4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpu.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/div64.h>
38 #include <asm/timex.h>
41 #ifdef CONFIG_TIME_INTERPOLATION
42 static void time_interpolator_update(long delta_nsec
);
44 #define time_interpolator_update(x)
48 * per-CPU timer vector definitions:
52 #define TVN_SIZE (1 << TVN_BITS)
53 #define TVR_SIZE (1 << TVR_BITS)
54 #define TVN_MASK (TVN_SIZE - 1)
55 #define TVR_MASK (TVR_SIZE - 1)
57 typedef struct tvec_s
{
58 struct list_head vec
[TVN_SIZE
];
61 typedef struct tvec_root_s
{
62 struct list_head vec
[TVR_SIZE
];
65 struct tvec_t_base_s
{
67 unsigned long timer_jiffies
;
68 struct timer_list
*running_timer
;
74 } ____cacheline_aligned_in_smp
;
76 typedef struct tvec_t_base_s tvec_base_t
;
78 static inline void set_running_timer(tvec_base_t
*base
,
79 struct timer_list
*timer
)
82 base
->running_timer
= timer
;
86 /* Fake initialization */
87 static DEFINE_PER_CPU(tvec_base_t
, tvec_bases
) = { SPIN_LOCK_UNLOCKED
};
89 static void check_timer_failed(struct timer_list
*timer
)
91 static int whine_count
;
92 if (whine_count
< 16) {
94 printk("Uninitialised timer!\n");
95 printk("This is just a warning. Your computer is OK\n");
96 printk("function=0x%p, data=0x%lx\n",
97 timer
->function
, timer
->data
);
103 spin_lock_init(&timer
->lock
);
104 timer
->magic
= TIMER_MAGIC
;
107 static inline void check_timer(struct timer_list
*timer
)
109 if (timer
->magic
!= TIMER_MAGIC
)
110 check_timer_failed(timer
);
114 static void internal_add_timer(tvec_base_t
*base
, struct timer_list
*timer
)
116 unsigned long expires
= timer
->expires
;
117 unsigned long idx
= expires
- base
->timer_jiffies
;
118 struct list_head
*vec
;
120 if (idx
< TVR_SIZE
) {
121 int i
= expires
& TVR_MASK
;
122 vec
= base
->tv1
.vec
+ i
;
123 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
124 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
125 vec
= base
->tv2
.vec
+ i
;
126 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
127 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
128 vec
= base
->tv3
.vec
+ i
;
129 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
130 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
131 vec
= base
->tv4
.vec
+ i
;
132 } else if ((signed long) idx
< 0) {
134 * Can happen if you add a timer with expires == jiffies,
135 * or you set a timer to go off in the past
137 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
140 /* If the timeout is larger than 0xffffffff on 64-bit
141 * architectures then we use the maximum timeout:
143 if (idx
> 0xffffffffUL
) {
145 expires
= idx
+ base
->timer_jiffies
;
147 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
148 vec
= base
->tv5
.vec
+ i
;
153 list_add_tail(&timer
->entry
, vec
);
156 int __mod_timer(struct timer_list
*timer
, unsigned long expires
)
158 tvec_base_t
*old_base
, *new_base
;
162 BUG_ON(!timer
->function
);
166 spin_lock_irqsave(&timer
->lock
, flags
);
167 new_base
= &__get_cpu_var(tvec_bases
);
169 old_base
= timer
->base
;
172 * Prevent deadlocks via ordering by old_base < new_base.
174 if (old_base
&& (new_base
!= old_base
)) {
175 if (old_base
< new_base
) {
176 spin_lock(&new_base
->lock
);
177 spin_lock(&old_base
->lock
);
179 spin_lock(&old_base
->lock
);
180 spin_lock(&new_base
->lock
);
183 * The timer base might have been cancelled while we were
184 * trying to take the lock(s):
186 if (timer
->base
!= old_base
) {
187 spin_unlock(&new_base
->lock
);
188 spin_unlock(&old_base
->lock
);
192 spin_lock(&new_base
->lock
);
193 if (timer
->base
!= old_base
) {
194 spin_unlock(&new_base
->lock
);
200 * Delete the previous timeout (if there was any), and install
204 list_del(&timer
->entry
);
207 timer
->expires
= expires
;
208 internal_add_timer(new_base
, timer
);
209 timer
->base
= new_base
;
211 if (old_base
&& (new_base
!= old_base
))
212 spin_unlock(&old_base
->lock
);
213 spin_unlock(&new_base
->lock
);
214 spin_unlock_irqrestore(&timer
->lock
, flags
);
219 EXPORT_SYMBOL(__mod_timer
);
222 * add_timer_on - start a timer on a particular CPU
223 * @timer: the timer to be added
224 * @cpu: the CPU to start it on
226 * This is not very scalable on SMP. Double adds are not possible.
228 void add_timer_on(struct timer_list
*timer
, int cpu
)
230 tvec_base_t
*base
= &per_cpu(tvec_bases
, cpu
);
233 BUG_ON(timer_pending(timer
) || !timer
->function
);
237 spin_lock_irqsave(&base
->lock
, flags
);
238 internal_add_timer(base
, timer
);
240 spin_unlock_irqrestore(&base
->lock
, flags
);
243 EXPORT_SYMBOL(add_timer_on
);
246 * mod_timer - modify a timer's timeout
247 * @timer: the timer to be modified
249 * mod_timer is a more efficient way to update the expire field of an
250 * active timer (if the timer is inactive it will be activated)
252 * mod_timer(timer, expires) is equivalent to:
254 * del_timer(timer); timer->expires = expires; add_timer(timer);
256 * Note that if there are multiple unserialized concurrent users of the
257 * same timer, then mod_timer() is the only safe way to modify the timeout,
258 * since add_timer() cannot modify an already running timer.
