2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
18 * Other major contributions:
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *-----------------------------------------------------------------------------
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. The name of the author may not be used to endorse or promote products
31 * derived from this software without specific prior written permission.
33 * Where this Software is combined with software released under the terms of
34 * the GNU Public License ("GPL") and the terms of the GPL would require the
35 * combined work to also be released under the terms of the GPL, the terms
36 * and conditions of this License will apply in addition to those of the
37 * GPL with the exception of any terms or conditions of this License that
38 * conflict with, or are expressly prohibited by, the GPL.
40 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
44 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 #include "sym_nvram.h"
56 #define SYM_DEBUG_GENERIC_SUPPORT
60 * Needed function prototypes.
62 static void sym_int_ma (hcb_p np
);
63 static void sym_int_sir (hcb_p np
);
64 static ccb_p
sym_alloc_ccb(hcb_p np
);
65 static ccb_p
sym_ccb_from_dsa(hcb_p np
, u32 dsa
);
66 static void sym_alloc_lcb_tags (hcb_p np
, u_char tn
, u_char ln
);
67 static void sym_complete_error (hcb_p np
, ccb_p cp
);
68 static void sym_complete_ok (hcb_p np
, ccb_p cp
);
69 static int sym_compute_residual(hcb_p np
, ccb_p cp
);
72 * Returns the name of this driver.
74 char *sym_driver_name(void)
76 return SYM_DRIVER_NAME
;
79 * Print a buffer in hexadecimal format.
81 static void sym_printb_hex (u_char
*p
, int n
)
88 * Same with a label at beginning and .\n at end.
90 static void sym_printl_hex (char *label
, u_char
*p
, int n
)
93 sym_printb_hex (p
, n
);
98 * Print something which allows to retrieve the controler type,
99 * unit, target, lun concerned by a kernel message.
101 static void sym_print_target (hcb_p np
, int target
)
103 printf ("%s:%d:", sym_name(np
), target
);
106 static void sym_print_lun(hcb_p np
, int target
, int lun
)
108 printf ("%s:%d:%d:", sym_name(np
), target
, lun
);
112 * Print out the content of a SCSI message.
114 static int sym_show_msg (u_char
* msg
)
118 if (*msg
==M_EXTENDED
) {
120 if (i
-1>msg
[1]) break;
121 printf ("-%x",msg
[i
]);
124 } else if ((*msg
& 0xf0) == 0x20) {
125 printf ("-%x",msg
[1]);
131 static void sym_print_msg (ccb_p cp
, char *label
, u_char
*msg
)
135 printf ("%s: ", label
);
137 (void) sym_show_msg (msg
);
141 static void sym_print_nego_msg (hcb_p np
, int target
, char *label
, u_char
*msg
)
143 PRINT_TARGET(np
, target
);
145 printf ("%s: ", label
);
147 (void) sym_show_msg (msg
);
152 * Print something that tells about extended errors.
154 void sym_print_xerr(ccb_p cp
, int x_status
)
156 if (x_status
& XE_PARITY_ERR
) {
158 printf ("unrecovered SCSI parity error.\n");
160 if (x_status
& XE_EXTRA_DATA
) {
162 printf ("extraneous data discarded.\n");
164 if (x_status
& XE_BAD_PHASE
) {
166 printf ("illegal scsi phase (4/5).\n");
168 if (x_status
& XE_SODL_UNRUN
) {
170 printf ("ODD transfer in DATA OUT phase.\n");
172 if (x_status
& XE_SWIDE_OVRUN
) {
174 printf ("ODD transfer in DATA IN phase.\n");
179 * Return a string for SCSI BUS mode.
181 static char *sym_scsi_bus_mode(int mode
)
184 case SMODE_HVD
: return "HVD";
185 case SMODE_SE
: return "SE";
186 case SMODE_LVD
: return "LVD";
192 * Soft reset the chip.
194 * Raising SRST when the chip is running may cause
195 * problems on dual function chips (see below).
196 * On the other hand, LVD devices need some delay
197 * to settle and report actual BUS mode in STEST4.
199 static void sym_chip_reset (hcb_p np
)
201 OUTB (nc_istat
, SRST
);
204 UDELAY(2000); /* For BUS MODE to settle */
208 * Really soft reset the chip.:)
210 * Some 896 and 876 chip revisions may hang-up if we set
211 * the SRST (soft reset) bit at the wrong time when SCRIPTS
213 * So, we need to abort the current operation prior to
214 * soft resetting the chip.
216 static void sym_soft_reset (hcb_p np
)
221 if (!(np
->features
& FE_ISTAT1
) || !(INB (nc_istat1
) & SCRUN
))
224 OUTB (nc_istat
, CABRT
);
225 for (i
= 100000 ; i
; --i
) {
226 istat
= INB (nc_istat
);
230 else if (istat
& DIP
) {
231 if (INB (nc_dstat
) & ABRT
)
238 printf("%s: unable to abort current chip operation, "
239 "ISTAT=0x%02x.\n", sym_name(np
), istat
);
245 * Start reset process.
247 * The interrupt handler will reinitialize the chip.
249 static void sym_start_reset(hcb_p np
)
251 (void) sym_reset_scsi_bus(np
, 1);
254 int sym_reset_scsi_bus(hcb_p np
, int enab_int
)
259 sym_soft_reset(np
); /* Soft reset the chip */
263 * Enable Tolerant, reset IRQD if present and
264 * properly set IRQ mode, prior to resetting the bus.
266 OUTB (nc_stest3
, TE
);
267 OUTB (nc_dcntl
, (np
->rv_dcntl
& IRQM
));
268 OUTB (nc_scntl1
, CRST
);
271 if (!SYM_SETUP_SCSI_BUS_CHECK
)
274 * Check for no terminators or SCSI bus shorts to ground.
275 * Read SCSI data bus, data parity bits and control signals.
276 * We are expecting RESET to be TRUE and other signals to be
279 term
= INB(nc_sstat0
);
280 term
= ((term
& 2) << 7) + ((term
& 1) << 17); /* rst sdp0 */
281 term
|= ((INB(nc_sstat2
) & 0x01) << 26) | /* sdp1 */
282 ((INW(nc_sbdl
) & 0xff) << 9) | /* d7-0 */
283 ((INW(nc_sbdl
) & 0xff00) << 10) | /* d15-8 */
284 INB(nc_sbcl
); /* req ack bsy sel atn msg cd io */
289 if (term
!= (2<<7)) {
290 printf("%s: suspicious SCSI data while resetting the BUS.\n",
292 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
293 "0x%lx, expecting 0x%lx\n",
295 (np
->features
& FE_WIDE
) ? "dp1,d15-8," : "",
296 (u_long
)term
, (u_long
)(2<<7));
297 if (SYM_SETUP_SCSI_BUS_CHECK
== 1)
307 * Select SCSI clock frequency
309 static void sym_selectclock(hcb_p np
, u_char scntl3
)
312 * If multiplier not present or not selected, leave here.
314 if (np
->multiplier
<= 1) {
315 OUTB(nc_scntl3
, scntl3
);
319 if (sym_verbose
>= 2)
320 printf ("%s: enabling clock multiplier\n", sym_name(np
));
322 OUTB(nc_stest1
, DBLEN
); /* Enable clock multiplier */
324 * Wait for the LCKFRQ bit to be set if supported by the chip.
325 * Otherwise wait 50 micro-seconds (at least).
327 if (np
->features
& FE_LCKFRQ
) {
329 while (!(INB(nc_stest4
) & LCKFRQ
) && --i
> 0)
332 printf("%s: the chip cannot lock the frequency\n",
336 OUTB(nc_stest3
, HSC
); /* Halt the scsi clock */
337 OUTB(nc_scntl3
, scntl3
);
338 OUTB(nc_stest1
, (DBLEN
|DBLSEL
));/* Select clock multiplier */
339 OUTB(nc_stest3
, 0x00); /* Restart scsi clock */
344 * Determine the chip's clock frequency.
346 * This is essential for the negotiation of the synchronous
349 * Note: we have to return the correct value.
350 * THERE IS NO SAFE DEFAULT VALUE.
352 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
353 * 53C860 and 53C875 rev. 1 support fast20 transfers but
354 * do not have a clock doubler and so are provided with a
355 * 80 MHz clock. All other fast20 boards incorporate a doubler
356 * and so should be delivered with a 40 MHz clock.
357 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
358 * clock and provide a clock quadrupler (160 Mhz).
362 * calculate SCSI clock frequency (in KHz)
364 static unsigned getfreq (hcb_p np
, int gen
)
370 * Measure GEN timer delay in order
371 * to calculate SCSI clock frequency
373 * This code will never execute too
374 * many loop iterations (if DELAY is
375 * reasonably correct). It could get
376 * too low a delay (too high a freq.)
377 * if the CPU is slow executing the
378 * loop for some reason (an NMI, for
379 * example). For this reason we will
380 * if multiple measurements are to be
381 * performed trust the higher delay
382 * (lower frequency returned).
384 OUTW (nc_sien
, 0); /* mask all scsi interrupts */
385 (void) INW (nc_sist
); /* clear pending scsi interrupt */
386 OUTB (nc_dien
, 0); /* mask all dma interrupts */
387 (void) INW (nc_sist
); /* another one, just to be sure :) */
389 * The C1010-33 core does not report GEN in SIST,
390 * if this interrupt is masked in SIEN.
391 * I don't know yet if the C1010-66 behaves the same way.
393 if (np
->features
& FE_C10
) {
395 OUTB (nc_istat1
, SIRQD
);
397 OUTB (nc_scntl3
, 4); /* set pre-scaler to divide by 3 */
398 OUTB (nc_stime1
, 0); /* disable general purpose timer */
399 OUTB (nc_stime1
, gen
); /* set to nominal delay of 1<<gen * 125us */
400 while (!(INW(nc_sist
) & GEN
) && ms
++ < 100000)
401 UDELAY (1000/4);/* count in 1/4 of ms */
402 OUTB (nc_stime1
, 0); /* disable general purpose timer */
404 * Undo C1010-33 specific settings.
406 if (np
->features
& FE_C10
) {
411 * set prescaler to divide by whatever 0 means
412 * 0 ought to choose divide by 2, but appears
413 * to set divide by 3.5 mode in my 53c810 ...
418 * adjust for prescaler, and convert into KHz
420 f
= ms
? ((1 << gen
) * (4340*4)) / ms
: 0;
423 * The C1010-33 result is biased by a factor
424 * of 2/3 compared to earlier chips.
426 if (np
->features
& FE_C10
)
429 if (sym_verbose
>= 2)
430 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
431 sym_name(np
), gen
, ms
/4, f
);
436 static unsigned sym_getfreq (hcb_p np
)
441 (void) getfreq (np
, gen
); /* throw away first result */
442 f1
= getfreq (np
, gen
);
443 f2
= getfreq (np
, gen
);
444 if (f1
> f2
) f1
= f2
; /* trust lower result */
449 * Get/probe chip SCSI clock frequency
451 static void sym_getclock (hcb_p np
, int mult
)
453 unsigned char scntl3
= np
->sv_scntl3
;
454 unsigned char stest1
= np
->sv_stest1
;
460 * True with 875/895/896/895A with clock multiplier selected
462 if (mult
> 1 && (stest1
& (DBLEN
+DBLSEL
)) == DBLEN
+DBLSEL
) {
463 if (sym_verbose
>= 2)
464 printf ("%s: clock multiplier found\n", sym_name(np
));
465 np
->multiplier
= mult
;
469 * If multiplier not found or scntl3 not 7,5,3,
470 * reset chip and get frequency from general purpose timer.
471 * Otherwise trust scntl3 BIOS setting.
473 if (np
->multiplier
!= mult
|| (scntl3
& 7) < 3 || !(scntl3
& 1)) {
474 OUTB (nc_stest1
, 0); /* make sure doubler is OFF */
475 f1
= sym_getfreq (np
);
478 printf ("%s: chip clock is %uKHz\n", sym_name(np
), f1
);
480 if (f1
< 45000) f1
= 40000;
481 else if (f1
< 55000) f1
= 50000;
484 if (f1
< 80000 && mult
> 1) {
485 if (sym_verbose
>= 2)
486 printf ("%s: clock multiplier assumed\n",
488 np
->multiplier
= mult
;
491 if ((scntl3
& 7) == 3) f1
= 40000;
492 else if ((scntl3
& 7) == 5) f1
= 80000;
495 f1
/= np
->multiplier
;
499 * Compute controller synchronous parameters.
501 f1
*= np
->multiplier
;
506 * Get/probe PCI clock frequency
508 static int sym_getpciclock (hcb_p np
)
513 * For now, we only need to know about the actual
514 * PCI BUS clock frequency for C1010-66 chips.
517 if (np
->features
& FE_66MHZ
) {
521 OUTB (nc_stest1
, SCLK
); /* Use the PCI clock as SCSI clock */
522 f
= (int) sym_getfreq (np
);
531 * SYMBIOS chip clock divisor table.
533 * Divisors are multiplied by 10,000,000 in order to make
534 * calculations more simple.
537 static u32 div_10M
[] = {2*_5M
, 3*_5M
, 4*_5M
, 6*_5M
, 8*_5M
, 12*_5M
, 16*_5M
};
540 * Get clock factor and sync divisor for a given
541 * synchronous factor period.
544 sym_getsync(hcb_p np
, u_char dt
, u_char sfac
, u_char
*divp
, u_char
*fakp
)
546 u32 clk
= np
->clock_khz
; /* SCSI clock frequency in kHz */
547 int div
= np
->clock_divn
; /* Number of divisors supported */
548 u32 fak
; /* Sync factor in sxfer */
549 u32 per
; /* Period in tenths of ns */
550 u32 kpc
; /* (per * clk) */
554 * Compute the synchronous period in tenths of nano-seconds
556 if (dt
&& sfac
<= 9) per
= 125;
557 else if (sfac
<= 10) per
= 250;
558 else if (sfac
== 11) per
= 303;
559 else if (sfac
== 12) per
= 500;
560 else per
= 40 * sfac
;
568 * For earliest C10 revision 0, we cannot use extra
569 * clocks for the setting of the SCSI clocking.
570 * Note that this limits the lowest sync data transfer
571 * to 5 Mega-transfers per second and may result in
572 * using higher clock divisors.
575 if ((np
->features
& (FE_C10
|FE_U3EN
)) == FE_C10
) {
577 * Look for the lowest clock divisor that allows an
578 * output speed not faster than the period.
582 if (kpc
> (div_10M
[div
] << 2)) {
587 fak
= 0; /* No extra clocks */
588 if (div
== np
->clock_divn
) { /* Are we too fast ? */
598 * Look for the greatest clock divisor that allows an
599 * input speed faster than the period.
602 if (kpc
>= (div_10M
[div
] << 2)) break;
605 * Calculate the lowest clock factor that allows an output
606 * speed not faster than the period, and the max output speed.
607 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
608 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
611 fak
= (kpc
- 1) / (div_10M
[div
] << 1) + 1 - 2;
612 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
614 fak
= (kpc
- 1) / div_10M
[div
] + 1 - 4;
615 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
619 * Check against our hardware limits, or bugs :).
627 * Compute and return sync parameters.
636 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
637 * 128 transfers. All chips support at least 16 transfers
638 * bursts. The 825A, 875 and 895 chips support bursts of up
639 * to 128 transfers and the 895A and 896 support bursts of up
640 * to 64 transfers. All other chips support up to 16
643 * For PCI 32 bit data transfers each transfer is a DWORD.
644 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
646 * We use log base 2 (burst length) as internal code, with
647 * value 0 meaning "burst disabled".
651 * Burst length from burst code.
653 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
656 * Burst code from io register bits.
658 #define burst_code(dmode, ctest4, ctest5) \
659 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
662 * Set initial io register bits from burst code.
664 static __inline
void sym_init_burst(hcb_p np
, u_char bc
)
666 np
->rv_ctest4
&= ~0x80;
667 np
->rv_dmode
&= ~(0x3 << 6);
668 np
->rv_ctest5
&= ~0x4;
671 np
->rv_ctest4
|= 0x80;
675 np
->rv_dmode
|= ((bc
& 0x3) << 6);
676 np
->rv_ctest5
|= (bc
& 0x4);
682 * Print out the list of targets that have some flag disabled by user.
684 static void sym_print_targets_flag(hcb_p np
, int mask
, char *msg
)
689 for (cnt
= 0, i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
692 if (np
->target
[i
].usrflags
& mask
) {
694 printf("%s: %s disabled for targets",
704 * Save initial settings of some IO registers.
705 * Assumed to have been set by BIOS.
706 * We cannot reset the chip prior to reading the
707 * IO registers, since informations will be lost.
708 * Since the SCRIPTS processor may be running, this
709 * is not safe on paper, but it seems to work quite
712 static void sym_save_initial_setting (hcb_p np
)
714 np
->sv_scntl0
= INB(nc_scntl0
) & 0x0a;
715 np
->sv_scntl3
= INB(nc_scntl3
) & 0x07;
716 np
->sv_dmode
= INB(nc_dmode
) & 0xce;
717 np
->sv_dcntl
= INB(nc_dcntl
) & 0xa8;
718 np
->sv_ctest3
= INB(nc_ctest3
) & 0x01;
719 np
->sv_ctest4
= INB(nc_ctest4
) & 0x80;
720 np
->sv_gpcntl
= INB(nc_gpcntl
);
721 np
->sv_stest1
= INB(nc_stest1
);
722 np
->sv_stest2
= INB(nc_stest2
) & 0x20;
723 np
->sv_stest4
= INB(nc_stest4
);
724 if (np
->features
& FE_C10
) { /* Always large DMA fifo + ultra3 */
725 np
->sv_scntl4
= INB(nc_scntl4
);
726 np
->sv_ctest5
= INB(nc_ctest5
) & 0x04;
729 np
->sv_ctest5
= INB(nc_ctest5
) & 0x24;
733 static u32
parisc_setup_hcb(hcb_p np
, u32 period
)
735 unsigned long pdc_period
;
737 struct hardware_path hwpath
;
739 /* Host firmware (PDC) keeps a table for crippling SCSI capabilities.
740 * Many newer machines export one channel of 53c896 chip
741 * as SE, 50-pin HD. Also used for Multi-initiator SCSI clusters
742 * to set the SCSI Initiator ID.
744 get_pci_node_path(np
->s
.device
, &hwpath
);
745 if (!pdc_get_initiator(&hwpath
, &np
->myaddr
, &pdc_period
,
746 &np
->maxwide
, &scsi_mode
))
749 if (scsi_mode
>= 0) {
750 /* C3000 PDC reports period/mode */
751 SYM_SETUP_SCSI_DIFF
= 0;
753 case 0: np
->scsi_mode
= SMODE_SE
; break;
754 case 1: np
->scsi_mode
= SMODE_HVD
; break;
755 case 2: np
->scsi_mode
= SMODE_LVD
; break;
760 return (u32
) pdc_period
;
763 static inline int parisc_setup_hcb(hcb_p np
, u32 period
) { return period
; }
766 * Prepare io register values used by sym_start_up()
767 * according to selected and supported features.
769 static int sym_prepare_setting(hcb_p np
, struct sym_nvram
*nvram
)
778 np
->maxwide
= (np
->features
& FE_WIDE
)? 1 : 0;
781 * Guess the frequency of the chip's clock.
783 if (np
->features
& (FE_ULTRA3
| FE_ULTRA2
))
784 np
->clock_khz
= 160000;
785 else if (np
->features
& FE_ULTRA
)
786 np
->clock_khz
= 80000;
788 np
->clock_khz
= 40000;
791 * Get the clock multiplier factor.
793 if (np
->features
& FE_QUAD
)
795 else if (np
->features
& FE_DBLR
)
801 * Measure SCSI clock frequency for chips
802 * it may vary from assumed one.
804 if (np
->features
& FE_VARCLK
)
805 sym_getclock(np
, np
->multiplier
);
808 * Divisor to be used for async (timer pre-scaler).
810 i
= np
->clock_divn
- 1;
812 if (10ul * SYM_CONF_MIN_ASYNC
* np
->clock_khz
> div_10M
[i
]) {
820 * The C1010 uses hardwired divisors for async.
821 * So, we just throw away, the async. divisor.:-)
823 if (np
->features
& FE_C10
)
827 * Minimum synchronous period factor supported by the chip.
828 * Btw, 'period' is in tenths of nanoseconds.
