2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
35 #include <asm/tlbflush.h>
37 DECLARE_BITMAP(node_online_map
, MAX_NUMNODES
);
38 struct pglist_data
*pgdat_list
;
39 unsigned long totalram_pages
;
40 unsigned long totalhigh_pages
;
43 int sysctl_lower_zone_protection
= 0;
45 EXPORT_SYMBOL(totalram_pages
);
46 EXPORT_SYMBOL(nr_swap_pages
);
49 * Used by page_zone() to look up the address of the struct zone whose
50 * id is encoded in the upper bits of page->flags
52 struct zone
*zone_table
[1 << (ZONES_SHIFT
+ NODES_SHIFT
)];
53 EXPORT_SYMBOL(zone_table
);
55 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "Normal", "HighMem" };
56 int min_free_kbytes
= 1024;
58 unsigned long __initdata nr_kernel_pages
;
59 unsigned long __initdata nr_all_pages
;
62 * Temporary debugging check for pages not lying within a given zone.
64 static int bad_range(struct zone
*zone
, struct page
*page
)
66 if (page_to_pfn(page
) >= zone
->zone_start_pfn
+ zone
->spanned_pages
)
68 if (page_to_pfn(page
) < zone
->zone_start_pfn
)
70 if (zone
!= page_zone(page
))
75 static void bad_page(const char *function
, struct page
*page
)
77 printk(KERN_EMERG
"Bad page state at %s (in process '%s', page %p)\n",
78 function
, current
->comm
, page
);
79 printk(KERN_EMERG
"flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
80 (int)(2*sizeof(page_flags_t
)), (unsigned long)page
->flags
,
81 page
->mapping
, page_mapcount(page
), page_count(page
));
82 printk(KERN_EMERG
"Backtrace:\n");
84 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n");
85 page
->flags
&= ~(1 << PG_private
|
92 set_page_count(page
, 0);
93 reset_page_mapcount(page
);
97 #ifndef CONFIG_HUGETLB_PAGE
98 #define prep_compound_page(page, order) do { } while (0)
99 #define destroy_compound_page(page, order) do { } while (0)
102 * Higher-order pages are called "compound pages". They are structured thusly:
104 * The first PAGE_SIZE page is called the "head page".
106 * The remaining PAGE_SIZE pages are called "tail pages".
108 * All pages have PG_compound set. All pages have their ->private pointing at
109 * the head page (even the head page has this).
111 * The first tail page's ->mapping, if non-zero, holds the address of the
112 * compound page's put_page() function.
114 * The order of the allocation is stored in the first tail page's ->index
115 * This is only for debug at present. This usage means that zero-order pages
116 * may not be compound.
118 static void prep_compound_page(struct page
*page
, unsigned long order
)
121 int nr_pages
= 1 << order
;
123 page
[1].mapping
= NULL
;
124 page
[1].index
= order
;
125 for (i
= 0; i
< nr_pages
; i
++) {
126 struct page
*p
= page
+ i
;
129 p
->private = (unsigned long)page
;
133 static void destroy_compound_page(struct page
*page
, unsigned long order
)
136 int nr_pages
= 1 << order
;
138 if (!PageCompound(page
))
141 if (page
[1].index
!= order
)
142 bad_page(__FUNCTION__
, page
);
144 for (i
= 0; i
< nr_pages
; i
++) {
145 struct page
*p
= page
+ i
;
147 if (!PageCompound(p
))
148 bad_page(__FUNCTION__
, page
);
149 if (p
->private != (unsigned long)page
)
150 bad_page(__FUNCTION__
, page
);
151 ClearPageCompound(p
);
154 #endif /* CONFIG_HUGETLB_PAGE */
157 * Freeing function for a buddy system allocator.
159 * The concept of a buddy system is to maintain direct-mapped table
160 * (containing bit values) for memory blocks of various "orders".
161 * The bottom level table contains the map for the smallest allocatable
162 * units of memory (here, pages), and each level above it describes
163 * pairs of units from the levels below, hence, "buddies".
164 * At a high level, all that happens here is marking the table entry
165 * at the bottom level available, and propagating the changes upward
166 * as necessary, plus some accounting needed to play nicely with other
167 * parts of the VM system.
168 * At each level, we keep one bit for each pair of blocks, which
169 * is set to 1 iff only one of the pair is allocated. So when we
170 * are allocating or freeing one, we can derive the state of the
171 * other. That is, if we allocate a small block, and both were
172 * free, the remainder of the region must be split into blocks.
