MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / mm / page_alloc.c
blob172db01b3ecd3ec3709ee5af74434096247bc1a7
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
35 #include <asm/tlbflush.h>
37 DECLARE_BITMAP(node_online_map, MAX_NUMNODES);
38 struct pglist_data *pgdat_list;
39 unsigned long totalram_pages;
40 unsigned long totalhigh_pages;
41 long nr_swap_pages;
42 int numnodes = 1;
43 int sysctl_lower_zone_protection = 0;
45 EXPORT_SYMBOL(totalram_pages);
46 EXPORT_SYMBOL(nr_swap_pages);
49 * Used by page_zone() to look up the address of the struct zone whose
50 * id is encoded in the upper bits of page->flags
52 struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
53 EXPORT_SYMBOL(zone_table);
55 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
56 int min_free_kbytes = 1024;
58 unsigned long __initdata nr_kernel_pages;
59 unsigned long __initdata nr_all_pages;
62 * Temporary debugging check for pages not lying within a given zone.
64 static int bad_range(struct zone *zone, struct page *page)
66 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
67 return 1;
68 if (page_to_pfn(page) < zone->zone_start_pfn)
69 return 1;
70 if (zone != page_zone(page))
71 return 1;
72 return 0;
75 static void bad_page(const char *function, struct page *page)
77 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
78 function, current->comm, page);
79 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
80 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
81 page->mapping, page_mapcount(page), page_count(page));
82 printk(KERN_EMERG "Backtrace:\n");
83 dump_stack();
84 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
85 page->flags &= ~(1 << PG_private |
86 1 << PG_locked |
87 1 << PG_lru |
88 1 << PG_active |
89 1 << PG_dirty |
90 1 << PG_swapcache |
91 1 << PG_writeback);
92 set_page_count(page, 0);
93 reset_page_mapcount(page);
94 page->mapping = NULL;
97 #ifndef CONFIG_HUGETLB_PAGE
98 #define prep_compound_page(page, order) do { } while (0)
99 #define destroy_compound_page(page, order) do { } while (0)
100 #else
102 * Higher-order pages are called "compound pages". They are structured thusly:
104 * The first PAGE_SIZE page is called the "head page".
106 * The remaining PAGE_SIZE pages are called "tail pages".
108 * All pages have PG_compound set. All pages have their ->private pointing at
109 * the head page (even the head page has this).
111 * The first tail page's ->mapping, if non-zero, holds the address of the
112 * compound page's put_page() function.
114 * The order of the allocation is stored in the first tail page's ->index
115 * This is only for debug at present. This usage means that zero-order pages
116 * may not be compound.
118 static void prep_compound_page(struct page *page, unsigned long order)
120 int i;
121 int nr_pages = 1 << order;
123 page[1].mapping = NULL;
124 page[1].index = order;
125 for (i = 0; i < nr_pages; i++) {
126 struct page *p = page + i;
128 SetPageCompound(p);
129 p->private = (unsigned long)page;
133 static void destroy_compound_page(struct page *page, unsigned long order)
135 int i;
136 int nr_pages = 1 << order;
138 if (!PageCompound(page))
139 return;
141 if (page[1].index != order)
142 bad_page(__FUNCTION__, page);
144 for (i = 0; i < nr_pages; i++) {
145 struct page *p = page + i;
147 if (!PageCompound(p))
148 bad_page(__FUNCTION__, page);
149 if (p->private != (unsigned long)page)
150 bad_page(__FUNCTION__, page);
151 ClearPageCompound(p);
154 #endif /* CONFIG_HUGETLB_PAGE */
157 * Freeing function for a buddy system allocator.
159 * The concept of a buddy system is to maintain direct-mapped table
160 * (containing bit values) for memory blocks of various "orders".
161 * The bottom level table contains the map for the smallest allocatable
162 * units of memory (here, pages), and each level above it describes
163 * pairs of units from the levels below, hence, "buddies".
164 * At a high level, all that happens here is marking the table entry
165 * at the bottom level available, and propagating the changes upward
166 * as necessary, plus some accounting needed to play nicely with other
167 * parts of the VM system.
168 * At each level, we keep one bit for each pair of blocks, which
169 * is set to 1 iff only one of the pair is allocated. So when we
170 * are allocating or freeing one, we can derive the state of the
171 * other. That is, if we allocate a small block, and both were
172 * free, the remainder of the region must be split into blocks.
173 * If a block is freed, and its buddy is also free, then this
174 * triggers coalescing into a block of larger size.
176 * -- wli
179 static inline void __free_pages_bulk (struct page *page, struct page *base,
180 struct zone *zone, struct free_area *area, unsigned int order)
182 unsigned long page_idx, index, mask;
184 if (order)
185 destroy_compound_page(page, order);
186 mask = (~0UL) << order;
187 page_idx = page - base;
188 if (page_idx & ~mask)
189 BUG();
190 index = page_idx >> (1 + order);
192 zone->free_pages += 1 << order;
193 while (order < MAX_ORDER-1) {
194 struct page *buddy1, *buddy2;
196 BUG_ON(area >= zone->free_area + MAX_ORDER);
197 if (!__test_and_change_bit(index, area->map))
199 * the buddy page is still allocated.
201 break;
203 /* Move the buddy up one level. */
204 buddy1 = base + (page_idx ^ (1 << order));
205 buddy2 = base + page_idx;
206 BUG_ON(bad_range(zone, buddy1));
207 BUG_ON(bad_range(zone, buddy2));
208 list_del(&buddy1->lru);
209 mask <<= 1;
210 order++;
211 area++;
212 index >>= 1;
213 page_idx &= mask;
215 list_add(&(base + page_idx)->lru, &area->free_list);
218 static inline void free_pages_check(const char *function, struct page *page)
220 if ( page_mapped(page) ||
221 page->mapping != NULL ||
222 #ifdef CONFIG_MMU
223 page_count(page) != 0 ||
224 #endif
225 (page->flags & (
226 1 << PG_lru |
227 1 << PG_private |
228 1 << PG_locked |
229 1 << PG_active |
230 1 << PG_reclaim |
231 1 << PG_slab |
232 1 << PG_swapcache |
233 1 << PG_writeback )))
234 bad_page(function, page);
235 if (PageDirty(page))
236 ClearPageDirty(page);
240 * Frees a list of pages.
241 * Assumes all pages on list are in same zone, and of same order.
242 * count is the number of pages to free, or 0 for all on the list.
244 * If the zone was previously in an "all pages pinned" state then look to
245 * see if this freeing clears that state.
247 * And clear the zone's pages_scanned counter, to hold off the "all pages are
248 * pinned" detection logic.
250 static int
251 free_pages_bulk(struct zone *zone, int count,
252 struct list_head *list, unsigned int order)
254 unsigned long flags;
255 struct free_area *area;
256 struct page *base, *page = NULL;
257 int ret = 0;
259 base = zone->zone_mem_map;
260 area = zone->free_area + order;
261 spin_lock_irqsave(&zone->lock, flags);
262 zone->all_unreclaimable = 0;
263 zone->pages_scanned = 0;
264 while (!list_empty(list) && count--) {
265 page = list_entry(list->prev, struct page, lru);
266 /* have to delete it as __free_pages_bulk list manipulates */
267 list_del(&page->lru);
268 __free_pages_bulk(page, base, zone, area, order);
269 ret++;
271 spin_unlock_irqrestore(&zone->lock, flags);
272 return ret;
275 void __free_pages_ok(struct page *page, unsigned int order)
277 LIST_HEAD(list);
278 int i;
280 arch_free_page(page, order);
282 mod_page_state(pgfree, 1 << order);
283 for (i = 0 ; i < (1 << order) ; ++i)
284 free_pages_check(__FUNCTION__, page + i);
285 list_add(&page->lru, &list);
286 kernel_map_pages(page, 1<<order, 0);
287 free_pages_bulk(page_zone(page), 1, &list, order);
290 #define MARK_USED(index, order, area) \
291 __change_bit((index) >> (1+(order)), (area)->map)
294 * The order of subdivision here is critical for the IO subsystem.