830 period
= (4 * div_10M
[0] + np
->clock_khz
- 1) / np
->clock_khz
;
832 period
= parisc_setup_hcb(np
, period
);
834 if (period
<= 250) np
->minsync
= 10;
835 else if (period
<= 303) np
->minsync
= 11;
836 else if (period
<= 500) np
->minsync
= 12;
837 else np
->minsync
= (period
+ 40 - 1) / 40;
840 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
842 if (np
->minsync
< 25 &&
843 !(np
->features
& (FE_ULTRA
|FE_ULTRA2
|FE_ULTRA3
)))
845 else if (np
->minsync
< 12 &&
846 !(np
->features
& (FE_ULTRA2
|FE_ULTRA3
)))
850 * Maximum synchronous period factor supported by the chip.
852 period
= (11 * div_10M
[np
->clock_divn
- 1]) / (4 * np
->clock_khz
);
853 np
->maxsync
= period
> 2540 ? 254 : period
/ 10;
856 * If chip is a C1010, guess the sync limits in DT mode.
858 if ((np
->features
& (FE_C10
|FE_ULTRA3
)) == (FE_C10
|FE_ULTRA3
)) {
859 if (np
->clock_khz
== 160000) {
862 np
->maxoffs_dt
= nvram
->type
? 62 : 31;
867 * 64 bit addressing (895A/896/1010) ?
869 if (np
->features
& FE_DAC
) {
870 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
871 np
->rv_ccntl1
|= (DDAC
);
872 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
874 np
->rv_ccntl1
|= (DDAC
);
876 np
->rv_ccntl1
|= (XTIMOD
| EXTIBMV
);
877 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
879 np
->rv_ccntl1
|= (DDAC
);
881 np
->rv_ccntl1
|= (0 | EXTIBMV
);
886 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
888 if (np
->features
& FE_NOPM
)
889 np
->rv_ccntl0
|= (ENPMJ
);
892 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
893 * In dual channel mode, contention occurs if internal cycles
894 * are used. Disable internal cycles.
896 if (np
->device_id
== PCI_ID_LSI53C1010_33
&&
897 np
->revision_id
< 0x1)
898 np
->rv_ccntl0
|= DILS
;
901 * Select burst length (dwords)
903 burst_max
= SYM_SETUP_BURST_ORDER
;
904 if (burst_max
== 255)
905 burst_max
= burst_code(np
->sv_dmode
, np
->sv_ctest4
,
909 if (burst_max
> np
->maxburst
)
910 burst_max
= np
->maxburst
;
913 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
914 * This chip and the 860 Rev 1 may wrongly use PCI cache line
915 * based transactions on LOAD/STORE instructions. So we have
916 * to prevent these chips from using such PCI transactions in
917 * this driver. The generic ncr driver that does not use
918 * LOAD/STORE instructions does not need this work-around.
920 if ((np
->device_id
== PCI_ID_SYM53C810
&&
921 np
->revision_id
>= 0x10 && np
->revision_id
<= 0x11) ||
922 (np
->device_id
== PCI_ID_SYM53C860
&&
923 np
->revision_id
<= 0x1))
924 np
->features
&= ~(FE_WRIE
|FE_ERL
|FE_ERMP
);
927 * Select all supported special features.
928 * If we are using on-board RAM for scripts, prefetch (PFEN)
929 * does not help, but burst op fetch (BOF) does.
930 * Disabling PFEN makes sure BOF will be used.
932 if (np
->features
& FE_ERL
)
933 np
->rv_dmode
|= ERL
; /* Enable Read Line */
934 if (np
->features
& FE_BOF
)
935 np
->rv_dmode
|= BOF
; /* Burst Opcode Fetch */
936 if (np
->features
& FE_ERMP
)
937 np
->rv_dmode
|= ERMP
; /* Enable Read Multiple */
939 if ((np
->features
& FE_PFEN
) && !np
->ram_ba
)
941 if (np
->features
& FE_PFEN
)
943 np
->rv_dcntl
|= PFEN
; /* Prefetch Enable */
944 if (np
->features
& FE_CLSE
)
945 np
->rv_dcntl
|= CLSE
; /* Cache Line Size Enable */
946 if (np
->features
& FE_WRIE
)
947 np
->rv_ctest3
|= WRIE
; /* Write and Invalidate */
948 if (np
->features
& FE_DFS
)
949 np
->rv_ctest5
|= DFS
; /* Dma Fifo Size */
954 if (SYM_SETUP_PCI_PARITY
)
955 np
->rv_ctest4
|= MPEE
; /* Master parity checking */
956 if (SYM_SETUP_SCSI_PARITY
)
957 np
->rv_scntl0
|= 0x0a; /* full arb., ena parity, par->ATN */
960 * Get parity checking, host ID and verbose mode from NVRAM
963 sym_nvram_setup_host (np
, nvram
);
966 * Get SCSI addr of host adapter (set by bios?).
968 if (np
->myaddr
== 255) {
969 np
->myaddr
= INB(nc_scid
) & 0x07;
971 np
->myaddr
= SYM_SETUP_HOST_ID
;
975 * Prepare initial io register bits for burst length
977 sym_init_burst(np
, burst_max
);
981 * - LVD capable chips (895/895A/896/1010) report the
982 * current BUS mode through the STEST4 IO register.
983 * - For previous generation chips (825/825A/875),
984 * user has to tell us how to check against HVD,
985 * since a 100% safe algorithm is not possible.
987 np
->scsi_mode
= SMODE_SE
;
988 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
))
989 np
->scsi_mode
= (np
->sv_stest4
& SMODE
);
990 else if (np
->features
& FE_DIFF
) {
991 if (SYM_SETUP_SCSI_DIFF
== 1) {
993 if (np
->sv_stest2
& 0x20)
994 np
->scsi_mode
= SMODE_HVD
;
996 else if (nvram
->type
== SYM_SYMBIOS_NVRAM
) {
997 if (!(INB(nc_gpreg
) & 0x08))
998 np
->scsi_mode
= SMODE_HVD
;
1001 else if (SYM_SETUP_SCSI_DIFF
== 2)
1002 np
->scsi_mode
= SMODE_HVD
;
1004 if (np
->scsi_mode
== SMODE_HVD
)
1005 np
->rv_stest2
|= 0x20;
1008 * Set LED support from SCRIPTS.
1009 * Ignore this feature for boards known to use a
1010 * specific GPIO wiring and for the 895A, 896
1011 * and 1010 that drive the LED directly.
1013 if ((SYM_SETUP_SCSI_LED
||
1014 (nvram
->type
== SYM_SYMBIOS_NVRAM
||
1015 (nvram
->type
== SYM_TEKRAM_NVRAM
&&
1016 np
->device_id
== PCI_ID_SYM53C895
))) &&
1017 !(np
->features
& FE_LEDC
) && !(np
->sv_gpcntl
& 0x01))
1018 np
->features
|= FE_LED0
;
1023 switch(SYM_SETUP_IRQ_MODE
& 3) {
1025 np
->rv_dcntl
|= IRQM
;
1028 np
->rv_dcntl
|= (np
->sv_dcntl
& IRQM
);
1035 * Configure targets according to driver setup.
1036 * If NVRAM present get targets setup from NVRAM.
1038 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
1039 tcb_p tp
= &np
->target
[i
];
1041 tp
->usrflags
|= (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
1042 tp
->usrtags
= SYM_SETUP_MAX_TAG
;
1044 sym_nvram_setup_target (np
, i
, nvram
);
1047 tp
->usrflags
&= ~SYM_TAGS_ENABLED
;
1051 * Let user know about the settings.
1054 printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np
),
1055 i
== SYM_SYMBIOS_NVRAM
? "Symbios" :
1056 (i
== SYM_TEKRAM_NVRAM
? "Tekram" : "No"),
1058 (np
->features
& FE_ULTRA3
) ? 80 :
1059 (np
->features
& FE_ULTRA2
) ? 40 :
1060 (np
->features
& FE_ULTRA
) ? 20 : 10,
1061 sym_scsi_bus_mode(np
->scsi_mode
),
1062 (np
->rv_scntl0
& 0xa) ? "parity checking" : "NO parity");
1064 * Tell him more on demand.
1067 printf("%s: %s IRQ line driver%s\n",
1069 np
->rv_dcntl
& IRQM
? "totem pole" : "open drain",
1070 np
->ram_ba
? ", using on-chip SRAM" : "");
1071 printf("%s: using %s firmware.\n", sym_name(np
), np
->fw_name
);
1072 if (np
->features
& FE_NOPM
)
1073 printf("%s: handling phase mismatch from SCRIPTS.\n",
1079 if (sym_verbose
>= 2) {
1080 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1081 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1082 sym_name(np
), np
->sv_scntl3
, np
->sv_dmode
, np
->sv_dcntl
,
1083 np
->sv_ctest3
, np
->sv_ctest4
, np
->sv_ctest5
);
1085 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
1086 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
1087 sym_name(np
), np
->rv_scntl3
, np
->rv_dmode
, np
->rv_dcntl
,
1088 np
->rv_ctest3
, np
->rv_ctest4
, np
->rv_ctest5
);
1091 * Let user be aware of targets that have some disable flags set.
1093 sym_print_targets_flag(np
, SYM_SCAN_BOOT_DISABLED
, "SCAN AT BOOT");
1095 sym_print_targets_flag(np
, SYM_SCAN_LUNS_DISABLED
,
1102 * Test the pci bus snoop logic :-(
1104 * Has to be called with interrupts disabled.
1106 #ifndef SYM_CONF_IOMAPPED
1107 static int sym_regtest (hcb_p np
)
1109 register volatile u32 data
;
1111 * chip registers may NOT be cached.
1112 * write 0xffffffff to a read only register area,
1113 * and try to read it back.
1116 OUTL_OFF(offsetof(struct sym_reg
, nc_dstat
), data
);
1117 data
= INL_OFF(offsetof(struct sym_reg
, nc_dstat
));
1119 if (data
== 0xffffffff) {
1121 if ((data
& 0xe2f0fffd) != 0x02000080) {
1123 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1131 static int sym_snooptest (hcb_p np
)
1133 u32 sym_rd
, sym_wr
, sym_bk
, host_rd
, host_wr
, pc
, dstat
;
1135 #ifndef SYM_CONF_IOMAPPED
1136 err
|= sym_regtest (np
);
1137 if (err
) return (err
);
1141 * Enable Master Parity Checking as we intend
1142 * to enable it for normal operations.
1144 OUTB (nc_ctest4
, (np
->rv_ctest4
& MPEE
));
1148 pc
= SCRIPTZ_BA (np
, snooptest
);
1152 * Set memory and register.
1154 np
->scratch
= cpu_to_scr(host_wr
);
1155 OUTL (nc_temp
, sym_wr
);
1157 * Start script (exchange values)
1159 OUTL (nc_dsa
, np
->hcb_ba
);
1162 * Wait 'til done (with timeout)
1164 for (i
=0; i
<SYM_SNOOP_TIMEOUT
; i
++)
1165 if (INB(nc_istat
) & (INTF
|SIP
|DIP
))
1167 if (i
>=SYM_SNOOP_TIMEOUT
) {
1168 printf ("CACHE TEST FAILED: timeout.\n");
1172 * Check for fatal DMA errors.
1174 dstat
= INB (nc_dstat
);
1175 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1176 if ((dstat
& MDPE
) && (np
->rv_ctest4
& MPEE
)) {
1177 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1178 "DISABLING MASTER DATA PARITY CHECKING.\n",
1180 np
->rv_ctest4
&= ~MPEE
;
1184 if (dstat
& (MDPE
|BF
|IID
)) {
1185 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat
);
1189 * Save termination position.
1193 * Read memory and register.
1195 host_rd
= scr_to_cpu(np
->scratch
);
1196 sym_rd
= INL (nc_scratcha
);
1197 sym_bk
= INL (nc_temp
);
1199 * Check termination position.
1201 if (pc
!= SCRIPTZ_BA (np
, snoopend
)+8) {
1202 printf ("CACHE TEST FAILED: script execution failed.\n");
1203 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1204 (u_long
) SCRIPTZ_BA (np
, snooptest
), (u_long
) pc
,
1205 (u_long
) SCRIPTZ_BA (np
, snoopend
) +8);
1211 if (host_wr
!= sym_rd
) {
1212 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1213 (int) host_wr
, (int) sym_rd
);
1216 if (host_rd
!= sym_wr
) {
1217 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1218 (int) sym_wr
, (int) host_rd
);
1221 if (sym_bk
!= sym_wr
) {
1222 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1223 (int) sym_wr
, (int) sym_bk
);
1231 * log message for real hard errors
1233 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1234 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1236 * exception register:
1241 * so: control lines as driven by chip.
1242 * si: control lines as seen by chip.
1243 * sd: scsi data lines as seen by chip.
1246 * sx: sxfer (see the manual)
1247 * s3: scntl3 (see the manual)
1248 * s4: scntl4 (see the manual)
1250 * current script command:
1251 * dsp: script address (relative to start of script).
1252 * dbc: first word of script command.
1254 * First 24 register of the chip:
1257 static void sym_log_hard_error(hcb_p np
, u_short sist
, u_char dstat
)
1263 u_char
*script_base
;
1268 if (dsp
> np
->scripta_ba
&&
1269 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
1270 script_ofs
= dsp
- np
->scripta_ba
;
1271 script_size
= np
->scripta_sz
;
1272 script_base
= (u_char
*) np
->scripta0
;
1273 script_name
= "scripta";
1275 else if (np
->scriptb_ba
< dsp
&&
1276 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
1277 script_ofs
= dsp
- np
->scriptb_ba
;
1278 script_size
= np
->scriptb_sz
;
1279 script_base
= (u_char
*) np
->scriptb0
;
1280 script_name
= "scriptb";
1285 script_name
= "mem";
1288 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1289 sym_name (np
), (unsigned)INB (nc_sdid
)&0x0f, dstat
, sist
,
1290 (unsigned)INB (nc_socl
), (unsigned)INB (nc_sbcl
),
1291 (unsigned)INB (nc_sbdl
), (unsigned)INB (nc_sxfer
),
1292 (unsigned)INB (nc_scntl3
),
1293 (np
->features
& FE_C10
) ? (unsigned)INB (nc_scntl4
) : 0,
1294 script_name
, script_ofs
, (unsigned)INL (nc_dbc
));
1296 if (((script_ofs
& 3) == 0) &&
1297 (unsigned)script_ofs
< script_size
) {
1298 printf ("%s: script cmd = %08x\n", sym_name(np
),
1299 scr_to_cpu((int) *(u32
*)(script_base
+ script_ofs
)));
1302 printf ("%s: regdump:", sym_name(np
));
1304 printf (" %02x", (unsigned)INB_OFF(i
));
1310 if (dstat
& (MDPE
|BF
))
1311 sym_log_bus_error(np
);
1314 static struct sym_pci_chip sym_pci_dev_table
[] = {
1315 {PCI_ID_SYM53C810
, 0x0f, "810", 4, 8, 4, 64,
1318 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1319 {PCI_ID_SYM53C810
, 0xff, "810a", 4, 8, 4, 1,
1323 {PCI_ID_SYM53C810
, 0xff, "810a", 4, 8, 4, 1,
1324 FE_CACHE_SET
|FE_LDSTR
|FE_PFEN
|FE_BOF
}
1327 {PCI_ID_SYM53C815
, 0xff, "815", 4, 8, 4, 64,
1330 {PCI_ID_SYM53C825
, 0x0f, "825", 6, 8, 4, 64,
1331 FE_WIDE
|FE_BOF
|FE_ERL
|FE_DIFF
}
1333 {PCI_ID_SYM53C825
, 0xff, "825a", 6, 8, 4, 2,
1334 FE_WIDE
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|FE_RAM
|FE_DIFF
}
1336 {PCI_ID_SYM53C860
, 0xff, "860", 4, 8, 5, 1,
1337 FE_ULTRA
|FE_CACHE_SET
|FE_BOF
|FE_LDSTR
|FE_PFEN
}
1339 {PCI_ID_SYM53C875
, 0x01, "875", 6, 16, 5, 2,
1340 FE_WIDE
|FE_ULTRA
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1341 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1343 {PCI_ID_SYM53C875
, 0xff, "875", 6, 16, 5, 2,
1344 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1345 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1347 {PCI_ID_SYM53C875_2
, 0xff, "875", 6, 16, 5, 2,
1348 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1349 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1351 {PCI_ID_SYM53C885
, 0xff, "885", 6, 16, 5, 2,
1352 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1353 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1355 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1356 {PCI_ID_SYM53C895
, 0xff, "895", 6, 31, 7, 2,
1357 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|
1361 {PCI_ID_SYM53C895
, 0xff, "895", 6, 31, 7, 2,
1362 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1366 {PCI_ID_SYM53C896
, 0xff, "896", 6, 31, 7, 4,
1367 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1368 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1370 {PCI_ID_SYM53C895A
, 0xff, "895a", 6, 31, 7, 4,
1371 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1372 FE_RAM
|FE_RAM8K
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1374 {PCI_ID_SYM53C875A
, 0xff, "875a", 6, 31, 7, 4,
1375 FE_WIDE
|FE_ULTRA
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1376 FE_RAM
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1378 {PCI_ID_LSI53C1010_33
, 0x00, "1010-33", 6, 31, 7, 8,
1379 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1380 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1383 {PCI_ID_LSI53C1010_33
, 0xff, "1010-33", 6, 31, 7, 8,
1384 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1385 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1388 {PCI_ID_LSI53C1010_66
, 0xff, "1010-66", 6, 31, 7, 8,
1389 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1390 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_66MHZ
|FE_CRC
|
1393 {PCI_ID_LSI53C1510D
, 0xff, "1510d", 6, 31, 7, 4,
1394 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1395 FE_RAM
|FE_IO256
|FE_LEDC
}
1398 #define sym_pci_num_devs \
1399 (sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
1402 * Look up the chip table.
1404 * Return a pointer to the chip entry if found,
1407 struct sym_pci_chip
*
1408 sym_lookup_pci_chip_table (u_short device_id
, u_char revision
)
1410 struct sym_pci_chip
*chip
;
1413 for (i
= 0; i
< sym_pci_num_devs
; i
++) {
1414 chip
= &sym_pci_dev_table
[i
];
1415 if (device_id
!= chip
->device_id
)
1417 if (revision
> chip
->revision_id
)
1425 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1427 * Lookup the 64 bit DMA segments map.
1428 * This is only used if the direct mapping
1429 * has been unsuccessful.
1431 int sym_lookup_dmap(hcb_p np
, u32 h
, int s
)
1438 /* Look up existing mappings */
1439 for (i
= SYM_DMAP_SIZE
-1; i
> 0; i
--) {
1440 if (h
== np
->dmap_bah
[i
])
1443 /* If direct mapping is free, get it */
1444 if (!np
->dmap_bah
[s
])
1446 /* Collision -> lookup free mappings */
1447 for (s
= SYM_DMAP_SIZE
-1; s
> 0; s
--) {
1448 if (!np
->dmap_bah
[s
])
1452 panic("sym: ran out of 64 bit DMA segment registers");
1455 np
->dmap_bah
[s
] = h
;
1461 * Update IO registers scratch C..R so they will be
1462 * in sync. with queued CCB expectations.
1464 static void sym_update_dmap_regs(hcb_p np
)
1468 if (!np
->dmap_dirty
)
1470 o
= offsetof(struct sym_reg
, nc_scrx
[0]);
1471 for (i
= 0; i
< SYM_DMAP_SIZE
; i
++) {
1472 OUTL_OFF(o
, np
->dmap_bah
[i
]);
1479 static void sym_check_goals(struct scsi_device
*sdev
)
1481 struct sym_hcb
*np
= ((struct host_data
*)sdev
->host
->hostdata
)->ncb
;
1482 struct sym_trans
*st
= &np
->target
[sdev
->id
].tinfo
.goal
;
1484 /* here we enforce all the fiddly SPI rules */
1486 if (!scsi_device_wide(sdev
))
1489 if (!scsi_device_sync(sdev
)) {
1496 if (scsi_device_dt(sdev
)) {
1497 if (scsi_device_dt_only(sdev
))
1498 st
->options
|= PPR_OPT_DT
;
1500 if (st
->offset
== 0)
1501 st
->options
&= ~PPR_OPT_DT
;
1503 st
->options
&= ~PPR_OPT_DT
;
1506 if (!(np
->features
& FE_ULTRA3
))
1507 st
->options
&= ~PPR_OPT_DT
;
1509 if (st
->options
& PPR_OPT_DT
) {
1510 /* all DT transfers must be wide */
1512 if (st
->offset
> np
->maxoffs_dt
)
1513 st
->offset
= np
->maxoffs_dt
;
1514 if (st
->period
< np
->minsync_dt
)
1515 st
->period
= np
->minsync_dt
;
1516 if (st
->period
> np
->maxsync_dt
)
1517 st
->period
= np
->maxsync_dt
;
1519 if (st
->offset
> np
->maxoffs
)
1520 st
->offset
= np
->maxoffs
;
1521 if (st
->period
< np
->minsync
)
1522 st
->period
= np
->minsync
;
1523 if (st
->period
> np
->maxsync
)
1524 st
->period
= np
->maxsync
;
1529 * Prepare the next negotiation message if needed.