173 * If a block is freed, and its buddy is also free, then this
174 * triggers coalescing into a block of larger size.
179 static inline void __free_pages_bulk (struct page
*page
, struct page
*base
,
180 struct zone
*zone
, struct free_area
*area
, unsigned int order
)
182 unsigned long page_idx
, index
, mask
;
185 destroy_compound_page(page
, order
);
186 mask
= (~0UL) << order
;
187 page_idx
= page
- base
;
188 if (page_idx
& ~mask
)
190 index
= page_idx
>> (1 + order
);
192 zone
->free_pages
+= 1 << order
;
193 while (order
< MAX_ORDER
-1) {
194 struct page
*buddy1
, *buddy2
;
196 BUG_ON(area
>= zone
->free_area
+ MAX_ORDER
);
197 if (!__test_and_change_bit(index
, area
->map
))
199 * the buddy page is still allocated.
203 /* Move the buddy up one level. */
204 buddy1
= base
+ (page_idx
^ (1 << order
));
205 buddy2
= base
+ page_idx
;
206 BUG_ON(bad_range(zone
, buddy1
));
207 BUG_ON(bad_range(zone
, buddy2
));
208 list_del(&buddy1
->lru
);
215 list_add(&(base
+ page_idx
)->lru
, &area
->free_list
);
218 static inline void free_pages_check(const char *function
, struct page
*page
)
220 if ( page_mapped(page
) ||
221 page
->mapping
!= NULL
||
223 page_count(page
) != 0 ||
233 1 << PG_writeback
)))
234 bad_page(function
, page
);
236 ClearPageDirty(page
);
240 * Frees a list of pages.
241 * Assumes all pages on list are in same zone, and of same order.
242 * count is the number of pages to free, or 0 for all on the list.
244 * If the zone was previously in an "all pages pinned" state then look to
245 * see if this freeing clears that state.
247 * And clear the zone's pages_scanned counter, to hold off the "all pages are
248 * pinned" detection logic.
251 free_pages_bulk(struct zone
*zone
, int count
,
252 struct list_head
*list
, unsigned int order
)
255 struct free_area
*area
;
256 struct page
*base
, *page
= NULL
;
259 base
= zone
->zone_mem_map
;
260 area
= zone
->free_area
+ order
;
261 spin_lock_irqsave(&zone
->lock
, flags
);
262 zone
->all_unreclaimable
= 0;
263 zone
->pages_scanned
= 0;
264 while (!list_empty(list
) && count
--) {
265 page
= list_entry(list
->prev
, struct page
, lru
);
266 /* have to delete it as __free_pages_bulk list manipulates */
267 list_del(&page
->lru
);
268 __free_pages_bulk(page
, base
, zone
, area
, order
);
271 spin_unlock_irqrestore(&zone
->lock
, flags
);
275 void __free_pages_ok(struct page
*page
, unsigned int order
)
280 arch_free_page(page
, order
);
282 mod_page_state(pgfree
, 1 << order
);
283 for (i
= 0 ; i
< (1 << order
) ; ++i
)
284 free_pages_check(__FUNCTION__
, page
+ i
);
285 list_add(&page
->lru
, &list
);
286 kernel_map_pages(page
, 1<<order
, 0);
287 free_pages_bulk(page_zone(page
), 1, &list
, order
);
290 #define MARK_USED(index, order, area) \
291 __change_bit((index) >> (1+(order)), (area)->map)
294 * The order of subdivision here is critical for the IO subsystem.
295 * Please do not alter this order without good reasons and regression
296 * testing. Specifically, as large blocks of memory are subdivided,
297 * the order in which smaller blocks are delivered depends on the order
298 * they're subdivided in this function. This is the primary factor
299 * influencing the order in which pages are delivered to the IO
300 * subsystem according to empirical testing, and this is also justified
301 * by considering the behavior of a buddy system containing a single
302 * large block of memory acted on by a series of small allocations.
303 * This behavior is a critical factor in sglist merging's success.
307 static inline struct page
*
308 expand(struct zone
*zone
, struct page
*page
,
309 unsigned long index
, int low
, int high
, struct free_area
*area
)
311 unsigned long size
= 1 << high
;
317 BUG_ON(bad_range(zone
, &page
[size
]));
318 list_add(&page
[size
].lru
, &area
->free_list
);
319 MARK_USED(index
+ size
, high
, area
);
324 static inline void set_page_refs(struct page
*page
, int order
)
327 set_page_count(page
, 1);
332 * We need to reference all the pages for this order, otherwise if
333 * anyone accesses one of the pages with (get/put) it will be freed.