295 * Please do not alter this order without good reasons and regression
296 * testing. Specifically, as large blocks of memory are subdivided,
297 * the order in which smaller blocks are delivered depends on the order
298 * they're subdivided in this function. This is the primary factor
299 * influencing the order in which pages are delivered to the IO
300 * subsystem according to empirical testing, and this is also justified
301 * by considering the behavior of a buddy system containing a single
302 * large block of memory acted on by a series of small allocations.
303 * This behavior is a critical factor in sglist merging's success.
305 * -- wli
307 static inline struct page *
308 expand(struct zone *zone, struct page *page,
309 unsigned long index, int low, int high, struct free_area *area)
311 unsigned long size = 1 << high;
313 while (high > low) {
314 area--;
315 high--;
316 size >>= 1;
317 BUG_ON(bad_range(zone, &page[size]));
318 list_add(&page[size].lru, &area->free_list);
319 MARK_USED(index + size, high, area);
321 return page;
324 static inline void set_page_refs(struct page *page, int order)
326 #ifdef CONFIG_MMU
327 set_page_count(page, 1);
328 #else
329 int i;
332 * We need to reference all the pages for this order, otherwise if
333 * anyone accesses one of the pages with (get/put) it will be freed.
335 for (i = 0; i < (1 << order); i++)
336 set_page_count(page+i, 1);
337 #endif /* CONFIG_MMU */
341 * This page is about to be returned from the page allocator
343 static void prep_new_page(struct page *page, int order)
345 if (page->mapping || page_mapped(page) ||
346 (page->flags & (
347 1 << PG_private |
348 1 << PG_locked |
349 1 << PG_lru |
350 1 << PG_active |
351 1 << PG_dirty |
352 1 << PG_reclaim |
353 1 << PG_swapcache |
354 1 << PG_writeback )))
355 bad_page(__FUNCTION__, page);
357 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
358 1 << PG_referenced | 1 << PG_arch_1 |
359 1 << PG_checked | 1 << PG_mappedtodisk);
360 page->private = 0;
361 set_page_refs(page, order);
365 * Do the hard work of removing an element from the buddy allocator.
366 * Call me with the zone->lock already held.
368 static struct page *__rmqueue(struct zone *zone, unsigned int order)
370 struct free_area * area;
371 unsigned int current_order;
372 struct page *page;
373 unsigned int index;
375 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
376 area = zone->free_area + current_order;
377 if (list_empty(&area->free_list))
378 continue;
380 page = list_entry(area->free_list.next, struct page, lru);
381 list_del(&page->lru);
382 index = page - zone->zone_mem_map;
383 if (current_order != MAX_ORDER-1)
384 MARK_USED(index, current_order, area);
385 zone->free_pages -= 1UL << order;
386 return expand(zone, page, index, order, current_order, area);
389 return NULL;
393 * Obtain a specified number of elements from the buddy allocator, all under
394 * a single hold of the lock, for efficiency. Add them to the supplied list.
395 * Returns the number of new pages which were placed at *list.
397 static int rmqueue_bulk(struct zone *zone, unsigned int order,
398 unsigned long count, struct list_head *list)
400 unsigned long flags;
401 int i;
402 int allocated = 0;
403 struct page *page;
405 spin_lock_irqsave(&zone->lock, flags);
406 for (i = 0; i < count; ++i) {
407 page = __rmqueue(zone, order);
408 if (page == NULL)
409 break;
410 allocated++;
411 list_add_tail(&page->lru, list);
413 spin_unlock_irqrestore(&zone->lock, flags);
414 return allocated;
417 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
418 static void __drain_pages(unsigned int cpu)
420 struct zone *zone;
421 int i;
423 for_each_zone(zone) {
424 struct per_cpu_pageset *pset;
426 pset = &zone->pageset[cpu];
427 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
428 struct per_cpu_pages *pcp;
430 pcp = &pset->pcp[i];
431 pcp->count -= free_pages_bulk(zone, pcp->count,
432 &pcp->list, 0);
436 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
438 #ifdef CONFIG_PM
439 int is_head_of_free_region(struct page *page)
441 struct zone *zone = page_zone(page);
442 unsigned long flags;
443 int order;
444 struct list_head *curr;
447 * Should not matter as we need quiescent system for
448 * suspend anyway, but...
450 spin_lock_irqsave(&zone->lock, flags);
451 for (order = MAX_ORDER - 1; order >= 0; --order)
452 list_for_each(curr, &zone->free_area[order].free_list)
453 if (page == list_entry(curr, struct page, lru)) {
454 spin_unlock_irqrestore(&zone->lock, flags);
455 return 1 << order;
457 spin_unlock_irqrestore(&zone->lock, flags);
458 return 0;
462 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
464 void drain_local_pages(void)
466 unsigned long flags;
468 local_irq_save(flags);
469 __drain_pages(smp_processor_id());
470 local_irq_restore(flags);
472 #endif /* CONFIG_PM */
474 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
476 #ifdef CONFIG_NUMA
477 unsigned long flags;
478 int cpu;
479 pg_data_t *pg = z->zone_pgdat;
480 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
481 struct per_cpu_pageset *p;
483 local_irq_save(flags);
484 cpu = smp_processor_id();
485 p = &z->pageset[cpu];
486 if (pg == orig) {
487 z->pageset[cpu].numa_hit++;
488 } else {
489 p->numa_miss++;
490 zonelist->zones[0]->pageset[cpu].numa_foreign++;
492 if (pg == NODE_DATA(numa_node_id()))
493 p->local_node++;
494 else
495 p->other_node++;
496 local_irq_restore(flags);
497 #endif
501 * Free a 0-order page
503 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
504 static void fastcall free_hot_cold_page(struct page *page, int cold)
506 struct zone *zone = page_zone(page);
507 struct per_cpu_pages *pcp;
508 unsigned long flags;
510 arch_free_page(page, 0);
512 kernel_map_pages(page, 1, 0);
513 inc_page_state(pgfree);
514 if (PageAnon(page))
515 page->mapping = NULL;
516 free_pages_check(__FUNCTION__, page);
517 pcp = &zone->pageset[get_cpu()].pcp[cold];
518 local_irq_save(flags);
519 if (pcp->count >= pcp->high)
520 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
521 list_add(&page->lru, &pcp->list);
522 pcp->count++;
523 local_irq_restore(flags);
524 put_cpu();
527 void fastcall free_hot_page(struct page *page)
529 free_hot_cold_page(page, 0);
532 void fastcall free_cold_page(struct page *page)
534 free_hot_cold_page(page, 1);
538 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
539 * we cheat by calling it from here, in the order > 0 path. Saves a branch
540 * or two.
