2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
49 #ifndef div_long_long_rem
50 #include <asm/div64.h>
52 #define div_long_long_rem(dividend,divisor,remainder) ({ \
53 u64 result = dividend; \
54 *remainder = do_div(result,divisor); \
58 #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
60 static inline u64
mpy_l_X_l_ll(unsigned long mpy1
,unsigned long mpy2
)
62 return (u64
)mpy1
* mpy2
;
65 * Management arrays for POSIX timers. Timers are kept in slab memory
66 * Timer ids are allocated by an external routine that keeps track of the
67 * id and the timer. The external interface is:
69 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
70 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
72 * void idr_remove(struct idr *idp, int id); to release <id>
73 * void idr_init(struct idr *idp); to initialize <idp>
75 * The idr_get_new *may* call slab for more memory so it must not be
76 * called under a spin lock. Likewise idr_remore may release memory
77 * (but it may be ok to do this under a lock...).
78 * idr_find is just a memory look up and is quite fast. A -1 return
79 * indicates that the requested id does not exist.
83 * Lets keep our timers in a slab cache :-)
85 static kmem_cache_t
*posix_timers_cache
;
86 static struct idr posix_timers_id
;
87 static spinlock_t idr_lock
= SPIN_LOCK_UNLOCKED
;
90 * Just because the timer is not in the timer list does NOT mean it is
91 * inactive. It could be in the "fire" routine getting a new expire time.
93 #define TIMER_INACTIVE 1
97 # define timer_active(tmr) \
98 ((tmr)->it_timer.entry.prev != (void *)TIMER_INACTIVE)
99 # define set_timer_inactive(tmr) \
101 (tmr)->it_timer.entry.prev = (void *)TIMER_INACTIVE; \
104 # define timer_active(tmr) BARFY // error to use outside of SMP
105 # define set_timer_inactive(tmr) do { } while (0)
108 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
109 * SIGEV values. Here we put out an error if this assumption fails.
111 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
112 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
113 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
117 #define REQUEUE_PENDING 1
119 * The timer ID is turned into a timer address by idr_find().
120 * Verifying a valid ID consists of:
122 * a) checking that idr_find() returns other than -1.
123 * b) checking that the timer id matches the one in the timer itself.
124 * c) that the timer owner is in the callers thread group.
128 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
129 * to implement others. This structure defines the various
130 * clocks and allows the possibility of adding others. We
131 * provide an interface to add clocks to the table and expect
132 * the "arch" code to add at least one clock that is high
133 * resolution. Here we define the standard CLOCK_REALTIME as a
134 * 1/HZ resolution clock.
136 * CPUTIME & THREAD_CPUTIME: We are not, at this time, definding these
137 * two clocks (and the other process related clocks (Std
138 * 1003.1d-1999). The way these should be supported, we think,
139 * is to use large negative numbers for the two clocks that are
140 * pinned to the executing process and to use -pid for clocks
141 * pinned to particular pids. Calls which supported these clock
142 * ids would split early in the function.
144 * RESOLUTION: Clock resolution is used to round up timer and interval
145 * times, NOT to report clock times, which are reported with as
146 * much resolution as the system can muster. In some cases this
147 * resolution may depend on the underlaying clock hardware and
148 * may not be quantifiable until run time, and only then is the
149 * necessary code is written. The standard says we should say
150 * something about this issue in the documentation...
152 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
153 * various clock functions. For clocks that use the standard
154 * system timer code these entries should be NULL. This will
155 * allow dispatch without the overhead of indirect function
156 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
157 * must supply functions here, even if the function just returns
158 * ENOSYS. The standard POSIX timer management code assumes the
159 * following: 1.) The k_itimer struct (sched.h) is used for the
160 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
161 * fields are not modified by timer code.
163 * At this time all functions EXCEPT clock_nanosleep can be
164 * redirected by the CLOCKS structure. Clock_nanosleep is in
165 * there, but the code ignors it.
167 * Permissions: It is assumed that the clock_settime() function defined
168 * for each clock will take care of permission checks. Some
169 * clocks may be set able by any user (i.e. local process
170 * clocks) others not. Currently the only set able clock we
171 * have is CLOCK_REALTIME and its high res counter part, both of
172 * which we beg off on and pass to do_sys_settimeofday().
175 static struct k_clock posix_clocks
[MAX_CLOCKS
];
177 * We only have one real clock that can be set so we need only one abs list,
178 * even if we should want to have several clocks with differing resolutions.