1531 * Fill in the part of message buffer that contains the
1532 * negotiation and the nego_status field of the CCB.
1533 * Returns the size of the message in bytes.
1535 static int sym_prepare_nego(hcb_p np
, ccb_p cp
, int nego
, u_char
*msgptr
)
1537 tcb_p tp
= &np
->target
[cp
->target
];
1539 struct scsi_device
*sdev
= tp
->sdev
;
1542 sym_check_goals(sdev
);
1545 * Early C1010 chips need a work-around for DT
1546 * data transfer to work.
1548 if (!(np
->features
& FE_U3EN
))
1549 tp
->tinfo
.goal
.options
= 0;
1551 * negotiate using PPR ?
1553 if (scsi_device_dt(sdev
)) {
1557 * negotiate wide transfers ?
1559 if (tp
->tinfo
.curr
.width
!= tp
->tinfo
.goal
.width
)
1562 * negotiate synchronous transfers?
1564 else if (tp
->tinfo
.curr
.period
!= tp
->tinfo
.goal
.period
||
1565 tp
->tinfo
.curr
.offset
!= tp
->tinfo
.goal
.offset
)
1571 msgptr
[msglen
++] = M_EXTENDED
;
1572 msgptr
[msglen
++] = 3;
1573 msgptr
[msglen
++] = M_X_SYNC_REQ
;
1574 msgptr
[msglen
++] = tp
->tinfo
.goal
.period
;
1575 msgptr
[msglen
++] = tp
->tinfo
.goal
.offset
;
1578 msgptr
[msglen
++] = M_EXTENDED
;
1579 msgptr
[msglen
++] = 2;
1580 msgptr
[msglen
++] = M_X_WIDE_REQ
;
1581 msgptr
[msglen
++] = tp
->tinfo
.goal
.width
;
1584 msgptr
[msglen
++] = M_EXTENDED
;
1585 msgptr
[msglen
++] = 6;
1586 msgptr
[msglen
++] = M_X_PPR_REQ
;
1587 msgptr
[msglen
++] = tp
->tinfo
.goal
.period
;
1588 msgptr
[msglen
++] = 0;
1589 msgptr
[msglen
++] = tp
->tinfo
.goal
.offset
;
1590 msgptr
[msglen
++] = tp
->tinfo
.goal
.width
;
1591 msgptr
[msglen
++] = tp
->tinfo
.goal
.options
& PPR_OPT_DT
;
1595 cp
->nego_status
= nego
;
1598 tp
->nego_cp
= cp
; /* Keep track a nego will be performed */
1599 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
1600 sym_print_nego_msg(np
, cp
->target
,
1601 nego
== NS_SYNC
? "sync msgout" :
1602 nego
== NS_WIDE
? "wide msgout" :
1603 "ppr msgout", msgptr
);
1611 * Insert a job into the start queue.
1613 void sym_put_start_queue(hcb_p np
, ccb_p cp
)
1617 #ifdef SYM_CONF_IARB_SUPPORT
1619 * If the previously queued CCB is not yet done,
1620 * set the IARB hint. The SCRIPTS will go with IARB
1621 * for this job when starting the previous one.
1622 * We leave devices a chance to win arbitration by
1623 * not using more than 'iarb_max' consecutive
1624 * immediate arbitrations.
1626 if (np
->last_cp
&& np
->iarb_count
< np
->iarb_max
) {
1627 np
->last_cp
->host_flags
|= HF_HINT_IARB
;
1635 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1637 * Make SCRIPTS aware of the 64 bit DMA
1638 * segment registers not being up-to-date.
1641 cp
->host_xflags
|= HX_DMAP_DIRTY
;
1645 * Optionnaly, set the IO timeout condition.
1647 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
1648 sym_timeout_ccb(np
, cp
, sym_cam_timeout(cp
->cam_ccb
));
1652 * Insert first the idle task and then our job.
1653 * The MBs should ensure proper ordering.
1655 qidx
= np
->squeueput
+ 2;
1656 if (qidx
>= MAX_QUEUE
*2) qidx
= 0;
1658 np
->squeue
[qidx
] = cpu_to_scr(np
->idletask_ba
);
1659 MEMORY_WRITE_BARRIER();
1660 np
->squeue
[np
->squeueput
] = cpu_to_scr(cp
->ccb_ba
);
1662 np
->squeueput
= qidx
;
1664 if (DEBUG_FLAGS
& DEBUG_QUEUE
)
1665 printf ("%s: queuepos=%d.\n", sym_name (np
), np
->squeueput
);
1668 * Script processor may be waiting for reselect.
1671 MEMORY_WRITE_BARRIER();
1672 OUTB (nc_istat
, SIGP
|np
->istat_sem
);
1675 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1677 * Start next ready-to-start CCBs.
1679 void sym_start_next_ccbs(hcb_p np
, lcb_p lp
, int maxn
)
1685 * Paranoia, as usual. :-)
1687 assert(!lp
->started_tags
|| !lp
->started_no_tag
);
1690 * Try to start as many commands as asked by caller.
1691 * Prevent from having both tagged and untagged
1692 * commands queued to the device at the same time.
1695 qp
= sym_remque_head(&lp
->waiting_ccbq
);
1698 cp
= sym_que_entry(qp
, struct sym_ccb
, link2_ccbq
);
1699 if (cp
->tag
!= NO_TAG
) {
1700 if (lp
->started_no_tag
||
1701 lp
->started_tags
>= lp
->started_max
) {
1702 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1705 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(cp
->ccb_ba
);
1707 cpu_to_scr(SCRIPTA_BA (np
, resel_tag
));
1710 if (lp
->started_no_tag
|| lp
->started_tags
) {
1711 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1714 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
1716 cpu_to_scr(SCRIPTA_BA (np
, resel_no_tag
));
1717 ++lp
->started_no_tag
;
1720 sym_insque_tail(qp
, &lp
->started_ccbq
);
1721 sym_put_start_queue(np
, cp
);
1724 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1727 * The chip may have completed jobs. Look at the DONE QUEUE.
1729 * On paper, memory read barriers may be needed here to
1730 * prevent out of order LOADs by the CPU from having
1731 * prefetched stale data prior to DMA having occurred.
1733 static int sym_wakeup_done (hcb_p np
)
1742 /* MEMORY_READ_BARRIER(); */
1744 dsa
= scr_to_cpu(np
->dqueue
[i
]);
1748 if ((i
= i
+2) >= MAX_QUEUE
*2)
1751 cp
= sym_ccb_from_dsa(np
, dsa
);
1753 MEMORY_READ_BARRIER();
1754 sym_complete_ok (np
, cp
);
1758 printf ("%s: bad DSA (%x) in done queue.\n",
1759 sym_name(np
), (u_int
) dsa
);
1767 * Complete all active CCBs with error.
1768 * Used on CHIP/SCSI RESET.
1770 static void sym_flush_busy_queue (hcb_p np
, int cam_status
)
1773 * Move all active CCBs to the COMP queue
1774 * and flush this queue.
1776 sym_que_splice(&np
->busy_ccbq
, &np
->comp_ccbq
);
1777 sym_que_init(&np
->busy_ccbq
);
1778 sym_flush_comp_queue(np
, cam_status
);
1785 * 0: initialisation.
1786 * 1: SCSI BUS RESET delivered or received.
1787 * 2: SCSI BUS MODE changed.
1789 void sym_start_up (hcb_p np
, int reason
)
1795 * Reset chip if asked, otherwise just clear fifos.
1800 OUTB (nc_stest3
, TE
|CSF
);
1801 OUTONB (nc_ctest3
, CLF
);
1807 phys
= np
->squeue_ba
;
1808 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1809 np
->squeue
[i
] = cpu_to_scr(np
->idletask_ba
);
1810 np
->squeue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1812 np
->squeue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1815 * Start at first entry.
1822 phys
= np
->dqueue_ba
;
1823 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1825 np
->dqueue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1827 np
->dqueue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1830 * Start at first entry.
1835 * Install patches in scripts.
1836 * This also let point to first position the start
1837 * and done queue pointers used from SCRIPTS.
1842 * Wakeup all pending jobs.
1844 sym_flush_busy_queue(np
, CAM_SCSI_BUS_RESET
);
1849 OUTB (nc_istat
, 0x00 ); /* Remove Reset, abort */
1850 UDELAY (2000); /* The 895 needs time for the bus mode to settle */
1852 OUTB (nc_scntl0
, np
->rv_scntl0
| 0xc0);
1853 /* full arb., ena parity, par->ATN */
1854 OUTB (nc_scntl1
, 0x00); /* odd parity, and remove CRST!! */
1856 sym_selectclock(np
, np
->rv_scntl3
); /* Select SCSI clock */
1858 OUTB (nc_scid
, RRE
|np
->myaddr
); /* Adapter SCSI address */
1859 OUTW (nc_respid
, 1ul<<np
->myaddr
); /* Id to respond to */
1860 OUTB (nc_istat
, SIGP
); /* Signal Process */
1861 OUTB (nc_dmode
, np
->rv_dmode
); /* Burst length, dma mode */
1862 OUTB (nc_ctest5
, np
->rv_ctest5
); /* Large fifo + large burst */
1864 OUTB (nc_dcntl
, NOCOM
|np
->rv_dcntl
); /* Protect SFBR */
1865 OUTB (nc_ctest3
, np
->rv_ctest3
); /* Write and invalidate */
1866 OUTB (nc_ctest4
, np
->rv_ctest4
); /* Master parity checking */
1868 /* Extended Sreq/Sack filtering not supported on the C10 */
1869 if (np
->features
& FE_C10
)
1870 OUTB (nc_stest2
, np
->rv_stest2
);
1872 OUTB (nc_stest2
, EXT
|np
->rv_stest2
);
1874 OUTB (nc_stest3
, TE
); /* TolerANT enable */
1875 OUTB (nc_stime0
, 0x0c); /* HTH disabled STO 0.25 sec */
1878 * For now, disable AIP generation on C1010-66.
1880 if (np
->device_id
== PCI_ID_LSI53C1010_66
)
1881 OUTB (nc_aipcntl1
, DISAIP
);
1884 * C10101 rev. 0 errata.
1885 * Errant SGE's when in narrow. Write bits 4 & 5 of
1886 * STEST1 register to disable SGE. We probably should do
1887 * that from SCRIPTS for each selection/reselection, but
1888 * I just don't want. :)
1890 if (np
->device_id
== PCI_ID_LSI53C1010_33
&&
1891 np
->revision_id
< 1)
1892 OUTB (nc_stest1
, INB(nc_stest1
) | 0x30);
1895 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1896 * Disable overlapped arbitration for some dual function devices,
1897 * regardless revision id (kind of post-chip-design feature. ;-))
1899 if (np
->device_id
== PCI_ID_SYM53C875
)
1900 OUTB (nc_ctest0
, (1<<5));
1901 else if (np
->device_id
== PCI_ID_SYM53C896
)
1902 np
->rv_ccntl0
|= DPR
;
1905 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1906 * and/or hardware phase mismatch, since only such chips
1907 * seem to support those IO registers.
1909 if (np
->features
& (FE_DAC
|FE_NOPM
)) {
1910 OUTB (nc_ccntl0
, np
->rv_ccntl0
);
1911 OUTB (nc_ccntl1
, np
->rv_ccntl1
);
1914 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1916 * Set up scratch C and DRS IO registers to map the 32 bit
1917 * DMA address range our data structures are located in.
1920 np
->dmap_bah
[0] = 0; /* ??? */
1921 OUTL (nc_scrx
[0], np
->dmap_bah
[0]);
1922 OUTL (nc_drs
, np
->dmap_bah
[0]);
1927 * If phase mismatch handled by scripts (895A/896/1010),
1928 * set PM jump addresses.
1930 if (np
->features
& FE_NOPM
) {
1931 OUTL (nc_pmjad1
, SCRIPTB_BA (np
, pm_handle
));
1932 OUTL (nc_pmjad2
, SCRIPTB_BA (np
, pm_handle
));
1936 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1937 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1939 if (np
->features
& FE_LED0
)
1940 OUTB(nc_gpcntl
, INB(nc_gpcntl
) & ~0x01);
1941 else if (np
->features
& FE_LEDC
)
1942 OUTB(nc_gpcntl
, (INB(nc_gpcntl
) & ~0x41) | 0x20);
1947 OUTW (nc_sien
, STO
|HTH
|MA
|SGE
|UDC
|RST
|PAR
);
1948 OUTB (nc_dien
, MDPE
|BF
|SSI
|SIR
|IID
);
1951 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1952 * Try to eat the spurious SBMC interrupt that may occur when
1953 * we reset the chip but not the SCSI BUS (at initialization).
1955 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
)) {
1956 OUTONW (nc_sien
, SBMC
);
1961 np
->scsi_mode
= INB (nc_stest4
) & SMODE
;
1965 * Fill in target structure.
1966 * Reinitialize usrsync.
1967 * Reinitialize usrwide.
1968 * Prepare sync negotiation according to actual SCSI bus mode.
1970 for (i
=0;i
<SYM_CONF_MAX_TARGET
;i
++) {
1971 tcb_p tp
= &np
->target
[i
];
1975 tp
->head
.wval
= np
->rv_scntl3
;
1978 tp
->tinfo
.curr
.period
= 0;
1979 tp
->tinfo
.curr
.offset
= 0;
1980 tp
->tinfo
.curr
.width
= BUS_8_BIT
;
1981 tp
->tinfo
.curr
.options
= 0;
1985 * Download SCSI SCRIPTS to on-chip RAM if present,
1986 * and start script processor.
1987 * We do the download preferently from the CPU.
1988 * For platforms that may not support PCI memory mapping,
1989 * we use simple SCRIPTS that performs MEMORY MOVEs.
1992 if (sym_verbose
>= 2)
1993 printf ("%s: Downloading SCSI SCRIPTS.\n",
1995 if (np
->ram_ws
== 8192) {
1996 OUTRAM_OFF(4096, np
->scriptb0
, np
->scriptb_sz
);
1997 phys
= scr_to_cpu(np
->scr_ram_seg
);
1998 OUTL (nc_mmws
, phys
);
1999 OUTL (nc_mmrs
, phys
);
2000 OUTL (nc_sfs
, phys
);
2001 phys
= SCRIPTB_BA (np
, start64
);
2004 phys
= SCRIPTA_BA (np
, init
);
2005 OUTRAM_OFF(0, np
->scripta0
, np
->scripta_sz
);
2008 phys
= SCRIPTA_BA (np
, init
);
2012 OUTL (nc_dsa
, np
->hcb_ba
);
2016 * Notify the XPT about the RESET condition.
2019 sym_xpt_async_bus_reset(np
);
2023 * Switch trans mode for current job and it's target.
2025 static void sym_settrans(hcb_p np
, int target
, u_char dt
, u_char ofs
,
2026 u_char per
, u_char wide
, u_char div
, u_char fak
)
2029 u_char sval
, wval
, uval
;
2030 tcb_p tp
= &np
->target
[target
];
2032 assert(target
== (INB (nc_sdid
) & 0x0f));
2034 sval
= tp
->head
.sval
;
2035 wval
= tp
->head
.wval
;
2036 uval
= tp
->head
.uval
;
2039 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
2040 sval
, wval
, uval
, np
->rv_scntl3
);
2045 if (!(np
->features
& FE_C10
))
2046 sval
= (sval
& ~0x1f) | ofs
;
2048 sval
= (sval
& ~0x3f) | ofs
;
2051 * Set the sync divisor and extra clock factor.
2054 wval
= (wval
& ~0x70) | ((div
+1) << 4);
2055 if (!(np
->features
& FE_C10
))
2056 sval
= (sval
& ~0xe0) | (fak
<< 5);
2058 uval
= uval
& ~(XCLKH_ST
|XCLKH_DT
|XCLKS_ST
|XCLKS_DT
);
2059 if (fak
>= 1) uval
|= (XCLKH_ST
|XCLKH_DT
);
2060 if (fak
>= 2) uval
|= (XCLKS_ST
|XCLKS_DT
);
2065 * Set the bus width.
2072 * Set misc. ultra enable bits.
2074 if (np
->features
& FE_C10
) {
2075 uval
= uval
& ~(U3EN
|AIPCKEN
);
2077 assert(np
->features
& FE_U3EN
);
2082 wval
= wval
& ~ULTRA
;
2083 if (per
<= 12) wval
|= ULTRA
;
2087 * Stop there if sync parameters are unchanged.
2089 if (tp
->head
.sval
== sval
&&
2090 tp
->head
.wval
== wval
&&
2091 tp
->head
.uval
== uval
)
2093 tp
->head
.sval
= sval
;
2094 tp
->head
.wval
= wval
;
2095 tp
->head
.uval
= uval
;
2098 * Disable extended Sreq/Sack filtering if per < 50.
2099 * Not supported on the C1010.
2101 if (per
< 50 && !(np
->features
& FE_C10
))
2102 OUTOFFB (nc_stest2
, EXT
);
2105 * set actual value and sync_status
2107 OUTB (nc_sxfer
, tp
->head
.sval
);
2108 OUTB (nc_scntl3
, tp
->head
.wval
);
2110 if (np
->features
& FE_C10
) {
2111 OUTB (nc_scntl4
, tp
->head
.uval
);
2115 * patch ALL busy ccbs of this target.
2117 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
2119 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
2120 if (cp
->target
!= target
)
2122 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
2123 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
2124 if (np
->features
& FE_C10
) {
2125 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
2131 * We received a WDTR.
2132 * Let everything be aware of the changes.
2134 static void sym_setwide(hcb_p np
, int target
, u_char wide
)
2136 tcb_p tp
= &np
->target
[target
];
2138 sym_settrans(np
, target
, 0, 0, 0, wide
, 0, 0);
2140 tp
->tinfo
.goal
.width
= tp
->tinfo
.curr
.width
= wide
;
2141 tp
->tinfo
.curr
.offset
= 0;
2142 tp
->tinfo
.curr
.period
= 0;
2143 tp
->tinfo
.curr
.options
= 0;
2145 sym_xpt_async_nego_wide(np
, target
);
2149 * We received a SDTR.
2150 * Let everything be aware of the changes.
2153 sym_setsync(hcb_p np
, int target
,
2154 u_char ofs
, u_char per
, u_char div
, u_char fak
)
2156 tcb_p tp
= &np
->target
[target
];
2157 u_char wide
= (tp
->head
.wval
& EWS
) ? BUS_16_BIT
: BUS_8_BIT
;
2159 sym_settrans(np
, target
, 0, ofs
, per
, wide
, div
, fak
);
2161 tp
->tinfo
.curr
.period
= per
;
2162 tp
->tinfo
.curr
.offset
= ofs
;
2163 tp
->tinfo
.curr
.options
= 0;
2165 if (!(tp
->tinfo
.goal
.options
& PPR_OPT_MASK
)) {
2166 tp
->tinfo
.goal
.period
= per
;
2167 tp
->tinfo
.goal
.offset
= ofs
;
2168 tp
->tinfo
.goal
.options
= 0;
2171 sym_xpt_async_nego_sync(np
, target
);
2175 * We received a PPR.
2176 * Let everything be aware of the changes.
2179 sym_setpprot(hcb_p np
, int target
, u_char dt
, u_char ofs
,
2180 u_char per
, u_char wide
, u_char div
, u_char fak
)
2182 tcb_p tp
= &np
->target
[target
];
2184 sym_settrans(np
, target
, dt
, ofs
, per
, wide
, div
, fak
);
2186 tp
->tinfo
.goal
.width
= tp
->tinfo
.curr
.width
= wide
;
2187 tp
->tinfo
.goal
.period
= tp
->tinfo
.curr
.period
= per
;
2188 tp
->tinfo
.goal
.offset
= tp
->tinfo
.curr
.offset
= ofs
;
2189 tp
->tinfo
.goal
.options
= tp
->tinfo
.curr
.options
= dt
;
2191 sym_xpt_async_nego_ppr(np
, target
);
2195 * generic recovery from scsi interrupt
2197 * The doc says that when the chip gets an SCSI interrupt,
2198 * it tries to stop in an orderly fashion, by completing
2199 * an instruction fetch that had started or by flushing
2200 * the DMA fifo for a write to memory that was executing.
2201 * Such a fashion is not enough to know if the instruction
2202 * that was just before the current DSP value has been
2205 * There are some small SCRIPTS sections that deal with
2206 * the start queue and the done queue that may break any
2207 * assomption from the C code if we are interrupted
2208 * inside, so we reset if this happens. Btw, since these
2209 * SCRIPTS sections are executed while the SCRIPTS hasn't
2210 * started SCSI operations, it is very unlikely to happen.