543 static struct page *
544 buffered_rmqueue(struct zone *zone, int order, int gfp_flags)
546 unsigned long flags;
547 struct page *page = NULL;
548 int cold = !!(gfp_flags & __GFP_COLD);
550 if (order == 0) {
551 struct per_cpu_pages *pcp;
553 pcp = &zone->pageset[get_cpu()].pcp[cold];
554 local_irq_save(flags);
555 if (pcp->count <= pcp->low)
556 pcp->count += rmqueue_bulk(zone, 0,
557 pcp->batch, &pcp->list);
558 if (pcp->count) {
559 page = list_entry(pcp->list.next, struct page, lru);
560 list_del(&page->lru);
561 pcp->count--;
563 local_irq_restore(flags);
564 put_cpu();
567 if (page == NULL) {
568 spin_lock_irqsave(&zone->lock, flags);
569 page = __rmqueue(zone, order);
570 spin_unlock_irqrestore(&zone->lock, flags);
573 if (page != NULL) {
574 BUG_ON(bad_range(zone, page));
575 mod_page_state_zone(zone, pgalloc, 1 << order);
576 prep_new_page(page, order);
577 if (order && (gfp_flags & __GFP_COMP))
578 prep_compound_page(page, order);
580 return page;
584 * This is the 'heart' of the zoned buddy allocator.
586 * Herein lies the mysterious "incremental min". That's the
588 * local_low = z->pages_low;
589 * min += local_low;
591 * thing. The intent here is to provide additional protection to low zones for
592 * allocation requests which _could_ use higher zones. So a GFP_HIGHMEM
593 * request is not allowed to dip as deeply into the normal zone as a GFP_KERNEL
594 * request. This preserves additional space in those lower zones for requests
595 * which really do need memory from those zones. It means that on a decent
596 * sized machine, GFP_HIGHMEM and GFP_KERNEL requests basically leave the DMA
597 * zone untouched.
599 struct page * fastcall
600 __alloc_pages(unsigned int gfp_mask, unsigned int order,
601 struct zonelist *zonelist)
603 const int wait = gfp_mask & __GFP_WAIT;
604 unsigned long min;
605 struct zone **zones, *z;
606 struct page *page;
607 struct reclaim_state reclaim_state;
608 struct task_struct *p = current;
609 int i;
610 int alloc_type;
611 int do_retry;
612 int can_try_harder;
614 might_sleep_if(wait);
617 * The caller may dip into page reserves a bit more if the caller
618 * cannot run direct reclaim, or is the caller has realtime scheduling
619 * policy
621 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
623 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
625 if (unlikely(zones[0] == NULL)) {
626 /* Should this ever happen?? */
627 return NULL;
630 alloc_type = zone_idx(zones[0]);
632 /* Go through the zonelist once, looking for a zone with enough free */
633 for (i = 0; (z = zones[i]) != NULL; i++) {
634 min = z->pages_low + (1<<order) + z->protection[alloc_type];
636 if (z->free_pages < min)
637 continue;
639 page = buffered_rmqueue(z, order, gfp_mask);
640 if (page)
641 goto got_pg;
644 for (i = 0; (z = zones[i]) != NULL; i++)
645 wakeup_kswapd(z);
648 * Go through the zonelist again. Let __GFP_HIGH and allocations
649 * coming from realtime tasks to go deeper into reserves
651 for (i = 0; (z = zones[i]) != NULL; i++) {
652 min = z->pages_min;
653 if (gfp_mask & __GFP_HIGH)
654 min /= 2;
655 if (can_try_harder)
656 min -= min / 4;
657 min += (1<<order) + z->protection[alloc_type];
659 if (z->free_pages < min)
660 continue;
662 page = buffered_rmqueue(z, order, gfp_mask);
663 if (page)
664 goto got_pg;
667 /* This allocation should allow future memory freeing. */
668 if ((p->flags & (PF_MEMALLOC | PF_MEMDIE)) && !in_interrupt()) {
669 /* go through the zonelist yet again, ignoring mins */
670 for (i = 0; (z = zones[i]) != NULL; i++) {
671 page = buffered_rmqueue(z, order, gfp_mask);
672 if (page)
673 goto got_pg;
675 goto nopage;
678 /* Atomic allocations - we can't balance anything */
679 if (!wait)
680 goto nopage;
682 rebalance:
683 /* We now go into synchronous reclaim */
684 p->flags |= PF_MEMALLOC;
685 reclaim_state.reclaimed_slab = 0;
686 p->reclaim_state = &reclaim_state;
688 try_to_free_pages(zones, gfp_mask, order);
690 p->reclaim_state = NULL;
691 p->flags &= ~PF_MEMALLOC;
693 /* go through the zonelist yet one more time */
694 for (i = 0; (z = zones[i]) != NULL; i++) {
695 min = z->pages_min;
696 if (gfp_mask & __GFP_HIGH)
697 min /= 2;
698 if (can_try_harder)
699 min -= min / 4;
700 min += (1<<order) + z->protection[alloc_type];
702 if (z->free_pages < min)
703 continue;
705 page = buffered_rmqueue(z, order, gfp_mask);
706 if (page)
707 goto got_pg;
711 * Don't let big-order allocations loop unless the caller explicitly
712 * requests that. Wait for some write requests to complete then retry.
714 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
715 * <= 3, but that may not be true in other implementations.
717 do_retry = 0;
718 if (!(gfp_mask & __GFP_NORETRY)) {
719 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
720 do_retry = 1;
721 if (gfp_mask & __GFP_NOFAIL)
722 do_retry = 1;
724 if (do_retry) {
725 blk_congestion_wait(WRITE, HZ/50);
726 goto rebalance;
729 nopage:
730 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
731 printk(KERN_WARNING "%s: page allocation failure."
732 " order:%d, mode:0x%x\n",
733 p->comm, order, gfp_mask);
734 dump_stack();
736 return NULL;
737 got_pg:
738 zone_statistics(zonelist, z);
739 kernel_map_pages(page, 1 << order, 1);
740 return page;
743 EXPORT_SYMBOL(__alloc_pages);
746 * Common helper functions.
