722 lp->started_max);
5726 #endif
5729 * Free our CCB.
5731 sym_free_ccb (np, cp);
5733 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5735 * Requeue a couple of awaiting scsi commands.
5737 if (lp && !sym_que_empty(&lp->waiting_ccbq))
5738 sym_start_next_ccbs(np, lp, 2);
5739 #endif
5741 * Complete the command.
5743 sym_xpt_done(np, ccb);
5747 * Soft-attach the controller.
5749 #ifdef SYM_OPT_NVRAM_PRE_READ
5750 int sym_hcb_attach(hcb_p np, struct sym_fw *fw, struct sym_nvram *nvram)
5751 #else
5752 int sym_hcb_attach(hcb_p np, struct sym_fw *fw)
5753 #endif
5755 #ifndef SYM_OPT_NVRAM_PRE_READ
5756 struct sym_nvram nvram_buf, *nvram = &nvram_buf;
5757 #endif
5758 int i;
5761 * Get some info about the firmware.
5763 np->scripta_sz = fw->a_size;
5764 np->scriptb_sz = fw->b_size;
5765 np->scriptz_sz = fw->z_size;
5766 np->fw_setup = fw->setup;
5767 np->fw_patch = fw->patch;
5768 np->fw_name = fw->name;
5771 * Save setting of some IO registers, so we will
5772 * be able to probe specific implementations.
5774 sym_save_initial_setting (np);
5777 * Reset the chip now, since it has been reported
5778 * that SCSI clock calibration may not work properly
5779 * if the chip is currently active.
5781 sym_chip_reset (np);
5784 * Try to read the user set-up.
5786 #ifndef SYM_OPT_NVRAM_PRE_READ
5787 (void) sym_read_nvram(np, nvram);
5788 #endif
5791 * Prepare controller and devices settings, according
5792 * to chip features, user set-up and driver set-up.
5794 (void) sym_prepare_setting(np, nvram);
5797 * Check the PCI clock frequency.
5798 * Must be performed after prepare_setting since it destroys
5799 * STEST1 that is used to probe for the clock doubler.
5801 i = sym_getpciclock(np);
5802 if (i > 37000 && !(np->features & FE_66MHZ))
5803 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5804 sym_name(np), i);
5807 * Allocate the start queue.
5809 np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5810 if (!np->squeue)
5811 goto attach_failed;
5812 np->squeue_ba = vtobus(np->squeue);
5815 * Allocate the done queue.
5817 np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5818 if (!np->dqueue)
5819 goto attach_failed;
5820 np->dqueue_ba = vtobus(np->dqueue);
5823 * Allocate the target bus address array.
5825 np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
5826 if (!np->targtbl)
5827 goto attach_failed;
5828 np->targtbl_ba = vtobus(np->targtbl);
5831 * Allocate SCRIPTS areas.
5833 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5834 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5835 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5836 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5837 goto attach_failed;
5840 * Allocate the array of lists of CCBs hashed by DSA.
5842 np->ccbh = sym_calloc(sizeof(ccb_p *)*CCB_HASH_SIZE, "CCBH");
5843 if (!np->ccbh)
5844 goto attach_failed;
5847 * Initialyze the CCB free and busy queues.
5849 sym_que_init(&np->free_ccbq);
5850 sym_que_init(&np->busy_ccbq);
5851 sym_que_init(&np->comp_ccbq);
5854 * Initializations for optional handling
5855 * of IO timeouts and device queueing.
5857 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
5858 sym_que_init(&np->tmo0_ccbq);
5859 np->tmo_ccbq =
5860 sym_calloc(2*SYM_CONF_TIMEOUT_ORDER_MAX*sizeof(SYM_QUEHEAD),
5861 "TMO_CCBQ");
5862 for (i = 0 ; i < 2*SYM_CONF_TIMEOUT_ORDER_MAX ; i++)
5863 sym_que_init(&np->tmo_ccbq[i]);
5864 #endif
5865 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5866 sym_que_init(&np->dummy_ccbq);
5867 #endif
5869 * Allocate some CCB. We need at least ONE.
5871 if (!sym_alloc_ccb(np))
5872 goto attach_failed;
5875 * Calculate BUS addresses where we are going
5876 * to load the SCRIPTS.