2212 * All the driver data structures are supposed to be
2213 * allocated from the same 4 GB memory window, so there
2214 * is a 1 to 1 relationship between DSA and driver data
2215 * structures. Since we are careful :) to invalidate the
2216 * DSA when we complete a command or when the SCRIPTS
2217 * pushes a DSA into a queue, we can trust it when it
2220 static void sym_recover_scsi_int (hcb_p np
, u_char hsts
)
2222 u32 dsp
= INL (nc_dsp
);
2223 u32 dsa
= INL (nc_dsa
);
2224 ccb_p cp
= sym_ccb_from_dsa(np
, dsa
);
2227 * If we haven't been interrupted inside the SCRIPTS
2228 * critical pathes, we can safely restart the SCRIPTS
2229 * and trust the DSA value if it matches a CCB.
2231 if ((!(dsp
> SCRIPTA_BA (np
, getjob_begin
) &&
2232 dsp
< SCRIPTA_BA (np
, getjob_end
) + 1)) &&
2233 (!(dsp
> SCRIPTA_BA (np
, ungetjob
) &&
2234 dsp
< SCRIPTA_BA (np
, reselect
) + 1)) &&
2235 (!(dsp
> SCRIPTB_BA (np
, sel_for_abort
) &&
2236 dsp
< SCRIPTB_BA (np
, sel_for_abort_1
) + 1)) &&
2237 (!(dsp
> SCRIPTA_BA (np
, done
) &&
2238 dsp
< SCRIPTA_BA (np
, done_end
) + 1))) {
2239 OUTB (nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2240 OUTB (nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2242 * If we have a CCB, let the SCRIPTS call us back for
2243 * the handling of the error with SCRATCHA filled with
2244 * STARTPOS. This way, we will be able to freeze the
2245 * device queue and requeue awaiting IOs.
2248 cp
->host_status
= hsts
;
2249 OUTL_DSP (SCRIPTA_BA (np
, complete_error
));
2252 * Otherwise just restart the SCRIPTS.
2255 OUTL (nc_dsa
, 0xffffff);
2256 OUTL_DSP (SCRIPTA_BA (np
, start
));
2265 sym_start_reset(np
);
2269 * chip exception handler for selection timeout
2271 static void sym_int_sto (hcb_p np
)
2273 u32 dsp
= INL (nc_dsp
);
2275 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("T");
2277 if (dsp
== SCRIPTA_BA (np
, wf_sel_done
) + 8)
2278 sym_recover_scsi_int(np
, HS_SEL_TIMEOUT
);
2280 sym_start_reset(np
);
2284 * chip exception handler for unexpected disconnect
2286 static void sym_int_udc (hcb_p np
)
2288 printf ("%s: unexpected disconnect\n", sym_name(np
));
2289 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2293 * chip exception handler for SCSI bus mode change
2295 * spi2-r12 11.2.3 says a transceiver mode change must
2296 * generate a reset event and a device that detects a reset
2297 * event shall initiate a hard reset. It says also that a
2298 * device that detects a mode change shall set data transfer
2299 * mode to eight bit asynchronous, etc...
2300 * So, just reinitializing all except chip should be enough.
2302 static void sym_int_sbmc (hcb_p np
)
2304 u_char scsi_mode
= INB (nc_stest4
) & SMODE
;
2309 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np
),
2310 sym_scsi_bus_mode(np
->scsi_mode
), sym_scsi_bus_mode(scsi_mode
));
2313 * Should suspend command processing for a few seconds and
2314 * reinitialize all except the chip.
2316 sym_start_up (np
, 2);
2320 * chip exception handler for SCSI parity error.
2322 * When the chip detects a SCSI parity error and is
2323 * currently executing a (CH)MOV instruction, it does
2324 * not interrupt immediately, but tries to finish the
2325 * transfer of the current scatter entry before
2326 * interrupting. The following situations may occur:
2328 * - The complete scatter entry has been transferred
2329 * without the device having changed phase.
2330 * The chip will then interrupt with the DSP pointing
2331 * to the instruction that follows the MOV.
2333 * - A phase mismatch occurs before the MOV finished
2334 * and phase errors are to be handled by the C code.
2335 * The chip will then interrupt with both PAR and MA
2338 * - A phase mismatch occurs before the MOV finished and
2339 * phase errors are to be handled by SCRIPTS.
2340 * The chip will load the DSP with the phase mismatch
2341 * JUMP address and interrupt the host processor.
2343 static void sym_int_par (hcb_p np
, u_short sist
)
2345 u_char hsts
= INB (HS_PRT
);
2346 u32 dsp
= INL (nc_dsp
);
2347 u32 dbc
= INL (nc_dbc
);
2348 u32 dsa
= INL (nc_dsa
);
2349 u_char sbcl
= INB (nc_sbcl
);
2350 u_char cmd
= dbc
>> 24;
2351 int phase
= cmd
& 7;
2352 ccb_p cp
= sym_ccb_from_dsa(np
, dsa
);
2354 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2355 sym_name(np
), hsts
, dbc
, sbcl
);
2358 * Check that the chip is connected to the SCSI BUS.
2360 if (!(INB (nc_scntl1
) & ISCON
)) {
2361 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2366 * If the nexus is not clearly identified, reset the bus.
2367 * We will try to do better later.
2373 * Check instruction was a MOV, direction was INPUT and
2376 if ((cmd
& 0xc0) || !(phase
& 1) || !(sbcl
& 0x8))
2380 * Keep track of the parity error.
2382 OUTONB (HF_PRT
, HF_EXT_ERR
);
2383 cp
->xerr_status
|= XE_PARITY_ERR
;
2386 * Prepare the message to send to the device.
2388 np
->msgout
[0] = (phase
== 7) ? M_PARITY
: M_ID_ERROR
;
2391 * If the old phase was DATA IN phase, we have to deal with
2392 * the 3 situations described above.
2393 * For other input phases (MSG IN and STATUS), the device
2394 * must resend the whole thing that failed parity checking
2395 * or signal error. So, jumping to dispatcher should be OK.
2397 if (phase
== 1 || phase
== 5) {
2398 /* Phase mismatch handled by SCRIPTS */
2399 if (dsp
== SCRIPTB_BA (np
, pm_handle
))
2401 /* Phase mismatch handled by the C code */
2404 /* No phase mismatch occurred */
2406 sym_set_script_dp (np
, cp
, dsp
);
2407 OUTL_DSP (SCRIPTA_BA (np
, dispatch
));
2410 else if (phase
== 7) /* We definitely cannot handle parity errors */
2411 #if 1 /* in message-in phase due to the relection */
2412 goto reset_all
; /* path and various message anticipations. */
2414 OUTL_DSP (SCRIPTA_BA (np
, clrack
));
2417 OUTL_DSP (SCRIPTA_BA (np
, dispatch
));
2421 sym_start_reset(np
);
2426 * chip exception handler for phase errors.
2428 * We have to construct a new transfer descriptor,
2429 * to transfer the rest of the current block.
2431 static void sym_int_ma (hcb_p np
)
2444 u_char hflags
, hflags0
;
2453 rest
= dbc
& 0xffffff;
2457 * locate matching cp if any.
2459 cp
= sym_ccb_from_dsa(np
, dsa
);
2462 * Donnot take into account dma fifo and various buffers in
2463 * INPUT phase since the chip flushes everything before
2464 * raising the MA interrupt for interrupted INPUT phases.
2465 * For DATA IN phase, we will check for the SWIDE later.
2467 if ((cmd
& 7) != 1 && (cmd
& 7) != 5) {
2470 if (np
->features
& FE_DFBC
)
2471 delta
= INW (nc_dfbc
);
2476 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2478 dfifo
= INL(nc_dfifo
);
2481 * Calculate remaining bytes in DMA fifo.
2482 * (CTEST5 = dfifo >> 16)
2484 if (dfifo
& (DFS
<< 16))
2485 delta
= ((((dfifo
>> 8) & 0x300) |
2486 (dfifo
& 0xff)) - rest
) & 0x3ff;
2488 delta
= ((dfifo
& 0xff) - rest
) & 0x7f;
2492 * The data in the dma fifo has not been transfered to
2493 * the target -> add the amount to the rest
2494 * and clear the data.
2495 * Check the sstat2 register in case of wide transfer.
2498 ss0
= INB (nc_sstat0
);
2499 if (ss0
& OLF
) rest
++;
2500 if (!(np
->features
& FE_C10
))
2501 if (ss0
& ORF
) rest
++;
2502 if (cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
)) {
2503 ss2
= INB (nc_sstat2
);
2504 if (ss2
& OLF1
) rest
++;
2505 if (!(np
->features
& FE_C10
))
2506 if (ss2
& ORF1
) rest
++;
2512 OUTB (nc_ctest3
, np
->rv_ctest3
| CLF
); /* dma fifo */
2513 OUTB (nc_stest3
, TE
|CSF
); /* scsi fifo */
2517 * log the information
2519 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_PHASE
))
2520 printf ("P%x%x RL=%d D=%d ", cmd
&7, INB(nc_sbcl
)&7,
2521 (unsigned) rest
, (unsigned) delta
);
2524 * try to find the interrupted script command,
2525 * and the address at which to continue.
2529 if (dsp
> np
->scripta_ba
&&
2530 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
2531 vdsp
= (u32
*)((char*)np
->scripta0
+ (dsp
-np
->scripta_ba
-8));
2534 else if (dsp
> np
->scriptb_ba
&&
2535 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
2536 vdsp
= (u32
*)((char*)np
->scriptb0
+ (dsp
-np
->scriptb_ba
-8));
2541 * log the information
2543 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2544 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2545 cp
, (unsigned)dsp
, (unsigned)nxtdsp
, vdsp
, cmd
);
2549 printf ("%s: interrupted SCRIPT address not found.\n",
2555 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2561 * get old startaddress and old length.
2563 oadr
= scr_to_cpu(vdsp
[1]);
2565 if (cmd
& 0x10) { /* Table indirect */
2566 tblp
= (u32
*) ((char*) &cp
->phys
+ oadr
);
2567 olen
= scr_to_cpu(tblp
[0]);
2568 oadr
= scr_to_cpu(tblp
[1]);
2571 olen
= scr_to_cpu(vdsp
[0]) & 0xffffff;
2574 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2575 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2576 (unsigned) (scr_to_cpu(vdsp
[0]) >> 24),
2583 * check cmd against assumed interrupted script command.
2584 * If dt data phase, the MOVE instruction hasn't bit 4 of
2587 if (((cmd
& 2) ? cmd
: (cmd
& ~4)) != (scr_to_cpu(vdsp
[0]) >> 24)) {
2589 printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2590 (unsigned)cmd
, (unsigned)scr_to_cpu(vdsp
[0]) >> 24);
2596 * if old phase not dataphase, leave here.
2600 printf ("phase change %x-%x %d@%08x resid=%d.\n",
2601 cmd
&7, INB(nc_sbcl
)&7, (unsigned)olen
,
2602 (unsigned)oadr
, (unsigned)rest
);
2603 goto unexpected_phase
;
2607 * Choose the correct PM save area.
2609 * Look at the PM_SAVE SCRIPT if you want to understand
2610 * this stuff. The equivalent code is implemented in
2611 * SCRIPTS for the 895A, 896 and 1010 that are able to
2612 * handle PM from the SCRIPTS processor.
2614 hflags0
= INB (HF_PRT
);
2617 if (hflags
& (HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
)) {
2618 if (hflags
& HF_IN_PM0
)
2619 nxtdsp
= scr_to_cpu(cp
->phys
.pm0
.ret
);
2620 else if (hflags
& HF_IN_PM1
)
2621 nxtdsp
= scr_to_cpu(cp
->phys
.pm1
.ret
);
2623 if (hflags
& HF_DP_SAVED
)
2624 hflags
^= HF_ACT_PM
;
2627 if (!(hflags
& HF_ACT_PM
)) {
2629 newcmd
= SCRIPTA_BA (np
, pm0_data
);
2633 newcmd
= SCRIPTA_BA (np
, pm1_data
);
2636 hflags
&= ~(HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
);
2637 if (hflags
!= hflags0
)
2638 OUTB (HF_PRT
, hflags
);
2641 * fillin the phase mismatch context
2643 pm
->sg
.addr
= cpu_to_scr(oadr
+ olen
- rest
);
2644 pm
->sg
.size
= cpu_to_scr(rest
);
2645 pm
->ret
= cpu_to_scr(nxtdsp
);
2648 * If we have a SWIDE,
2649 * - prepare the address to write the SWIDE from SCRIPTS,
2650 * - compute the SCRIPTS address to restart from,
2651 * - move current data pointer context by one byte.
2653 nxtdsp
= SCRIPTA_BA (np
, dispatch
);
2654 if ((cmd
& 7) == 1 && cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
) &&
2655 (INB (nc_scntl2
) & WSR
)) {
2659 * Set up the table indirect for the MOVE
2660 * of the residual byte and adjust the data
2663 tmp
= scr_to_cpu(pm
->sg
.addr
);
2664 cp
->phys
.wresid
.addr
= cpu_to_scr(tmp
);
2665 pm
->sg
.addr
= cpu_to_scr(tmp
+ 1);
2666 tmp
= scr_to_cpu(pm
->sg
.size
);
2667 cp
->phys
.wresid
.size
= cpu_to_scr((tmp
&0xff000000) | 1);
2668 pm
->sg
.size
= cpu_to_scr(tmp
- 1);
2671 * If only the residual byte is to be moved,
2672 * no PM context is needed.
2674 if ((tmp
&0xffffff) == 1)
2678 * Prepare the address of SCRIPTS that will
2679 * move the residual byte to memory.
2681 nxtdsp
= SCRIPTB_BA (np
, wsr_ma_helper
);
2684 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2686 printf ("PM %x %x %x / %x %x %x.\n",
2687 hflags0
, hflags
, newcmd
,
2688 (unsigned)scr_to_cpu(pm
->sg
.addr
),
2689 (unsigned)scr_to_cpu(pm
->sg
.size
),
2690 (unsigned)scr_to_cpu(pm
->ret
));
2694 * Restart the SCRIPTS processor.
2696 sym_set_script_dp (np
, cp
, newcmd
);
2701 * Unexpected phase changes that occurs when the current phase
2702 * is not a DATA IN or DATA OUT phase are due to error conditions.
2703 * Such event may only happen when the SCRIPTS is using a
2704 * multibyte SCSI MOVE.
2706 * Phase change Some possible cause
2708 * COMMAND --> MSG IN SCSI parity error detected by target.
2709 * COMMAND --> STATUS Bad command or refused by target.
2710 * MSG OUT --> MSG IN Message rejected by target.
2711 * MSG OUT --> COMMAND Bogus target that discards extended
2712 * negotiation messages.
2714 * The code below does not care of the new phase and so
2715 * trusts the target. Why to annoy it ?
2716 * If the interrupted phase is COMMAND phase, we restart at
2718 * If a target does not get all the messages after selection,
2719 * the code assumes blindly that the target discards extended
2720 * messages and clears the negotiation status.
2721 * If the target does not want all our response to negotiation,
2722 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2723 * bloat for such a should_not_happen situation).
2724 * In all other situation, we reset the BUS.
2725 * Are these assumptions reasonnable ? (Wait and see ...)
2732 case 2: /* COMMAND phase */
2733 nxtdsp
= SCRIPTA_BA (np
, dispatch
);
2736 case 3: /* STATUS phase */
2737 nxtdsp
= SCRIPTA_BA (np
, dispatch
);
2740 case 6: /* MSG OUT phase */
2742 * If the device may want to use untagged when we want
2743 * tagged, we prepare an IDENTIFY without disc. granted,
2744 * since we will not be able to handle reselect.
2745 * Otherwise, we just don't care.
2747 if (dsp
== SCRIPTA_BA (np
, send_ident
)) {
2748 if (cp
->tag
!= NO_TAG
&& olen
- rest
<= 3) {
2749 cp
->host_status
= HS_BUSY
;
2750 np
->msgout
[0] = M_IDENTIFY
| cp
->lun
;
2751 nxtdsp
= SCRIPTB_BA (np
, ident_break_atn
);
2754 nxtdsp
= SCRIPTB_BA (np
, ident_break
);
2756 else if (dsp
== SCRIPTB_BA (np
, send_wdtr
) ||
2757 dsp
== SCRIPTB_BA (np
, send_sdtr
) ||
2758 dsp
== SCRIPTB_BA (np
, send_ppr
)) {
2759 nxtdsp
= SCRIPTB_BA (np
, nego_bad_phase
);
2763 case 7: /* MSG IN phase */
2764 nxtdsp
= SCRIPTA_BA (np
, clrack
);
2775 sym_start_reset(np
);
2779 * chip interrupt handler
2781 * In normal situations, interrupt conditions occur one at
2782 * a time. But when something bad happens on the SCSI BUS,
2783 * the chip may raise several interrupt flags before
2784 * stopping and interrupting the CPU. The additionnal
2785 * interrupt flags are stacked in some extra registers
2786 * after the SIP and/or DIP flag has been raised in the
2787 * ISTAT. After the CPU has read the interrupt condition
2788 * flag from SIST or DSTAT, the chip unstacks the other
2789 * interrupt flags and sets the corresponding bits in
2790 * SIST or DSTAT. Since the chip starts stacking once the
2791 * SIP or DIP flag is set, there is a small window of time
2792 * where the stacking does not occur.
2794 * Typically, multiple interrupt conditions may happen in
2795 * the following situations:
2797 * - SCSI parity error + Phase mismatch (PAR|MA)
2798 * When an parity error is detected in input phase
2799 * and the device switches to msg-in phase inside a
2801 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2802 * When a stupid device does not want to handle the
2803 * recovery of an SCSI parity error.
2804 * - Some combinations of STO, PAR, UDC, ...
2805 * When using non compliant SCSI stuff, when user is
2806 * doing non compliant hot tampering on the BUS, when
2807 * something really bad happens to a device, etc ...
2809 * The heuristic suggested by SYMBIOS to handle
2810 * multiple interrupts is to try unstacking all
2811 * interrupts conditions and to handle them on some
2812 * priority based on error severity.
2813 * This will work when the unstacking has been
2814 * successful, but we cannot be 100 % sure of that,
2815 * since the CPU may have been faster to unstack than
2816 * the chip is able to stack. Hmmm ... But it seems that
2817 * such a situation is very unlikely to happen.
2819 * If this happen, for example STO caught by the CPU
2820 * then UDC happenning before the CPU have restarted
2821 * the SCRIPTS, the driver may wrongly complete the
2822 * same command on UDC, since the SCRIPTS didn't restart
2823 * and the DSA still points to the same command.
2824 * We avoid this situation by setting the DSA to an
2825 * invalid value when the CCB is completed and before
2826 * restarting the SCRIPTS.
2828 * Another issue is that we need some section of our
2829 * recovery procedures to be somehow uninterruptible but
2830 * the SCRIPTS processor does not provides such a
2831 * feature. For this reason, we handle recovery preferently
2832 * from the C code and check against some SCRIPTS critical
2833 * sections from the C code.
2835 * Hopefully, the interrupt handling of the driver is now
2836 * able to resist to weird BUS error conditions, but donnot
2837 * ask me for any guarantee that it will never fail. :-)
2838 * Use at your own decision and risk.
2841 void sym_interrupt (hcb_p np
)
2843 u_char istat
, istatc
;
2848 * interrupt on the fly ?
2849 * (SCRIPTS may still be running)
2851 * A `dummy read' is needed to ensure that the
2852 * clear of the INTF flag reaches the device
2853 * and that posted writes are flushed to memory
2854 * before the scanning of the DONE queue.
2855 * Note that SCRIPTS also (dummy) read to memory
2856 * prior to deliver the INTF interrupt condition.
2858 istat
= INB (nc_istat
);
2860 OUTB (nc_istat
, (istat
& SIGP
) | INTF
| np
->istat_sem
);
2861 istat
= INB (nc_istat
); /* DUMMY READ */
2862 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("F ");
2863 (void)sym_wakeup_done (np
);
2866 if (!(istat
& (SIP
|DIP
)))
2869 #if 0 /* We should never get this one */
2871 OUTB (nc_istat
, CABRT
);
2875 * PAR and MA interrupts may occur at the same time,
2876 * and we need to know of both in order to handle
2877 * this situation properly. We try to unstack SCSI
2878 * interrupts for that reason. BTW, I dislike a LOT
2879 * such a loop inside the interrupt routine.
2880 * Even if DMA interrupt stacking is very unlikely to
2881 * happen, we also try unstacking these ones, since
2882 * this has no performance impact.
