MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / include / linux / mm.h
blob65ff5b5e896a006facf9522d944ec6f595960a69
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/sched.h>
5 #include <linux/errno.h>
7 #ifdef __KERNEL__
9 #include <linux/config.h>
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
17 struct mempolicy;
18 struct anon_vma;
20 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
21 extern unsigned long max_mapnr;
22 #endif
24 extern unsigned long num_physpages;
25 extern void * high_memory;
26 extern unsigned long vmalloc_earlyreserve;
27 extern int page_cluster;
29 #ifdef CONFIG_SYSCTL
30 extern int sysctl_legacy_va_layout;
31 #else
32 #define sysctl_legacy_va_layout 0
33 #endif
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/atomic.h>
40 #ifndef MM_VM_SIZE
41 #define MM_VM_SIZE(mm) TASK_SIZE
42 #endif
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
54 * This struct defines a memory VMM memory area. There is one of these
55 * per VM-area/task. A VM area is any part of the process virtual memory
56 * space that has a special rule for the page-fault handlers (ie a shared
57 * library, the executable area etc).
59 struct vm_area_struct {
60 struct mm_struct * vm_mm; /* The address space we belong to. */
61 unsigned long vm_start; /* Our start address within vm_mm. */
62 unsigned long vm_end; /* The first byte after our end address
63 within vm_mm. */
65 /* linked list of VM areas per task, sorted by address */
66 struct vm_area_struct *vm_next;
68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
69 unsigned long vm_flags; /* Flags, listed below. */
71 struct rb_node vm_rb;
74 * For areas with an address space and backing store,
75 * linkage into the address_space->i_mmap prio tree, or
76 * linkage to the list of like vmas hanging off its node, or
77 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 union {
80 struct {
81 struct list_head list;
82 void *parent; /* aligns with prio_tree_node parent */
83 struct vm_area_struct *head;
84 } vm_set;
86 struct prio_tree_node prio_tree_node;
87 } shared;
90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
91 * list, after a COW of one of the file pages. A MAP_SHARED vma
92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
93 * or brk vma (with NULL file) can only be in an anon_vma list.
95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98 /* Function pointers to deal with this struct. */
99 struct vm_operations_struct * vm_ops;
101 /* Information about our backing store: */
102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
103 units, *not* PAGE_CACHE_SIZE */
104 struct file * vm_file; /* File we map to (can be NULL). */
105 void * vm_private_data; /* was vm_pte (shared mem) */
107 #ifdef CONFIG_NUMA
108 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
109 #endif
113 * vm_flags..
115 #define VM_READ 0x00000001 /* currently active flags */
116 #define VM_WRITE 0x00000002
117 #define VM_EXEC 0x00000004
118 #define VM_SHARED 0x00000008
120 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121 #define VM_MAYWRITE 0x00000020
122 #define VM_MAYEXEC 0x00000040
123 #define VM_MAYSHARE 0x00000080
125 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126 #define VM_GROWSUP 0x00000200
127 #define VM_SHM 0x00000400 /* shared memory area, don't swap out */
128 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
130 #define VM_EXECUTABLE 0x00001000
131 #define VM_LOCKED 0x00002000
132 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
134 /* Used by sys_madvise() */
135 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
136 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
138 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
139 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
140 #define VM_RESERVED 0x00080000 /* Don't unmap it from swap_out */
141 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
142 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
143 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
145 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
146 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
147 #endif
149 #ifdef CONFIG_STACK_GROWSUP
150 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
151 #else
152 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
153 #endif
155 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
156 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
157 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
158 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
159 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
162 * mapping from the currently active vm_flags protection bits (the
163 * low four bits) to a page protection mask..
165 extern pgprot_t protection_map[16];
169 * These are the virtual MM functions - opening of an area, closing and
170 * unmapping it (needed to keep files on disk up-to-date etc), pointer
171 * to the functions called when a no-page or a wp-page exception occurs.
173 struct vm_operations_struct {
174 void (*open)(struct vm_area_struct * area);
175 void (*close)(struct vm_area_struct * area);
176 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
177 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
178 #ifdef CONFIG_NUMA
179 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
180 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
181 unsigned long addr);
182 #endif
185 struct mmu_gather;
186 struct inode;
188 #ifdef ARCH_HAS_ATOMIC_UNSIGNED
189 typedef unsigned page_flags_t;
190 #else
191 typedef unsigned long page_flags_t;
192 #endif
195 * Each physical page in the system has a struct page associated with
196 * it to keep track of whatever it is we are using the page for at the
197 * moment. Note that we have no way to track which tasks are using
198 * a page.