335 for (i
= 0; i
< (1 << order
); i
++)
336 set_page_count(page
+i
, 1);
337 #endif /* CONFIG_MMU */
341 * This page is about to be returned from the page allocator
343 static void prep_new_page(struct page
*page
, int order
)
345 if (page
->mapping
|| page_mapped(page
) ||
354 1 << PG_writeback
)))
355 bad_page(__FUNCTION__
, page
);
357 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
358 1 << PG_referenced
| 1 << PG_arch_1
|
359 1 << PG_checked
| 1 << PG_mappedtodisk
);
361 set_page_refs(page
, order
);
365 * Do the hard work of removing an element from the buddy allocator.
366 * Call me with the zone->lock already held.
368 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
370 struct free_area
* area
;
371 unsigned int current_order
;
375 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
376 area
= zone
->free_area
+ current_order
;
377 if (list_empty(&area
->free_list
))
380 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
381 list_del(&page
->lru
);
382 index
= page
- zone
->zone_mem_map
;
383 if (current_order
!= MAX_ORDER
-1)
384 MARK_USED(index
, current_order
, area
);
385 zone
->free_pages
-= 1UL << order
;
386 return expand(zone
, page
, index
, order
, current_order
, area
);
393 * Obtain a specified number of elements from the buddy allocator, all under
394 * a single hold of the lock, for efficiency. Add them to the supplied list.
395 * Returns the number of new pages which were placed at *list.
397 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
398 unsigned long count
, struct list_head
*list
)
405 spin_lock_irqsave(&zone
->lock
, flags
);
406 for (i
= 0; i
< count
; ++i
) {
407 page
= __rmqueue(zone
, order
);
411 list_add_tail(&page
->lru
, list
);
413 spin_unlock_irqrestore(&zone
->lock
, flags
);
417 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
418 static void __drain_pages(unsigned int cpu
)
423 for_each_zone(zone
) {
424 struct per_cpu_pageset
*pset
;
426 pset
= &zone
->pageset
[cpu
];
427 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
428 struct per_cpu_pages
*pcp
;
431 pcp
->count
-= free_pages_bulk(zone
, pcp
->count
,
436 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
439 int is_head_of_free_region(struct page
*page
)
441 struct zone
*zone
= page_zone(page
);
444 struct list_head
*curr
;
447 * Should not matter as we need quiescent system for
448 * suspend anyway, but...
450 spin_lock_irqsave(&zone
->lock
, flags
);
451 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
452 list_for_each(curr
, &zone
->free_area
[order
].free_list
)
453 if (page
== list_entry(curr
, struct page
, lru
)) {
454 spin_unlock_irqrestore(&zone
->lock
, flags
);
457 spin_unlock_irqrestore(&zone
->lock
, flags
);
462 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
464 void drain_local_pages(void)
468 local_irq_save(flags
);
469 __drain_pages(smp_processor_id());
470 local_irq_restore(flags
);
472 #endif /* CONFIG_PM */
474 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
)
479 pg_data_t
*pg
= z
->zone_pgdat
;
480 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
481 struct per_cpu_pageset
*p
;
483 local_irq_save(flags
);
484 cpu
= smp_processor_id();
485 p
= &z
->pageset
[cpu
];
487 z
->pageset
[cpu
].numa_hit
++;
490 zonelist
->zones
[0]->pageset
[cpu
].numa_foreign
++;
492 if (pg
== NODE_DATA(numa_node_id()))
496 local_irq_restore(flags
);
501 * Free a 0-order page
503 static void FASTCALL(free_hot_cold_page(struct page
*page
, int cold
));
504 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
506 struct zone
*zone
= page_zone(page
);
507 struct per_cpu_pages
*pcp
;
510 arch_free_page(page
, 0);
512 kernel_map_pages(page
, 1, 0);
513 inc_page_state(pgfree
);
515 page
->mapping
= NULL
;
516 free_pages_check(__FUNCTION__
, page
);
517 pcp
= &zone
->pageset
[get_cpu()].pcp
[cold
];
518 local_irq_save(flags
);
519 if (pcp
->count
>= pcp
->high
)
520 pcp
->count
-= free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
521 list_add(&page
->lru
, &pcp
->list
);
523 local_irq_restore(flags
);
527 void fastcall
free_hot_page(struct page
*page
)
529 free_hot_cold_page(page
, 0);
532 void fastcall
free_cold_page(struct page
*page
)
534 free_hot_cold_page(page
, 1);
538 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
539 * we cheat by calling it from here, in the order > 0 path. Saves a branch
544 buffered_rmqueue(struct zone
*zone
, int order
, int gfp_flags
)
547 struct page
*page
= NULL
;
548 int cold
= !!(gfp_flags
& __GFP_COLD
);
551 struct per_cpu_pages
*pcp
;
553 pcp
= &zone
->pageset
[get_cpu()].pcp
[cold
];
554 local_irq_save(flags
);
555 if (pcp
->count
<= pcp
->low
)
556 pcp
->count
+= rmqueue_bulk(zone
, 0,
557 pcp
->batch
, &pcp
->list
);
559 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
560 list_del(&page
->lru
);
563 local_irq_restore(flags
);
568 spin_lock_irqsave(&zone
->lock
, flags
);
569 page
= __rmqueue(zone
, order
);
570 spin_unlock_irqrestore(&zone
->lock
, flags
);
574 BUG_ON(bad_range(zone
, page
));
575 mod_page_state_zone(zone
, pgalloc
, 1 << order
);
576 prep_new_page(page
, order
);
577 if (order
&& (gfp_flags
& __GFP_COMP
))
578 prep_compound_page(page
, order
);
584 * This is the 'heart' of the zoned buddy allocator.