260 * The function returns whether it has modified a pending timer or not.
261 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
262 * active timer returns 1.)
264 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
266 BUG_ON(!timer
->function
);
271 * This is a common optimization triggered by the
272 * networking code - if the timer is re-modified
273 * to be the same thing then just return:
275 if (timer
->expires
== expires
&& timer_pending(timer
))
278 return __mod_timer(timer
, expires
);
281 EXPORT_SYMBOL(mod_timer
);
284 * del_timer - deactive a timer.
285 * @timer: the timer to be deactivated
287 * del_timer() deactivates a timer - this works on both active and inactive
290 * The function returns whether it has deactivated a pending timer or not.
291 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
292 * active timer returns 1.)
294 int del_timer(struct timer_list
*timer
)
305 spin_lock_irqsave(&base
->lock
, flags
);
306 if (base
!= timer
->base
) {
307 spin_unlock_irqrestore(&base
->lock
, flags
);
310 list_del(&timer
->entry
);
312 spin_unlock_irqrestore(&base
->lock
, flags
);
317 EXPORT_SYMBOL(del_timer
);
321 * del_timer_sync - deactivate a timer and wait for the handler to finish.
322 * @timer: the timer to be deactivated
324 * This function only differs from del_timer() on SMP: besides deactivating
325 * the timer it also makes sure the handler has finished executing on other
328 * Synchronization rules: callers must prevent restarting of the timer,
329 * otherwise this function is meaningless. It must not be called from
330 * interrupt contexts. The caller must not hold locks which would prevent
331 * completion of the timer's handler. Upon exit the timer is not queued and
332 * the handler is not running on any CPU.
334 * The function returns whether it has deactivated a pending timer or not.
336 * del_timer_sync() is slow and complicated because it copes with timer
337 * handlers which re-arm the timer (periodic timers). If the timer handler
338 * is known to not do this (a single shot timer) then use
339 * del_singleshot_timer_sync() instead.
341 int del_timer_sync(struct timer_list
*timer
)
349 ret
+= del_timer(timer
);
351 for_each_online_cpu(i
) {
352 base
= &per_cpu(tvec_bases
, i
);
353 if (base
->running_timer
== timer
) {
354 while (base
->running_timer
== timer
) {
356 preempt_check_resched();
362 if (timer_pending(timer
))
367 EXPORT_SYMBOL(del_timer_sync
);
370 * del_singleshot_timer_sync - deactivate a non-recursive timer
371 * @timer: the timer to be deactivated
373 * This function is an optimization of del_timer_sync for the case where the
374 * caller can guarantee the timer does not reschedule itself in its timer
377 * Synchronization rules: callers must prevent restarting of the timer,
378 * otherwise this function is meaningless. It must not be called from
379 * interrupt contexts. The caller must not hold locks which wold prevent
380 * completion of the timer's handler. Upon exit the timer is not queued and
381 * the handler is not running on any CPU.
383 * The function returns whether it has deactivated a pending timer or not.
385 int del_singleshot_timer_sync(struct timer_list
*timer
)
387 int ret
= del_timer(timer
);
390 ret
= del_timer_sync(timer
);
396 EXPORT_SYMBOL(del_singleshot_timer_sync
);
399 static int cascade(tvec_base_t
*base
, tvec_t
*tv
, int index
)
401 /* cascade all the timers from tv up one level */
402 struct list_head
*head
, *curr
;
404 head
= tv
->vec
+ index
;
407 * We are removing _all_ timers from the list, so we don't have to
408 * detach them individually, just clear the list afterwards.
410 while (curr
!= head
) {
411 struct timer_list
*tmp
;
413 tmp
= list_entry(curr
, struct timer_list
, entry
);
414 BUG_ON(tmp
->base
!= base
);
416 internal_add_timer(base
, tmp
);
418 INIT_LIST_HEAD(head
);
424 * __run_timers - run all expired timers (if any) on this CPU.
425 * @base: the timer vector to be processed.
427 * This function cascades all vectors and executes all expired timer
430 #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
432 static inline void __run_timers(tvec_base_t
*base
)
434 struct timer_list
*timer
;
436 spin_lock_irq(&base
->lock
);
437 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
438 struct list_head work_list
= LIST_HEAD_INIT(work_list
);
439 struct list_head
*head
= &work_list
;
440 int index
= base
->timer_jiffies
& TVR_MASK
;
446 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
447 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
448 !cascade(base
, &base
->tv4
, INDEX(2)))
449 cascade(base
, &base
->tv5
, INDEX(3));
450 ++base
->timer_jiffies
;
451 list_splice_init(base
->tv1
.vec
+ index
, &work_list
);
453 if (!list_empty(head
)) {
454 void (*fn
)(unsigned long);
457 timer
= list_entry(head
->next
,struct timer_list
,entry
);
458 fn
= timer
->function
;
461 list_del(&timer
->entry
);
462 set_running_timer(base
, timer
);
465 spin_unlock_irq(&base
->lock
);
467 spin_lock_irq(&base
->lock
);
471 set_running_timer(base
, NULL
);
472 spin_unlock_irq(&base
->lock
);
475 #ifdef CONFIG_NO_IDLE_HZ
477 * Find out when the next timer event is due to happen. This
478 * is used on S/390 to stop all activity when a cpus is idle.
479 * This functions needs to be called disabled.