180 static struct k_clock_abs abs_list
= {.list
= LIST_HEAD_INIT(abs_list
.list
),
181 .lock
= SPIN_LOCK_UNLOCKED
};
183 #define if_clock_do(clock_fun,alt_fun,parms) \
184 (!clock_fun) ? alt_fun parms : clock_fun parms
186 #define p_timer_get(clock,a,b) \
187 if_clock_do((clock)->timer_get,do_timer_gettime, (a,b))
189 #define p_nsleep(clock,a,b,c) \
190 if_clock_do((clock)->nsleep, do_nsleep, (a,b,c))
192 #define p_timer_del(clock,a) \
193 if_clock_do((clock)->timer_del, do_timer_delete, (a))
195 void register_posix_clock(int clock_id
, struct k_clock
*new_clock
);
196 static int do_posix_gettime(struct k_clock
*clock
, struct timespec
*tp
);
197 static u64
do_posix_clock_monotonic_gettime_parts(
198 struct timespec
*tp
, struct timespec
*mo
);
199 int do_posix_clock_monotonic_gettime(struct timespec
*tp
);
200 int do_posix_clock_monotonic_settime(struct timespec
*tp
);
201 static struct k_itimer
*lock_timer(timer_t timer_id
, unsigned long *flags
);
203 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
205 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
209 * Initialize everything, well, just everything in Posix clocks/timers ;)
211 static __init
int init_posix_timers(void)
213 struct k_clock clock_realtime
= {.res
= CLOCK_REALTIME_RES
,
214 .abs_struct
= &abs_list
216 struct k_clock clock_monotonic
= {.res
= CLOCK_REALTIME_RES
,
218 .clock_get
= do_posix_clock_monotonic_gettime
,
219 .clock_set
= do_posix_clock_monotonic_settime
222 register_posix_clock(CLOCK_REALTIME
, &clock_realtime
);
223 register_posix_clock(CLOCK_MONOTONIC
, &clock_monotonic
);
225 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
226 sizeof (struct k_itimer
), 0, 0, NULL
, NULL
);
227 idr_init(&posix_timers_id
);
231 __initcall(init_posix_timers
);
233 static void tstojiffie(struct timespec
*tp
, int res
, u64
*jiff
)
235 long sec
= tp
->tv_sec
;
236 long nsec
= tp
->tv_nsec
+ res
- 1;
238 if (nsec
> NSEC_PER_SEC
) {
240 nsec
-= NSEC_PER_SEC
;
244 * The scaling constants are defined in <linux/time.h>
245 * The difference between there and here is that we do the
246 * res rounding and compute a 64-bit result (well so does that
247 * but it then throws away the high bits).
249 *jiff
= (mpy_l_X_l_ll(sec
, SEC_CONVERSION
) +
250 (mpy_l_X_l_ll(nsec
, NSEC_CONVERSION
) >>
251 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
255 * This function adjusts the timer as needed as a result of the clock
256 * being set. It should only be called for absolute timers, and then
257 * under the abs_list lock. It computes the time difference and sets
258 * the new jiffies value in the timer. It also updates the timers
259 * reference wall_to_monotonic value. It is complicated by the fact
260 * that tstojiffies() only handles positive times and it needs to work
261 * with both positive and negative times. Also, for negative offsets,
262 * we need to defeat the res round up.
264 * Return is true if there is a new time, else false.
266 static long add_clockset_delta(struct k_itimer
*timr
,
267 struct timespec
*new_wall_to
)
269 struct timespec delta
;
273 set_normalized_timespec(&delta
,
274 new_wall_to
->tv_sec
-
275 timr
->wall_to_prev
.tv_sec
,
276 new_wall_to
->tv_nsec
-
277 timr
->wall_to_prev
.tv_nsec
);
278 if (likely(!(delta
.tv_sec
| delta
.tv_nsec
)))
280 if (delta
.tv_sec
< 0) {
281 set_normalized_timespec(&delta
,
284 posix_clocks
[timr
->it_clock
].res
);
287 tstojiffie(&delta
, posix_clocks
[timr
->it_clock
].res
, &exp
);
288 timr
->wall_to_prev
= *new_wall_to
;
289 timr
->it_timer
.expires
+= (sign
? -exp
: exp
);
293 static void remove_from_abslist(struct k_itimer
*timr
)
295 if (!list_empty(&timr
->abs_timer_entry
)) {
296 spin_lock(&abs_list
.lock
);
297 list_del_init(&timr
->abs_timer_entry
);
298 spin_unlock(&abs_list
.lock
);
302 static void schedule_next_timer(struct k_itimer
*timr
)
304 struct timespec new_wall_to
;
305 struct now_struct now
;
309 * Set up the timer for the next interval (if there is one).
310 * Note: this code uses the abs_timer_lock to protect
311 * wall_to_prev and must hold it until exp is set, not exactly
314 * This function is used for CLOCK_REALTIME* and
315 * CLOCK_MONOTONIC* timers. If we ever want to handle other
316 * CLOCKs, the calling code (do_schedule_next_timer) would need
317 * to pull the "clock" info from the timer and dispatch the
318 * "other" CLOCKs "next timer" code (which, I suppose should
319 * also be added to the k_clock structure).
325 seq
= read_seqbegin(&xtime_lock
);
326 new_wall_to
= wall_to_monotonic
;
328 } while (read_seqretry(&xtime_lock
, seq
));
330 if (!list_empty(&timr
->abs_timer_entry
)) {
331 spin_lock(&abs_list
.lock
);
332 add_clockset_delta(timr
, &new_wall_to
);
334 posix_bump_timer(timr
, now
);
336 spin_unlock(&abs_list
.lock
);
338 posix_bump_timer(timr
, now
);
340 timr
->it_overrun_last
= timr
->it_overrun
;
341 timr
->it_overrun
= -1;
342 ++timr
->it_requeue_pending
;
343 add_timer(&timr
->it_timer
);
347 * This function is exported for use by the signal deliver code. It is
348 * called just prior to the info block being released and passes that
349 * block to us. It's function is to update the overrun entry AND to
350 * restart the timer. It should only be called if the timer is to be
351 * restarted (i.e. we have flagged this in the sys_private entry of the
354 * To protect aginst the timer going away while the interrupt is queued,
355 * we require that the it_requeue_pending flag be set.
357 void do_schedule_next_timer(struct siginfo
*info
)
359 struct k_itimer
*timr
;
362 timr
= lock_timer(info
->si_tid
, &flags
);
364 if (!timr
|| timr
->it_requeue_pending
!= info
->si_sys_private
)
367 schedule_next_timer(timr
);
368 info
->si_overrun
= timr
->it_overrun_last
;
371 unlock_timer(timr
, flags
);
375 * Notify the task and set up the timer for the next expiration (if
376 * applicable). This function requires that the k_itimer structure
377 * it_lock is taken. This code will requeue the timer only if we get
378 * either an error return or a flag (ret > 0) from send_seg_info
379 * indicating that the signal was either not queued or was queued
380 * without an info block. In this case, we will not get a call back to
381 * do_schedule_next_timer() so we do it here. This should be rare...