748 fastcall unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int order)
750 struct page * page;
751 page = alloc_pages(gfp_mask, order);
752 if (!page)
753 return 0;
754 return (unsigned long) page_address(page);
757 EXPORT_SYMBOL(__get_free_pages);
759 fastcall unsigned long get_zeroed_page(unsigned int gfp_mask)
761 struct page * page;
764 * get_zeroed_page() returns a 32-bit address, which cannot represent
765 * a highmem page
767 BUG_ON(gfp_mask & __GFP_HIGHMEM);
769 page = alloc_pages(gfp_mask, 0);
770 if (page) {
771 void *address = page_address(page);
772 clear_page(address);
773 return (unsigned long) address;
775 return 0;
778 EXPORT_SYMBOL(get_zeroed_page);
780 void __pagevec_free(struct pagevec *pvec)
782 int i = pagevec_count(pvec);
784 while (--i >= 0)
785 free_hot_cold_page(pvec->pages[i], pvec->cold);
788 fastcall void __free_pages(struct page *page, unsigned int order)
790 if (!PageReserved(page) && put_page_testzero(page)) {
791 if (order == 0)
792 free_hot_page(page);
793 else
794 __free_pages_ok(page, order);
798 EXPORT_SYMBOL(__free_pages);
800 fastcall void free_pages(unsigned long addr, unsigned int order)
802 if (addr != 0) {
803 BUG_ON(!virt_addr_valid((void *)addr));
804 __free_pages(virt_to_page((void *)addr), order);
808 EXPORT_SYMBOL(free_pages);
811 * Total amount of free (allocatable) RAM:
813 unsigned int nr_free_pages(void)
815 unsigned int sum = 0;
816 struct zone *zone;
818 for_each_zone(zone)
819 sum += zone->free_pages;
821 return sum;
824 EXPORT_SYMBOL(nr_free_pages);
826 #ifdef CONFIG_NUMA
827 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
829 unsigned int i, sum = 0;
831 for (i = 0; i < MAX_NR_ZONES; i++)
832 sum += pgdat->node_zones[i].free_pages;
834 return sum;
836 #endif
838 static unsigned int nr_free_zone_pages(int offset)
840 pg_data_t *pgdat;
841 unsigned int sum = 0;
843 for_each_pgdat(pgdat) {
844 struct zonelist *zonelist = pgdat->node_zonelists + offset;
845 struct zone **zonep = zonelist->zones;
846 struct zone *zone;
848 for (zone = *zonep++; zone; zone = *zonep++) {
849 unsigned long size = zone->present_pages;
850 unsigned long high = zone->pages_high;
851 if (size > high)
852 sum += size - high;
856 return sum;
860 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
862 unsigned int nr_free_buffer_pages(void)
864 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
868 * Amount of free RAM allocatable within all zones
870 unsigned int nr_free_pagecache_pages(void)
872 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
875 #ifdef CONFIG_HIGHMEM
876 unsigned int nr_free_highpages (void)
878 pg_data_t *pgdat;
879 unsigned int pages = 0;
881 for_each_pgdat(pgdat)
882 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
884 return pages;
886 #endif
888 #ifdef CONFIG_NUMA
889 static void show_node(struct zone *zone)
891 printk("Node %d ", zone->zone_pgdat->node_id);
893 #else
894 #define show_node(zone) do { } while (0)
895 #endif
898 * Accumulate the page_state information across all CPUs.
899 * The result is unavoidably approximate - it can change
900 * during and after execution of this function.
902 DEFINE_PER_CPU(struct page_state, page_states) = {0};
903 EXPORT_PER_CPU_SYMBOL(page_states);
905 atomic_t nr_pagecache = ATOMIC_INIT(0);
906 EXPORT_SYMBOL(nr_pagecache);
907 #ifdef CONFIG_SMP
908 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
909 #endif
911 void __get_page_state(struct page_state *ret, int nr)
913 int cpu = 0;
915 memset(ret, 0, sizeof(*ret));
916 while (cpu < NR_CPUS) {
917 unsigned long *in, *out, off;
919 if (!cpu_possible(cpu)) {
920 cpu++;
921 continue;
924 in = (unsigned long *)&per_cpu(page_states, cpu);
925 cpu++;
926 if (cpu < NR_CPUS && cpu_possible(cpu))
927 prefetch(&per_cpu(page_states, cpu));
928 out = (unsigned long *)ret;
929 for (off = 0; off < nr; off++)
930 *out++ += *in++;
934 void get_page_state(struct page_state *ret)
936 int nr;
938 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
939 nr /= sizeof(unsigned long);
941 __get_page_state(ret, nr + 1);
944 void get_full_page_state(struct page_state *ret)
946 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
949 unsigned long __read_page_state(unsigned offset)
951 unsigned long ret = 0;
952 int cpu;
954 for (cpu = 0; cpu < NR_CPUS; cpu++) {
955 unsigned long in;
957 if (!cpu_possible(cpu))
958 continue;
960 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
961 ret += *((unsigned long *)in);
963 return ret;
966 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
967 unsigned long *free, struct pglist_data *pgdat)
969 struct zone *zones = pgdat->node_zones;
970 int i;
972 *active = 0;
973 *inactive = 0;
974 *free = 0;
975 for (i = 0; i < MAX_NR_ZONES; i++) {
976 *active += zones[i].nr_active;
977 *inactive += zones[i].nr_inactive;
978 *free += zones[i].free_pages;
982 void get_zone_counts(unsigned long *active,
983 unsigned long *inactive, unsigned long *free)
985 struct pglist_data *pgdat;
987 *active = 0;
988 *inactive = 0;
989 *free = 0;
990 for_each_pgdat(pgdat) {
991 unsigned long l, m, n;
992 __get_zone_counts(&l, &m, &n, pgdat);
993 *active += l;
994 *inactive += m;
995 *free += n;
999 void si_meminfo(struct sysinfo *val)
1001 val->totalram = totalram_pages;
1002 val->sharedram = 0;
1003 val->freeram = nr_free_pages();
1004 val->bufferram = nr_blockdev_pages();
1005 #ifdef CONFIG_HIGHMEM
1006 val->totalhigh = totalhigh_pages;
1007 val->freehigh = nr_free_highpages();
1008 #else
1009 val->totalhigh = 0;
1010 val->freehigh = 0;
1011 #endif
1012 val->mem_unit = PAGE_SIZE;
1015 EXPORT_SYMBOL(si_meminfo);
1017 #ifdef CONFIG_NUMA
1018 void si_meminfo_node(struct sysinfo *val, int nid)
1020 pg_data_t *pgdat = NODE_DATA(nid);
1022 val->totalram = pgdat->node_present_pages;
1023 val->freeram = nr_free_pages_pgdat(pgdat);
1024 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1025 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1026 val->mem_unit = PAGE_SIZE;
1028 #endif
1030 #define K(x) ((x) << (PAGE_SHIFT-10))
1033 * Show free area list (used inside shift_scroll-lock stuff)
1034 * We also calculate the percentage fragmentation. We do this by counting the
1035 * memory on each free list with the exception of the first item on the list.
1037 void show_free_areas(void)
1039 struct page_state ps;
1040 int cpu, temperature;
1041 unsigned long active;
1042 unsigned long inactive;
1043 unsigned long free;
1044 struct zone *zone;
1046 for_each_zone(zone) {
1047 show_node(zone);
1048 printk("%s per-cpu:", zone->name);
1050 if (!zone->present_pages) {
1051 printk(" empty\n");
1052 continue;
1053 } else
1054 printk("\n");
1056 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1057 struct per_cpu_pageset *pageset;
1059 if (!cpu_possible(cpu))
1060 continue;
1062 pageset = zone->pageset + cpu;
1064 for (temperature = 0; temperature < 2; temperature++)
1065 printk("cpu %d %s: low %d, high %d, batch %d\n",
1066 cpu,
1067 temperature ? "cold" : "hot",
1068 pageset->pcp[temperature].low,
1069 pageset->pcp[temperature].high,
1070 pageset->pcp[temperature].batch);
1074 get_page_state(&ps);
1075 get_zone_counts(&active, &inactive, &free);
1077 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1078 K(nr_free_pages()),
1079 K(nr_free_highpages()));
1081 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1082 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1083 active,
1084 inactive,
1085 ps.nr_dirty,
1086 ps.nr_writeback,
1087 ps.nr_unstable,
1088 nr_free_pages(),
1089 ps.nr_slab,
1090 ps.nr_mapped,
1091 ps.nr_page_table_pages);
1093 for_each_zone(zone) {
1094 int i;
1096 show_node(zone);
1097 printk("%s"
1098 " free:%lukB"
1099 " min:%lukB"
1100 " low:%lukB"
1101 " high:%lukB"
1102 " active:%lukB"
1103 " inactive:%lukB"
1104 " present:%lukB"
1105 "\n",
1106 zone->name,
1107 K(zone->free_pages),
1108 K(zone->pages_min),
1109 K(zone->pages_low),
1110 K(zone->pages_high),
1111 K(zone->nr_active),
1112 K(zone->nr_inactive),
1113 K(zone->present_pages)
1115 printk("protections[]:");
1116 for (i = 0; i < MAX_NR_ZONES; i++)
1117 printk(" %lu", zone->protection[i]);
1118 printk("\n");
1121 for_each_zone(zone) {
1122 struct list_head *elem;
1123 unsigned long nr, flags, order, total = 0;
1125 show_node(zone);
1126 printk("%s: ", zone->name);
1127 if (!zone->present_pages) {
1128 printk("empty\n");
1129 continue;
1132 spin_lock_irqsave(&zone->lock, flags);
1133 for (order = 0; order < MAX_ORDER; order++) {
1134 nr = 0;
1135 list_for_each(elem, &zone->free_area[order].free_list)
1136 ++nr;
1137 total += nr << order;
1138 printk("%lu*%lukB ", nr, K(1UL) << order);
1140 spin_unlock_irqrestore(&zone->lock, flags);
1141 printk("= %lukB\n", K(total));
1144 show_swap_cache_info();
1148 * Builds allocation fallback zone lists.