481 unsigned long next_timer_interrupt(void)
484 struct list_head
*list
;
485 struct timer_list
*nte
;
486 unsigned long expires
;
490 base
= &__get_cpu_var(tvec_bases
);
491 spin_lock(&base
->lock
);
492 expires
= base
->timer_jiffies
+ (LONG_MAX
>> 1);
495 /* Look for timer events in tv1. */
496 j
= base
->timer_jiffies
& TVR_MASK
;
498 list_for_each_entry(nte
, base
->tv1
.vec
+ j
, entry
) {
499 expires
= nte
->expires
;
500 if (j
< (base
->timer_jiffies
& TVR_MASK
))
501 list
= base
->tv2
.vec
+ (INDEX(0));
504 j
= (j
+ 1) & TVR_MASK
;
505 } while (j
!= (base
->timer_jiffies
& TVR_MASK
));
508 varray
[0] = &base
->tv2
;
509 varray
[1] = &base
->tv3
;
510 varray
[2] = &base
->tv4
;
511 varray
[3] = &base
->tv5
;
512 for (i
= 0; i
< 4; i
++) {
515 if (list_empty(varray
[i
]->vec
+ j
)) {
516 j
= (j
+ 1) & TVN_MASK
;
519 list_for_each_entry(nte
, varray
[i
]->vec
+ j
, entry
)
520 if (time_before(nte
->expires
, expires
))
521 expires
= nte
->expires
;
522 if (j
< (INDEX(i
)) && i
< 3)
523 list
= varray
[i
+ 1]->vec
+ (INDEX(i
+ 1));
525 } while (j
!= (INDEX(i
)));
530 * The search wrapped. We need to look at the next list
531 * from next tv element that would cascade into tv element
532 * where we found the timer element.
534 list_for_each_entry(nte
, list
, entry
) {
535 if (time_before(nte
->expires
, expires
))
536 expires
= nte
->expires
;
539 spin_unlock(&base
->lock
);
544 /******************************************************************/
547 * Timekeeping variables
549 unsigned long tick_usec
= TICK_USEC
; /* USER_HZ period (usec) */
550 unsigned long tick_nsec
= TICK_NSEC
; /* ACTHZ period (nsec) */
554 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
555 * for sub jiffie times) to get to monotonic time. Monotonic is pegged at zero
556 * at zero at system boot time, so wall_to_monotonic will be negative,
557 * however, we will ALWAYS keep the tv_nsec part positive so we can use
558 * the usual normalization.
560 struct timespec xtime
__attribute__ ((aligned (16)));
561 struct timespec wall_to_monotonic
__attribute__ ((aligned (16)));
563 EXPORT_SYMBOL(xtime
);
565 /* Don't completely fail for HZ > 500. */
566 int tickadj
= 500/HZ
? : 1; /* microsecs */
570 * phase-lock loop variables
572 /* TIME_ERROR prevents overwriting the CMOS clock */
573 int time_state
= TIME_OK
; /* clock synchronization status */
574 int time_status
= STA_UNSYNC
; /* clock status bits */
575 long time_offset
; /* time adjustment (us) */
576 long time_constant
= 2; /* pll time constant */
577 long time_tolerance
= MAXFREQ
; /* frequency tolerance (ppm) */
578 long time_precision
= 1; /* clock precision (us) */
579 long time_maxerror
= NTP_PHASE_LIMIT
; /* maximum error (us) */
580 long time_esterror
= NTP_PHASE_LIMIT
; /* estimated error (us) */
581 long time_phase
; /* phase offset (scaled us) */
582 long time_freq
= (((NSEC_PER_SEC
+ HZ
/2) % HZ
- HZ
/2) << SHIFT_USEC
) / NSEC_PER_USEC
;
583 /* frequency offset (scaled ppm)*/
584 long time_adj
; /* tick adjust (scaled 1 / HZ) */
585 long time_reftime
; /* time at last adjustment (s) */
587 long time_next_adjust
;
590 * this routine handles the overflow of the microsecond field
592 * The tricky bits of code to handle the accurate clock support
593 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
594 * They were originally developed for SUN and DEC kernels.
595 * All the kudos should go to Dave for this stuff.
598 static void second_overflow(void)
602 /* Bump the maxerror field */
603 time_maxerror
+= time_tolerance
>> SHIFT_USEC
;
604 if ( time_maxerror
> NTP_PHASE_LIMIT
) {
605 time_maxerror
= NTP_PHASE_LIMIT
;
606 time_status
|= STA_UNSYNC
;
610 * Leap second processing. If in leap-insert state at
611 * the end of the day, the system clock is set back one
612 * second; if in leap-delete state, the system clock is
613 * set ahead one second. The microtime() routine or
614 * external clock driver will insure that reported time
615 * is always monotonic. The ugly divides should be
618 switch (time_state
) {
621 if (time_status
& STA_INS
)
622 time_state
= TIME_INS
;
623 else if (time_status
& STA_DEL
)
624 time_state
= TIME_DEL
;
628 if (xtime
.tv_sec
% 86400 == 0) {
630 wall_to_monotonic
.tv_sec
++;
631 /* The timer interpolator will make time change gradually instead
632 * of an immediate jump by one second.
634 time_interpolator_update(-NSEC_PER_SEC
);
635 time_state
= TIME_OOP
;
637 printk(KERN_NOTICE
"Clock: inserting leap second 23:59:60 UTC\n");
642 if ((xtime
.tv_sec
+ 1) % 86400 == 0) {
644 wall_to_monotonic
.tv_sec
--;
645 /* Use of time interpolator for a gradual change of time */
646 time_interpolator_update(NSEC_PER_SEC
);
647 time_state
= TIME_WAIT
;
649 printk(KERN_NOTICE
"Clock: deleting leap second 23:59:59 UTC\n");
654 time_state
= TIME_WAIT
;
658 if (!(time_status
& (STA_INS
| STA_DEL
)))
659 time_state
= TIME_OK
;
663 * Compute the phase adjustment for the next second. In
664 * PLL mode, the offset is reduced by a fixed factor
665 * times the time constant. In FLL mode the offset is
666 * used directly. In either mode, the maximum phase
667 * adjustment for each second is clamped so as to spread
668 * the adjustment over not more than the number of
669 * seconds between updates.