383 * An interesting problem can occur if, while a signal, and thus a call
384 * back is pending, the timer is rearmed, i.e. stopped and restarted.
385 * We then need to sort out the call back and do the right thing. What
386 * we do is to put a counter in the info block and match it with the
387 * timers copy on the call back. If they don't match, we just ignore
388 * the call back. The counter is local to the timer and we use odd to
389 * indicate a call back is pending. Note that we do allow the timer to
390 * be deleted while a signal is pending. The standard says we can
391 * allow that signal to be delivered, and we do.
394 static void timer_notify_task(struct k_itimer
*timr
)
398 memset(&timr
->sigq
->info
, 0, sizeof(siginfo_t
));
401 * Send signal to the process that owns this timer.
403 * This code assumes that all the possible abs_lists share the
404 * same lock (there is only one list at this time). If this is
405 * not the case, the CLOCK info would need to be used to find
406 * the proper abs list lock.
409 timr
->sigq
->info
.si_signo
= timr
->it_sigev_signo
;
410 timr
->sigq
->info
.si_errno
= 0;
411 timr
->sigq
->info
.si_code
= SI_TIMER
;
412 timr
->sigq
->info
.si_tid
= timr
->it_id
;
413 timr
->sigq
->info
.si_value
= timr
->it_sigev_value
;
415 timr
->sigq
->info
.si_sys_private
= ++timr
->it_requeue_pending
;
417 remove_from_abslist(timr
);
420 if (timr
->it_sigev_notify
& SIGEV_THREAD_ID
) {
421 if (unlikely(timr
->it_process
->flags
& PF_EXITING
)) {
422 timr
->it_sigev_notify
= SIGEV_SIGNAL
;
423 put_task_struct(timr
->it_process
);
424 timr
->it_process
= timr
->it_process
->group_leader
;
427 ret
= send_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
432 ret
= send_group_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
437 * signal was not sent because of sig_ignor
438 * we will not get a call back to restart it AND
439 * it should be restarted.
441 schedule_next_timer(timr
);
446 * This function gets called when a POSIX.1b interval timer expires. It
447 * is used as a callback from the kernel internal timer. The
448 * run_timer_list code ALWAYS calls with interrutps on.
450 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
452 static void posix_timer_fn(unsigned long __data
)
454 struct k_itimer
*timr
= (struct k_itimer
*) __data
;
457 struct timespec delta
, new_wall_to
;
461 spin_lock_irqsave(&timr
->it_lock
, flags
);
462 set_timer_inactive(timr
);
463 if (!list_empty(&timr
->abs_timer_entry
)) {
464 spin_lock(&abs_list
.lock
);
466 seq
= read_seqbegin(&xtime_lock
);
467 new_wall_to
= wall_to_monotonic
;
468 } while (read_seqretry(&xtime_lock
, seq
));
469 set_normalized_timespec(&delta
,
471 timr
->wall_to_prev
.tv_sec
,
472 new_wall_to
.tv_nsec
-
473 timr
->wall_to_prev
.tv_nsec
);
474 if (likely((delta
.tv_sec
| delta
.tv_nsec
) == 0)) {
475 /* do nothing, timer is on time */
476 } else if (delta
.tv_sec
< 0) {
477 /* do nothing, timer is already late */
479 /* timer is early due to a clock set */
481 posix_clocks
[timr
->it_clock
].res
,
483 timr
->wall_to_prev
= new_wall_to
;
484 timr
->it_timer
.expires
+= exp
;
485 add_timer(&timr
->it_timer
);
488 spin_unlock(&abs_list
.lock
);
492 timer_notify_task(timr
);
493 unlock_timer(timr
, flags
); /* hold thru abs lock to keep irq off */
497 static inline struct task_struct
* good_sigevent(sigevent_t
* event
)
499 struct task_struct
*rtn
= current
->group_leader
;
501 if ((event
->sigev_notify
& SIGEV_THREAD_ID
) &&
502 (!(rtn
= find_task_by_pid(event
->sigev_notify_thread_id
)) ||
503 rtn
->tgid
!= current
->tgid
||
504 (event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_SIGNAL
))
507 if (((event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
) &&
508 ((event
->sigev_signo
<= 0) || (event
->sigev_signo
> SIGRTMAX
)))
514 void register_posix_clock(int clock_id
, struct k_clock
*new_clock
)
516 if ((unsigned) clock_id
>= MAX_CLOCKS
) {
517 printk("POSIX clock register failed for clock_id %d\n",
521 posix_clocks
[clock_id
] = *new_clock
;
524 static struct k_itimer
* alloc_posix_timer(void)
526 struct k_itimer
*tmr
;
527 tmr
= kmem_cache_alloc(posix_timers_cache
, GFP_KERNEL
);
530 memset(tmr
, 0, sizeof (struct k_itimer
));
531 INIT_LIST_HEAD(&tmr
->abs_timer_entry
);
532 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
533 kmem_cache_free(posix_timers_cache
, tmr
);
540 #define IT_ID_NOT_SET 0
541 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
545 spin_lock_irqsave(&idr_lock
, flags
);
546 idr_remove(&posix_timers_id
, tmr
->it_id
);
547 spin_unlock_irqrestore(&idr_lock
, flags
);
549 sigqueue_free(tmr
->sigq
);
550 if (unlikely(tmr
->it_process
) &&
551 tmr
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
552 put_task_struct(tmr
->it_process
);
553 kmem_cache_free(posix_timers_cache
, tmr
);
556 /* Create a POSIX.1b interval timer. */
559 sys_timer_create(clockid_t which_clock
,
560 struct sigevent __user
*timer_event_spec
,
561 timer_t __user
* created_timer_id
)
564 struct k_itimer
*new_timer
= NULL
;
566 struct task_struct
*process
= NULL
;
569 int it_id_set
= IT_ID_NOT_SET
;
571 if ((unsigned) which_clock