586 * Herein lies the mysterious "incremental min". That's the
588 * local_low = z->pages_low;
591 * thing. The intent here is to provide additional protection to low zones for
592 * allocation requests which _could_ use higher zones. So a GFP_HIGHMEM
593 * request is not allowed to dip as deeply into the normal zone as a GFP_KERNEL
594 * request. This preserves additional space in those lower zones for requests
595 * which really do need memory from those zones. It means that on a decent
596 * sized machine, GFP_HIGHMEM and GFP_KERNEL requests basically leave the DMA
599 struct page
* fastcall
600 __alloc_pages(unsigned int gfp_mask
, unsigned int order
,
601 struct zonelist
*zonelist
)
603 const int wait
= gfp_mask
& __GFP_WAIT
;
605 struct zone
**zones
, *z
;
607 struct reclaim_state reclaim_state
;
608 struct task_struct
*p
= current
;
614 might_sleep_if(wait
);
617 * The caller may dip into page reserves a bit more if the caller
618 * cannot run direct reclaim, or is the caller has realtime scheduling
621 can_try_harder
= (unlikely(rt_task(p
)) && !in_interrupt()) || !wait
;
623 zones
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
625 if (unlikely(zones
[0] == NULL
)) {
626 /* Should this ever happen?? */
630 alloc_type
= zone_idx(zones
[0]);
632 /* Go through the zonelist once, looking for a zone with enough free */
633 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
634 min
= z
->pages_low
+ (1<<order
) + z
->protection
[alloc_type
];
636 if (z
->free_pages
< min
)
639 page
= buffered_rmqueue(z
, order
, gfp_mask
);
644 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++)
648 * Go through the zonelist again. Let __GFP_HIGH and allocations
649 * coming from realtime tasks to go deeper into reserves
651 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
653 if (gfp_mask
& __GFP_HIGH
)
657 min
+= (1<<order
) + z
->protection
[alloc_type
];
659 if (z
->free_pages
< min
)
662 page
= buffered_rmqueue(z
, order
, gfp_mask
);
667 /* This allocation should allow future memory freeing. */
668 if ((p
->flags
& (PF_MEMALLOC
| PF_MEMDIE
)) && !in_interrupt()) {
669 /* go through the zonelist yet again, ignoring mins */
670 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
671 page
= buffered_rmqueue(z
, order
, gfp_mask
);
678 /* Atomic allocations - we can't balance anything */
683 /* We now go into synchronous reclaim */
684 p
->flags
|= PF_MEMALLOC
;
685 reclaim_state
.reclaimed_slab
= 0;
686 p
->reclaim_state
= &reclaim_state
;
688 try_to_free_pages(zones
, gfp_mask
, order
);
690 p
->reclaim_state
= NULL
;
691 p
->flags
&= ~PF_MEMALLOC
;
693 /* go through the zonelist yet one more time */
694 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
696 if (gfp_mask
& __GFP_HIGH
)
700 min
+= (1<<order
) + z
->protection
[alloc_type
];
702 if (z
->free_pages
< min
)
705 page
= buffered_rmqueue(z
, order
, gfp_mask
);
711 * Don't let big-order allocations loop unless the caller explicitly
712 * requests that. Wait for some write requests to complete then retry.
714 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
715 * <= 3, but that may not be true in other implementations.