1150 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1152 switch (k) {
1153 struct zone *zone;
1154 default:
1155 BUG();
1156 case ZONE_HIGHMEM:
1157 zone = pgdat->node_zones + ZONE_HIGHMEM;
1158 if (zone->present_pages) {
1159 #ifndef CONFIG_HIGHMEM
1160 BUG();
1161 #endif
1162 zonelist->zones[j++] = zone;
1164 case ZONE_NORMAL:
1165 zone = pgdat->node_zones + ZONE_NORMAL;
1166 if (zone->present_pages)
1167 zonelist->zones[j++] = zone;
1168 case ZONE_DMA:
1169 zone = pgdat->node_zones + ZONE_DMA;
1170 if (zone->present_pages)
1171 zonelist->zones[j++] = zone;
1174 return j;
1177 #ifdef CONFIG_NUMA
1178 #define MAX_NODE_LOAD (numnodes)
1179 static int __initdata node_load[MAX_NUMNODES];
1181 * find_next_best_node - find the next node that should appear in a given
1182 * node's fallback list
1183 * @node: node whose fallback list we're appending
1184 * @used_node_mask: pointer to the bitmap of already used nodes
1186 * We use a number of factors to determine which is the next node that should
1187 * appear on a given node's fallback list. The node should not have appeared
1188 * already in @node's fallback list, and it should be the next closest node
1189 * according to the distance array (which contains arbitrary distance values
1190 * from each node to each node in the system), and should also prefer nodes
1191 * with no CPUs, since presumably they'll have very little allocation pressure
1192 * on them otherwise.
1193 * It returns -1 if no node is found.
1195 static int __init find_next_best_node(int node, void *used_node_mask)
1197 int i, n, val;
1198 int min_val = INT_MAX;
1199 int best_node = -1;
1201 for (i = 0; i < numnodes; i++) {
1202 cpumask_t tmp;
1204 /* Start from local node */
1205 n = (node+i)%numnodes;
1207 /* Don't want a node to appear more than once */
1208 if (test_bit(n, used_node_mask))
1209 continue;
1211 /* Use the distance array to find the distance */
1212 val = node_distance(node, n);
1214 /* Give preference to headless and unused nodes */
1215 tmp = node_to_cpumask(n);
1216 if (!cpus_empty(tmp))
1217 val += PENALTY_FOR_NODE_WITH_CPUS;
1219 /* Slight preference for less loaded node */
1220 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1221 val += node_load[n];
1223 if (val < min_val) {
1224 min_val = val;
1225 best_node = n;
1229 if (best_node >= 0)
1230 set_bit(best_node, used_node_mask);
1232 return best_node;
1235 static void __init build_zonelists(pg_data_t *pgdat)
1237 int i, j, k, node, local_node;
1238 int prev_node, load;
1239 struct zonelist *zonelist;
1240 DECLARE_BITMAP(used_mask, MAX_NUMNODES);
1242 /* initialize zonelists */
1243 for (i = 0; i < GFP_ZONETYPES; i++) {
1244 zonelist = pgdat->node_zonelists + i;
1245 memset(zonelist, 0, sizeof(*zonelist));
1246 zonelist->zones[0] = NULL;
1249 /* NUMA-aware ordering of nodes */
1250 local_node = pgdat->node_id;
1251 load = numnodes;
1252 prev_node = local_node;
1253 bitmap_zero(used_mask, MAX_NUMNODES);
1254 while ((node = find_next_best_node(local_node, used_mask)) >= 0) {
1256 * We don't want to pressure a particular node.
1257 * So adding penalty to the first node in same
1258 * distance group to make it round-robin.
1260 if (node_distance(local_node, node) !=
1261 node_distance(local_node, prev_node))
1262 node_load[node] += load;
1263 prev_node = node;
1264 load--;
1265 for (i = 0; i < GFP_ZONETYPES; i++) {
1266 zonelist = pgdat->node_zonelists + i;
1267 for (j = 0; zonelist->zones[j] != NULL; j++);
1269 k = ZONE_NORMAL;
1270 if (i & __GFP_HIGHMEM)
1271 k = ZONE_HIGHMEM;
1272 if (i & __GFP_DMA)
1273 k = ZONE_DMA;
1275 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1276 zonelist->zones[j] = NULL;
1281 #else /* CONFIG_NUMA */
1283 static void __init build_zonelists(pg_data_t *pgdat)
1285 int i, j, k, node, local_node;
1287 local_node = pgdat->node_id;
1288 for (i = 0; i < GFP_ZONETYPES; i++) {
1289 struct zonelist *zonelist;
1291 zonelist = pgdat->node_zonelists + i;
1292 memset(zonelist, 0, sizeof(*zonelist));
1294 j = 0;
1295 k = ZONE_NORMAL;
1296 if (i & __GFP_HIGHMEM)
1297 k = ZONE_HIGHMEM;
1298 if (i & __GFP_DMA)
1299 k = ZONE_DMA;
1301 j = build_zonelists_node(pgdat, zonelist, j, k);
1303 * Now we build the zonelist so that it contains the zones
1304 * of all the other nodes.
1305 * We don't want to pressure a particular node, so when
1306 * building the zones for node N, we make sure that the
1307 * zones coming right after the local ones are those from
1308 * node N+1 (modulo N)
1310 for (node = local_node + 1; node < numnodes; node++)
1311 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1312 for (node = 0; node < local_node; node++)
1313 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1315 zonelist->zones[j] = NULL;
1319 #endif /* CONFIG_NUMA */
1321 void __init build_all_zonelists(void)
1323 int i;
1325 for(i = 0 ; i < numnodes ; i++)
1326 build_zonelists(NODE_DATA(i));
1327 printk("Built %i zonelists\n", numnodes);
1331 * Helper functions to size the waitqueue hash table.
1332 * Essentially these want to choose hash table sizes sufficiently
1333 * large so that collisions trying to wait on pages are rare.