2889 sist
|= INW (nc_sist
);
2891 dstat
|= INB (nc_dstat
);
2892 istatc
= INB (nc_istat
);
2894 } while (istatc
& (SIP
|DIP
));
2896 if (DEBUG_FLAGS
& DEBUG_TINY
)
2897 printf ("<%d|%x:%x|%x:%x>",
2900 (unsigned)INL(nc_dsp
),
2901 (unsigned)INL(nc_dbc
));
2903 * On paper, a memory read barrier may be needed here to
2904 * prevent out of order LOADs by the CPU from having
2905 * prefetched stale data prior to DMA having occurred.
2906 * And since we are paranoid ... :)
2908 MEMORY_READ_BARRIER();
2911 * First, interrupts we want to service cleanly.
2913 * Phase mismatch (MA) is the most frequent interrupt
2914 * for chip earlier than the 896 and so we have to service
2915 * it as quickly as possible.
2916 * A SCSI parity error (PAR) may be combined with a phase
2917 * mismatch condition (MA).
2918 * Programmed interrupts (SIR) are used to call the C code
2920 * The single step interrupt (SSI) is not used in this
2923 if (!(sist
& (STO
|GEN
|HTH
|SGE
|UDC
|SBMC
|RST
)) &&
2924 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2925 if (sist
& PAR
) sym_int_par (np
, sist
);
2926 else if (sist
& MA
) sym_int_ma (np
);
2927 else if (dstat
& SIR
) sym_int_sir (np
);
2928 else if (dstat
& SSI
) OUTONB_STD ();
2929 else goto unknown_int
;
2934 * Now, interrupts that donnot happen in normal
2935 * situations and that we may need to recover from.
2937 * On SCSI RESET (RST), we reset everything.
2938 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2939 * active CCBs with RESET status, prepare all devices
2940 * for negotiating again and restart the SCRIPTS.
2941 * On STO and UDC, we complete the CCB with the corres-
2942 * ponding status and restart the SCRIPTS.
2945 printf("%s: SCSI BUS reset detected.\n", sym_name(np
));
2946 sym_start_up (np
, 1);
2950 OUTB (nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2951 OUTB (nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2953 if (!(sist
& (GEN
|HTH
|SGE
)) &&
2954 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2955 if (sist
& SBMC
) sym_int_sbmc (np
);
2956 else if (sist
& STO
) sym_int_sto (np
);
2957 else if (sist
& UDC
) sym_int_udc (np
);
2958 else goto unknown_int
;
2963 * Now, interrupts we are not able to recover cleanly.
2965 * Log message for hard errors.
2969 sym_log_hard_error(np
, sist
, dstat
);
2971 if ((sist
& (GEN
|HTH
|SGE
)) ||
2972 (dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2973 sym_start_reset(np
);
2979 * We just miss the cause of the interrupt. :(
2980 * Print a message. The timeout will do the real work.
2982 printf( "%s: unknown interrupt(s) ignored, "
2983 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2984 sym_name(np
), istat
, dstat
, sist
);
2988 * Dequeue from the START queue all CCBs that match
2989 * a given target/lun/task condition (-1 means all),
2990 * and move them from the BUSY queue to the COMP queue
2991 * with CAM_REQUEUE_REQ status condition.
2992 * This function is used during error handling/recovery.
2993 * It is called with SCRIPTS not running.
2996 sym_dequeue_from_squeue(hcb_p np
, int i
, int target
, int lun
, int task
)
3002 * Make sure the starting index is within range.
3004 assert((i
>= 0) && (i
< 2*MAX_QUEUE
));
3007 * Walk until end of START queue and dequeue every job
3008 * that matches the target/lun/task condition.
3011 while (i
!= np
->squeueput
) {
3012 cp
= sym_ccb_from_dsa(np
, scr_to_cpu(np
->squeue
[i
]));
3014 #ifdef SYM_CONF_IARB_SUPPORT
3015 /* Forget hints for IARB, they may be no longer relevant */
3016 cp
->host_flags
&= ~HF_HINT_IARB
;
3018 if ((target
== -1 || cp
->target
== target
) &&
3019 (lun
== -1 || cp
->lun
== lun
) &&
3020 (task
== -1 || cp
->tag
== task
)) {
3021 sym_set_cam_status(cp
->cam_ccb
, CAM_REQUEUE_REQ
);
3022 sym_remque(&cp
->link_ccbq
);
3023 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3027 np
->squeue
[j
] = np
->squeue
[i
];
3028 if ((j
+= 2) >= MAX_QUEUE
*2) j
= 0;
3030 if ((i
+= 2) >= MAX_QUEUE
*2) i
= 0;
3032 if (i
!= j
) /* Copy back the idle task if needed */
3033 np
->squeue
[j
] = np
->squeue
[i
];
3034 np
->squeueput
= j
; /* Update our current start queue pointer */
3040 * Complete all CCBs queued to the COMP queue.
3042 * These CCBs are assumed:
3043 * - Not to be referenced either by devices or
3044 * SCRIPTS-related queues and datas.
3045 * - To have to be completed with an error condition
3048 * The device queue freeze count is incremented
3049 * for each CCB that does not prevent this.
3050 * This function is called when all CCBs involved
3051 * in error handling/recovery have been reaped.
3053 void sym_flush_comp_queue(hcb_p np
, int cam_status
)
3058 while ((qp
= sym_remque_head(&np
->comp_ccbq
)) != 0) {
3060 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3061 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
3062 /* Leave quiet CCBs waiting for resources */
3063 if (cp
->host_status
== HS_WAIT
)
3067 sym_set_cam_status(ccb
, cam_status
);
3068 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
3069 if (sym_get_cam_status(ccb
) == CAM_REQUEUE_REQ
) {
3070 tcb_p tp
= &np
->target
[cp
->target
];
3071 lcb_p lp
= sym_lp(np
, tp
, cp
->lun
);
3073 sym_remque(&cp
->link2_ccbq
);
3074 sym_insque_tail(&cp
->link2_ccbq
,
3077 if (cp
->tag
!= NO_TAG
)
3080 --lp
->started_no_tag
;
3087 sym_free_ccb(np
, cp
);
3088 sym_freeze_cam_ccb(ccb
);
3089 sym_xpt_done(np
, ccb
);
3094 * chip handler for bad SCSI status condition
3096 * In case of bad SCSI status, we unqueue all the tasks
3097 * currently queued to the controller but not yet started
3098 * and then restart the SCRIPTS processor immediately.
3100 * QUEUE FULL and BUSY conditions are handled the same way.
3101 * Basically all the not yet started tasks are requeued in
3102 * device queue and the queue is frozen until a completion.
3104 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3105 * the CCB of the failed command to prepare a REQUEST SENSE
3106 * SCSI command and queue it to the controller queue.
3108 * SCRATCHA is assumed to have been loaded with STARTPOS
3109 * before the SCRIPTS called the C code.
3111 static void sym_sir_bad_scsi_status(hcb_p np
, int num
, ccb_p cp
)
3113 tcb_p tp
= &np
->target
[cp
->target
];
3115 u_char s_status
= cp
->ssss_status
;
3116 u_char h_flags
= cp
->host_flags
;
3122 * Compute the index of the next job to start from SCRIPTS.
3124 i
= (INL (nc_scratcha
) - np
->squeue_ba
) / 4;
3127 * The last CCB queued used for IARB hint may be
3128 * no longer relevant. Forget it.
3130 #ifdef SYM_CONF_IARB_SUPPORT
3136 * Now deal with the SCSI status.
3141 if (sym_verbose
>= 2) {
3144 s_status
== S_BUSY
? "BUSY" : "QUEUE FULL\n");
3146 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3147 sym_complete_error (np
, cp
);
3152 * If we get an SCSI error when requesting sense, give up.
3154 if (h_flags
& HF_SENSE
) {
3155 sym_complete_error (np
, cp
);
3160 * Dequeue all queued CCBs for that device not yet started,
3161 * and restart the SCRIPTS processor immediately.
3163 (void) sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3164 OUTL_DSP (SCRIPTA_BA (np
, start
));
3167 * Save some info of the actual IO.
3168 * Compute the data residual.
3170 cp
->sv_scsi_status
= cp
->ssss_status
;
3171 cp
->sv_xerr_status
= cp
->xerr_status
;
3172 cp
->sv_resid
= sym_compute_residual(np
, cp
);
3175 * Prepare all needed data structures for
3176 * requesting sense data.
3182 cp
->scsi_smsg2
[0] = M_IDENTIFY
| cp
->lun
;
3186 * If we are currently using anything different from
3187 * async. 8 bit data transfers with that target,
3188 * start a negotiation, since the device may want
3189 * to report us a UNIT ATTENTION condition due to
3190 * a cause we currently ignore, and we donnot want
3191 * to be stuck with WIDE and/or SYNC data transfer.
3193 * cp->nego_status is filled by sym_prepare_nego().
3195 cp
->nego_status
= 0;
3197 if (tp
->tinfo
.curr
.options
& PPR_OPT_MASK
)
3199 else if (tp
->tinfo
.curr
.width
!= BUS_8_BIT
)
3201 else if (tp
->tinfo
.curr
.offset
!= 0)
3205 sym_prepare_nego (np
,cp
, nego
, &cp
->scsi_smsg2
[msglen
]);
3207 * Message table indirect structure.
3209 cp
->phys
.smsg
.addr
= cpu_to_scr(CCB_BA (cp
, scsi_smsg2
));
3210 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
3215 cp
->phys
.cmd
.addr
= cpu_to_scr(CCB_BA (cp
, sensecmd
));
3216 cp
->phys
.cmd
.size
= cpu_to_scr(6);
3219 * patch requested size into sense command
3221 cp
->sensecmd
[0] = REQUEST_SENSE
;
3222 cp
->sensecmd
[1] = 0;
3223 if (tp
->tinfo
.curr
.scsi_version
<= 2 && cp
->lun
<= 7)
3224 cp
->sensecmd
[1] = cp
->lun
<< 5;
3225 cp
->sensecmd
[4] = SYM_SNS_BBUF_LEN
;
3226 cp
->data_len
= SYM_SNS_BBUF_LEN
;
3231 bzero(cp
->sns_bbuf
, SYM_SNS_BBUF_LEN
);
3232 cp
->phys
.sense
.addr
= cpu_to_scr(vtobus(cp
->sns_bbuf
));
3233 cp
->phys
.sense
.size
= cpu_to_scr(SYM_SNS_BBUF_LEN
);
3236 * requeue the command.
3238 startp
= SCRIPTB_BA (np
, sdata_in
);
3240 cp
->phys
.head
.savep
= cpu_to_scr(startp
);
3241 cp
->phys
.head
.lastp
= cpu_to_scr(startp
);
3242 cp
->startp
= cpu_to_scr(startp
);
3243 cp
->goalp
= cpu_to_scr(startp
+ 16);
3245 cp
->host_xflags
= 0;
3246 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
3247 cp
->ssss_status
= S_ILLEGAL
;
3248 cp
->host_flags
= (HF_SENSE
|HF_DATA_IN
);
3249 cp
->xerr_status
= 0;
3250 cp
->extra_bytes
= 0;
3252 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA (np
, select
));
3255 * Requeue the command.
3257 sym_put_start_queue(np
, cp
);
3260 * Give back to upper layer everything we have dequeued.
3262 sym_flush_comp_queue(np
, 0);
3268 * After a device has accepted some management message
3269 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3270 * a device signals a UNIT ATTENTION condition, some
3271 * tasks are thrown away by the device. We are required
3272 * to reflect that on our tasks list since the device
3273 * will never complete these tasks.
3275 * This function move from the BUSY queue to the COMP
3276 * queue all disconnected CCBs for a given target that
3277 * match the following criteria:
3278 * - lun=-1 means any logical UNIT otherwise a given one.
3279 * - task=-1 means any task, otherwise a given one.
3281 int sym_clear_tasks(hcb_p np
, int cam_status
, int target
, int lun
, int task
)
3283 SYM_QUEHEAD qtmp
, *qp
;
3288 * Move the entire BUSY queue to our temporary queue.
3290 sym_que_init(&qtmp
);
3291 sym_que_splice(&np
->busy_ccbq
, &qtmp
);
3292 sym_que_init(&np
->busy_ccbq
);
3295 * Put all CCBs that matches our criteria into
3296 * the COMP queue and put back other ones into
3299 while ((qp
= sym_remque_head(&qtmp
)) != 0) {
3301 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3303 if (cp
->host_status
!= HS_DISCONNECT
||
3304 cp
->target
!= target
||
3305 (lun
!= -1 && cp
->lun
!= lun
) ||
3307 (cp
->tag
!= NO_TAG
&& cp
->scsi_smsg
[2] != task
))) {
3308 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
3311 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3313 /* Preserve the software timeout condition */
3314 if (sym_get_cam_status(ccb
) != CAM_CMD_TIMEOUT
)
3315 sym_set_cam_status(ccb
, cam_status
);
3318 printf("XXXX TASK @%p CLEARED\n", cp
);
3325 * chip handler for TASKS recovery
3327 * We cannot safely abort a command, while the SCRIPTS
3328 * processor is running, since we just would be in race
3331 * As long as we have tasks to abort, we keep the SEM
3332 * bit set in the ISTAT. When this bit is set, the
3333 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3334 * each time it enters the scheduler.
3336 * If we have to reset a target, clear tasks of a unit,
3337 * or to perform the abort of a disconnected job, we
3338 * restart the SCRIPTS for selecting the target. Once
3339 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3340 * If it loses arbitration, the SCRIPTS will interrupt again
3341 * the next time it will enter its scheduler, and so on ...
3343 * On SIR_TARGET_SELECTED, we scan for the more
3344 * appropriate thing to do:
3346 * - If nothing, we just sent a M_ABORT message to the
3347 * target to get rid of the useless SCSI bus ownership.
3348 * According to the specs, no tasks shall be affected.
3349 * - If the target is to be reset, we send it a M_RESET
3351 * - If a logical UNIT is to be cleared , we send the
3352 * IDENTIFY(lun) + M_ABORT.
3353 * - If an untagged task is to be aborted, we send the
3354 * IDENTIFY(lun) + M_ABORT.
3355 * - If a tagged task is to be aborted, we send the
3356 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3358 * Once our 'kiss of death' :) message has been accepted
3359 * by the target, the SCRIPTS interrupts again
3360 * (SIR_ABORT_SENT). On this interrupt, we complete
3361 * all the CCBs that should have been aborted by the
3362 * target according to our message.
3364 static void sym_sir_task_recovery(hcb_p np
, int num
)
3369 int target
=-1, lun
=-1, task
;
3374 * The SCRIPTS processor stopped before starting
3375 * the next command in order to allow us to perform
3376 * some task recovery.
3378 case SIR_SCRIPT_STOPPED
:
3380 * Do we have any target to reset or unit to clear ?
3382 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
3383 tp
= &np
->target
[i
];
3385 (tp
->lun0p
&& tp
->lun0p
->to_clear
)) {
3391 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3392 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3402 * If not, walk the busy queue for any
3403 * disconnected CCB to be aborted.
3406 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3407 cp
= sym_que_entry(qp
,struct sym_ccb
,link_ccbq
);
3408 if (cp
->host_status
!= HS_DISCONNECT
)
3411 target
= cp
->target
;
3418 * If some target is to be selected,
3419 * prepare and start the selection.
3422 tp
= &np
->target
[target
];
3423 np
->abrt_sel
.sel_id
= target
;
3424 np
->abrt_sel
.sel_scntl3
= tp
->head
.wval
;
3425 np
->abrt_sel
.sel_sxfer
= tp
->head
.sval
;
3426 OUTL(nc_dsa
, np
->hcb_ba
);
3427 OUTL_DSP (SCRIPTB_BA (np
, sel_for_abort
));
3432 * Now look for a CCB to abort that haven't started yet.
3433 * Btw, the SCRIPTS processor is still stopped, so
3434 * we are not in race.
3438 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3439 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3440 if (cp
->host_status
!= HS_BUSY
&&
3441 cp
->host_status
!= HS_NEGOTIATE
)
3445 #ifdef SYM_CONF_IARB_SUPPORT
3447 * If we are using IMMEDIATE ARBITRATION, we donnot
3448 * want to cancel the last queued CCB, since the
3449 * SCRIPTS may have anticipated the selection.
3451 if (cp
== np
->last_cp
) {
3456 i
= 1; /* Means we have found some */
3461 * We are done, so we donnot need
3462 * to synchronize with the SCRIPTS anylonger.
3463 * Remove the SEM flag from the ISTAT.
3466 OUTB (nc_istat
, SIGP
);
3470 * Compute index of next position in the start
3471 * queue the SCRIPTS intends to start and dequeue
3472 * all CCBs for that device that haven't been started.
3474 i
= (INL (nc_scratcha
) - np
->squeue_ba
) / 4;
3475 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3478 * Make sure at least our IO to abort has been dequeued.
3480 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3481 assert(i
&& sym_get_cam_status(cp
->cam_ccb
) == CAM_REQUEUE_REQ
);
3483 sym_remque(&cp
->link_ccbq
);
3484 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3487 * Keep track in cam status of the reason of the abort.
3489 if (cp
->to_abort
== 2)
3490 sym_set_cam_status(cp
->cam_ccb
, CAM_CMD_TIMEOUT
);
3492 sym_set_cam_status(cp
->cam_ccb
, CAM_REQ_ABORTED
);
3495 * Complete with error everything that we have dequeued.
3497 sym_flush_comp_queue(np
, 0);
3500 * The SCRIPTS processor has selected a target
3501 * we may have some manual recovery to perform for.
3503 case SIR_TARGET_SELECTED
:
3504 target
= (INB (nc_sdid
) & 0xf);
3505 tp
= &np
->target
[target
];
3507 np
->abrt_tbl
.addr
= cpu_to_scr(vtobus(np
->abrt_msg
));
3510 * If the target is to be reset, prepare a
3511 * M_RESET message and clear the to_reset flag
3512 * since we donnot expect this operation to fail.
3515 np
->abrt_msg
[0] = M_RESET
;
3516 np
->abrt_tbl
.size
= 1;
3522 * Otherwise, look for some logical unit to be cleared.
3524 if (tp
->lun0p
&& tp
->lun0p
->to_clear
)
3526 else if (tp
->lunmp
) {
3527 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3528 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3536 * If a logical unit is to be cleared, prepare
3537 * an IDENTIFY(lun) + ABORT MESSAGE.
3540 lcb_p lp
= sym_lp(np
, tp
, lun
);
3541 lp
->to_clear
= 0; /* We donnot expect to fail here */
3542 np
->abrt_msg
[0] = M_IDENTIFY
| lun
;
3543 np
->abrt_msg
[1] = M_ABORT
;
3544 np
->abrt_tbl
.size
= 2;
3549 * Otherwise, look for some disconnected job to
3550 * abort for this target.
3554 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3555 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3556 if (cp
->host_status
!= HS_DISCONNECT
)
3558 if (cp
->target
!= target
)
3562 i
= 1; /* Means we have some */
3567 * If we have none, probably since the device has
3568 * completed the command before we won abitration,
3569 * send a M_ABORT message without IDENTIFY.
3570 * According to the specs, the device must just
3571 * disconnect the BUS and not abort any task.
3574 np
->abrt_msg
[0] = M_ABORT
;
3575 np
->abrt_tbl
.size
= 1;
3580 * We have some task to abort.
3581 * Set the IDENTIFY(lun)
3583 np
->abrt_msg
[0] = M_IDENTIFY
| cp
->lun
;
3586 * If we want to abort an untagged command, we
3587 * will send a IDENTIFY + M_ABORT.
3588 * Otherwise (tagged command), we will send
3589 * a IDENTITFY + task attributes + ABORT TAG.
3591 if (cp
->tag
== NO_TAG
) {
3592 np
->abrt_msg
[1] = M_ABORT
;
3593 np
->abrt_tbl
.size
= 2;
3596 np
->abrt_msg
[1] = cp
->scsi_smsg
[1];
3597 np
->abrt_msg
[2] = cp
->scsi_smsg
[2];
3598 np
->abrt_msg
[3] = M_ABORT_TAG
;
3599 np
->abrt_tbl
.size
= 4;
3602 * Keep track of software timeout condition, since the
3603 * peripheral driver may not count retries on abort
3604 * conditions not due to timeout.
3606 if (cp
->to_abort
== 2)
3607 sym_set_cam_status(cp
->cam_ccb
, CAM_CMD_TIMEOUT
);
3608 cp
->to_abort
= 0; /* We donnot expect to fail here */
3612 * The target has accepted our message and switched
3613 * to BUS FREE phase as we expected.
3615 case SIR_ABORT_SENT
:
3616 target
= (INB (nc_sdid
) & 0xf);
3617 tp
= &np
->target
[target
];
3620 ** If we didn't abort anything, leave here.