>= MAX_CLOCKS
||
572 !posix_clocks
[which_clock
].res
)
575 new_timer
= alloc_posix_timer();
576 if (unlikely(!new_timer
))
579 spin_lock_init(&new_timer
->it_lock
);
581 if (unlikely(!idr_pre_get(&posix_timers_id
, GFP_KERNEL
))) {
585 spin_lock_irq(&idr_lock
);
586 error
= idr_get_new(&posix_timers_id
,
589 spin_unlock_irq(&idr_lock
);
590 if (error
== -EAGAIN
)
594 * Wierd looking, but we return EAGAIN if the IDR is
595 * full (proper POSIX return value for this)
601 it_id_set
= IT_ID_SET
;
602 new_timer
->it_id
= (timer_t
) new_timer_id
;
603 new_timer
->it_clock
= which_clock
;
604 new_timer
->it_incr
= 0;
605 new_timer
->it_overrun
= -1;
606 init_timer(&new_timer
->it_timer
);
607 new_timer
->it_timer
.expires
= 0;
608 new_timer
->it_timer
.data
= (unsigned long) new_timer
;
609 new_timer
->it_timer
.function
= posix_timer_fn
;
610 set_timer_inactive(new_timer
);
613 * return the timer_id now. The next step is hard to
614 * back out if there is an error.
616 if (copy_to_user(created_timer_id
,
617 &new_timer_id
, sizeof (new_timer_id
))) {
621 if (timer_event_spec
) {
622 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
))) {
626 new_timer
->it_sigev_notify
= event
.sigev_notify
;
627 new_timer
->it_sigev_signo
= event
.sigev_signo
;
628 new_timer
->it_sigev_value
= event
.sigev_value
;
630 read_lock(&tasklist_lock
);
631 if ((process
= good_sigevent(&event
))) {
633 * We may be setting up this process for another
634 * thread. It may be exiting. To catch this
635 * case the we check the PF_EXITING flag. If
636 * the flag is not set, the siglock will catch
637 * him before it is too late (in exit_itimers).
639 * The exec case is a bit more invloved but easy
640 * to code. If the process is in our thread
641 * group (and it must be or we would not allow
642 * it here) and is doing an exec, it will cause
643 * us to be killed. In this case it will wait
644 * for us to die which means we can finish this
645 * linkage with our last gasp. I.e. no code :)
647 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
648 if (!(process
->flags
& PF_EXITING
)) {
649 new_timer
->it_process
= process
;
650 list_add(&new_timer
->list
,
651 &process
->signal
->posix_timers
);
652 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
653 if (new_timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
654 get_task_struct(process
);
656 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
660 read_unlock(&tasklist_lock
);
666 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
667 new_timer
->it_sigev_signo
= SIGALRM
;
668 new_timer
->it_sigev_value
.sival_int
= new_timer
->it_id
;
669 process
= current
->group_leader
;
670 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
671 new_timer
->it_process
= process
;
672 list_add(&new_timer
->list
, &process
->signal
->posix_timers
);
673 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
677 * In the case of the timer belonging to another task, after
678 * the task is unlocked, the timer is owned by the other task
679 * and may cease to exist at any time. Don't use or modify
680 * new_timer after the unlock call.
685 release_posix_timer(new_timer
, it_id_set
);
693 * This function checks the elements of a timespec structure.
696 * ts : Pointer to the timespec structure to check
699 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
700 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
701 * this function returns 0. Otherwise it returns 1.
703 static int good_timespec(const struct timespec
*ts
)
705 if ((!ts
) || (ts
->tv_sec
< 0) ||
706 ((unsigned) ts
->tv_nsec
>= NSEC_PER_SEC
))
712 * Locking issues: We need to protect the result of the id look up until
713 * we get the timer locked down so it is not deleted under us. The
714 * removal is done under the idr spinlock so we use that here to bridge
715 * the find to the timer lock. To avoid a dead lock, the timer id MUST
716 * be release with out holding the timer lock.
718 static struct k_itimer
* lock_timer(timer_t timer_id
, unsigned long *flags
)
720 struct k_itimer
*timr
;
722 * Watch out here. We do a irqsave on the idr_lock and pass the
723 * flags part over to the timer lock. Must not let interrupts in
724 * while we are moving the lock.
727 spin_lock_irqsave(&idr_lock
, *flags
);
728 timr
= (struct k_itimer
*) idr_find(&posix_timers_id
, (int) timer_id
);
730 spin_lock(&timr
->it_lock
);
731 spin_unlock(&idr_lock
);
733 if ((timr
->it_id
!= timer_id
) || !(timr
->it_process
) ||
734 timr
->it_process
->tgid
!= current
->tgid
) {
735 unlock_timer(timr
, *flags
);
739 spin_unlock_irqrestore(&idr_lock
, *flags
);
745 * Get the time remaining on a POSIX.1b interval timer. This function
746 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
749 * We have a couple of messes to clean up here. First there is the case
750 * of a timer that has a requeue pending. These timers should appear to
751 * be in the timer list with an expiry as if we were to requeue them
754 * The second issue is the SIGEV_NONE timer which may be active but is
755 * not really ever put in the timer list (to save system resources).