200 struct page {
201 page_flags_t flags; /* Atomic flags, some possibly
202 * updated asynchronously */
203 atomic_t _count; /* Usage count, see below. */
204 atomic_t _mapcount; /* Count of ptes mapped in mms,
205 * to show when page is mapped
206 * & limit reverse map searches.
208 unsigned long private; /* Mapping-private opaque data:
209 * usually used for buffer_heads
210 * if PagePrivate set; used for
211 * swp_entry_t if PageSwapCache
213 struct address_space *mapping; /* If low bit clear, points to
214 * inode address_space, or NULL.
215 * If page mapped as anonymous
216 * memory, low bit is set, and
217 * it points to anon_vma object:
218 * see PAGE_MAPPING_ANON below.
220 pgoff_t index; /* Our offset within mapping. */
221 struct list_head lru; /* Pageout list, eg. active_list
222 * protected by zone->lru_lock !
225 * On machines where all RAM is mapped into kernel address space,
226 * we can simply calculate the virtual address. On machines with
227 * highmem some memory is mapped into kernel virtual memory
228 * dynamically, so we need a place to store that address.
229 * Note that this field could be 16 bits on x86 ... ;)
231 * Architectures with slow multiplication can define
232 * WANT_PAGE_VIRTUAL in asm/page.h
234 #if defined(WANT_PAGE_VIRTUAL)
235 void *virtual; /* Kernel virtual address (NULL if
236 not kmapped, ie. highmem) */
237 #endif /* WANT_PAGE_VIRTUAL */
241 * FIXME: take this include out, include page-flags.h in
242 * files which need it (119 of them)
244 #include <linux/page-flags.h>
247 * Methods to modify the page usage count.
249 * What counts for a page usage:
250 * - cache mapping (page->mapping)
251 * - private data (page->private)
252 * - page mapped in a task's page tables, each mapping
253 * is counted separately
255 * Also, many kernel routines increase the page count before a critical
256 * routine so they can be sure the page doesn't go away from under them.
258 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we
259 * can use atomic_add_negative(-1, page->_count) to detect when the page
260 * becomes free and so that we can also use atomic_inc_and_test to atomically
261 * detect when we just tried to grab a ref on a page which some other CPU has
262 * already deemed to be freeable.
264 * NO code should make assumptions about this internal detail! Use the provided
265 * macros which retain the old rules: page_count(page) == 0 is a free page.
269 * Drop a ref, return true if the logical refcount fell to zero (the page has
270 * no users)
272 #define put_page_testzero(p) \
273 ({ \
274 BUG_ON(page_count(p) == 0); \
275 atomic_add_negative(-1, &(p)->_count); \
279 * Grab a ref, return true if the page previously had a logical refcount of
280 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page
282 #define get_page_testone(p) atomic_inc_and_test(&(p)->_count)
284 #define set_page_count(p,v) atomic_set(&(p)->_count, v - 1)
285 #define __put_page(p) atomic_dec(&(p)->_count)
287 extern void FASTCALL(__page_cache_release(struct page *));
289 #ifdef CONFIG_HUGETLB_PAGE
291 static inline int page_count(struct page *p)
293 if (PageCompound(p))
294 p = (struct page *)p->private;
295 return atomic_read(&(p)->_count) + 1;
298 static inline void get_page(struct page *page)
300 if (unlikely(PageCompound(page)))
301 page = (struct page *)page->private;
302 atomic_inc(&page->_count);
305 void put_page(struct page *page);
307 #else /* CONFIG_HUGETLB_PAGE */
309 #define page_count(p) (atomic_read(&(p)->_count) + 1)
311 static inline void get_page(struct page *page)
313 atomic_inc(&page->_count);
316 static inline void put_page(struct page *page)
318 if (!PageReserved(page) && put_page_testzero(page))
319 __page_cache_release(page);
322 #endif /* CONFIG_HUGETLB_PAGE */
325 * Multiple processes may "see" the same page. E.g. for untouched
326 * mappings of /dev/null, all processes see the same page full of
327 * zeroes, and text pages of executables and shared libraries have
328 * only one copy in memory, at most, normally.
330 * For the non-reserved pages, page_count(page) denotes a reference count.
331 * page_count() == 0 means the page is free.
332 * page_count() == 1 means the page is used for exactly one purpose
333 * (e.g. a private data page of one process).
335 * A page may be used for kmalloc() or anyone else who does a
336 * __get_free_page(). In this case the page_count() is at least 1, and
337 * all other fields are unused but should be 0 or NULL. The
338 * management of this page is the responsibility of the one who uses
339 * it.
341 * The other pages (we may call them "process pages") are completely
342 * managed by the Linux memory manager: I/O, buffers, swapping etc.