1334 * But in fact, the number of active page waitqueues on typical
1335 * systems is ridiculously low, less than 200. So this is even
1336 * conservative, even though it seems large.
1338 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1339 * waitqueues, i.e. the size of the waitq table given the number of pages.
1341 #define PAGES_PER_WAITQUEUE 256
1343 static inline unsigned long wait_table_size(unsigned long pages)
1345 unsigned long size = 1;
1347 pages /= PAGES_PER_WAITQUEUE;
1349 while (size < pages)
1350 size <<= 1;
1353 * Once we have dozens or even hundreds of threads sleeping
1354 * on IO we've got bigger problems than wait queue collision.
1355 * Limit the size of the wait table to a reasonable size.
1357 size = min(size, 4096UL);
1359 return max(size, 4UL);
1363 * This is an integer logarithm so that shifts can be used later
1364 * to extract the more random high bits from the multiplicative
1365 * hash function before the remainder is taken.
1367 static inline unsigned long wait_table_bits(unsigned long size)
1369 return ffz(~size);
1372 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1374 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1375 unsigned long *zones_size, unsigned long *zholes_size)
1377 unsigned long realtotalpages, totalpages = 0;
1378 int i;
1380 for (i = 0; i < MAX_NR_ZONES; i++)
1381 totalpages += zones_size[i];
1382 pgdat->node_spanned_pages = totalpages;
1384 realtotalpages = totalpages;
1385 if (zholes_size)
1386 for (i = 0; i < MAX_NR_ZONES; i++)
1387 realtotalpages -= zholes_size[i];
1388 pgdat->node_present_pages = realtotalpages;
1389 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1394 * Initially all pages are reserved - free ones are freed
1395 * up by free_all_bootmem() once the early boot process is
1396 * done. Non-atomic initialization, single-pass.
1398 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1399 unsigned long start_pfn)
1401 struct page *start = pfn_to_page(start_pfn);
1402 struct page *page;
1404 for (page = start; page < (start + size); page++) {
1405 set_page_zone(page, NODEZONE(nid, zone));
1406 set_page_count(page, 0);
1407 reset_page_mapcount(page);
1408 SetPageReserved(page);
1409 INIT_LIST_HEAD(&page->lru);
1410 #ifdef WANT_PAGE_VIRTUAL
1411 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1412 if (!is_highmem_idx(zone))
1413 set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1414 #endif
1415 start_pfn++;
1420 * Page buddy system uses "index >> (i+1)", where "index" is
1421 * at most "size-1".
1423 * The extra "+3" is to round down to byte size (8 bits per byte
1424 * assumption). Thus we get "(size-1) >> (i+4)" as the last byte
1425 * we can access.
1427 * The "+1" is because we want to round the byte allocation up
1428 * rather than down. So we should have had a "+7" before we shifted
1429 * down by three. Also, we have to add one as we actually _use_ the
1430 * last bit (it's [0,n] inclusive, not [0,n[).
1432 * So we actually had +7+1 before we shift down by 3. But
1433 * (n+8) >> 3 == (n >> 3) + 1 (modulo overflows, which we do not have).
1435 * Finally, we LONG_ALIGN because all bitmap operations are on longs.
1437 unsigned long pages_to_bitmap_size(unsigned long order, unsigned long nr_pages)
1439 unsigned long bitmap_size;
1441 bitmap_size = (nr_pages-1) >> (order+4);
1442 bitmap_size = LONG_ALIGN(bitmap_size+1);
1444 return bitmap_size;
1447 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, unsigned long size)
1449 int order;
1450 for (order = 0; ; order++) {
1451 unsigned long bitmap_size;
1453 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1454 if (order == MAX_ORDER-1) {
1455 zone->free_area[order].map = NULL;
1456 break;
1459 bitmap_size = pages_to_bitmap_size(order, size);
1460 zone->free_area[order].map =
1461 (unsigned long *) alloc_bootmem_node(pgdat, bitmap_size);
1465 #ifndef __HAVE_ARCH_MEMMAP_INIT
1466 #define memmap_init(size, nid, zone, start_pfn) \
1467 memmap_init_zone((size), (nid), (zone), (start_pfn))
1468 #endif
1471 * Set up the zone data structures:
1472 * - mark all pages reserved
1473 * - mark all memory queues empty
1474 * - clear the memory bitmaps
1476 static void __init free_area_init_core(struct pglist_data *pgdat,
1477 unsigned long *zones_size, unsigned long *zholes_size)
1479 unsigned long i, j;
1480 const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1481 int cpu, nid = pgdat->node_id;
1482 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1484 pgdat->nr_zones = 0;
1485 init_waitqueue_head(&pgdat->kswapd_wait);
1487 for (j = 0; j < MAX_NR_ZONES; j++) {
1488 struct zone *zone = pgdat->node_zones + j;
1489 unsigned long size, realsize;
1490 unsigned long batch;
1492 zone_table[NODEZONE(nid, j)] = zone;
1493 realsize = size = zones_size[j];
1494 if (zholes_size)
1495 realsize -= zholes_size[j];
1497 if (j == ZONE_DMA || j == ZONE_NORMAL)
1498 nr_kernel_pages += realsize;
1499 nr_all_pages += realsize;
1501 zone->spanned_pages = size;
1502 zone->present_pages = realsize;
1503 zone->name = zone_names[j];
1504 spin_lock_init(&zone->lock);
1505 spin_lock_init(&zone->lru_lock);
1506 zone->zone_pgdat = pgdat;
1507 zone->free_pages = 0;
1509 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1512 * The per-cpu-pages pools are set to around 1000th of the
1513 * size of the zone. But no more than 1/4 of a meg - there's
1514 * no point in going beyond the size of L2 cache.
1516 * OK, so we don't know how big the cache is. So guess.
1518 batch = zone->present_pages / 1024;
1519 if (batch * PAGE_SIZE > 256 * 1024)
1520 batch = (256 * 1024) / PAGE_SIZE;
1521 batch /= 4; /* We effectively *= 4 below */
1522 if (batch < 1)
1523 batch = 1;
1525 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1526 struct per_cpu_pages *pcp;
1528 pcp = &zone->pageset[cpu].pcp[0]; /* hot */
1529 pcp->count = 0;
1530 pcp->low = 2 * batch;
1531 pcp->high = 6 * batch;
1532 pcp->batch = 1 * batch;
1533 INIT_LIST_HEAD(&pcp->list);
1535 pcp = &zone->pageset[cpu].pcp[1]; /* cold */
1536 pcp->count = 0;
1537 pcp->low = 0;
1538 pcp->high = 2 * batch;
1539 pcp->batch = 1 * batch;
1540 INIT_LIST_HEAD(&pcp->list);
1542 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1543 zone_names[j], realsize, batch);
1544 INIT_LIST_HEAD(&zone->active_list);
1545 INIT_LIST_HEAD(&zone->inactive_list);
1546 zone->nr_scan_active = 0;
1547 zone->nr_scan_inactive = 0;
1548 zone->nr_active = 0;
1549 zone->nr_inactive = 0;
1550 if (!size)
1551 continue;
1554 * The per-page waitqueue mechanism uses hashed waitqueues
1555 * per zone.