756 * This timer may be expired, and if so, we will do it here. Otherwise
757 * it is the same as a requeue pending timer WRT to what we should
761 do_timer_gettime(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
763 unsigned long expires
;
764 struct now_struct now
;
767 expires
= timr
->it_timer
.expires
;
768 while ((volatile long) (timr
->it_timer
.expires
) != expires
);
773 ((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) &&
775 posix_time_before(&timr
->it_timer
, &now
))
776 timr
->it_timer
.expires
= expires
= 0;
778 if (timr
->it_requeue_pending
& REQUEUE_PENDING
||
779 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
780 posix_bump_timer(timr
, now
);
781 expires
= timr
->it_timer
.expires
;
784 if (!timer_pending(&timr
->it_timer
))
787 expires
-= now
.jiffies
;
789 jiffies_to_timespec(expires
, &cur_setting
->it_value
);
790 jiffies_to_timespec(timr
->it_incr
, &cur_setting
->it_interval
);
792 if (cur_setting
->it_value
.tv_sec
< 0) {
793 cur_setting
->it_value
.tv_nsec
= 1;
794 cur_setting
->it_value
.tv_sec
= 0;
798 /* Get the time remaining on a POSIX.1b interval timer. */
800 sys_timer_gettime(timer_t timer_id
, struct itimerspec __user
*setting
)
802 struct k_itimer
*timr
;
803 struct itimerspec cur_setting
;
806 timr
= lock_timer(timer_id
, &flags
);
810 p_timer_get(&posix_clocks
[timr
->it_clock
], timr
, &cur_setting
);
812 unlock_timer(timr
, flags
);
814 if (copy_to_user(setting
, &cur_setting
, sizeof (cur_setting
)))
820 * Get the number of overruns of a POSIX.1b interval timer. This is to
821 * be the overrun of the timer last delivered. At the same time we are
822 * accumulating overruns on the next timer. The overrun is frozen when
823 * the signal is delivered, either at the notify time (if the info block
824 * is not queued) or at the actual delivery time (as we are informed by
825 * the call back to do_schedule_next_timer(). So all we need to do is
826 * to pick up the frozen overrun.
830 sys_timer_getoverrun(timer_t timer_id
)
832 struct k_itimer
*timr
;
836 timr
= lock_timer(timer_id
, &flags
);
840 overrun
= timr
->it_overrun_last
;
841 unlock_timer(timr
, flags
);
846 * Adjust for absolute time
848 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
849 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
850 * what ever clock he is using.
852 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
853 * time to it to get the proper time for the timer.
855 static int adjust_abs_time(struct k_clock
*clock
, struct timespec
*tp
,
856 int abs
, u64
*exp
, struct timespec
*wall_to
)
859 struct timespec oc
= *tp
;
865 * The mask pick up the 4 basic clocks
867 if (!((clock
- &posix_clocks
[0]) & ~CLOCKS_MASK
)) {
868 jiffies_64_f
= do_posix_clock_monotonic_gettime_parts(
871 * If we are doing a MONOTONIC clock
873 if((clock
- &posix_clocks
[0]) & CLOCKS_MONO
){
874 now
.tv_sec
+= wall_to
->tv_sec
;
875 now
.tv_nsec
+= wall_to
->tv_nsec
;
879 * Not one of the basic clocks
881 do_posix_gettime(clock
, &now
);
882 jiffies_64_f
= get_jiffies_64();
885 * Take away now to get delta
887 oc
.tv_sec
-= now
.tv_sec
;
888 oc
.tv_nsec
-= now
.tv_nsec
;
892 while ((oc
.tv_nsec
- NSEC_PER_SEC
) >= 0) {
893 oc
.tv_nsec
-= NSEC_PER_SEC
;
896 while ((oc
.tv_nsec
) < 0) {
897 oc
.tv_nsec
+= NSEC_PER_SEC
;
901 jiffies_64_f
= get_jiffies_64();
904 * Check if the requested time is prior to now (if so set now)
907 oc
.tv_sec
= oc
.tv_nsec
= 0;
908 tstojiffie(&oc
, clock
->res
, exp
);
911 * Check if the requested time is more than the timer code
912 * can handle (if so we error out but return the value too).
914 if (*exp
> ((u64
)MAX_JIFFY_OFFSET
))
916 * This is a considered response, not exactly in
917 * line with the standard (in fact it is silent on
918 * possible overflows). We assume such a large
919 * value is ALMOST always a programming error and
920 * try not to compound it by setting a really dumb
925 * return the actual jiffies expire time, full 64 bits
927 *exp
+= jiffies_64_f
;
931 /* Set a POSIX.1b interval timer. */
932 /* timr->it_lock is taken. */
934 do_timer_settime(struct k_itimer
*timr
, int flags
,
935 struct itimerspec
*new_setting
, struct itimerspec
*old_setting
)
937 struct k_clock
*clock
= &posix_clocks
[timr
->it_clock
];
941 do_timer_gettime(timr
, old_setting
);
943 /* disable the timer */
946 * careful here. If smp we could be in the "fire" routine which will
947 * be spinning as we hold the lock. But this is ONLY an SMP issue.
950 if (timer_active(timr
) && !del_timer(&timr
->it_timer
))
952 * It can only be active if on an other cpu. Since
953 * we have cleared the interval stuff above, it should
954 * clear once we release the spin lock. Of course once
955 * we do that anything could happen, including the
956 * complete melt down of the timer. So return with
957 * a "retry" exit status.