3622 if (np
->abrt_msg
[0] == M_ABORT
)
3626 * If we sent a M_RESET, then a hardware reset has
3627 * been performed by the target.
3628 * - Reset everything to async 8 bit
3629 * - Tell ourself to negotiate next time :-)
3630 * - Prepare to clear all disconnected CCBs for
3631 * this target from our task list (lun=task=-1)
3635 if (np
->abrt_msg
[0] == M_RESET
) {
3637 tp
->head
.wval
= np
->rv_scntl3
;
3639 tp
->tinfo
.curr
.period
= 0;
3640 tp
->tinfo
.curr
.offset
= 0;
3641 tp
->tinfo
.curr
.width
= BUS_8_BIT
;
3642 tp
->tinfo
.curr
.options
= 0;
3646 * Otherwise, check for the LUN and TASK(s)
3647 * concerned by the cancelation.
3648 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3649 * or an ABORT message :-)
3652 lun
= np
->abrt_msg
[0] & 0x3f;
3653 if (np
->abrt_msg
[1] == M_ABORT_TAG
)
3654 task
= np
->abrt_msg
[2];
3658 * Complete all the CCBs the device should have
3659 * aborted due to our 'kiss of death' message.
3661 i
= (INL (nc_scratcha
) - np
->squeue_ba
) / 4;
3662 (void) sym_dequeue_from_squeue(np
, i
, target
, lun
, -1);
3663 (void) sym_clear_tasks(np
, CAM_REQ_ABORTED
, target
, lun
, task
);
3664 sym_flush_comp_queue(np
, 0);
3667 * If we sent a BDR, make upper layer aware of that.
3669 if (np
->abrt_msg
[0] == M_RESET
)
3670 sym_xpt_async_sent_bdr(np
, target
);
3675 * Print to the log the message we intend to send.
3677 if (num
== SIR_TARGET_SELECTED
) {
3678 PRINT_TARGET(np
, target
);
3679 sym_printl_hex("control msgout:", np
->abrt_msg
,
3681 np
->abrt_tbl
.size
= cpu_to_scr(np
->abrt_tbl
.size
);
3685 * Let the SCRIPTS processor continue.
3691 * Gerard's alchemy:) that deals with with the data
3692 * pointer for both MDP and the residual calculation.
3694 * I didn't want to bloat the code by more than 200
3695 * lignes for the handling of both MDP and the residual.
3696 * This has been achieved by using a data pointer
3697 * representation consisting in an index in the data
3698 * array (dp_sg) and a negative offset (dp_ofs) that
3699 * have the following meaning:
3701 * - dp_sg = SYM_CONF_MAX_SG
3702 * we are at the end of the data script.
3703 * - dp_sg < SYM_CONF_MAX_SG
3704 * dp_sg points to the next entry of the scatter array
3705 * we want to transfer.
3707 * dp_ofs represents the residual of bytes of the
3708 * previous entry scatter entry we will send first.
3710 * no residual to send first.
3712 * The function sym_evaluate_dp() accepts an arbitray
3713 * offset (basically from the MDP message) and returns
3714 * the corresponding values of dp_sg and dp_ofs.
3717 static int sym_evaluate_dp(hcb_p np
, ccb_p cp
, u32 scr
, int *ofs
)
3720 int dp_ofs
, dp_sg
, dp_sgmin
;
3725 * Compute the resulted data pointer in term of a script
3726 * address within some DATA script and a signed byte offset.
3730 if (dp_scr
== SCRIPTA_BA (np
, pm0_data
))
3732 else if (dp_scr
== SCRIPTA_BA (np
, pm1_data
))
3738 dp_scr
= scr_to_cpu(pm
->ret
);
3739 dp_ofs
-= scr_to_cpu(pm
->sg
.size
);
3743 * If we are auto-sensing, then we are done.
3745 if (cp
->host_flags
& HF_SENSE
) {
3751 * Deduce the index of the sg entry.
3752 * Keep track of the index of the first valid entry.
3753 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3756 tmp
= scr_to_cpu(sym_goalp(cp
));
3757 dp_sg
= SYM_CONF_MAX_SG
;
3759 dp_sg
-= (tmp
- 8 - (int)dp_scr
) / (2*4);
3760 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3763 * Move to the sg entry the data pointer belongs to.
3765 * If we are inside the data area, we expect result to be:
3768 * dp_ofs = 0 and dp_sg is the index of the sg entry
3769 * the data pointer belongs to (or the end of the data)
3771 * dp_ofs < 0 and dp_sg is the index of the sg entry
3772 * the data pointer belongs to + 1.
3776 while (dp_sg
> dp_sgmin
) {
3778 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3779 n
= dp_ofs
+ (tmp
& 0xffffff);
3787 else if (dp_ofs
> 0) {
3788 while (dp_sg
< SYM_CONF_MAX_SG
) {
3789 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3790 dp_ofs
-= (tmp
& 0xffffff);
3798 * Make sure the data pointer is inside the data area.
3799 * If not, return some error.
3801 if (dp_sg
< dp_sgmin
|| (dp_sg
== dp_sgmin
&& dp_ofs
< 0))
3803 else if (dp_sg
> SYM_CONF_MAX_SG
||
3804 (dp_sg
== SYM_CONF_MAX_SG
&& dp_ofs
> 0))
3808 * Save the extreme pointer if needed.
3810 if (dp_sg
> cp
->ext_sg
||
3811 (dp_sg
== cp
->ext_sg
&& dp_ofs
> cp
->ext_ofs
)) {
3813 cp
->ext_ofs
= dp_ofs
;
3827 * chip handler for MODIFY DATA POINTER MESSAGE
3829 * We also call this function on IGNORE WIDE RESIDUE
3830 * messages that do not match a SWIDE full condition.
3831 * Btw, we assume in that situation that such a message
3832 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3835 static void sym_modify_dp(hcb_p np
, tcb_p tp
, ccb_p cp
, int ofs
)
3838 u32 dp_scr
= sym_get_script_dp (np
, cp
);
3846 * Not supported for auto-sense.
3848 if (cp
->host_flags
& HF_SENSE
)
3852 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3853 * to the resulted data pointer.
3855 dp_sg
= sym_evaluate_dp(np
, cp
, dp_scr
, &dp_ofs
);
3860 * And our alchemy:) allows to easily calculate the data
3861 * script address we want to return for the next data phase.
3863 dp_ret
= cpu_to_scr(sym_goalp(cp
));
3864 dp_ret
= dp_ret
- 8 - (SYM_CONF_MAX_SG
- dp_sg
) * (2*4);
3867 * If offset / scatter entry is zero we donnot need
3868 * a context for the new current data pointer.
3876 * Get a context for the new current data pointer.
3878 hflags
= INB (HF_PRT
);
3880 if (hflags
& HF_DP_SAVED
)
3881 hflags
^= HF_ACT_PM
;
3883 if (!(hflags
& HF_ACT_PM
)) {
3885 dp_scr
= SCRIPTA_BA (np
, pm0_data
);
3889 dp_scr
= SCRIPTA_BA (np
, pm1_data
);
3892 hflags
&= ~(HF_DP_SAVED
);
3894 OUTB (HF_PRT
, hflags
);
3897 * Set up the new current data pointer.
3898 * ofs < 0 there, and for the next data phase, we
3899 * want to transfer part of the data of the sg entry
3900 * corresponding to index dp_sg-1 prior to returning
3901 * to the main data script.
3903 pm
->ret
= cpu_to_scr(dp_ret
);
3904 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].addr
);
3905 tmp
+= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].size
) + dp_ofs
;
3906 pm
->sg
.addr
= cpu_to_scr(tmp
);
3907 pm
->sg
.size
= cpu_to_scr(-dp_ofs
);
3910 sym_set_script_dp (np
, cp
, dp_scr
);
3911 OUTL_DSP (SCRIPTA_BA (np
, clrack
));
3915 OUTL_DSP (SCRIPTB_BA (np
, msg_bad
));
3920 * chip calculation of the data residual.
3922 * As I used to say, the requirement of data residual
3923 * in SCSI is broken, useless and cannot be achieved
3924 * without huge complexity.
3925 * But most OSes and even the official CAM require it.
3926 * When stupidity happens to be so widely spread inside
3927 * a community, it gets hard to convince.
3929 * Anyway, I don't care, since I am not going to use
3930 * any software that considers this data residual as
3931 * a relevant information. :)
3934 int sym_compute_residual(hcb_p np
, ccb_p cp
)
3936 int dp_sg
, dp_sgmin
, resid
= 0;
3940 * Check for some data lost or just thrown away.
3941 * We are not required to be quite accurate in this
3942 * situation. Btw, if we are odd for output and the
3943 * device claims some more data, it may well happen
3944 * than our residual be zero. :-)
3946 if (cp
->xerr_status
& (XE_EXTRA_DATA
|XE_SODL_UNRUN
|XE_SWIDE_OVRUN
)) {
3947 if (cp
->xerr_status
& XE_EXTRA_DATA
)
3948 resid
-= cp
->extra_bytes
;
3949 if (cp
->xerr_status
& XE_SODL_UNRUN
)
3951 if (cp
->xerr_status
& XE_SWIDE_OVRUN
)
3956 * If all data has been transferred,
3957 * there is no residual.
3959 if (cp
->phys
.head
.lastp
== sym_goalp(cp
))
3963 * If no data transfer occurs, or if the data
3964 * pointer is weird, return full residual.
3966 if (cp
->startp
== cp
->phys
.head
.lastp
||
3967 sym_evaluate_dp(np
, cp
, scr_to_cpu(cp
->phys
.head
.lastp
),
3969 return cp
->data_len
;
3973 * If we were auto-sensing, then we are done.
3975 if (cp
->host_flags
& HF_SENSE
) {
3980 * We are now full comfortable in the computation
3981 * of the data residual (2's complement).
3983 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3984 resid
= -cp
->ext_ofs
;
3985 for (dp_sg
= cp
->ext_sg
; dp_sg
< SYM_CONF_MAX_SG
; ++dp_sg
) {
3986 u_int tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3987 resid
+= (tmp
& 0xffffff);
3991 * Hopefully, the result is not too wrong.
3997 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3999 * When we try to negotiate, we append the negotiation message
4000 * to the identify and (maybe) simple tag message.
4001 * The host status field is set to HS_NEGOTIATE to mark this
4004 * If the target doesn't answer this message immediately
4005 * (as required by the standard), the SIR_NEGO_FAILED interrupt
4006 * will be raised eventually.
4007 * The handler removes the HS_NEGOTIATE status, and sets the
4008 * negotiated value to the default (async / nowide).
4010 * If we receive a matching answer immediately, we check it
4011 * for validity, and set the values.
4013 * If we receive a Reject message immediately, we assume the
4014 * negotiation has failed, and fall back to standard values.
4016 * If we receive a negotiation message while not in HS_NEGOTIATE
4017 * state, it's a target initiated negotiation. We prepare a
4018 * (hopefully) valid answer, set our parameters, and send back
4019 * this answer to the target.
4021 * If the target doesn't fetch the answer (no message out phase),
4022 * we assume the negotiation has failed, and fall back to default
4023 * settings (SIR_NEGO_PROTO interrupt).
4025 * When we set the values, we adjust them in all ccbs belonging
4026 * to this target, in the controller's register, and in the "phys"
4027 * field of the controller's struct sym_hcb.
4031 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
4034 sym_sync_nego_check(hcb_p np
, int req
, int target
)
4036 u_char chg
, ofs
, per
, fak
, div
;
4038 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4039 sym_print_nego_msg(np
, target
, "sync msgin", np
->msgin
);
4043 * Get requested values.
4050 * Check values against our limits.
4053 if (ofs
> np
->maxoffs
)
4054 {chg
= 1; ofs
= np
->maxoffs
;}
4058 if (per
< np
->minsync
)
4059 {chg
= 1; per
= np
->minsync
;}
4063 * Get new chip synchronous parameters value.
4066 if (ofs
&& sym_getsync(np
, 0, per
, &div
, &fak
) < 0)
4069 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4070 PRINT_TARGET(np
, target
);
4071 printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
4072 ofs
, per
, div
, fak
, chg
);
4076 * If it was an answer we want to change,
4077 * then it isn't acceptable. Reject it.
4085 sym_setsync (np
, target
, ofs
, per
, div
, fak
);
4088 * It was an answer. We are done.
4094 * It was a request. Prepare an answer message.
4096 np
->msgout
[0] = M_EXTENDED
;
4098 np
->msgout
[2] = M_X_SYNC_REQ
;
4099 np
->msgout
[3] = per
;
4100 np
->msgout
[4] = ofs
;
4102 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4103 sym_print_nego_msg(np
, target
, "sync msgout", np
->msgout
);
4106 np
->msgin
[0] = M_NOOP
;
4111 sym_setsync (np
, target
, 0, 0, 0, 0);
4115 static void sym_sync_nego(hcb_p np
, tcb_p tp
, ccb_p cp
)
4121 * Request or answer ?
4123 if (INB (HS_PRT
) == HS_NEGOTIATE
) {
4124 OUTB (HS_PRT
, HS_BUSY
);
4125 if (cp
->nego_status
&& cp
->nego_status
!= NS_SYNC
)
4131 * Check and apply new values.
4133 result
= sym_sync_nego_check(np
, req
, cp
->target
);
4134 if (result
) /* Not acceptable, reject it */
4136 if (req
) { /* Was a request, send response. */
4137 cp
->nego_status
= NS_SYNC
;
4138 OUTL_DSP (SCRIPTB_BA (np
, sdtr_resp
));
4140 else /* Was a response, we are done. */
4141 OUTL_DSP (SCRIPTA_BA (np
, clrack
));
4145 OUTL_DSP (SCRIPTB_BA (np
, msg_bad
));
4149 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4152 sym_ppr_nego_check(hcb_p np
, int req
, int target
)
4154 tcb_p tp
= &np
->target
[target
];
4155 u_char chg
, ofs
, per
, fak
, dt
, div
, wide
;
4157 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4158 sym_print_nego_msg(np
, target
, "ppr msgin", np
->msgin
);
4162 * Get requested values.
4167 wide
= np
->msgin
[6];
4168 dt
= np
->msgin
[7] & PPR_OPT_DT
;
4171 * Check values against our limits.
4173 if (wide
> np
->maxwide
) {
4177 if (!wide
|| !(np
->features
& FE_ULTRA3
))
4180 if (!(np
->features
& FE_U3EN
)) /* Broken U3EN bit not supported */
4183 if (dt
!= (np
->msgin
[7] & PPR_OPT_MASK
)) chg
= 1;
4187 if (ofs
> np
->maxoffs_dt
)
4188 {chg
= 1; ofs
= np
->maxoffs_dt
;}
4190 else if (ofs
> np
->maxoffs
)
4191 {chg
= 1; ofs
= np
->maxoffs
;}
4196 if (per
< np
->minsync_dt
)
4197 {chg
= 1; per
= np
->minsync_dt
;}
4199 else if (per
< np
->minsync
)
4200 {chg
= 1; per
= np
->minsync
;}
4204 * Get new chip synchronous parameters value.
4207 if (ofs
&& sym_getsync(np
, dt
, per
, &div
, &fak
) < 0)
4211 * If it was an answer we want to change,
4212 * then it isn't acceptable. Reject it.
4220 sym_setpprot (np
, target
, dt
, ofs
, per
, wide
, div
, fak
);
4223 * It was an answer. We are done.
4229 * It was a request. Prepare an answer message.
4231 np
->msgout
[0] = M_EXTENDED
;
4233 np
->msgout
[2] = M_X_PPR_REQ
;
4234 np
->msgout
[3] = per
;
4236 np
->msgout
[5] = ofs
;
4237 np
->msgout
[6] = wide
;
4240 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4241 sym_print_nego_msg(np
, target
, "ppr msgout", np
->msgout
);
4244 np
->msgin
[0] = M_NOOP
;
4249 sym_setpprot (np
, target
, 0, 0, 0, 0, 0, 0);
4251 * If it is a device response that should result in
4252 * ST, we may want to try a legacy negotiation later.
4255 tp
->tinfo
.goal
.options
= 0;
4256 tp
->tinfo
.goal
.width
= wide
;
4257 tp
->tinfo
.goal
.period
= per
;
4258 tp
->tinfo
.goal
.offset
= ofs
;
4263 static void sym_ppr_nego(hcb_p np
, tcb_p tp
, ccb_p cp
)
4269 * Request or answer ?
4271 if (INB (HS_PRT
) == HS_NEGOTIATE
) {
4272 OUTB (HS_PRT
, HS_BUSY
);
4273 if (cp
->nego_status
&& cp
->nego_status
!= NS_PPR
)
4279 * Check and apply new values.
4281 result
= sym_ppr_nego_check(np
, req
, cp
->target
);
4282 if (result
) /* Not acceptable, reject it */
4284 if (req
) { /* Was a request, send response. */
4285 cp
->nego_status
= NS_PPR
;
4286 OUTL_DSP (SCRIPTB_BA (np
, ppr_resp
));
4288 else /* Was a response, we are done. */
4289 OUTL_DSP (SCRIPTA_BA (np
, clrack
));
4293 OUTL_DSP (SCRIPTB_BA (np
, msg_bad
));
4297 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4300 sym_wide_nego_check(hcb_p np
, int req
, int target
)
4304 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4305 sym_print_nego_msg(np
, target
, "wide msgin", np
->msgin
);
4309 * Get requested values.
4312 wide
= np
->msgin
[3];
4315 * Check values against our limits.
4317 if (wide
> np
->maxwide
) {
4322 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4323 PRINT_TARGET(np
, target
);
4324 printf ("wdtr: wide=%d chg=%d.\n", wide
, chg
);
4328 * If it was an answer we want to change,
4329 * then it isn't acceptable. Reject it.
4337 sym_setwide (np
, target
, wide
);
4340 * It was an answer. We are done.
4346 * It was a request. Prepare an answer message.
4348 np
->msgout
[0] = M_EXTENDED
;
4350 np
->msgout
[2] = M_X_WIDE_REQ
;
4351 np
->msgout
[3] = wide
;
4353 np
->msgin
[0] = M_NOOP
;
4355 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4356 sym_print_nego_msg(np
, target
, "wide msgout", np
->msgout
);
4365 static void sym_wide_nego(hcb_p np
, tcb_p tp
, ccb_p cp
)
4371 * Request or answer ?
4373 if (INB (HS_PRT
) == HS_NEGOTIATE
) {
4374 OUTB (HS_PRT
, HS_BUSY
);
4375 if (cp
->nego_status
&& cp
->nego_status
!= NS_WIDE
)
4381 * Check and apply new values.
4383 result
= sym_wide_nego_check(np
, req
, cp
->target
);
4384 if (result
) /* Not acceptable, reject it */
4386 if (req
) { /* Was a request, send response. */
4387 cp
->nego_status
= NS_WIDE
;
4388 OUTL_DSP (SCRIPTB_BA (np
, wdtr_resp
));
4390 else { /* Was a response. */
4392 * Negotiate for SYNC immediately after WIDE response.
4393 * This allows to negotiate for both WIDE and SYNC on
4394 * a single SCSI command (Suggested by Justin Gibbs).
4396 if (tp
->tinfo
.goal
.offset
) {
4397 np
->msgout
[0] = M_EXTENDED
;
4399 np
->msgout
[2] = M_X_SYNC_REQ
;
4400 np
->msgout
[3] = tp
->tinfo
.goal
.period
;
4401 np
->msgout
[4] = tp
->tinfo
.goal
.offset
;
4403 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4404 sym_print_nego_msg(np
, cp
->target
,
4405 "sync msgout", np
->msgout
);
4408 cp
->nego_status
= NS_SYNC
;
4409 OUTB (HS_PRT
, HS_NEGOTIATE
);
4410 OUTL_DSP (SCRIPTB_BA (np
, sdtr_resp
));
4414 OUTL_DSP (SCRIPTA_BA (np
, clrack
));
4420 OUTL_DSP (SCRIPTB_BA (np
, msg_bad
));
4424 * Reset DT, SYNC or WIDE to default settings.
4426 * Called when a negotiation does not succeed either
4427 * on rejection or on protocol error.
4429 * A target that understands a PPR message should never
4430 * reject it, and messing with it is very unlikely.
4431 * So, if a PPR makes problems, we may just want to
4432 * try a legacy negotiation later.