1557 zone->wait_table_size = wait_table_size(size);
1558 zone->wait_table_bits =
1559 wait_table_bits(zone->wait_table_size);
1560 zone->wait_table = (wait_queue_head_t *)
1561 alloc_bootmem_node(pgdat, zone->wait_table_size
1562 * sizeof(wait_queue_head_t));
1564 for(i = 0; i < zone->wait_table_size; ++i)
1565 init_waitqueue_head(zone->wait_table + i);
1567 pgdat->nr_zones = j+1;
1569 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1570 zone->zone_start_pfn = zone_start_pfn;
1572 if ((zone_start_pfn) & (zone_required_alignment-1))
1573 printk("BUG: wrong zone alignment, it will crash\n");
1575 memmap_init(size, nid, j, zone_start_pfn);
1577 zone_start_pfn += size;
1579 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1583 void __init node_alloc_mem_map(struct pglist_data *pgdat)
1585 unsigned long size;
1587 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1588 pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1589 #ifndef CONFIG_DISCONTIGMEM
1590 mem_map = contig_page_data.node_mem_map;
1591 #endif
1594 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1595 unsigned long *zones_size, unsigned long node_start_pfn,
1596 unsigned long *zholes_size)
1598 pgdat->node_id = nid;
1599 pgdat->node_start_pfn = node_start_pfn;
1600 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1602 if (!pfn_to_page(node_start_pfn))
1603 node_alloc_mem_map(pgdat);
1605 free_area_init_core(pgdat, zones_size, zholes_size);
1608 #ifndef CONFIG_DISCONTIGMEM
1609 static bootmem_data_t contig_bootmem_data;
1610 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1612 EXPORT_SYMBOL(contig_page_data);
1614 void __init free_area_init(unsigned long *zones_size)
1616 free_area_init_node(0, &contig_page_data, zones_size,
1617 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1619 #endif
1621 #ifdef CONFIG_PROC_FS
1623 #include <linux/seq_file.h>
1625 static void *frag_start(struct seq_file *m, loff_t *pos)
1627 pg_data_t *pgdat;
1628 loff_t node = *pos;
1630 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1631 --node;
1633 return pgdat;
1636 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1638 pg_data_t *pgdat = (pg_data_t *)arg;
1640 (*pos)++;
1641 return pgdat->pgdat_next;
1644 static void frag_stop(struct seq_file *m, void *arg)
1649 * This walks the freelist for each zone. Whilst this is slow, I'd rather
1650 * be slow here than slow down the fast path by keeping stats - mjbligh
1652 static int frag_show(struct seq_file *m, void *arg)
1654 pg_data_t *pgdat = (pg_data_t *)arg;
1655 struct zone *zone;
1656 struct zone *node_zones = pgdat->node_zones;
1657 unsigned long flags;
1658 int order;
1660 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1661 if (!zone->present_pages)
1662 continue;
1664 spin_lock_irqsave(&zone->lock, flags);
1665 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1666 for (order = 0; order < MAX_ORDER; ++order) {
1667 unsigned long nr_bufs = 0;
1668 struct list_head *elem;
1670 list_for_each(elem, &(zone->free_area[order].free_list))
1671 ++nr_bufs;
1672 seq_printf(m, "%6lu ", nr_bufs);
1674 spin_unlock_irqrestore(&zone->lock, flags);
1675 seq_putc(m, '\n');
1677 return 0;
1680 struct seq_operations fragmentation_op = {
1681 .start = frag_start,
1682 .next = frag_next,
1683 .stop = frag_stop,
1684 .show = frag_show,
1687 static char *vmstat_text[] = {
1688 "nr_dirty",
1689 "nr_writeback",
1690 "nr_unstable",
1691 "nr_page_table_pages",
1692 "nr_mapped",
1693 "nr_slab",
1695 "pgpgin",
1696 "pgpgout",
1697 "pswpin",
1698 "pswpout",
1699 "pgalloc_high",
1701 "pgalloc_normal",
1702 "pgalloc_dma",
1703 "pgfree",
1704 "pgactivate",
1705 "pgdeactivate",
1707 "pgfault",
1708 "pgmajfault",
1709 "pgrefill_high",
1710 "pgrefill_normal",
1711 "pgrefill_dma",
1713 "pgsteal_high",
1714 "pgsteal_normal",
1715 "pgsteal_dma",
1716 "pgscan_kswapd_high",
1717 "pgscan_kswapd_normal",
1719 "pgscan_kswapd_dma",
1720 "pgscan_direct_high",
1721 "pgscan_direct_normal",
1722 "pgscan_direct_dma",
1723 "pginodesteal",
1725 "slabs_scanned",
1726 "kswapd_steal",
1727 "kswapd_inodesteal",
1728 "pageoutrun",
1729 "allocstall",
1731 "pgrotated",
1734 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1736 struct page_state *ps;
1738 if (*pos >= ARRAY_SIZE(vmstat_text))
1739 return NULL;
1741 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
1742 m->private = ps;
1743 if (!ps)
1744 return ERR_PTR(-ENOMEM);
1745 get_full_page_state(ps);
1746 ps->pgpgin /= 2; /* sectors -> kbytes */
1747 ps->pgpgout /= 2;
1748 return (unsigned long *)ps + *pos;
1751 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1753 (*pos)++;
1754 if (*pos >= ARRAY_SIZE(vmstat_text))
1755 return NULL;
1756 return (unsigned long *)m->private + *pos;
1759 static int vmstat_show(struct seq_file *m, void *arg)
1761 unsigned long *l = arg;
1762 unsigned long off = l - (unsigned long *)m->private;
1764 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1765 return 0;
1768 static void vmstat_stop(struct seq_file *m, void *arg)
1770 kfree(m->private);
1771 m->private = NULL;
1774 struct seq_operations vmstat_op = {
1775 .start = vmstat_start,
1776 .next = vmstat_next,
1777 .stop = vmstat_stop,
1778 .show = vmstat_show,
1781 #endif /* CONFIG_PROC_FS */
1783 #ifdef CONFIG_HOTPLUG_CPU
1784 static int page_alloc_cpu_notify(struct notifier_block *self,
1785 unsigned long action, void *hcpu)
1787 int cpu = (unsigned long)hcpu;
1788 long *count;
1790 if (action == CPU_DEAD) {
1791 /* Drain local pagecache count. */
1792 count = &per_cpu(nr_pagecache_local, cpu);
1793 atomic_add(*count, &nr_pagecache);
1794 *count = 0;
1795 local_irq_disable();
1796 __drain_pages(cpu);
1797 local_irq_enable();
1799 return NOTIFY_OK;
1801 #endif /* CONFIG_HOTPLUG_CPU */
1803 void __init page_alloc_init(void)
1805 hotcpu_notifier(page_alloc_cpu_notify, 0);
1808 static unsigned long higherzone_val(struct zone *z, int max_zone,
1809 int alloc_type)
1811 int z_idx = zone_idx(z);
1812 struct zone *higherzone;
1813 unsigned long pages;
1815 /* there is no higher zone to get a contribution from */
1816 if (z_idx == MAX_NR_ZONES-1)
1817 return 0;
1819 higherzone = &z->zone_pgdat->node_zones[z_idx+1];
1821 /* We always start with the higher zone's protection value */
1822 pages = higherzone->protection[alloc_type];
1825 * We get a lower-zone-protection contribution only if there are
1826 * pages in the higher zone and if we're not the highest zone
1827 * in the current zonelist. e.g., never happens for GFP_DMA. Happens
1828 * only for ZONE_DMA in a GFP_KERNEL allocation and happens for ZONE_DMA
1829 * and ZONE_NORMAL for a GFP_HIGHMEM allocation.