671 if (time_offset
< 0) {
672 ltemp
= -time_offset
;
673 if (!(time_status
& STA_FLL
))
674 ltemp
>>= SHIFT_KG
+ time_constant
;
675 if (ltemp
> (MAXPHASE
/ MINSEC
) << SHIFT_UPDATE
)
676 ltemp
= (MAXPHASE
/ MINSEC
) << SHIFT_UPDATE
;
677 time_offset
+= ltemp
;
678 time_adj
= -ltemp
<< (SHIFT_SCALE
- SHIFT_HZ
- SHIFT_UPDATE
);
681 if (!(time_status
& STA_FLL
))
682 ltemp
>>= SHIFT_KG
+ time_constant
;
683 if (ltemp
> (MAXPHASE
/ MINSEC
) << SHIFT_UPDATE
)
684 ltemp
= (MAXPHASE
/ MINSEC
) << SHIFT_UPDATE
;
685 time_offset
-= ltemp
;
686 time_adj
= ltemp
<< (SHIFT_SCALE
- SHIFT_HZ
- SHIFT_UPDATE
);
690 * Compute the frequency estimate and additional phase
691 * adjustment due to frequency error for the next
692 * second. When the PPS signal is engaged, gnaw on the
693 * watchdog counter and update the frequency computed by
694 * the pll and the PPS signal.
697 if (pps_valid
== PPS_VALID
) { /* PPS signal lost */
698 pps_jitter
= MAXTIME
;
699 pps_stabil
= MAXFREQ
;
700 time_status
&= ~(STA_PPSSIGNAL
| STA_PPSJITTER
|
701 STA_PPSWANDER
| STA_PPSERROR
);
703 ltemp
= time_freq
+ pps_freq
;
705 time_adj
-= -ltemp
>>
706 (SHIFT_USEC
+ SHIFT_HZ
- SHIFT_SCALE
);
709 (SHIFT_USEC
+ SHIFT_HZ
- SHIFT_SCALE
);
712 /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
713 * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
716 time_adj
-= (-time_adj
>> 2) + (-time_adj
>> 5);
718 time_adj
+= (time_adj
>> 2) + (time_adj
>> 5);
721 /* Compensate for (HZ==1000) != (1 << SHIFT_HZ).
722 * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
725 time_adj
-= (-time_adj
>> 6) + (-time_adj
>> 7);
727 time_adj
+= (time_adj
>> 6) + (time_adj
>> 7);
731 /* in the NTP reference this is called "hardclock()" */
732 static void update_wall_time_one_tick(void)
734 long time_adjust_step
, delta_nsec
;
736 if ( (time_adjust_step
= time_adjust
) != 0 ) {
737 /* We are doing an adjtime thing.
739 * Prepare time_adjust_step to be within bounds.
740 * Note that a positive time_adjust means we want the clock
743 * Limit the amount of the step to be in the range
744 * -tickadj .. +tickadj
746 if (time_adjust
> tickadj
)
747 time_adjust_step
= tickadj
;
748 else if (time_adjust
< -tickadj
)
749 time_adjust_step
= -tickadj
;
751 /* Reduce by this step the amount of time left */
752 time_adjust
-= time_adjust_step
;
754 delta_nsec
= tick_nsec
+ time_adjust_step
* 1000;
756 * Advance the phase, once it gets to one microsecond, then
757 * advance the tick more.
759 time_phase
+= time_adj
;
760 if (time_phase
<= -FINENSEC
) {
761 long ltemp
= -time_phase
>> (SHIFT_SCALE
- 10);
762 time_phase
+= ltemp
<< (SHIFT_SCALE
- 10);
765 else if (time_phase
>= FINENSEC
) {
766 long ltemp
= time_phase
>> (SHIFT_SCALE
- 10);
767 time_phase
-= ltemp
<< (SHIFT_SCALE
- 10);
770 xtime
.tv_nsec
+= delta_nsec
;
771 time_interpolator_update(delta_nsec
);
773 /* Changes by adjtime() do not take effect till next tick. */
774 if (time_next_adjust
!= 0) {
775 time_adjust
= time_next_adjust
;
776 time_next_adjust
= 0;
781 * Using a loop looks inefficient, but "ticks" is
782 * usually just one (we shouldn't be losing ticks,
783 * we're doing this this way mainly for interrupt
784 * latency reasons, not because we think we'll
785 * have lots of lost timer ticks
787 static void update_wall_time(unsigned long ticks
)
791 update_wall_time_one_tick();
794 if (xtime
.tv_nsec
>= 1000000000) {
795 xtime
.tv_nsec
-= 1000000000;
801 static inline void do_process_times(struct task_struct
*p
,
802 unsigned long user
, unsigned long system
)
806 psecs
= (p
->utime
+= user
);
807 psecs
+= (p
->stime
+= system
);
808 if (psecs
/ HZ
>= p
->rlim
[RLIMIT_CPU
].rlim_cur
) {
809 /* Send SIGXCPU every second.. */
811 send_sig(SIGXCPU
, p
, 1);
812 /* and SIGKILL when we go over max.. */
813 if (psecs
/ HZ
>= p
->rlim
[RLIMIT_CPU
].rlim_max
)
814 send_sig(SIGKILL
, p
, 1);
818 static inline void do_it_virt(struct task_struct
* p
, unsigned long ticks
)
820 unsigned long it_virt
= p
->it_virt_value
;
825 it_virt
= p
->it_virt_incr
;
826 send_sig(SIGVTALRM
, p
, 1);
828 p
->it_virt_value
= it_virt
;
832 static inline void do_it_prof(struct task_struct
*p
)
834 unsigned long it_prof
= p
->it_prof_value
;
837 if (--it_prof
== 0) {
838 it_prof
= p
->it_prof_incr
;
839 send_sig(SIGPROF
, p
, 1);
841 p
->it_prof_value
= it_prof
;
845 static void update_one_process(struct task_struct
*p
, unsigned long user
,
846 unsigned long system
, int cpu
)
848 do_process_times(p
, user
, system
);
854 * Called from the timer interrupt handler to charge one tick to the current
855 * process. user_tick is 1 if the tick is user time, 0 for system.