718 if (!(gfp_mask
& __GFP_NORETRY
)) {
719 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
721 if (gfp_mask
& __GFP_NOFAIL
)
725 blk_congestion_wait(WRITE
, HZ
/50);
730 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
731 printk(KERN_WARNING
"%s: page allocation failure."
732 " order:%d, mode:0x%x\n",
733 p
->comm
, order
, gfp_mask
);
738 zone_statistics(zonelist
, z
);
739 kernel_map_pages(page
, 1 << order
, 1);
743 EXPORT_SYMBOL(__alloc_pages
);
746 * Common helper functions.
748 fastcall
unsigned long __get_free_pages(unsigned int gfp_mask
, unsigned int order
)
751 page
= alloc_pages(gfp_mask
, order
);
754 return (unsigned long) page_address(page
);
757 EXPORT_SYMBOL(__get_free_pages
);
759 fastcall
unsigned long get_zeroed_page(unsigned int gfp_mask
)
764 * get_zeroed_page() returns a 32-bit address, which cannot represent
767 BUG_ON(gfp_mask
& __GFP_HIGHMEM
);
769 page
= alloc_pages(gfp_mask
, 0);
771 void *address
= page_address(page
);
773 return (unsigned long) address
;
778 EXPORT_SYMBOL(get_zeroed_page
);
780 void __pagevec_free(struct pagevec
*pvec
)
782 int i
= pagevec_count(pvec
);
785 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
788 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
790 if (!PageReserved(page
) && put_page_testzero(page
)) {
794 __free_pages_ok(page
, order
);
798 EXPORT_SYMBOL(__free_pages
);
800 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
803 BUG_ON(!virt_addr_valid((void *)addr
));
804 __free_pages(virt_to_page((void *)addr
), order
);
808 EXPORT_SYMBOL(free_pages
);
811 * Total amount of free (allocatable) RAM:
813 unsigned int nr_free_pages(void)
815 unsigned int sum
= 0;
819 sum
+= zone
->free_pages
;
824 EXPORT_SYMBOL(nr_free_pages
);
827 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
829 unsigned int i
, sum
= 0;
831 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
832 sum
+= pgdat
->node_zones
[i
].free_pages
;
838 static unsigned int nr_free_zone_pages(int offset
)
841 unsigned int sum
= 0;
843 for_each_pgdat(pgdat
) {
844 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
845 struct zone
**zonep
= zonelist
->zones
;
848 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
849 unsigned long size
= zone
->present_pages
;
850 unsigned long high
= zone
->pages_high
;
860 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
862 unsigned int nr_free_buffer_pages(void)
864 return nr_free_zone_pages(GFP_USER
& GFP_ZONEMASK
);
868 * Amount of free RAM allocatable within all zones
870 unsigned int nr_free_pagecache_pages(void)
872 return nr_free_zone_pages(GFP_HIGHUSER
& GFP_ZONEMASK
);
875 #ifdef CONFIG_HIGHMEM
876 unsigned int nr_free_highpages (void)
879 unsigned int pages
= 0;
881 for_each_pgdat(pgdat
)
882 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
889 static void show_node(struct zone
*zone
)
891 printk("Node %d ", zone
->zone_pgdat
->node_id
);
894 #define show_node(zone) do { } while (0)
898 * Accumulate the page_state information across all CPUs.
899 * The result is unavoidably approximate - it can change
900 * during and after execution of this function.