343 * The following discussion applies only to them.
345 * A page may belong to an inode's memory mapping. In this case,
346 * page->mapping is the pointer to the inode, and page->index is the
347 * file offset of the page, in units of PAGE_CACHE_SIZE.
349 * A page contains an opaque `private' member, which belongs to the
350 * page's address_space. Usually, this is the address of a circular
351 * list of the page's disk buffers.
353 * For pages belonging to inodes, the page_count() is the number of
354 * attaches, plus 1 if `private' contains something, plus one for
355 * the page cache itself.
357 * All pages belonging to an inode are in these doubly linked lists:
358 * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages;
359 * using the page->list list_head. These fields are also used for
360 * freelist managemet (when page_count()==0).
362 * There is also a per-mapping radix tree mapping index to the page
363 * in memory if present. The tree is rooted at mapping->root.
365 * All process pages can do I/O:
366 * - inode pages may need to be read from disk,
367 * - inode pages which have been modified and are MAP_SHARED may need
368 * to be written to disk,
369 * - private pages which have been modified may need to be swapped out
370 * to swap space and (later) to be read back into memory.
374 * The zone field is never updated after free_area_init_core()
375 * sets it, so none of the operations on it need to be atomic.
376 * We'll have up to (MAX_NUMNODES * MAX_NR_ZONES) zones total,
377 * so we use (MAX_NODES_SHIFT + MAX_ZONES_SHIFT) here to get enough bits.
379 #define NODEZONE_SHIFT (sizeof(page_flags_t)*8 - MAX_NODES_SHIFT - MAX_ZONES_SHIFT)
380 #define NODEZONE(node, zone) ((node << ZONES_SHIFT) | zone)
382 static inline unsigned long page_zonenum(struct page *page)
384 return (page->flags >> NODEZONE_SHIFT) & (~(~0UL << ZONES_SHIFT));
386 static inline unsigned long page_to_nid(struct page *page)
388 return (page->flags >> (NODEZONE_SHIFT + ZONES_SHIFT));
391 struct zone;
392 extern struct zone *zone_table[];
394 static inline struct zone *page_zone(struct page *page)
396 return zone_table[page->flags >> NODEZONE_SHIFT];
399 static inline void set_page_zone(struct page *page, unsigned long nodezone_num)
401 page->flags &= ~(~0UL << NODEZONE_SHIFT);
402 page->flags |= nodezone_num << NODEZONE_SHIFT;
405 #ifndef CONFIG_DISCONTIGMEM
406 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
407 extern struct page *mem_map;
408 #endif
410 static inline void *lowmem_page_address(struct page *page)
412 return __va(page_to_pfn(page) << PAGE_SHIFT);
415 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
416 #define HASHED_PAGE_VIRTUAL
417 #endif
419 #if defined(WANT_PAGE_VIRTUAL)
420 #define page_address(page) ((page)->virtual)
421 #define set_page_address(page, address) \
422 do { \
423 (page)->virtual = (address); \
424 } while(0)
425 #define page_address_init() do { } while(0)
426 #endif
428 #if defined(HASHED_PAGE_VIRTUAL)
429 void *page_address(struct page *page);
430 void set_page_address(struct page *page, void *virtual);
431 void page_address_init(void);
432 #endif
434 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
435 #define page_address(page) lowmem_page_address(page)
436 #define set_page_address(page, address) do { } while(0)
437 #define page_address_init() do { } while(0)
438 #endif
441 * On an anonymous page mapped into a user virtual memory area,
442 * page->mapping points to its anon_vma, not to a struct address_space;
443 * with the PAGE_MAPPING_ANON bit set to distinguish it.
445 * Please note that, confusingly, "page_mapping" refers to the inode
446 * address_space which maps the page from disk; whereas "page_mapped"
447 * refers to user virtual address space into which the page is mapped.
449 #define PAGE_MAPPING_ANON 1
451 extern struct address_space swapper_space;
452 static inline struct address_space *page_mapping(struct page *page)
454 struct address_space *mapping = page->mapping;
456 if (unlikely(PageSwapCache(page)))
457 mapping = &swapper_space;
458 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
459 mapping = NULL;
460 return mapping;
463 static inline int PageAnon(struct page *page)
465 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
469 * Return the pagecache index of the passed page. Regular pagecache pages
470 * use ->index whereas swapcache pages use ->private
472 static inline pgoff_t page_index(struct page *page)
474 if (unlikely(PageSwapCache(page)))
475 return page->private;
476 return page->index;
480 * The atomic page->_mapcount, like _count, starts from -1:
481 * so that transitions both from it and to it can be tracked,
482 * using atomic_inc_and_test and atomic_add_negative(-1).