857 void update_process_times(int user_tick
)
859 struct task_struct
*p
= current
;
860 int cpu
= smp_processor_id(), system
= user_tick
^ 1;
862 update_one_process(p
, user_tick
, system
, cpu
);
864 scheduler_tick(user_tick
, system
);
868 * Nr of active tasks - counted in fixed-point numbers
870 static unsigned long count_active_tasks(void)
872 return (nr_running() + nr_uninterruptible()) * FIXED_1
;
876 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
877 * imply that avenrun[] is the standard name for this kind of thing.
878 * Nothing else seems to be standardized: the fractional size etc
879 * all seem to differ on different machines.
881 * Requires xtime_lock to access.
883 unsigned long avenrun
[3];
886 * calc_load - given tick count, update the avenrun load estimates.
887 * This is called while holding a write_lock on xtime_lock.
889 static inline void calc_load(unsigned long ticks
)
891 unsigned long active_tasks
; /* fixed-point */
892 static int count
= LOAD_FREQ
;
897 active_tasks
= count_active_tasks();
898 CALC_LOAD(avenrun
[0], EXP_1
, active_tasks
);
899 CALC_LOAD(avenrun
[1], EXP_5
, active_tasks
);
900 CALC_LOAD(avenrun
[2], EXP_15
, active_tasks
);
904 /* jiffies at the most recent update of wall time */
905 unsigned long wall_jiffies
= INITIAL_JIFFIES
;
908 * This read-write spinlock protects us from races in SMP while
909 * playing with xtime and avenrun.
911 #ifndef ARCH_HAVE_XTIME_LOCK
912 seqlock_t xtime_lock __cacheline_aligned_in_smp
= SEQLOCK_UNLOCKED
;
914 EXPORT_SYMBOL(xtime_lock
);
918 * This function runs timers and the timer-tq in bottom half context.
920 static void run_timer_softirq(struct softirq_action
*h
)
922 tvec_base_t
*base
= &__get_cpu_var(tvec_bases
);
924 if (time_after_eq(jiffies
, base
->timer_jiffies
))
929 * Called by the local, per-CPU timer interrupt on SMP.
931 void run_local_timers(void)
933 raise_softirq(TIMER_SOFTIRQ
);
937 * Called by the timer interrupt. xtime_lock must already be taken
940 static inline void update_times(void)
944 ticks
= jiffies
- wall_jiffies
;
946 wall_jiffies
+= ticks
;
947 update_wall_time(ticks
);
953 * The 64-bit jiffies value is not atomic - you MUST NOT read it
954 * without sampling the sequence number in xtime_lock.
955 * jiffies is defined in the linker script...
958 void do_timer(struct pt_regs
*regs
)
962 /* SMP process accounting uses the local APIC timer */
964 update_process_times(user_mode(regs
));
969 #ifdef __ARCH_WANT_SYS_ALARM
972 * For backwards compatibility? This can be done in libc so Alpha
973 * and all newer ports shouldn't need it.
975 asmlinkage
unsigned long sys_alarm(unsigned int seconds
)
977 struct itimerval it_new
, it_old
;
978 unsigned int oldalarm
;
980 it_new
.it_interval
.tv_sec
= it_new
.it_interval
.tv_usec
= 0;
981 it_new
.it_value
.tv_sec
= seconds
;
982 it_new
.it_value
.tv_usec
= 0;
983 do_setitimer(ITIMER_REAL
, &it_new
, &it_old
);
984 oldalarm
= it_old
.it_value
.tv_sec
;
985 /* ehhh.. We can't return 0 if we have an alarm pending.. */
986 /* And we'd better return too much than too little anyway */
987 if ((!oldalarm
&& it_old
.it_value
.tv_usec
) || it_old
.it_value
.tv_usec
>= 500000)
997 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
998 * should be moved into arch/i386 instead?
1002 * sys_getpid - return the thread group id of the current process
1004 * Note, despite the name, this returns the tgid not the pid. The tgid and
1005 * the pid are identical unless CLONE_THREAD was specified on clone() in
1006 * which case the tgid is the same in all threads of the same group.
1008 * This is SMP safe as current->tgid does not change.
1010 asmlinkage
long sys_getpid(void)
1012 return current
->tgid
;
1016 * Accessing ->group_leader->real_parent is not SMP-safe, it could
1017 * change from under us. However, rather than getting any lock
1018 * we can use an optimistic algorithm: get the parent
1019 * pid, and go back and check that the parent is still
1020 * the same. If it has changed (which is extremely unlikely
1021 * indeed), we just try again..
1023 * NOTE! This depends on the fact that even if we _do_
1024 * get an old value of "parent", we can happily dereference
1025 * the pointer (it was and remains a dereferencable kernel pointer
1026 * no matter what): we just can't necessarily trust the result
1027 * until we know that the parent pointer is valid.
1029 * NOTE2: ->group_leader never changes from under us.