902 DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
903 EXPORT_PER_CPU_SYMBOL(page_states
);
905 atomic_t nr_pagecache
= ATOMIC_INIT(0);
906 EXPORT_SYMBOL(nr_pagecache
);
908 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
911 void __get_page_state(struct page_state
*ret
, int nr
)
915 memset(ret
, 0, sizeof(*ret
));
916 while (cpu
< NR_CPUS
) {
917 unsigned long *in
, *out
, off
;
919 if (!cpu_possible(cpu
)) {
924 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
926 if (cpu
< NR_CPUS
&& cpu_possible(cpu
))
927 prefetch(&per_cpu(page_states
, cpu
));
928 out
= (unsigned long *)ret
;
929 for (off
= 0; off
< nr
; off
++)
934 void get_page_state(struct page_state
*ret
)
938 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
939 nr
/= sizeof(unsigned long);
941 __get_page_state(ret
, nr
+ 1);
944 void get_full_page_state(struct page_state
*ret
)
946 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long));
949 unsigned long __read_page_state(unsigned offset
)
951 unsigned long ret
= 0;
954 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
957 if (!cpu_possible(cpu
))
960 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
961 ret
+= *((unsigned long *)in
);
966 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
967 unsigned long *free
, struct pglist_data
*pgdat
)
969 struct zone
*zones
= pgdat
->node_zones
;
975 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
976 *active
+= zones
[i
].nr_active
;
977 *inactive
+= zones
[i
].nr_inactive
;
978 *free
+= zones
[i
].free_pages
;
982 void get_zone_counts(unsigned long *active
,
983 unsigned long *inactive
, unsigned long *free
)
985 struct pglist_data
*pgdat
;
990 for_each_pgdat(pgdat
) {
991 unsigned long l
, m
, n
;
992 __get_zone_counts(&l
, &m
, &n
, pgdat
);
999 void si_meminfo(struct sysinfo
*val
)
1001 val
->totalram
= totalram_pages
;
1003 val
->freeram
= nr_free_pages();
1004 val
->bufferram
= nr_blockdev_pages();
1005 #ifdef CONFIG_HIGHMEM
1006 val
->totalhigh
= totalhigh_pages
;
1007 val
->freehigh
= nr_free_highpages();
1012 val
->mem_unit
= PAGE_SIZE
;
1015 EXPORT_SYMBOL(si_meminfo
);
1018 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1020 pg_data_t
*pgdat
= NODE_DATA(nid
);
1022 val
->totalram
= pgdat
->node_present_pages
;
1023 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1024 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1025 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1026 val
->mem_unit
= PAGE_SIZE
;
1030 #define K(x) ((x) << (PAGE_SHIFT-10))
1033 * Show free area list (used inside shift_scroll-lock stuff)
1034 * We also calculate the percentage fragmentation. We do this by counting the
1035 * memory on each free list with the exception of the first item on the list.
1037 void show_free_areas(void)
1039 struct page_state ps
;
1040 int cpu
, temperature
;
1041 unsigned long active
;
1042 unsigned long inactive
;
1046 for_each_zone(zone
) {
1048 printk("%s per-cpu:", zone
->name
);
1050 if (!zone
->present_pages
) {
1056 for (cpu
= 0; cpu
< NR_CPUS
; ++cpu
) {
1057 struct per_cpu_pageset
*pageset
;
1059 if (!cpu_possible(cpu
))
1062 pageset
= zone
->pageset
+ cpu
;
1064 for (temperature
= 0; temperature
< 2; temperature
++)
1065 printk("cpu %d %s: low %d, high %d, batch %d\n",
1067 temperature
? "cold" : "hot",
1068 pageset
->pcp
[temperature
].low
,
1069 pageset
->pcp
[temperature
].high
,
1070 pageset
->pcp
[temperature
].batch
);
1074 get_page_state(&ps
);
1075 get_zone_counts(&active
, &inactive
, &free
);
1077 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1079 K(nr_free_highpages()));
1081 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1082 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1091 ps
.nr_page_table_pages
);
1093 for_each_zone(zone
) {
1107 K(zone
->free_pages
),
1110 K(zone
->pages_high
),
1112 K(zone
->nr_inactive
),
1113 K(zone
->present_pages
)
1115 printk("protections[]:");
1116 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1117 printk(" %lu", zone
->protection
[i
]);
1121 for_each_zone(zone
) {
1122 struct list_head
*elem
;
1123 unsigned long nr
, flags
, order
, total
= 0;
1126 printk("%s: ", zone
->name
);
1127 if (!zone
->present_pages
) {
1132 spin_lock_irqsave(&zone
->lock
, flags
);
1133 for (order
= 0; order
< MAX_ORDER
; order
++) {
1135 list_for_each(elem
, &zone
->free_area
[order
].free_list
)
1137 total
+= nr
<< order
;
1138 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1140 spin_unlock_irqrestore(&zone
->lock
, flags
);
1141 printk("= %lukB\n", K(total
));
1144 show_swap_cache_info();
1148 * Builds allocation fallback zone lists.
1150 static int __init
build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
, int j
, int k
)
1157 zone
= pgdat
->node_zones
+ ZONE_HIGHMEM
;
1158 if (zone
->present_pages
) {
1159 #ifndef CONFIG_HIGHMEM
1162 zonelist
->zones
[j
++] = zone
;
1165 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
1166 if (zone
->present_pages
)
1167 zonelist
->zones
[j
++] = zone
;
1169 zone
= pgdat
->node_zones
+ ZONE_DMA
;
1170 if (zone
->present_pages
)
1171 zonelist
->zones
[j
++] = zone
;
1178 #define MAX_NODE_LOAD (numnodes)
1179 static int __initdata node_load
[MAX_NUMNODES
];
1181 * find_next_best_node - find the next node that should appear in a given
1182 * node's fallback list
1183 * @node: node whose fallback list we're appending
1184 * @used_node_mask: pointer to the bitmap of already used nodes
1186 * We use a number of factors to determine which is the next node that should
1187 * appear on a given node's fallback list. The node should not have appeared
1188 * already in @node's fallback list, and it should be the next closest node
1189 * according to the distance array (which contains arbitrary distance values
1190 * from each node to each node in the system), and should also prefer nodes
1191 * with no CPUs, since presumably they'll have very little allocation pressure
1192 * on them otherwise.