5878 np->scripta_ba = vtobus(np->scripta0);
5879 np->scriptb_ba = vtobus(np->scriptb0);
5880 np->scriptz_ba = vtobus(np->scriptz0);
5882 if (np->ram_ba) {
5883 np->scripta_ba = np->ram_ba;
5884 if (np->features & FE_RAM8K) {
5885 np->ram_ws = 8192;
5886 np->scriptb_ba = np->scripta_ba + 4096;
5887 #if 0 /* May get useful for 64 BIT PCI addressing */
5888 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5889 #endif
5891 else
5892 np->ram_ws = 4096;
5896 * Copy scripts to controller instance.
5898 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5899 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5900 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5903 * Setup variable parts in scripts and compute
5904 * scripts bus addresses used from the C code.
5906 np->fw_setup(np, fw);
5909 * Bind SCRIPTS with physical addresses usable by the
5910 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5912 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5913 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5914 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5916 #ifdef SYM_CONF_IARB_SUPPORT
5918 * If user wants IARB to be set when we win arbitration
5919 * and have other jobs, compute the max number of consecutive
5920 * settings of IARB hints before we leave devices a chance to
5921 * arbitrate for reselection.
5923 #ifdef SYM_SETUP_IARB_MAX
5924 np->iarb_max = SYM_SETUP_IARB_MAX;
5925 #else
5926 np->iarb_max = 4;
5927 #endif
5928 #endif
5931 * Prepare the idle and invalid task actions.
5933 np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5934 np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
5935 np->idletask_ba = vtobus(&np->idletask);
5937 np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5938 np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
5939 np->notask_ba = vtobus(&np->notask);
5941 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5942 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
5943 np->bad_itl_ba = vtobus(&np->bad_itl);
5945 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle));
5946 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
5947 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5950 * Allocate and prepare the lun JUMP table that is used
5951 * for a target prior the probing of devices (bad lun table).
5952 * A private table will be allocated for the target on the
5953 * first INQUIRY response received.
5955 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5956 if (!np->badluntbl)
5957 goto attach_failed;
5959 np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
5960 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5961 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5964 * Prepare the bus address array that contains the bus
5965 * address of each target control block.
5966 * For now, assume all logical units are wrong. :)
5968 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5969 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5970 np->target[i].head.luntbl_sa =
5971 cpu_to_scr(vtobus(np->badluntbl));
5972 np->target[i].head.lun0_sa =
5973 cpu_to_scr(vtobus(&np->badlun_sa));
5977 * Now check the cache handling of the pci chipset.
5979 if (sym_snooptest (np)) {
5980 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5981 goto attach_failed;
5985 * Sigh! we are done.
5987 return 0;
5989 attach_failed:
5990 return -ENXIO;
5994 * Free everything that has been allocated for this device.
5996 void sym_hcb_free(hcb_p np)
5998 SYM_QUEHEAD *qp;
5999 ccb_p cp;
6000 tcb_p tp;
6001 lcb_p lp;
6002 int target, lun;
6004 if (np->scriptz0)
6005 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
6006 if (np->scriptb0)
6007 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
6008 if (np->scripta0)
6009 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
6010 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
6011 if (np->tmo_ccbq)
6012 sym_mfree(np->tmo_ccbq,
6013 2*SYM_CONF_TIMEOUT_ORDER_MAX*sizeof(SYM_QUEHEAD),
6014 "TMO_CCBQ");
6015 #endif
6016 if (np->squeue)
6017 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
6018 if (np->dqueue)
6019 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
6021 if (np->actccbs) {
6022 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
6023 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
6024 sym_data_dmamap_destroy(np, cp);
6025 sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN,
6026 "SNS_BBUF");
6027 sym_mfree_dma(cp, sizeof(*cp), "CCB");
6030 if (np->ccbh)
6031 sym_mfree(np->ccbh, sizeof(ccb_p *)*CCB_HASH_SIZE, "CCBH");
6033 if (np->badluntbl)
6034 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
6036 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
6037 tp = &np->target[target];
6038 for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
6039 lp = sym_lp(np, tp, lun);
6040 if (!lp)
6041 continue;
6042 if (lp->itlq_tbl)
6043 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
6044 "ITLQ_TBL");
6045 if (lp->cb_tags)
6046 sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
6047 "CB_TAGS");
6048 sym_mfree_dma(lp, sizeof(*lp), "LCB");
6050 #if SYM_CONF_MAX_LUN > 1
6051 if (tp->lunmp)
6052 sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
6053 "LUNMP");
6054 #endif
6056 if (np->targtbl)
6057 sym_mfree_dma(np->targtbl, 256, "TARGTBL");