961 set_timer_inactive(timr
);
963 del_timer(&timr
->it_timer
);
965 remove_from_abslist(timr
);
967 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
969 timr
->it_overrun_last
= 0;
970 timr
->it_overrun
= -1;
972 *switch off the timer when it_value is zero
974 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
) {
975 timr
->it_timer
.expires
= 0;
979 if (adjust_abs_time(clock
,
980 &new_setting
->it_value
, flags
& TIMER_ABSTIME
,
981 &expire_64
, &(timr
->wall_to_prev
))) {
984 timr
->it_timer
.expires
= (unsigned long)expire_64
;
985 tstojiffie(&new_setting
->it_interval
, clock
->res
, &expire_64
);
986 timr
->it_incr
= (unsigned long)expire_64
;
989 * We do not even queue SIGEV_NONE timers! But we do put them
990 * in the abs list so we can do that right.
992 if (((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
))
993 add_timer(&timr
->it_timer
);
995 if (flags
& TIMER_ABSTIME
&& clock
->abs_struct
) {
996 spin_lock(&clock
->abs_struct
->lock
);
997 list_add_tail(&(timr
->abs_timer_entry
),
998 &(clock
->abs_struct
->list
));
999 spin_unlock(&clock
->abs_struct
->lock
);
1004 /* Set a POSIX.1b interval timer */
1006 sys_timer_settime(timer_t timer_id
, int flags
,
1007 const struct itimerspec __user
*new_setting
,
1008 struct itimerspec __user
*old_setting
)
1010 struct k_itimer
*timr
;
1011 struct itimerspec new_spec
, old_spec
;
1014 struct itimerspec
*rtn
= old_setting
? &old_spec
: NULL
;
1019 if (copy_from_user(&new_spec
, new_setting
, sizeof (new_spec
)))
1022 if ((!good_timespec(&new_spec
.it_interval
)) ||
1023 (!good_timespec(&new_spec
.it_value
)))
1026 timr
= lock_timer(timer_id
, &flag
);
1030 if (!posix_clocks
[timr
->it_clock
].timer_set
)
1031 error
= do_timer_settime(timr
, flags
, &new_spec
, rtn
);
1033 error
= posix_clocks
[timr
->it_clock
].timer_set(timr
,
1036 unlock_timer(timr
, flag
);
1037 if (error
== TIMER_RETRY
) {
1038 rtn
= NULL
; // We already got the old time...
1042 if (old_setting
&& !error
&& copy_to_user(old_setting
,
1043 &old_spec
, sizeof (old_spec
)))
1049 static inline int do_timer_delete(struct k_itimer
*timer
)
1053 if (timer_active(timer
) && !del_timer(&timer
->it_timer
))
1055 * It can only be active if on an other cpu. Since
1056 * we have cleared the interval stuff above, it should
1057 * clear once we release the spin lock. Of course once
1058 * we do that anything could happen, including the
1059 * complete melt down of the timer. So return with
1060 * a "retry" exit status.
1064 del_timer(&timer
->it_timer
);
1066 remove_from_abslist(timer
);
1071 /* Delete a POSIX.1b interval timer. */
1073 sys_timer_delete(timer_t timer_id
)
1075 struct k_itimer
*timer
;
1082 timer
= lock_timer(timer_id
, &flags
);
1087 error
= p_timer_del(&posix_clocks
[timer
->it_clock
], timer
);
1089 if (error
== TIMER_RETRY
) {
1090 unlock_timer(timer
, flags
);
1094 p_timer_del(&posix_clocks
[timer
->it_clock
], timer
);
1096 spin_lock(¤t
->sighand
->siglock
);
1097 list_del(&timer
->list
);
1098 spin_unlock(¤t
->sighand
->siglock
);
1100 * This keeps any tasks waiting on the spin lock from thinking
1101 * they got something (see the lock code above).
1103 if (timer
->it_process
) {
1104 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
1105 put_task_struct(timer
->it_process
);
1106 timer
->it_process
= NULL
;
1108 unlock_timer(timer
, flags
);
1109 release_posix_timer(timer
, IT_ID_SET
);
1113 * return timer owned by the process, used by exit_itimers
1115 static inline void itimer_delete(struct k_itimer
*timer
)
1117 unsigned long flags
;
1123 spin_lock_irqsave(&timer
->it_lock
, flags
);
1126 error
= p_timer_del(&posix_clocks
[timer
->it_clock
], timer
);
1128 if (error
== TIMER_RETRY
) {
1129 unlock_timer(timer
, flags
);
1133 p_timer_del(&posix_clocks
[timer
->it_clock
], timer
);
1135 list_del(&timer
->list
);
1137 * This keeps any tasks waiting on the spin lock from thinking
1138 * they got something (see the lock code above).
1140 if (timer
->it_process
) {
1141 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
1142 put_task_struct(timer
->it_process
);
1143 timer
->it_process
= NULL
;
1145 unlock_timer(timer
, flags
);
1146 release_posix_timer(timer
, IT_ID_SET
);
1150 * This is called by __exit_signal, only when there are no more
1151 * references to the shared signal_struct.
1153 void exit_itimers(struct signal_struct
*sig
)
1155 struct k_itimer
*tmr
;
1157 while (!list_empty(&sig
->posix_timers
)) {
1158 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1164 * And now for the "clock" calls
1166 * These functions are called both from timer functions (with the timer
1167 * spin_lock_irq() held and from clock calls with no locking. They must
1168 * use the save flags versions of locks.
1170 static int do_posix_gettime(struct k_clock
*clock
, struct timespec
*tp
)
1172 if (clock
->clock_get
)
1173 return clock
->clock_get(tp
);
1180 * We do ticks here to avoid the irq lock ( they take sooo long).
1181 * The seqlock is great here. Since we a reader, we don't really care
1182 * if we are interrupted since we don't take lock that will stall us or
1183 * any other cpu. Voila, no irq lock is needed.