1193 * It returns -1 if no node is found.
1195 static int __init
find_next_best_node(int node
, void *used_node_mask
)
1198 int min_val
= INT_MAX
;
1201 for (i
= 0; i
< numnodes
; i
++) {
1204 /* Start from local node */
1205 n
= (node
+i
)%numnodes
;
1207 /* Don't want a node to appear more than once */
1208 if (test_bit(n
, used_node_mask
))
1211 /* Use the distance array to find the distance */
1212 val
= node_distance(node
, n
);
1214 /* Give preference to headless and unused nodes */
1215 tmp
= node_to_cpumask(n
);
1216 if (!cpus_empty(tmp
))
1217 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1219 /* Slight preference for less loaded node */
1220 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1221 val
+= node_load
[n
];
1223 if (val
< min_val
) {
1230 set_bit(best_node
, used_node_mask
);
1235 static void __init
build_zonelists(pg_data_t
*pgdat
)
1237 int i
, j
, k
, node
, local_node
;
1238 int prev_node
, load
;
1239 struct zonelist
*zonelist
;
1240 DECLARE_BITMAP(used_mask
, MAX_NUMNODES
);
1242 /* initialize zonelists */
1243 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1244 zonelist
= pgdat
->node_zonelists
+ i
;
1245 memset(zonelist
, 0, sizeof(*zonelist
));
1246 zonelist
->zones
[0] = NULL
;
1249 /* NUMA-aware ordering of nodes */
1250 local_node
= pgdat
->node_id
;
1252 prev_node
= local_node
;
1253 bitmap_zero(used_mask
, MAX_NUMNODES
);
1254 while ((node
= find_next_best_node(local_node
, used_mask
)) >= 0) {
1256 * We don't want to pressure a particular node.
1257 * So adding penalty to the first node in same
1258 * distance group to make it round-robin.
1260 if (node_distance(local_node
, node
) !=
1261 node_distance(local_node
, prev_node
))
1262 node_load
[node
] += load
;
1265 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1266 zonelist
= pgdat
->node_zonelists
+ i
;
1267 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1270 if (i
& __GFP_HIGHMEM
)
1275 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1276 zonelist
->zones
[j
] = NULL
;
1281 #else /* CONFIG_NUMA */
1283 static void __init
build_zonelists(pg_data_t
*pgdat
)
1285 int i
, j
, k
, node
, local_node
;
1287 local_node
= pgdat
->node_id
;
1288 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1289 struct zonelist
*zonelist
;
1291 zonelist
= pgdat
->node_zonelists
+ i
;
1292 memset(zonelist
, 0, sizeof(*zonelist
));
1296 if (i
& __GFP_HIGHMEM
)
1301 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1303 * Now we build the zonelist so that it contains the zones
1304 * of all the other nodes.
1305 * We don't want to pressure a particular node, so when
1306 * building the zones for node N, we make sure that the
1307 * zones coming right after the local ones are those from
1308 * node N+1 (modulo N)
1310 for (node
= local_node
+ 1; node
< numnodes
; node
++)
1311 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1312 for (node
= 0; node
< local_node
; node
++)
1313 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1315 zonelist
->zones
[j
] = NULL
;
1319 #endif /* CONFIG_NUMA */
1321 void __init
build_all_zonelists(void)
1325 for(i
= 0 ; i
< numnodes
; i
++)
1326 build_zonelists(NODE_DATA(i
));
1327 printk("Built %i zonelists\n", numnodes
);
1331 * Helper functions to size the waitqueue hash table.
1332 * Essentially these want to choose hash table sizes sufficiently
1333 * large so that collisions trying to wait on pages are rare.
1334 * But in fact, the number of active page waitqueues on typical
1335 * systems is ridiculously low, less than 200. So this is even
1336 * conservative, even though it seems large.
1338 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1339 * waitqueues, i.e. the size of the waitq table given the number of pages.