1831 if (higherzone->present_pages && z_idx < alloc_type)
1832 pages += higherzone->pages_low * sysctl_lower_zone_protection;
1834 return pages;
1838 * setup_per_zone_protection - called whenver min_free_kbytes or
1839 * sysctl_lower_zone_protection changes. Ensures that each zone
1840 * has a correct pages_protected value, so an adequate number of
1841 * pages are left in the zone after a successful __alloc_pages().
1843 * This algorithm is way confusing. I tries to keep the same behavior
1844 * as we had with the incremental min iterative algorithm.
1846 static void setup_per_zone_protection(void)
1848 struct pglist_data *pgdat;
1849 struct zone *zones, *zone;
1850 int max_zone;
1851 int i, j;
1853 for_each_pgdat(pgdat) {
1854 zones = pgdat->node_zones;
1856 for (i = 0, max_zone = 0; i < MAX_NR_ZONES; i++)
1857 if (zones[i].present_pages)
1858 max_zone = i;
1861 * For each of the different allocation types:
1862 * GFP_DMA -> GFP_KERNEL -> GFP_HIGHMEM
1864 for (i = 0; i < GFP_ZONETYPES; i++) {
1866 * For each of the zones:
1867 * ZONE_HIGHMEM -> ZONE_NORMAL -> ZONE_DMA
1869 for (j = MAX_NR_ZONES-1; j >= 0; j--) {
1870 zone = &zones[j];
1873 * We never protect zones that don't have memory
1874 * in them (j>max_zone) or zones that aren't in
1875 * the zonelists for a certain type of
1876 * allocation (j>=i). We have to assign these
1877 * to zero because the lower zones take
1878 * contributions from the higher zones.
1880 if (j > max_zone || j >= i) {
1881 zone->protection[i] = 0;
1882 continue;
1885 * The contribution of the next higher zone
1887 zone->protection[i] = higherzone_val(zone,
1888 max_zone, i);
1895 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
1896 * that the pages_{min,low,high} values for each zone are set correctly
1897 * with respect to min_free_kbytes.
1899 static void setup_per_zone_pages_min(void)
1901 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
1902 unsigned long lowmem_pages = 0;
1903 struct zone *zone;
1904 unsigned long flags;
1906 /* Calculate total number of !ZONE_HIGHMEM pages */
1907 for_each_zone(zone) {
1908 if (!is_highmem(zone))
1909 lowmem_pages += zone->present_pages;
1912 for_each_zone(zone) {
1913 spin_lock_irqsave(&zone->lru_lock, flags);
1914 if (is_highmem(zone)) {
1916 * Often, highmem doesn't need to reserve any pages.
1917 * But the pages_min/low/high values are also used for
1918 * batching up page reclaim activity so we need a
1919 * decent value here.
1921 int min_pages;
1923 min_pages = zone->present_pages / 1024;
1924 if (min_pages < SWAP_CLUSTER_MAX)
1925 min_pages = SWAP_CLUSTER_MAX;
1926 if (min_pages > 128)
1927 min_pages = 128;
1928 zone->pages_min = min_pages;
1929 } else {
1930 /* if it's a lowmem zone, reserve a number of pages
1931 * proportionate to the zone's size.
1933 zone->pages_min = (pages_min * zone->present_pages) /
1934 lowmem_pages;
1937 zone->pages_low = zone->pages_min * 2;
1938 zone->pages_high = zone->pages_min * 3;
1939 spin_unlock_irqrestore(&zone->lru_lock, flags);
1944 * Initialise min_free_kbytes.
1946 * For small machines we want it small (128k min). For large machines
1947 * we want it large (16MB max). But it is not linear, because network
1948 * bandwidth does not increase linearly with machine size. We use
1950 * min_free_kbytes = sqrt(lowmem_kbytes)
1952 * which yields
1954 * 16MB: 128k
1955 * 32MB: 181k
1956 * 64MB: 256k
1957 * 128MB: 362k
1958 * 256MB: 512k
1959 * 512MB: 724k
1960 * 1024MB: 1024k
1961 * 2048MB: 1448k
1962 * 4096MB: 2048k
1963 * 8192MB: 2896k
1964 * 16384MB: 4096k
1966 static int __init init_per_zone_pages_min(void)
1968 unsigned long lowmem_kbytes;
1970 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
1972 min_free_kbytes = int_sqrt(lowmem_kbytes);
1973 if (min_free_kbytes < 128)
1974 min_free_kbytes = 128;
1975 if (min_free_kbytes > 16384)
1976 min_free_kbytes = 16384;
1977 setup_per_zone_pages_min();
1978 setup_per_zone_protection();
1979 return 0;
1981 module_init(init_per_zone_pages_min)
1984 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1985 * that we can call two helper functions whenever min_free_kbytes
1986 * changes.
1988 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
1989 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
1991 proc_dointvec(table, write, file, buffer, length, ppos);
1992 setup_per_zone_pages_min();
1993 setup_per_zone_protection();
1994 return 0;
1998 * lower_zone_protection_sysctl_handler - just a wrapper around
1999 * proc_dointvec() so that we can call setup_per_zone_protection()
2000 * whenever sysctl_lower_zone_protection changes.
2002 int lower_zone_protection_sysctl_handler(ctl_table *table, int write,
2003 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2005 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2006 setup_per_zone_protection();
2007 return 0;
2011 * allocate a large system hash table from bootmem
2012 * - it is assumed that the hash table must contain an exact power-of-2
2013 * quantity of entries
2015 void *__init alloc_large_system_hash(const char *tablename,
2016 unsigned long bucketsize,
2017 unsigned long numentries,
2018 int scale,
2019 int consider_highmem,
2020 unsigned int *_hash_shift,
2021 unsigned int *_hash_mask)
2023 unsigned long long max;
2024 unsigned long log2qty, size;
2025 void *table;
2027 /* allow the kernel cmdline to have a say */
2028 if (!numentries) {
2029 /* round applicable memory size up to nearest megabyte */
2030 numentries = consider_highmem ? nr_all_pages : nr_kernel_pages;
2031 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2032 numentries >>= 20 - PAGE_SHIFT;
2033 numentries <<= 20 - PAGE_SHIFT;
2035 /* limit to 1 bucket per 2^scale bytes of low memory */
2036 if (scale > PAGE_SHIFT)
2037 numentries >>= (scale - PAGE_SHIFT);
2038 else
2039 numentries <<= (PAGE_SHIFT - scale);
2041 /* rounded up to nearest power of 2 in size */
2042 numentries = 1UL << (long_log2(numentries) + 1);
2044 /* limit allocation size to 1/16 total memory */
2045 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2046 do_div(max, bucketsize);
2048 if (numentries > max)
2049 numentries = max;
2051 log2qty = long_log2(numentries);
2053 do {
2054 size = bucketsize << log2qty;
2055 table = alloc_bootmem(size);
2056 } while (!table && size > PAGE_SIZE && --log2qty);
2058 if (!table)
2059 panic("Failed to allocate %s hash table\n", tablename);
2061 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2062 tablename,
2063 (1U << log2qty),
2064 long_log2(size) - PAGE_SHIFT,
2065 size);
2067 if (_hash_shift)
2068 *_hash_shift = log2qty;
2069 if (_hash_mask)
2070 *_hash_mask = (1 << log2qty) - 1;
2072 return table;