1187 static u64
do_posix_clock_monotonic_gettime_parts(
1188 struct timespec
*tp
, struct timespec
*mo
)
1194 seq
= read_seqbegin(&xtime_lock
);
1196 *mo
= wall_to_monotonic
;
1199 } while(read_seqretry(&xtime_lock
, seq
));
1204 int do_posix_clock_monotonic_gettime(struct timespec
*tp
)
1206 struct timespec wall_to_mono
;
1208 do_posix_clock_monotonic_gettime_parts(tp
, &wall_to_mono
);
1210 tp
->tv_sec
+= wall_to_mono
.tv_sec
;
1211 tp
->tv_nsec
+= wall_to_mono
.tv_nsec
;
1213 if ((tp
->tv_nsec
- NSEC_PER_SEC
) > 0) {
1214 tp
->tv_nsec
-= NSEC_PER_SEC
;
1220 int do_posix_clock_monotonic_settime(struct timespec
*tp
)
1226 sys_clock_settime(clockid_t which_clock
, const struct timespec __user
*tp
)
1228 struct timespec new_tp
;
1230 if ((unsigned) which_clock
>= MAX_CLOCKS
||
1231 !posix_clocks
[which_clock
].res
)
1233 if (copy_from_user(&new_tp
, tp
, sizeof (*tp
)))
1235 if (posix_clocks
[which_clock
].clock_set
)
1236 return posix_clocks
[which_clock
].clock_set(&new_tp
);
1238 return do_sys_settimeofday(&new_tp
, NULL
);
1242 sys_clock_gettime(clockid_t which_clock
, struct timespec __user
*tp
)
1244 struct timespec rtn_tp
;
1247 if ((unsigned) which_clock
>= MAX_CLOCKS
||
1248 !posix_clocks
[which_clock
].res
)
1251 error
= do_posix_gettime(&posix_clocks
[which_clock
], &rtn_tp
);
1253 if (!error
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
)))
1261 sys_clock_getres(clockid_t which_clock
, struct timespec __user
*tp
)
1263 struct timespec rtn_tp
;
1265 if ((unsigned) which_clock
>= MAX_CLOCKS
||
1266 !posix_clocks
[which_clock
].res
)
1270 rtn_tp
.tv_nsec
= posix_clocks
[which_clock
].res
;
1271 if (tp
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
)))
1278 static void nanosleep_wake_up(unsigned long __data
)
1280 struct task_struct
*p
= (struct task_struct
*) __data
;
1286 * The standard says that an absolute nanosleep call MUST wake up at
1287 * the requested time in spite of clock settings. Here is what we do:
1288 * For each nanosleep call that needs it (only absolute and not on
1289 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1290 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1291 * When ever the clock is set we just wake up all those tasks. The rest
1292 * is done by the while loop in clock_nanosleep().
1294 * On locking, clock_was_set() is called from update_wall_clock which
1295 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1296 * called from the timer bh code. Thus we need the irq save locks.
1298 * Also, on the call from update_wall_clock, that is done as part of a
1299 * softirq thing. We don't want to delay the system that much (possibly
1300 * long list of timers to fix), so we defer that work to keventd.
1303 static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue
);
1304 static DECLARE_WORK(clock_was_set_work
, (void(*)(void*))clock_was_set
, NULL
);
1306 static DECLARE_MUTEX(clock_was_set_lock
);
1308 void clock_was_set(void)
1310 struct k_itimer
*timr
;
1311 struct timespec new_wall_to
;
1312 LIST_HEAD(cws_list
);
1316 if (unlikely(in_interrupt())) {
1317 schedule_work(&clock_was_set_work
);
1320 wake_up_all(&nanosleep_abs_wqueue
);
1323 * Check if there exist TIMER_ABSTIME timers to correct.
1325 * Notes on locking: This code is run in task context with irq
1326 * on. We CAN be interrupted! All other usage of the abs list
1327 * lock is under the timer lock which holds the irq lock as
1328 * well. We REALLY don't want to scan the whole list with the
1329 * interrupt system off, AND we would like a sequence lock on
1330 * this code as well. Since we assume that the clock will not
1331 * be set often, it seems ok to take and release the irq lock
1332 * for each timer. In fact add_timer will do this, so this is
1333 * not an issue. So we know when we are done, we will move the
1334 * whole list to a new location. Then as we process each entry,
1335 * we will move it to the actual list again. This way, when our
1336 * copy is empty, we are done. We are not all that concerned
1337 * about preemption so we will use a semaphore lock to protect
1338 * aginst reentry. This way we will not stall another
1339 * processor. It is possible that this may delay some timers
1340 * that should have expired, given the new clock, but even this
1341 * will be minimal as we will always update to the current time,
1342 * even if it was set by a task that is waiting for entry to
1343 * this code. Timers that expire too early will be caught by
1344 * the expire code and restarted.
1346 * Absolute timers that repeat are left in the abs list while
1347 * waiting for the task to pick up the signal. This means we
1348 * may find timers that are not in the "add_timer" list, but are
1349 * in the abs list. We do the same thing for these, save
1350 * putting them back in the "add_timer" list. (Note, these are
1351 * left in the abs list mainly to indicate that they are
1352 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1353 * for which we have no other flag.)