1031 asmlinkage
long sys_getppid(void)
1034 struct task_struct
*me
= current
;
1035 struct task_struct
*parent
;
1037 parent
= me
->group_leader
->real_parent
;
1042 struct task_struct
*old
= parent
;
1045 * Make sure we read the pid before re-reading the
1049 parent
= me
->group_leader
->real_parent
;
1059 asmlinkage
long sys_getuid(void)
1061 /* Only we change this so SMP safe */
1062 return current
->uid
;
1065 asmlinkage
long sys_geteuid(void)
1067 /* Only we change this so SMP safe */
1068 return current
->euid
;
1071 asmlinkage
long sys_getgid(void)
1073 /* Only we change this so SMP safe */
1074 return current
->gid
;
1077 asmlinkage
long sys_getegid(void)
1079 /* Only we change this so SMP safe */
1080 return current
->egid
;
1085 static void process_timeout(unsigned long __data
)
1087 wake_up_process((task_t
*)__data
);
1091 * schedule_timeout - sleep until timeout
1092 * @timeout: timeout value in jiffies
1094 * Make the current task sleep until @timeout jiffies have
1095 * elapsed. The routine will return immediately unless
1096 * the current task state has been set (see set_current_state()).
1098 * You can set the task state as follows -
1100 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1101 * pass before the routine returns. The routine will return 0
1103 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1104 * delivered to the current task. In this case the remaining time
1105 * in jiffies will be returned, or 0 if the timer expired in time
1107 * The current task state is guaranteed to be TASK_RUNNING when this
1110 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1111 * the CPU away without a bound on the timeout. In this case the return
1112 * value will be %MAX_SCHEDULE_TIMEOUT.
1114 * In all cases the return value is guaranteed to be non-negative.
1116 fastcall
signed long __sched
schedule_timeout(signed long timeout
)
1118 struct timer_list timer
;
1119 unsigned long expire
;
1123 case MAX_SCHEDULE_TIMEOUT
:
1125 * These two special cases are useful to be comfortable
1126 * in the caller. Nothing more. We could take
1127 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1128 * but I' d like to return a valid offset (>=0) to allow
1129 * the caller to do everything it want with the retval.
1135 * Another bit of PARANOID. Note that the retval will be
1136 * 0 since no piece of kernel is supposed to do a check
1137 * for a negative retval of schedule_timeout() (since it
1138 * should never happens anyway). You just have the printk()
1139 * that will tell you if something is gone wrong and where.
1143 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1144 "value %lx from %p\n", timeout
,
1145 __builtin_return_address(0));
1146 current
->state
= TASK_RUNNING
;
1151 expire
= timeout
+ jiffies
;
1154 timer
.expires
= expire
;
1155 timer
.data
= (unsigned long) current
;
1156 timer
.function
= process_timeout
;
1160 del_singleshot_timer_sync(&timer
);
1162 timeout
= expire
- jiffies
;
1165 return timeout
< 0 ? 0 : timeout
;
1168 EXPORT_SYMBOL(schedule_timeout
);
1170 /* Thread ID - the internal kernel "pid" */
1171 asmlinkage
long sys_gettid(void)
1173 return current
->pid
;
1176 static long __sched
nanosleep_restart(struct restart_block
*restart
)
1178 unsigned long expire
= restart
->arg0
, now
= jiffies
;
1179 struct timespec __user
*rmtp
= (struct timespec __user
*) restart
->arg1
;
1182 /* Did it expire while we handled signals? */
1183 if (!time_after(expire
, now
))
1186 current
->state
= TASK_INTERRUPTIBLE
;
1187 expire
= schedule_timeout(expire
- now
);
1192 jiffies_to_timespec(expire
, &t
);
1194 ret
= -ERESTART_RESTARTBLOCK
;
1195 if (rmtp
&& copy_to_user(rmtp
, &t
, sizeof(t
)))
1197 /* The 'restart' block is already filled in */
1202 asmlinkage
long sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
1205 unsigned long expire
;
1208 if (copy_from_user(&t
, rqtp
, sizeof(t
)))
1211 if ((t
.tv_nsec
>= 1000000000L) || (t
.tv_nsec
< 0) || (t
.tv_sec
< 0))
1214 expire
= timespec_to_jiffies(&t
) + (t
.tv_sec
|| t
.tv_nsec
);
1215 current
->state
= TASK_INTERRUPTIBLE
;
1216 expire
= schedule_timeout(expire
);
1220 struct restart_block
*restart
;
1221 jiffies_to_timespec(expire
, &t
);
1222 if (rmtp
&& copy_to_user(rmtp
, &t
, sizeof(t
)))
1225 restart
= ¤t_thread_info()->restart_block
;
1226 restart
->fn
= nanosleep_restart
;
1227 restart
->arg0
= jiffies
+ expire
;
1228 restart
->arg1
= (unsigned long) rmtp
;
1229 ret
= -ERESTART_RESTARTBLOCK
;
1235 * sys_sysinfo - fill in sysinfo struct
1237 asmlinkage
long sys_sysinfo(struct sysinfo __user
*info
)
1240 unsigned long mem_total
, sav_total
;
1241 unsigned int mem_unit
, bitcount
;
1244 memset((char *)&val
, 0, sizeof(struct sysinfo
));
1248 seq
= read_seqbegin(&xtime_lock
);
1251 * This is annoying. The below is the same thing
1252 * posix_get_clock_monotonic() does, but it wants to
1253 * take the lock which we want to cover the loads stuff
1257 getnstimeofday(&tp
);
1258 tp
.tv_sec
+= wall_to_monotonic
.tv_sec
;
1259 tp
.tv_nsec
+= wall_to_monotonic
.tv_nsec
;
1260 if (tp
.tv_nsec
- NSEC_PER_SEC
>= 0) {
1261 tp
.tv_nsec
= tp
.tv_nsec
- NSEC_PER_SEC
;
1264 val
.uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1266 val
.loads
[0] = avenrun
[0] << (SI_LOAD_SHIFT
- FSHIFT
);
1267 val
.loads
[1] = avenrun
[1] << (SI_LOAD_SHIFT
- FSHIFT
);
1268 val
.loads
[2] = avenrun
[2] << (SI_LOAD_SHIFT
- FSHIFT
);
1270 val
.procs
= nr_threads
;
1271 } while (read_seqretry(&xtime_lock
, seq
));
1277 * If the sum of all the available memory (i.e. ram + swap)
1278 * is less than can be stored in a 32 bit unsigned long then
1279 * we can be binary compatible with 2.2.x kernels. If not,
1280 * well, in that case 2.2.x was broken anyways...