484 static inline void reset_page_mapcount(struct page *page)
486 atomic_set(&(page)->_mapcount, -1);
489 static inline int page_mapcount(struct page *page)
491 return atomic_read(&(page)->_mapcount) + 1;
495 * Return true if this page is mapped into pagetables.
497 static inline int page_mapped(struct page *page)
499 return atomic_read(&(page)->_mapcount) >= 0;
503 * Error return values for the *_nopage functions
505 #define NOPAGE_SIGBUS (NULL)
506 #define NOPAGE_OOM ((struct page *) (-1))
509 * Different kinds of faults, as returned by handle_mm_fault().
510 * Used to decide whether a process gets delivered SIGBUS or
511 * just gets major/minor fault counters bumped up.
513 #define VM_FAULT_OOM (-1)
514 #define VM_FAULT_SIGBUS 0
515 #define VM_FAULT_MINOR 1
516 #define VM_FAULT_MAJOR 2
518 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
520 extern void show_free_areas(void);
522 #ifdef CONFIG_SHMEM
523 struct page *shmem_nopage(struct vm_area_struct *vma,
524 unsigned long address, int *type);
525 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
526 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
527 unsigned long addr);
528 int shmem_lock(struct file *file, int lock, struct user_struct *user);
529 #else
530 #define shmem_nopage filemap_nopage
531 #define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */
532 #define shmem_set_policy(a, b) (0)
533 #define shmem_get_policy(a, b) (NULL)
534 #endif
535 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
537 int shmem_zero_setup(struct vm_area_struct *);
539 static inline int can_do_mlock(void)
541 if (capable(CAP_IPC_LOCK))
542 return 1;
543 if (current->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
544 return 1;
545 return 0;
547 extern int user_shm_lock(size_t, struct user_struct *);
548 extern void user_shm_unlock(size_t, struct user_struct *);
551 * Parameter block passed down to zap_pte_range in exceptional cases.
553 struct zap_details {
554 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
555 struct address_space *check_mapping; /* Check page->mapping if set */
556 pgoff_t first_index; /* Lowest page->index to unmap */
557 pgoff_t last_index; /* Highest page->index to unmap */
558 int atomic; /* May not schedule() */
561 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
562 unsigned long size, struct zap_details *);
563 int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
564 struct vm_area_struct *start_vma, unsigned long start_addr,
565 unsigned long end_addr, unsigned long *nr_accounted,
566 struct zap_details *);
567 void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr);
568 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
569 struct vm_area_struct *vma);
570 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
571 unsigned long size, pgprot_t prot);
572 void unmap_mapping_range(struct address_space *mapping,
573 loff_t const holebegin, loff_t const holelen, int even_cows);
575 static inline void unmap_shared_mapping_range(struct address_space *mapping,
576 loff_t const holebegin, loff_t const holelen)
578 unmap_mapping_range(mapping, holebegin, holelen, 0);
581 extern int vmtruncate(struct inode * inode, loff_t offset);
582 extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address));
583 extern pte_t *FASTCALL(pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
584 extern pte_t *FASTCALL(pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
585 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
586 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
587 extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
588 extern int make_pages_present(unsigned long addr, unsigned long end);
589 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
590 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
592 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
593 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
595 int __set_page_dirty_buffers(struct page *page);
596 int __set_page_dirty_nobuffers(struct page *page);
597 int redirty_page_for_writepage(struct writeback_control *wbc,
598 struct page *page);
599 int FASTCALL(set_page_dirty(struct page *page));
600 int set_page_dirty_lock(struct page *page);
601 int clear_page_dirty_for_io(struct page *page);
604 * Prototype to add a shrinker callback for ageable caches.
606 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
607 * scan `nr_to_scan' objects, attempting to free them.
609 * The callback must the number of objects which remain in the cache.
611 * The callback will be passes nr_to_scan == 0 when the VM is querying the
612 * cache size, so a fastpath for that case is appropriate.
614 typedef int (*shrinker_t)(int nr_to_scan, unsigned int gfp_mask);
617 * Add an aging callback. The int is the number of 'seeks' it takes
618 * to recreate one of the objects that these functions age.
621 #define DEFAULT_SEEKS 2
622 struct shrinker;
623 extern struct shrinker *set_shrinker(int, shrinker_t);
624 extern void remove_shrinker(struct shrinker *shrinker);
627 * On a two-level page table, this ends up being trivial. Thus the
628 * inlining and the symmetry break with pte_alloc_map() that does all
629 * of this out-of-line.