4434 static void sym_nego_default(hcb_p np
, tcb_p tp
, ccb_p cp
)
4436 switch (cp
->nego_status
) {
4439 sym_setpprot (np
, cp
->target
, 0, 0, 0, 0, 0, 0);
4441 tp
->tinfo
.goal
.options
= 0;
4442 if (tp
->tinfo
.goal
.period
< np
->minsync
)
4443 tp
->tinfo
.goal
.period
= np
->minsync
;
4444 if (tp
->tinfo
.goal
.offset
> np
->maxoffs
)
4445 tp
->tinfo
.goal
.offset
= np
->maxoffs
;
4449 sym_setsync (np
, cp
->target
, 0, 0, 0, 0);
4452 sym_setwide (np
, cp
->target
, 0);
4455 np
->msgin
[0] = M_NOOP
;
4456 np
->msgout
[0] = M_NOOP
;
4457 cp
->nego_status
= 0;
4461 * chip handler for MESSAGE REJECT received in response to
4462 * PPR, WIDE or SYNCHRONOUS negotiation.
4464 static void sym_nego_rejected(hcb_p np
, tcb_p tp
, ccb_p cp
)
4466 sym_nego_default(np
, tp
, cp
);
4467 OUTB (HS_PRT
, HS_BUSY
);
4471 * chip exception handler for programmed interrupts.
4473 static void sym_int_sir (hcb_p np
)
4475 u_char num
= INB (nc_dsps
);
4476 u32 dsa
= INL (nc_dsa
);
4477 ccb_p cp
= sym_ccb_from_dsa(np
, dsa
);
4478 u_char target
= INB (nc_sdid
) & 0x0f;
4479 tcb_p tp
= &np
->target
[target
];
4482 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("I#%d", num
);
4485 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4487 * SCRIPTS tell us that we may have to update
4488 * 64 bit DMA segment registers.
4490 case SIR_DMAP_DIRTY
:
4491 sym_update_dmap_regs(np
);
4495 * Command has been completed with error condition
4496 * or has been auto-sensed.
4498 case SIR_COMPLETE_ERROR
:
4499 sym_complete_error(np
, cp
);
4502 * The C code is currently trying to recover from something.
4503 * Typically, user want to abort some command.
4505 case SIR_SCRIPT_STOPPED
:
4506 case SIR_TARGET_SELECTED
:
4507 case SIR_ABORT_SENT
:
4508 sym_sir_task_recovery(np
, num
);
4511 * The device didn't go to MSG OUT phase after having
4512 * been selected with ATN. We donnot want to handle
4515 case SIR_SEL_ATN_NO_MSG_OUT
:
4516 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4517 sym_name (np
), target
);
4520 * The device didn't switch to MSG IN phase after
4521 * having reseleted the initiator.
4523 case SIR_RESEL_NO_MSG_IN
:
4524 printf ("%s:%d: No MSG IN phase after reselection.\n",
4525 sym_name (np
), target
);
4528 * After reselection, the device sent a message that wasn't
4531 case SIR_RESEL_NO_IDENTIFY
:
4532 printf ("%s:%d: No IDENTIFY after reselection.\n",
4533 sym_name (np
), target
);
4536 * The device reselected a LUN we donnot know about.
4538 case SIR_RESEL_BAD_LUN
:
4539 np
->msgout
[0] = M_RESET
;
4542 * The device reselected for an untagged nexus and we
4545 case SIR_RESEL_BAD_I_T_L
:
4546 np
->msgout
[0] = M_ABORT
;
4549 * The device reselected for a tagged nexus that we donnot
4552 case SIR_RESEL_BAD_I_T_L_Q
:
4553 np
->msgout
[0] = M_ABORT_TAG
;
4556 * The SCRIPTS let us know that the device has grabbed
4557 * our message and will abort the job.
4559 case SIR_RESEL_ABORTED
:
4560 np
->lastmsg
= np
->msgout
[0];
4561 np
->msgout
[0] = M_NOOP
;
4562 printf ("%s:%d: message %x sent on bad reselection.\n",
4563 sym_name (np
), target
, np
->lastmsg
);
4566 * The SCRIPTS let us know that a message has been
4567 * successfully sent to the device.
4569 case SIR_MSG_OUT_DONE
:
4570 np
->lastmsg
= np
->msgout
[0];
4571 np
->msgout
[0] = M_NOOP
;
4572 /* Should we really care of that */
4573 if (np
->lastmsg
== M_PARITY
|| np
->lastmsg
== M_ID_ERROR
) {
4575 cp
->xerr_status
&= ~XE_PARITY_ERR
;
4576 if (!cp
->xerr_status
)
4577 OUTOFFB (HF_PRT
, HF_EXT_ERR
);
4582 * The device didn't send a GOOD SCSI status.
4583 * We may have some work to do prior to allow
4584 * the SCRIPTS processor to continue.
4586 case SIR_BAD_SCSI_STATUS
:
4589 sym_sir_bad_scsi_status(np
, num
, cp
);
4592 * We are asked by the SCRIPTS to prepare a
4595 case SIR_REJECT_TO_SEND
:
4596 sym_print_msg(cp
, "M_REJECT to send for ", np
->msgin
);
4597 np
->msgout
[0] = M_REJECT
;
4600 * We have been ODD at the end of a DATA IN
4601 * transfer and the device didn't send a
4602 * IGNORE WIDE RESIDUE message.
4603 * It is a data overrun condition.
4605 case SIR_SWIDE_OVERRUN
:
4607 OUTONB (HF_PRT
, HF_EXT_ERR
);
4608 cp
->xerr_status
|= XE_SWIDE_OVRUN
;
4612 * We have been ODD at the end of a DATA OUT
4614 * It is a data underrun condition.
4616 case SIR_SODL_UNDERRUN
:
4618 OUTONB (HF_PRT
, HF_EXT_ERR
);
4619 cp
->xerr_status
|= XE_SODL_UNRUN
;
4623 * The device wants us to tranfer more data than
4624 * expected or in the wrong direction.
4625 * The number of extra bytes is in scratcha.
4626 * It is a data overrun condition.
4628 case SIR_DATA_OVERRUN
:
4630 OUTONB (HF_PRT
, HF_EXT_ERR
);
4631 cp
->xerr_status
|= XE_EXTRA_DATA
;
4632 cp
->extra_bytes
+= INL (nc_scratcha
);
4636 * The device switched to an illegal phase (4/5).
4640 OUTONB (HF_PRT
, HF_EXT_ERR
);
4641 cp
->xerr_status
|= XE_BAD_PHASE
;
4645 * We received a message.
4647 case SIR_MSG_RECEIVED
:
4650 switch (np
->msgin
[0]) {
4652 * We received an extended message.
4653 * We handle MODIFY DATA POINTER, SDTR, WDTR
4654 * and reject all other extended messages.
4657 switch (np
->msgin
[2]) {
4659 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4660 sym_print_msg(cp
,"modify DP",np
->msgin
);
4661 tmp
= (np
->msgin
[3]<<24) + (np
->msgin
[4]<<16) +
4662 (np
->msgin
[5]<<8) + (np
->msgin
[6]);
4663 sym_modify_dp(np
, tp
, cp
, tmp
);
4666 sym_sync_nego(np
, tp
, cp
);
4669 sym_ppr_nego(np
, tp
, cp
);
4672 sym_wide_nego(np
, tp
, cp
);
4679 * We received a 1/2 byte message not handled from SCRIPTS.
4680 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4681 * RESIDUE messages that haven't been anticipated by
4682 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4683 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4686 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4687 sym_print_msg(cp
,"ign wide residue", np
->msgin
);
4688 if (cp
->host_flags
& HF_SENSE
)
4689 OUTL_DSP (SCRIPTA_BA (np
, clrack
));
4691 sym_modify_dp(np
, tp
, cp
, -1);
4694 if (INB (HS_PRT
) == HS_NEGOTIATE
)
4695 sym_nego_rejected(np
, tp
, cp
);
4698 printf ("M_REJECT received (%x:%x).\n",
4699 scr_to_cpu(np
->lastmsg
), np
->msgout
[0]);
4708 * We received an unknown message.
4709 * Ignore all MSG IN phases and reject it.
4712 sym_print_msg(cp
, "WEIRD message received", np
->msgin
);
4713 OUTL_DSP (SCRIPTB_BA (np
, msg_weird
));
4716 * Negotiation failed.
4717 * Target does not send us the reply.
4718 * Remove the HS_NEGOTIATE status.
4720 case SIR_NEGO_FAILED
:
4721 OUTB (HS_PRT
, HS_BUSY
);
4723 * Negotiation failed.
4724 * Target does not want answer message.
4726 case SIR_NEGO_PROTO
:
4727 sym_nego_default(np
, tp
, cp
);
4735 OUTL_DSP (SCRIPTB_BA (np
, msg_bad
));
4738 OUTL_DSP (SCRIPTA_BA (np
, clrack
));
4745 * Acquire a control block
4747 ccb_p
sym_get_ccb (hcb_p np
, u_char tn
, u_char ln
, u_char tag_order
)
4749 tcb_p tp
= &np
->target
[tn
];
4750 lcb_p lp
= sym_lp(np
, tp
, ln
);
4751 u_short tag
= NO_TAG
;
4753 ccb_p cp
= (ccb_p
) 0;
4756 * Look for a free CCB
4758 if (sym_que_empty(&np
->free_ccbq
))
4759 (void) sym_alloc_ccb(np
);
4760 qp
= sym_remque_head(&np
->free_ccbq
);
4763 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
4765 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4767 * If the LCB is not yet available and the LUN
4768 * has been probed ok, try to allocate the LCB.
4770 if (!lp
&& sym_is_bit(tp
->lun_map
, ln
)) {
4771 lp
= sym_alloc_lcb(np
, tn
, ln
);
4778 * If the LCB is not available here, then the
4779 * logical unit is not yet discovered. For those
4780 * ones only accept 1 SCSI IO per logical unit,
4781 * since we cannot allow disconnections.
4784 if (!sym_is_bit(tp
->busy0_map
, ln
))
4785 sym_set_bit(tp
->busy0_map
, ln
);
4790 * If we have been asked for a tagged command.
4794 * Debugging purpose.
4796 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4797 assert(lp
->busy_itl
== 0);
4800 * Allocate resources for tags if not yet.
4803 sym_alloc_lcb_tags(np
, tn
, ln
);
4808 * Get a tag for this SCSI IO and set up
4809 * the CCB bus address for reselection,
4810 * and count it for this LUN.
4811 * Toggle reselect path to tagged.
4813 if (lp
->busy_itlq
< SYM_CONF_MAX_TASK
) {
4814 tag
= lp
->cb_tags
[lp
->ia_tag
];
4815 if (++lp
->ia_tag
== SYM_CONF_MAX_TASK
)
4818 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4819 lp
->itlq_tbl
[tag
] = cpu_to_scr(cp
->ccb_ba
);
4821 cpu_to_scr(SCRIPTA_BA (np
, resel_tag
));
4823 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4824 cp
->tags_si
= lp
->tags_si
;
4825 ++lp
->tags_sum
[cp
->tags_si
];
4833 * This command will not be tagged.
4834 * If we already have either a tagged or untagged
4835 * one, refuse to overlap this untagged one.
4839 * Debugging purpose.
4841 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4842 assert(lp
->busy_itl
== 0 && lp
->busy_itlq
== 0);
4845 * Count this nexus for this LUN.
4846 * Set up the CCB bus address for reselection.
4847 * Toggle reselect path to untagged.
4850 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4851 if (lp
->busy_itl
== 1) {
4852 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
4854 cpu_to_scr(SCRIPTA_BA (np
, resel_no_tag
));
4862 * Put the CCB into the busy queue.
4864 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
4865 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4867 sym_remque(&cp
->link2_ccbq
);
4868 sym_insque_tail(&cp
->link2_ccbq
, &lp
->waiting_ccbq
);
4873 * Remember all informations needed to free this CCB.
4877 cp
->order
= tag_order
;
4881 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4882 PRINT_LUN(np
, tn
, ln
);
4883 printf ("ccb @%p using tag %d.\n", cp
, tag
);
4889 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4894 * Release one control block
4896 void sym_free_ccb (hcb_p np
, ccb_p cp
)
4898 tcb_p tp
= &np
->target
[cp
->target
];
4899 lcb_p lp
= sym_lp(np
, tp
, cp
->lun
);
4901 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4902 PRINT_LUN(np
, cp
->target
, cp
->lun
);
4903 printf ("ccb @%p freeing tag %d.\n", cp
, cp
->tag
);
4911 * If tagged, release the tag, set the relect path
4913 if (cp
->tag
!= NO_TAG
) {
4914 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4915 --lp
->tags_sum
[cp
->tags_si
];
4918 * Free the tag value.
4920 lp
->cb_tags
[lp
->if_tag
] = cp
->tag
;
4921 if (++lp
->if_tag
== SYM_CONF_MAX_TASK
)
4924 * Make the reselect path invalid,
4925 * and uncount this CCB.
4927 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(np
->bad_itlq_ba
);
4929 } else { /* Untagged */
4931 * Make the reselect path invalid,
4932 * and uncount this CCB.
4934 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
4938 * If no JOB active, make the LUN reselect path invalid.
4940 if (lp
->busy_itlq
== 0 && lp
->busy_itl
== 0)
4942 cpu_to_scr(SCRIPTB_BA (np
, resel_bad_lun
));
4945 * Otherwise, we only accept 1 IO per LUN.
4946 * Clear the bit that keeps track of this IO.
4949 sym_clr_bit(tp
->busy0_map
, cp
->lun
);
4952 * We donnot queue more than 1 ccb per target
4953 * with negotiation at any time. If this ccb was
4954 * used for negotiation, clear this info in the tcb.
4956 if (cp
== tp
->nego_cp
)
4959 #ifdef SYM_CONF_IARB_SUPPORT
4961 * If we just complete the last queued CCB,
4962 * clear this info that is no longer relevant.
4964 if (cp
== np
->last_cp
)
4969 * Unmap user data from DMA map if needed.
4971 sym_data_dmamap_unload(np
, cp
);
4974 * Make this CCB available.
4977 cp
->host_status
= HS_IDLE
;
4978 sym_remque(&cp
->link_ccbq
);
4979 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4981 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
4983 * Cancel any pending timeout condition.
4985 sym_untimeout_ccb(np
, cp
);
4988 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4990 sym_remque(&cp
->link2_ccbq
);
4991 sym_insque_tail(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4993 if (cp
->tag
!= NO_TAG
)
4996 --lp
->started_no_tag
;
5004 * Allocate a CCB from memory and initialize its fixed part.
5006 static ccb_p
sym_alloc_ccb(hcb_p np
)
5012 * Prevent from allocating more CCBs than we can
5013 * queue to the controller.
5015 if (np
->actccbs
>= SYM_CONF_MAX_START
)
5019 * Allocate memory for this CCB.
5021 cp
= sym_calloc_dma(sizeof(struct sym_ccb
), "CCB");
5026 * Allocate a bounce buffer for sense data.
5028 cp
->sns_bbuf
= sym_calloc_dma(SYM_SNS_BBUF_LEN
, "SNS_BBUF");
5033 * Allocate a map for the DMA of user data.
5035 if (sym_data_dmamap_create(np
, cp
))
5044 * Compute the bus address of this ccb.
5046 cp
->ccb_ba
= vtobus(cp
);
5049 * Insert this ccb into the hashed list.
5051 hcode
= CCB_HASH_CODE(cp
->ccb_ba
);
5052 cp
->link_ccbh
= np
->ccbh
[hcode
];
5053 np
->ccbh
[hcode
] = cp
;
5056 * Initialyze the start and restart actions.
5058 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA (np
, idle
));
5059 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTB_BA (np
, bad_i_t_l
));
5062 * Initilialyze some other fields.
5064 cp
->phys
.smsg_ext
.addr
= cpu_to_scr(HCB_BA(np
, msgin
[2]));
5067 * Chain into free ccb queue.
5069 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
5072 * Chain into optionnal lists.
5074 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
5075 sym_insque_head(&cp
->tmo_linkq
, &np
->tmo0_ccbq
);
5077 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5078 sym_insque_head(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
5084 sym_mfree_dma(cp
->sns_bbuf
,SYM_SNS_BBUF_LEN
,"SNS_BBUF");
5085 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
5091 * Look up a CCB from a DSA value.
5093 static ccb_p
sym_ccb_from_dsa(hcb_p np
, u32 dsa
)
5098 hcode
= CCB_HASH_CODE(dsa
);
5099 cp
= np
->ccbh
[hcode
];
5101 if (cp
->ccb_ba
== dsa
)
5110 * Target control block initialisation.
5111 * Nothing important to do at the moment.
5113 static void sym_init_tcb (hcb_p np
, u_char tn
)
5115 #if 0 /* Hmmm... this checking looks paranoid. */
5117 * Check some alignments required by the chip.
5119 assert (((offsetof(struct sym_reg
, nc_sxfer
) ^
5120 offsetof(struct sym_tcb
, head
.sval
)) &3) == 0);
5121 assert (((offsetof(struct sym_reg
, nc_scntl3
) ^
5122 offsetof(struct sym_tcb
, head
.wval
)) &3) == 0);
5127 * Lun control block allocation and initialization.
5129 lcb_p
sym_alloc_lcb (hcb_p np
, u_char tn
, u_char ln
)
5131 tcb_p tp
= &np
->target
[tn
];
5132 lcb_p lp
= sym_lp(np
, tp
, ln
);
5135 * Already done, just return.
5141 * Donnot allow LUN control block
5142 * allocation for not probed LUNs.
5144 if (!sym_is_bit(tp
->lun_map
, ln
))
5148 * Initialize the target control block if not yet.
5150 sym_init_tcb (np
, tn
);
5153 * Allocate the LCB bus address array.
5154 * Compute the bus address of this table.
5156 if (ln
&& !tp
->luntbl
) {
5159 tp
->luntbl
= sym_calloc_dma(256, "LUNTBL");
5162 for (i
= 0 ; i
< 64 ; i
++)
5163 tp
->luntbl
[i
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
5164 tp
->head
.luntbl_sa
= cpu_to_scr(vtobus(tp
->luntbl
));
5168 * Allocate the table of pointers for LUN(s) > 0, if needed.
5170 if (ln
&& !tp
->lunmp
) {
5171 tp
->lunmp
= sym_calloc(SYM_CONF_MAX_LUN
* sizeof(lcb_p
),
5179 * Make it available to the chip.
5181 lp
= sym_calloc_dma(sizeof(struct sym_lcb
), "LCB");
5186 tp
->luntbl
[ln
] = cpu_to_scr(vtobus(lp
));
5190 tp
->head
.lun0_sa
= cpu_to_scr(vtobus(lp
));
5194 * Let the itl task point to error handling.
5196 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
5199 * Set the reselect pattern to our default. :)
5201 lp
->head
.resel_sa
= cpu_to_scr(SCRIPTB_BA (np
, resel_bad_lun
));
5204 * Set user capabilities.
5206 lp
->user_flags
= tp
->usrflags
& (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
5208 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5210 * Initialize device queueing.
5212 sym_que_init(&lp
->waiting_ccbq
);
5213 sym_que_init(&lp
->started_ccbq
);
5214 lp
->started_max
= SYM_CONF_MAX_TASK
;
5215 lp
->started_limit
= SYM_CONF_MAX_TASK
;
5218 * If we are busy, count the IO.
5220 if (sym_is_bit(tp
->busy0_map
, ln
)) {
5222 sym_clr_bit(tp
->busy0_map
, ln
);
5229 * Allocate LCB resources for tagged command queuing.
5231 static void sym_alloc_lcb_tags (hcb_p np
, u_char tn
, u_char ln
)
5233 tcb_p tp
= &np
->target
[tn
];
5234 lcb_p lp
= sym_lp(np
, tp
, ln
);
5238 * If LCB not available, try to allocate it.
5240 if (!lp
&& !(lp
= sym_alloc_lcb(np
, tn
, ln
)))
5244 * Allocate the task table and and the tag allocation
5245 * circular buffer. We want both or none.
5247 lp
->itlq_tbl
= sym_calloc_dma(SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5250 lp
->cb_tags
= sym_calloc(SYM_CONF_MAX_TASK
, "CB_TAGS");
5252 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5253 lp
->itlq_tbl
= NULL
;
5258 * Initialize the task table with invalid entries.
5260 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5261 lp
->itlq_tbl
[i
] = cpu_to_scr(np
->notask_ba
);
5264 * Fill up the tag buffer with tag numbers.
5266 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5270 * Make the task table available to SCRIPTS,
5271 * And accept tagged commands now.
5273 lp
->head
.itlq_tbl_sa
= cpu_to_scr(vtobus(lp
->itlq_tbl
));
5281 * Queue a SCSI IO to the controller.
5283 int sym_queue_scsiio(hcb_p np
, cam_scsiio_p csio
, ccb_p cp
)
5287 u_char idmsg
, *msgptr
;
5291 * Keep track of the IO in our CCB.
5293 cp
->cam_ccb
= (cam_ccb_p
) csio
;
5296 * Retreive the target descriptor.
5298 tp
= &np
->target
[cp
->target
];
5301 * Retreive the lun descriptor.