1282 * -Erik Andersen <andersee@debian.org>
1285 mem_total
= val
.totalram
+ val
.totalswap
;
1286 if (mem_total
< val
.totalram
|| mem_total
< val
.totalswap
)
1289 mem_unit
= val
.mem_unit
;
1290 while (mem_unit
> 1) {
1293 sav_total
= mem_total
;
1295 if (mem_total
< sav_total
)
1300 * If mem_total did not overflow, multiply all memory values by
1301 * val.mem_unit and set it to 1. This leaves things compatible
1302 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1307 val
.totalram
<<= bitcount
;
1308 val
.freeram
<<= bitcount
;
1309 val
.sharedram
<<= bitcount
;
1310 val
.bufferram
<<= bitcount
;
1311 val
.totalswap
<<= bitcount
;
1312 val
.freeswap
<<= bitcount
;
1313 val
.totalhigh
<<= bitcount
;
1314 val
.freehigh
<<= bitcount
;
1317 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1323 static void __devinit
init_timers_cpu(int cpu
)
1328 base
= &per_cpu(tvec_bases
, cpu
);
1329 spin_lock_init(&base
->lock
);
1330 for (j
= 0; j
< TVN_SIZE
; j
++) {
1331 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1332 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1333 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1334 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1336 for (j
= 0; j
< TVR_SIZE
; j
++)
1337 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1339 base
->timer_jiffies
= jiffies
;
1342 #ifdef CONFIG_HOTPLUG_CPU
1343 static int migrate_timer_list(tvec_base_t
*new_base
, struct list_head
*head
)
1345 struct timer_list
*timer
;
1347 while (!list_empty(head
)) {
1348 timer
= list_entry(head
->next
, struct timer_list
, entry
);
1349 /* We're locking backwards from __mod_timer order here,
1351 if (!spin_trylock(&timer
->lock
))
1353 list_del(&timer
->entry
);
1354 internal_add_timer(new_base
, timer
);
1355 timer
->base
= new_base
;
1356 spin_unlock(&timer
->lock
);
1361 static void __devinit
migrate_timers(int cpu
)
1363 tvec_base_t
*old_base
;
1364 tvec_base_t
*new_base
;
1367 BUG_ON(cpu_online(cpu
));
1368 old_base
= &per_cpu(tvec_bases
, cpu
);
1369 new_base
= &get_cpu_var(tvec_bases
);
1371 local_irq_disable();
1373 /* Prevent deadlocks via ordering by old_base < new_base. */
1374 if (old_base
< new_base
) {
1375 spin_lock(&new_base
->lock
);
1376 spin_lock(&old_base
->lock
);
1378 spin_lock(&old_base
->lock
);
1379 spin_lock(&new_base
->lock
);
1382 if (old_base
->running_timer
)
1384 for (i
= 0; i
< TVR_SIZE
; i
++)
1385 if (!migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
))
1387 for (i
= 0; i
< TVN_SIZE
; i
++)
1388 if (!migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
)
1389 || !migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
)
1390 || !migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
)
1391 || !migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
))
1393 spin_unlock(&old_base
->lock
);
1394 spin_unlock(&new_base
->lock
);
1396 put_cpu_var(tvec_bases
);
1400 /* Avoid deadlock with __mod_timer, by backing off. */
1401 spin_unlock(&old_base
->lock
);
1402 spin_unlock(&new_base
->lock
);
1406 #endif /* CONFIG_HOTPLUG_CPU */
1408 static int __devinit
timer_cpu_notify(struct notifier_block
*self
,
1409 unsigned long action
, void *hcpu
)
1411 long cpu
= (long)hcpu
;
1413 case CPU_UP_PREPARE
:
1414 init_timers_cpu(cpu
);
1416 #ifdef CONFIG_HOTPLUG_CPU
1418 migrate_timers(cpu
);
1427 static struct notifier_block __devinitdata timers_nb
= {
1428 .notifier_call
= timer_cpu_notify
,
1432 void __init
init_timers(void)
1434 timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1435 (void *)(long)smp_processor_id());
1436 register_cpu_notifier(&timers_nb
);
1437 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
, NULL
);
1440 #ifdef CONFIG_TIME_INTERPOLATION
1442 struct time_interpolator
*time_interpolator
;
1443 static struct time_interpolator
*time_interpolator_list
;
1444 static spinlock_t time_interpolator_lock
= SPIN_LOCK_UNLOCKED
;
1446 static inline unsigned long time_interpolator_get_cycles(unsigned int src
)
1448 unsigned long (*x
)(void);
1452 case TIME_SOURCE_FUNCTION
:
1453 x
= time_interpolator
->addr
;
1456 case TIME_SOURCE_MMIO64
:
1457 return readq(time_interpolator
->addr
);
1459 case TIME_SOURCE_MMIO32
:
1460 return readl(time_interpolator
->addr
);
1461 default: return get_cycles();
1465 static inline unsigned long time_interpolator_get_counter(void)
1467 unsigned int src
= time_interpolator
->source
;
1469 if (time_interpolator
->jitter
)
1471 unsigned long lcycle
;
1475 lcycle
= time_interpolator
->last_cycle
;
1476 now
= time_interpolator_get_cycles(src
);
1477 if (lcycle
&& time_after(lcycle
, now
)) return lcycle
;
1478 /* Keep track of the last timer value returned. The use of cmpxchg here
1479 * will cause contention in an SMP environment.