631 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
633 if (pgd_none(*pgd))
634 return __pmd_alloc(mm, pgd, address);
635 return pmd_offset(pgd, address);
638 extern void free_area_init(unsigned long * zones_size);
639 extern void free_area_init_node(int nid, pg_data_t *pgdat,
640 unsigned long * zones_size, unsigned long zone_start_pfn,
641 unsigned long *zholes_size);
642 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
643 extern void mem_init(void);
644 extern void show_mem(void);
645 extern void si_meminfo(struct sysinfo * val);
646 extern void si_meminfo_node(struct sysinfo *val, int nid);
648 /* prio_tree.c */
649 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
650 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
651 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
652 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
653 struct prio_tree_iter *iter);
655 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
656 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
657 (vma = vma_prio_tree_next(vma, iter)); )
659 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
660 struct list_head *list)
662 vma->shared.vm_set.parent = NULL;
663 list_add_tail(&vma->shared.vm_set.list, list);
666 /* mmap.c */
667 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
668 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
669 extern struct vm_area_struct *vma_merge(struct mm_struct *,
670 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
671 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
672 struct mempolicy *);
673 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
674 extern int split_vma(struct mm_struct *,
675 struct vm_area_struct *, unsigned long addr, int new_below);
676 extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
677 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
678 struct rb_node **, struct rb_node *);
679 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
680 unsigned long addr, unsigned long len, pgoff_t pgoff);
681 extern void exit_mmap(struct mm_struct *);
683 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
685 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
686 unsigned long len, unsigned long prot,
687 unsigned long flag, unsigned long pgoff);
689 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
690 unsigned long len, unsigned long prot,
691 unsigned long flag, unsigned long offset)
693 unsigned long ret = -EINVAL;
694 if ((offset + PAGE_ALIGN(len)) < offset)
695 goto out;
696 if (!(offset & ~PAGE_MASK))
697 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
698 out:
699 return ret;
702 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
704 extern unsigned long do_brk(unsigned long, unsigned long);
706 /* filemap.c */
707 extern unsigned long page_unuse(struct page *);
708 extern void truncate_inode_pages(struct address_space *, loff_t);
710 /* generic vm_area_ops exported for stackable file systems */
711 struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
713 /* mm/page-writeback.c */
714 int write_one_page(struct page *page, int wait);
716 /* readahead.c */
717 #define VM_MAX_READAHEAD 128 /* kbytes */
718 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
720 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
721 unsigned long offset, unsigned long nr_to_read);
722 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
723 unsigned long offset, unsigned long nr_to_read);
724 void page_cache_readahead(struct address_space *mapping,
725 struct file_ra_state *ra,
726 struct file *filp,
727 unsigned long offset);
728 void handle_ra_miss(struct address_space *mapping,
729 struct file_ra_state *ra, pgoff_t offset);
730 unsigned long max_sane_readahead(unsigned long nr);
732 /* Do stack extension */
733 extern int expand_stack(struct vm_area_struct * vma, unsigned long address);
735 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
736 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
737 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
738 struct vm_area_struct **pprev);
740 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
741 NULL if none. Assume start_addr < end_addr. */
742 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
744 struct vm_area_struct * vma = find_vma(mm,start_addr);
746 if (vma && end_addr <= vma->vm_start)
747 vma = NULL;
748 return vma;
751 static inline unsigned long vma_pages(struct vm_area_struct *vma)
753 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
756 extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr);
758 extern struct page * vmalloc_to_page(void *addr);
759 extern struct page * follow_page(struct mm_struct *mm, unsigned long address,
760 int write);
761 extern int remap_page_range(struct vm_area_struct *vma, unsigned long from,
762 unsigned long to, unsigned long size, pgprot_t prot);
764 #ifdef CONFIG_PROC_FS
765 void __vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
766 #else
767 static inline void __vm_stat_account(struct mm_struct *mm,
768 unsigned long flags, struct file *file, long pages)
771 #endif /* CONFIG_PROC_FS */
773 static inline void vm_stat_account(struct vm_area_struct *vma)
775 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
776 vma_pages(vma));
779 static inline void vm_stat_unaccount(struct vm_area_struct *vma)
781 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
782 -vma_pages(vma));
785 #ifndef CONFIG_DEBUG_PAGEALLOC
786 static inline void
787 kernel_map_pages(struct page *page, int numpages, int enable)
790 #endif
792 #ifndef CONFIG_ARCH_GATE_AREA
793 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
794 int in_gate_area(struct task_struct *task, unsigned long addr);
795 #endif
797 #endif /* __KERNEL__ */
798 #endif /* _LINUX_MM_H */