5303 lp
= sym_lp(np
, tp
, cp
->lun
);
5306 * Build the IDENTIFY message.
5308 idmsg
= M_IDENTIFY
| cp
->lun
;
5309 if (cp
->tag
!= NO_TAG
|| (lp
&& (lp
->curr_flags
& SYM_DISC_ENABLED
)))
5312 msgptr
= cp
->scsi_smsg
;
5314 msgptr
[msglen
++] = idmsg
;
5317 * Build the tag message if present.
5319 if (cp
->tag
!= NO_TAG
) {
5320 u_char order
= cp
->order
;
5328 order
= M_SIMPLE_TAG
;
5330 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5332 * Avoid too much reordering of SCSI commands.
5333 * The algorithm tries to prevent completion of any
5334 * tagged command from being delayed against more
5335 * than 3 times the max number of queued commands.
5337 if (lp
&& lp
->tags_since
> 3*SYM_CONF_MAX_TAG
) {
5338 lp
->tags_si
= !(lp
->tags_si
);
5339 if (lp
->tags_sum
[lp
->tags_si
]) {
5340 order
= M_ORDERED_TAG
;
5341 if ((DEBUG_FLAGS
& DEBUG_TAGS
)||sym_verbose
>1) {
5343 printf("ordered tag forced.\n");
5349 msgptr
[msglen
++] = order
;
5352 * For less than 128 tags, actual tags are numbered
5353 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5354 * with devices that have problems with #TAG 0 or too
5355 * great #TAG numbers. For more tags (up to 256),
5356 * we use directly our tag number.
5358 #if SYM_CONF_MAX_TASK > (512/4)
5359 msgptr
[msglen
++] = cp
->tag
;
5361 msgptr
[msglen
++] = (cp
->tag
<< 1) + 1;
5366 * Build a negotiation message if needed.
5367 * (nego_status is filled by sym_prepare_nego())
5369 cp
->nego_status
= 0;
5370 if (tp
->tinfo
.curr
.width
!= tp
->tinfo
.goal
.width
||
5371 tp
->tinfo
.curr
.period
!= tp
->tinfo
.goal
.period
||
5372 tp
->tinfo
.curr
.offset
!= tp
->tinfo
.goal
.offset
||
5373 tp
->tinfo
.curr
.options
!= tp
->tinfo
.goal
.options
) {
5374 if (!tp
->nego_cp
&& lp
)
5375 msglen
+= sym_prepare_nego(np
, cp
, 0, msgptr
+ msglen
);
5381 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA (np
, select
));
5382 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTA_BA (np
, resel_dsa
));
5387 cp
->phys
.select
.sel_id
= cp
->target
;
5388 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
5389 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
5390 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
5395 cp
->phys
.smsg
.addr
= cpu_to_scr(CCB_BA (cp
, scsi_smsg
));
5396 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
5401 cp
->host_xflags
= 0;
5402 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
5403 cp
->ssss_status
= S_ILLEGAL
;
5404 cp
->xerr_status
= 0;
5406 cp
->extra_bytes
= 0;
5409 * extreme data pointer.
5410 * shall be positive, so -1 is lower than lowest.:)
5416 * Build the CDB and DATA descriptor block
5419 return sym_setup_data_and_start(np
, csio
, cp
);
5423 * Reset a SCSI target (all LUNs of this target).
5425 int sym_reset_scsi_target(hcb_p np
, int target
)
5429 if (target
== np
->myaddr
|| (u_int
)target
>= SYM_CONF_MAX_TARGET
)
5432 tp
= &np
->target
[target
];
5435 np
->istat_sem
= SEM
;
5436 OUTB (nc_istat
, SIGP
|SEM
);
5444 int sym_abort_ccb(hcb_p np
, ccb_p cp
, int timed_out
)
5447 * Check that the IO is active.
5449 if (!cp
|| !cp
->host_status
|| cp
->host_status
== HS_WAIT
)
5453 * If a previous abort didn't succeed in time,
5454 * perform a BUS reset.
5457 sym_reset_scsi_bus(np
, 1);
5462 * Mark the CCB for abort and allow time for.
5464 cp
->to_abort
= timed_out
? 2 : 1;
5467 * Tell the SCRIPTS processor to stop and synchronize with us.
5469 np
->istat_sem
= SEM
;
5470 OUTB (nc_istat
, SIGP
|SEM
);
5474 int sym_abort_scsiio(hcb_p np
, cam_ccb_p ccb
, int timed_out
)
5480 * Look up our CCB control block.
5483 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
5484 ccb_p cp2
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5485 if (cp2
->cam_ccb
== ccb
) {
5491 return sym_abort_ccb(np
, cp
, timed_out
);
5495 * Complete execution of a SCSI command with extented
5496 * error, SCSI status error, or having been auto-sensed.
5498 * The SCRIPTS processor is not running there, so we
5499 * can safely access IO registers and remove JOBs from
5501 * SCRATCHA is assumed to have been loaded with STARTPOS
5502 * before the SCRIPTS called the C code.
5504 void sym_complete_error (hcb_p np
, ccb_p cp
)
5512 * Paranoid check. :)
5514 if (!cp
|| !cp
->cam_ccb
)
5517 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_RESULT
)) {
5518 printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp
,
5519 cp
->host_status
, cp
->ssss_status
, cp
->host_flags
,
5520 cp
->target
, cp
->lun
);
5525 * Get target and lun pointers.
5527 tp
= &np
->target
[cp
->target
];
5528 lp
= sym_lp(np
, tp
, cp
->lun
);
5531 * Check for extended errors.
5533 if (cp
->xerr_status
) {
5535 sym_print_xerr(cp
, cp
->xerr_status
);
5536 if (cp
->host_status
== HS_COMPLETE
)
5537 cp
->host_status
= HS_COMP_ERR
;
5541 * Calculate the residual.
5543 resid
= sym_compute_residual(np
, cp
);
5545 if (!SYM_SETUP_RESIDUAL_SUPPORT
) {/* If user does not want residuals */
5546 resid
= 0; /* throw them away. :) */
5551 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5555 * Dequeue all queued CCBs for that device
5556 * not yet started by SCRIPTS.
5558 i
= (INL (nc_scratcha
) - np
->squeue_ba
) / 4;
5559 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
5562 * Restart the SCRIPTS processor.
5564 OUTL_DSP (SCRIPTA_BA (np
, start
));
5566 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5567 if (cp
->host_status
== HS_COMPLETE
&&
5568 cp
->ssss_status
== S_QUEUE_FULL
) {
5569 if (!lp
|| lp
->started_tags
- i
< 2)
5572 * Decrease queue depth as needed.
5574 lp
->started_max
= lp
->started_tags
- i
- 1;
5577 if (sym_verbose
>= 2) {
5578 PRINT_LUN(np
, cp
->target
, cp
->lun
);
5579 printf(" queue depth is now %d\n", lp
->started_max
);
5585 cp
->host_status
= HS_BUSY
;
5586 cp
->ssss_status
= S_ILLEGAL
;
5589 * Let's requeue it to device.
5591 sym_set_cam_status(cp
->cam_ccb
, CAM_REQUEUE_REQ
);
5597 * Synchronize DMA map if needed.
5599 sym_data_dmamap_postsync(np
, cp
);
5602 * Build result in CAM ccb.
5604 sym_set_cam_result_error(np
, cp
, resid
);
5606 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5610 * Add this one to the COMP queue.
5612 sym_remque(&cp
->link_ccbq
);
5613 sym_insque_head(&cp
->link_ccbq
, &np
->comp_ccbq
);
5616 * Complete all those commands with either error
5617 * or requeue condition.
5619 sym_flush_comp_queue(np
, 0);
5621 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5623 * Donnot start more than 1 command after an error.
5626 sym_start_next_ccbs(np
, lp
, 1);
5631 * Complete execution of a successful SCSI command.
5633 * Only successful commands go to the DONE queue,
5634 * since we need to have the SCRIPTS processor
5635 * stopped on any error condition.
5636 * The SCRIPTS processor is running while we are
5637 * completing successful commands.
5639 void sym_complete_ok (hcb_p np
, ccb_p cp
)
5647 * Paranoid check. :)
5649 if (!cp
|| !cp
->cam_ccb
)
5651 assert (cp
->host_status
== HS_COMPLETE
);
5659 * Get target and lun pointers.
5661 tp
= &np
->target
[cp
->target
];
5662 lp
= sym_lp(np
, tp
, cp
->lun
);
5665 * Assume device discovered on first success.
5668 sym_set_bit(tp
->lun_map
, cp
->lun
);
5671 * If all data have been transferred, given than no
5672 * extended error did occur, there is no residual.
5675 if (cp
->phys
.head
.lastp
!= sym_goalp(cp
))
5676 resid
= sym_compute_residual(np
, cp
);
5679 * Wrong transfer residuals may be worse than just always
5680 * returning zero. User can disable this feature from
5681 * sym_conf.h. Residual support is enabled by default.
5683 if (!SYM_SETUP_RESIDUAL_SUPPORT
)
5687 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5691 * Synchronize DMA map if needed.
5693 sym_data_dmamap_postsync(np
, cp
);
5696 * Build result in CAM ccb.
5698 sym_set_cam_result_ok(np
, cp
, resid
);
5700 #ifdef SYM_OPT_SNIFF_INQUIRY
5702 * On standard INQUIRY response (EVPD and CmDt
5703 * not set), sniff out device capabilities.
5705 if (cp
->cdb_buf
[0] == INQUIRY
&& !(cp
->cdb_buf
[1] & 0x3))
5706 sym_sniff_inquiry(np
, cp
->cam_ccb
, resid
);
5709 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5711 * If max number of started ccbs had been reduced,
5712 * increase it if 200 good status received.
5714 if (lp
&& lp
->started_max
< lp
->started_limit
) {
5716 if (lp
->num_sgood
>= 200) {
5719 if (sym_verbose
>= 2) {
5720 PRINT_LUN(np
, cp
->target
, cp
->lun
);
5721 printf(" queue depth is now %d\n",
5731 sym_free_ccb (np
, cp
);
5733 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5735 * Requeue a couple of awaiting scsi commands.
5737 if (lp
&& !sym_que_empty(&lp
->waiting_ccbq
))
5738 sym_start_next_ccbs(np
, lp
, 2);
5741 * Complete the command.
5743 sym_xpt_done(np
, ccb
);
5747 * Soft-attach the controller.
5749 #ifdef SYM_OPT_NVRAM_PRE_READ
5750 int sym_hcb_attach(hcb_p np
, struct sym_fw
*fw
, struct sym_nvram
*nvram
)
5752 int sym_hcb_attach(hcb_p np
, struct sym_fw
*fw
)
5755 #ifndef SYM_OPT_NVRAM_PRE_READ
5756 struct sym_nvram nvram_buf
, *nvram
= &nvram_buf
;
5761 * Get some info about the firmware.
5763 np
->scripta_sz
= fw
->a_size
;
5764 np
->scriptb_sz
= fw
->b_size
;
5765 np
->scriptz_sz
= fw
->z_size
;
5766 np
->fw_setup
= fw
->setup
;
5767 np
->fw_patch
= fw
->patch
;
5768 np
->fw_name
= fw
->name
;
5771 * Save setting of some IO registers, so we will
5772 * be able to probe specific implementations.
5774 sym_save_initial_setting (np
);
5777 * Reset the chip now, since it has been reported
5778 * that SCSI clock calibration may not work properly
5779 * if the chip is currently active.
5781 sym_chip_reset (np
);
5784 * Try to read the user set-up.
5786 #ifndef SYM_OPT_NVRAM_PRE_READ
5787 (void) sym_read_nvram(np
, nvram
);
5791 * Prepare controller and devices settings, according
5792 * to chip features, user set-up and driver set-up.
5794 (void) sym_prepare_setting(np
, nvram
);
5797 * Check the PCI clock frequency.
5798 * Must be performed after prepare_setting since it destroys
5799 * STEST1 that is used to probe for the clock doubler.
5801 i
= sym_getpciclock(np
);
5802 if (i
> 37000 && !(np
->features
& FE_66MHZ
))
5803 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5807 * Allocate the start queue.
5809 np
->squeue
= (u32
*) sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"SQUEUE");
5812 np
->squeue_ba
= vtobus(np
->squeue
);
5815 * Allocate the done queue.
5817 np
->dqueue
= (u32
*) sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"DQUEUE");
5820 np
->dqueue_ba
= vtobus(np
->dqueue
);
5823 * Allocate the target bus address array.
5825 np
->targtbl
= (u32
*) sym_calloc_dma(256, "TARGTBL");
5828 np
->targtbl_ba
= vtobus(np
->targtbl
);
5831 * Allocate SCRIPTS areas.
5833 np
->scripta0
= sym_calloc_dma(np
->scripta_sz
, "SCRIPTA0");
5834 np
->scriptb0
= sym_calloc_dma(np
->scriptb_sz
, "SCRIPTB0");
5835 np
->scriptz0
= sym_calloc_dma(np
->scriptz_sz
, "SCRIPTZ0");
5836 if (!np
->scripta0
|| !np
->scriptb0
|| !np
->scriptz0
)
5840 * Allocate the array of lists of CCBs hashed by DSA.
5842 np
->ccbh
= sym_calloc(sizeof(ccb_p
*)*CCB_HASH_SIZE
, "CCBH");
5847 * Initialyze the CCB free and busy queues.
5849 sym_que_init(&np
->free_ccbq
);
5850 sym_que_init(&np
->busy_ccbq
);
5851 sym_que_init(&np
->comp_ccbq
);
5854 * Initializations for optional handling
5855 * of IO timeouts and device queueing.
5857 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
5858 sym_que_init(&np
->tmo0_ccbq
);
5860 sym_calloc(2*SYM_CONF_TIMEOUT_ORDER_MAX
*sizeof(SYM_QUEHEAD
),
5862 for (i
= 0 ; i
< 2*SYM_CONF_TIMEOUT_ORDER_MAX
; i
++)
5863 sym_que_init(&np
->tmo_ccbq
[i
]);
5865 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5866 sym_que_init(&np
->dummy_ccbq
);
5869 * Allocate some CCB. We need at least ONE.
5871 if (!sym_alloc_ccb(np
))
5875 * Calculate BUS addresses where we are going
5876 * to load the SCRIPTS.
5878 np
->scripta_ba
= vtobus(np
->scripta0
);
5879 np
->scriptb_ba
= vtobus(np
->scriptb0
);
5880 np
->scriptz_ba
= vtobus(np
->scriptz0
);
5883 np
->scripta_ba
= np
->ram_ba
;
5884 if (np
->features
& FE_RAM8K
) {
5886 np
->scriptb_ba
= np
->scripta_ba
+ 4096;
5887 #if 0 /* May get useful for 64 BIT PCI addressing */
5888 np
->scr_ram_seg
= cpu_to_scr(np
->scripta_ba
>> 32);
5896 * Copy scripts to controller instance.
5898 memcpy(np
->scripta0
, fw
->a_base
, np
->scripta_sz
);
5899 memcpy(np
->scriptb0
, fw
->b_base
, np
->scriptb_sz
);
5900 memcpy(np
->scriptz0
, fw
->z_base
, np
->scriptz_sz
);
5903 * Setup variable parts in scripts and compute
5904 * scripts bus addresses used from the C code.
5906 np
->fw_setup(np
, fw
);
5909 * Bind SCRIPTS with physical addresses usable by the
5910 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5912 sym_fw_bind_script(np
, (u32
*) np
->scripta0
, np
->scripta_sz
);
5913 sym_fw_bind_script(np
, (u32
*) np
->scriptb0
, np
->scriptb_sz
);
5914 sym_fw_bind_script(np
, (u32
*) np
->scriptz0
, np
->scriptz_sz
);
5916 #ifdef SYM_CONF_IARB_SUPPORT
5918 * If user wants IARB to be set when we win arbitration
5919 * and have other jobs, compute the max number of consecutive
5920 * settings of IARB hints before we leave devices a chance to
5921 * arbitrate for reselection.
5923 #ifdef SYM_SETUP_IARB_MAX
5924 np
->iarb_max
= SYM_SETUP_IARB_MAX
;
5931 * Prepare the idle and invalid task actions.
5933 np
->idletask
.start
= cpu_to_scr(SCRIPTA_BA (np
, idle
));
5934 np
->idletask
.restart
= cpu_to_scr(SCRIPTB_BA (np
, bad_i_t_l
));
5935 np
->idletask_ba
= vtobus(&np
->idletask
);
5937 np
->notask
.start
= cpu_to_scr(SCRIPTA_BA (np
, idle
));
5938 np
->notask
.restart
= cpu_to_scr(SCRIPTB_BA (np
, bad_i_t_l
));
5939 np
->notask_ba
= vtobus(&np
->notask
);
5941 np
->bad_itl
.start
= cpu_to_scr(SCRIPTA_BA (np
, idle
));
5942 np
->bad_itl
.restart
= cpu_to_scr(SCRIPTB_BA (np
, bad_i_t_l
));
5943 np
->bad_itl_ba
= vtobus(&np
->bad_itl
);
5945 np
->bad_itlq
.start
= cpu_to_scr(SCRIPTA_BA (np
, idle
));
5946 np
->bad_itlq
.restart
= cpu_to_scr(SCRIPTB_BA (np
,bad_i_t_l_q
));
5947 np
->bad_itlq_ba
= vtobus(&np
->bad_itlq
);
5950 * Allocate and prepare the lun JUMP table that is used
5951 * for a target prior the probing of devices (bad lun table).
5952 * A private table will be allocated for the target on the
5953 * first INQUIRY response received.
5955 np
->badluntbl
= sym_calloc_dma(256, "BADLUNTBL");
5959 np
->badlun_sa
= cpu_to_scr(SCRIPTB_BA (np
, resel_bad_lun
));
5960 for (i
= 0 ; i
< 64 ; i
++) /* 64 luns/target, no less */
5961 np
->badluntbl
[i
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
5964 * Prepare the bus address array that contains the bus
5965 * address of each target control block.
5966 * For now, assume all logical units are wrong. :)
5968 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
5969 np
->targtbl
[i
] = cpu_to_scr(vtobus(&np
->target
[i
]));
5970 np
->target
[i
].head
.luntbl_sa
=
5971 cpu_to_scr(vtobus(np
->badluntbl
));
5972 np
->target
[i
].head
.lun0_sa
=
5973 cpu_to_scr(vtobus(&np
->badlun_sa
));
5977 * Now check the cache handling of the pci chipset.
5979 if (sym_snooptest (np
)) {
5980 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np
));
5985 * Sigh! we are done.
5994 * Free everything that has been allocated for this device.
5996 void sym_hcb_free(hcb_p np
)
6005 sym_mfree_dma(np
->scriptz0
, np
->scriptz_sz
, "SCRIPTZ0");
6007 sym_mfree_dma(np
->scriptb0
, np
->scriptb_sz
, "SCRIPTB0");
6009 sym_mfree_dma(np
->scripta0
, np
->scripta_sz
, "SCRIPTA0");
6010 #ifdef SYM_OPT_HANDLE_IO_TIMEOUT
6012 sym_mfree(np
->tmo_ccbq
,
6013 2*SYM_CONF_TIMEOUT_ORDER_MAX
*sizeof(SYM_QUEHEAD
),
6017 sym_mfree_dma(np
->squeue
, sizeof(u32
)*(MAX_QUEUE
*2), "SQUEUE");
6019 sym_mfree_dma(np
->dqueue
, sizeof(u32
)*(MAX_QUEUE
*2), "DQUEUE");
6022 while ((qp
= sym_remque_head(&np
->free_ccbq
)) != 0) {
6023 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
6024 sym_data_dmamap_destroy(np
, cp
);
6025 sym_mfree_dma(cp
->sns_bbuf
, SYM_SNS_BBUF_LEN
,
6027 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
6031 sym_mfree(np
->ccbh
, sizeof(ccb_p
*)*CCB_HASH_SIZE
, "CCBH");
6034 sym_mfree_dma(np
->badluntbl
, 256,"BADLUNTBL");
6036 for (target
= 0; target
< SYM_CONF_MAX_TARGET
; target
++) {
6037 tp
= &np
->target
[target
];
6038 for (lun
= 0 ; lun
< SYM_CONF_MAX_LUN
; lun
++) {
6039 lp
= sym_lp(np
, tp
, lun
);
6043 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4,
6046 sym_mfree(lp
->cb_tags
, SYM_CONF_MAX_TASK
,
6048 sym_mfree_dma(lp
, sizeof(*lp
), "LCB");
6050 #if SYM_CONF_MAX_LUN > 1
6052 sym_mfree(tp
->lunmp
, SYM_CONF_MAX_LUN
*sizeof(lcb_p
),
6057 sym_mfree_dma(np
->targtbl
, 256, "TARGTBL");