1481 } while (unlikely(cmpxchg(&time_interpolator
->last_cycle
, lcycle
, now
) != lcycle
));
1485 return time_interpolator_get_cycles(src
);
1488 void time_interpolator_reset(void)
1490 time_interpolator
->offset
= 0;
1491 time_interpolator
->last_counter
= time_interpolator_get_counter();
1494 unsigned long time_interpolator_resolution(void)
1496 if (time_interpolator
->frequency
< NSEC_PER_SEC
)
1497 return NSEC_PER_SEC
/ time_interpolator
->frequency
;
1502 #define GET_TI_NSECS(count,i) ((((count) - i->last_counter) * i->nsec_per_cyc) >> i->shift)
1504 unsigned long time_interpolator_get_offset(void)
1506 return time_interpolator
->offset
+
1507 GET_TI_NSECS(time_interpolator_get_counter(), time_interpolator
);
1510 static void time_interpolator_update(long delta_nsec
)
1512 unsigned long counter
= time_interpolator_get_counter();
1513 unsigned long offset
= time_interpolator
->offset
+ GET_TI_NSECS(counter
, time_interpolator
);
1515 /* The interpolator compensates for late ticks by accumulating
1516 * the late time in time_interpolator->offset. A tick earlier than
1517 * expected will lead to a reset of the offset and a corresponding
1518 * jump of the clock forward. Again this only works if the
1519 * interpolator clock is running slightly slower than the regular clock
1520 * and the tuning logic insures that.
1523 if (delta_nsec
< 0 || (unsigned long) delta_nsec
< offset
)
1524 time_interpolator
->offset
= offset
- delta_nsec
;
1526 time_interpolator
->skips
++;
1527 time_interpolator
->ns_skipped
+= delta_nsec
- offset
;
1528 time_interpolator
->offset
= 0;
1530 time_interpolator
->last_counter
= counter
;
1532 /* Tuning logic for time interpolator invoked every minute or so.
1533 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1534 * Increase interpolator clock speed if we skip too much time.
1536 if (jiffies
% INTERPOLATOR_ADJUST
== 0)
1538 if (time_interpolator
->skips
== 0 && time_interpolator
->offset
> TICK_NSEC
)
1539 time_interpolator
->nsec_per_cyc
--;
1540 if (time_interpolator
->ns_skipped
> INTERPOLATOR_MAX_SKIP
&& time_interpolator
->offset
== 0)
1541 time_interpolator
->nsec_per_cyc
++;
1542 time_interpolator
->skips
= 0;
1543 time_interpolator
->ns_skipped
= 0;
1548 is_better_time_interpolator(struct time_interpolator
*new)
1550 if (!time_interpolator
)
1552 return new->frequency
> 2*time_interpolator
->frequency
||
1553 (unsigned long)new->drift
< (unsigned long)time_interpolator
->drift
;
1557 register_time_interpolator(struct time_interpolator
*ti
)
1559 unsigned long flags
;
1561 ti
->nsec_per_cyc
= (NSEC_PER_SEC
<< ti
->shift
) / ti
->frequency
;
1562 spin_lock(&time_interpolator_lock
);
1563 write_seqlock_irqsave(&xtime_lock
, flags
);
1564 if (is_better_time_interpolator(ti
)) {
1565 time_interpolator
= ti
;
1566 time_interpolator_reset();
1568 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1570 ti
->next
= time_interpolator_list
;
1571 time_interpolator_list
= ti
;
1572 spin_unlock(&time_interpolator_lock
);
1576 unregister_time_interpolator(struct time_interpolator
*ti
)
1578 struct time_interpolator
*curr
, **prev
;
1579 unsigned long flags
;
1581 spin_lock(&time_interpolator_lock
);
1582 prev
= &time_interpolator_list
;
1583 for (curr
= *prev
; curr
; curr
= curr
->next
) {
1591 write_seqlock_irqsave(&xtime_lock
, flags
);
1592 if (ti
== time_interpolator
) {
1593 /* we lost the best time-interpolator: */
1594 time_interpolator
= NULL
;
1595 /* find the next-best interpolator */
1596 for (curr
= time_interpolator_list
; curr
; curr
= curr
->next
)
1597 if (is_better_time_interpolator(curr
))
1598 time_interpolator
= curr
;
1599 time_interpolator_reset();
1601 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1602 spin_unlock(&time_interpolator_lock
);
1604 #endif /* CONFIG_TIME_INTERPOLATION */
1607 * msleep - sleep safely even with waitqueue interruptions
1608 * @msecs: Time in milliseconds to sleep for
1610 void msleep(unsigned int msecs
)
1612 unsigned long timeout
= msecs_to_jiffies(msecs
);
1615 set_current_state(TASK_UNINTERRUPTIBLE
);
1616 timeout
= schedule_timeout(timeout
);
1620 EXPORT_SYMBOL(msleep
);
1623 * msleep_interruptible - sleep waiting for waitqueue interruptions
1624 * @msecs: Time in milliseconds to sleep for
1626 unsigned long msleep_interruptible(unsigned int msecs
)
1628 unsigned long timeout
= msecs_to_jiffies(msecs
);
1630 while (timeout
&& !signal_pending(current
)) {
1631 set_current_state(TASK_INTERRUPTIBLE
);
1632 timeout
= schedule_timeout(timeout
);
1634 return jiffies_to_msecs(timeout
);
1637 EXPORT_SYMBOL(msleep_interruptible
);