1357 down(&clock_was_set_lock
);
1358 spin_lock_irq(&abs_list
.lock
);
1359 list_splice_init(&abs_list
.list
, &cws_list
);
1360 spin_unlock_irq(&abs_list
.lock
);
1363 seq
= read_seqbegin(&xtime_lock
);
1364 new_wall_to
= wall_to_monotonic
;
1365 } while (read_seqretry(&xtime_lock
, seq
));
1367 spin_lock_irq(&abs_list
.lock
);
1368 if (list_empty(&cws_list
)) {
1369 spin_unlock_irq(&abs_list
.lock
);
1372 timr
= list_entry(cws_list
.next
, struct k_itimer
,
1375 list_del_init(&timr
->abs_timer_entry
);
1376 if (add_clockset_delta(timr
, &new_wall_to
) &&
1377 del_timer(&timr
->it_timer
)) /* timer run yet? */
1378 add_timer(&timr
->it_timer
);
1379 list_add(&timr
->abs_timer_entry
, &abs_list
.list
);
1380 spin_unlock_irq(&abs_list
.lock
);
1383 up(&clock_was_set_lock
);
1386 long clock_nanosleep_restart(struct restart_block
*restart_block
);
1388 extern long do_clock_nanosleep(clockid_t which_clock
, int flags
,
1389 struct timespec
*t
);
1392 sys_clock_nanosleep(clockid_t which_clock
, int flags
,
1393 const struct timespec __user
*rqtp
,
1394 struct timespec __user
*rmtp
)
1397 struct restart_block
*restart_block
=
1398 &(current_thread_info()->restart_block
);
1401 if ((unsigned) which_clock
>= MAX_CLOCKS
||
1402 !posix_clocks
[which_clock
].res
)
1405 if (copy_from_user(&t
, rqtp
, sizeof (struct timespec
)))
1408 if ((unsigned) t
.tv_nsec
>= NSEC_PER_SEC
|| t
.tv_sec
< 0)
1411 ret
= do_clock_nanosleep(which_clock
, flags
, &t
);
1413 * Do this here as do_clock_nanosleep does not have the real address
1415 restart_block
->arg1
= (unsigned long)rmtp
;
1417 if ((ret
== -ERESTART_RESTARTBLOCK
) && rmtp
&&
1418 copy_to_user(rmtp
, &t
, sizeof (t
)))
1424 do_clock_nanosleep(clockid_t which_clock
, int flags
, struct timespec
*tsave
)
1426 struct timespec t
, dum
;
1427 struct timer_list new_timer
;
1428 DECLARE_WAITQUEUE(abs_wqueue
, current
);
1429 u64 rq_time
= (u64
)0;
1432 struct restart_block
*restart_block
=
1433 ¤t_thread_info()->restart_block
;
1435 abs_wqueue
.flags
= 0;
1436 init_timer(&new_timer
);
1437 new_timer
.expires
= 0;
1438 new_timer
.data
= (unsigned long) current
;
1439 new_timer
.function
= nanosleep_wake_up
;
1440 abs
= flags
& TIMER_ABSTIME
;
1442 if (restart_block
->fn
== clock_nanosleep_restart
) {
1444 * Interrupted by a non-delivered signal, pick up remaining
1445 * time and continue. Remaining time is in arg2 & 3.
1447 restart_block
->fn
= do_no_restart_syscall
;
1449 rq_time
= restart_block
->arg3
;
1450 rq_time
= (rq_time
<< 32) + restart_block
->arg2
;
1453 left
= rq_time
- get_jiffies_64();
1455 return 0; /* Already passed */
1458 if (abs
&& (posix_clocks
[which_clock
].clock_get
!=
1459 posix_clocks
[CLOCK_MONOTONIC
].clock_get
))
1460 add_wait_queue(&nanosleep_abs_wqueue
, &abs_wqueue
);
1464 if (abs
|| !rq_time
) {
1465 adjust_abs_time(&posix_clocks
[which_clock
], &t
, abs
,
1467 rq_time
+= (t
.tv_sec
|| t
.tv_nsec
);
1470 left
= rq_time
- get_jiffies_64();
1471 if (left
>= (s64
)MAX_JIFFY_OFFSET
)
1472 left
= (s64
)MAX_JIFFY_OFFSET
;
1476 new_timer
.expires
= jiffies
+ left
;
1477 __set_current_state(TASK_INTERRUPTIBLE
);
1478 add_timer(&new_timer
);
1482 del_timer_sync(&new_timer
);
1483 left
= rq_time
- get_jiffies_64();
1484 } while (left
> (s64
)0 && !test_thread_flag(TIF_SIGPENDING
));
1486 if (abs_wqueue
.task_list
.next
)
1487 finish_wait(&nanosleep_abs_wqueue
, &abs_wqueue
);
1489 if (left
> (s64
)0) {
1492 * Always restart abs calls from scratch to pick up any
1493 * clock shifting that happened while we are away.
1496 return -ERESTARTNOHAND
;
1499 tsave
->tv_sec
= div_long_long_rem(left
,
1503 * Restart works by saving the time remaing in
1504 * arg2 & 3 (it is 64-bits of jiffies). The other
1505 * info we need is the clock_id (saved in arg0).
1506 * The sys_call interface needs the users
1507 * timespec return address which _it_ saves in arg1.
1508 * Since we have cast the nanosleep call to a clock_nanosleep
1509 * both can be restarted with the same code.
1511 restart_block
->fn
= clock_nanosleep_restart
;
1512 restart_block
->arg0
= which_clock
;
1516 restart_block
->arg2
= rq_time
& 0xffffffffLL
;
1517 restart_block
->arg3
= rq_time
>> 32;
1519 return -ERESTART_RESTARTBLOCK
;
1525 * This will restart clock_nanosleep.
1528 clock_nanosleep_restart(struct restart_block
*restart_block
)
1531 int ret
= do_clock_nanosleep(restart_block
->arg0
, 0, &t
);
1533 if ((ret
== -ERESTART_RESTARTBLOCK
) && restart_block
->arg1
&&
1534 copy_to_user((struct timespec __user
*)(restart_block
->arg1
), &t
,