1341 #define PAGES_PER_WAITQUEUE 256
1343 static inline unsigned long wait_table_size(unsigned long pages
)
1345 unsigned long size
= 1;
1347 pages
/= PAGES_PER_WAITQUEUE
;
1349 while (size
< pages
)
1353 * Once we have dozens or even hundreds of threads sleeping
1354 * on IO we've got bigger problems than wait queue collision.
1355 * Limit the size of the wait table to a reasonable size.
1357 size
= min(size
, 4096UL);
1359 return max(size
, 4UL);
1363 * This is an integer logarithm so that shifts can be used later
1364 * to extract the more random high bits from the multiplicative
1365 * hash function before the remainder is taken.
1367 static inline unsigned long wait_table_bits(unsigned long size
)
1372 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1374 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1375 unsigned long *zones_size
, unsigned long *zholes_size
)
1377 unsigned long realtotalpages
, totalpages
= 0;
1380 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1381 totalpages
+= zones_size
[i
];
1382 pgdat
->node_spanned_pages
= totalpages
;
1384 realtotalpages
= totalpages
;
1386 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1387 realtotalpages
-= zholes_size
[i
];
1388 pgdat
->node_present_pages
= realtotalpages
;
1389 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1394 * Initially all pages are reserved - free ones are freed
1395 * up by free_all_bootmem() once the early boot process is
1396 * done. Non-atomic initialization, single-pass.
1398 void __init
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1399 unsigned long start_pfn
)
1401 struct page
*start
= pfn_to_page(start_pfn
);
1404 for (page
= start
; page
< (start
+ size
); page
++) {
1405 set_page_zone(page
, NODEZONE(nid
, zone
));
1406 set_page_count(page
, 0);
1407 reset_page_mapcount(page
);
1408 SetPageReserved(page
);
1409 INIT_LIST_HEAD(&page
->lru
);
1410 #ifdef WANT_PAGE_VIRTUAL
1411 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1412 if (!is_highmem_idx(zone
))
1413 set_page_address(page
, __va(start_pfn
<< PAGE_SHIFT
));
1420 * Page buddy system uses "index >> (i+1)", where "index" is
1423 * The extra "+3" is to round down to byte size (8 bits per byte
1424 * assumption). Thus we get "(size-1) >> (i+4)" as the last byte
1427 * The "+1" is because we want to round the byte allocation up
1428 * rather than down. So we should have had a "+7" before we shifted
1429 * down by three. Also, we have to add one as we actually _use_ the
1430 * last bit (it's [0,n] inclusive, not [0,n[).
1432 * So we actually had +7+1 before we shift down by 3. But
1433 * (n+8) >> 3 == (n >> 3) + 1 (modulo overflows, which we do not have).
1435 * Finally, we LONG_ALIGN because all bitmap operations are on longs.
1437 unsigned long pages_to_bitmap_size(unsigned long order
, unsigned long nr_pages
)
1439 unsigned long bitmap_size
;
1441 bitmap_size
= (nr_pages
-1) >> (order
+4);
1442 bitmap_size
= LONG_ALIGN(bitmap_size
+1);
1447 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
, unsigned long size
)
1450 for (order
= 0; ; order
++) {
1451 unsigned long bitmap_size
;
1453 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1454 if (order
== MAX_ORDER
-1) {
1455 zone
->free_area
[order
].map
= NULL
;
1459 bitmap_size
= pages_to_bitmap_size(order
, size
);
1460 zone
->free_area
[order
].map
=
1461 (unsigned long *) alloc_bootmem_node(pgdat
, bitmap_size
);
1465 #ifndef __HAVE_ARCH_MEMMAP_INIT
1466 #define memmap_init(size, nid, zone, start_pfn) \
1467 memmap_init_zone((size), (nid), (zone), (start_pfn))
1471 * Set up the zone data structures:
1472 * - mark all pages reserved
1473 * - mark all memory queues empty
1474 * - clear the memory bitmaps
1476 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
1477 unsigned long *zones_size
, unsigned long *zholes_size
)
1480 const unsigned long zone_required_alignment
= 1UL << (MAX_ORDER
-1);
1481 int cpu
, nid
= pgdat
->node_id
;
1482 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
1484 pgdat
->nr_zones
= 0;
1485 init_waitqueue_head(&pgdat
->kswapd_wait
);
1487 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
1488 struct zone
*zone
= pgdat
->node_zones
+ j
;
1489 unsigned long size
, realsize
;
1490 unsigned long batch
;
1492 zone_table
[NODEZONE(nid
, j
)] = zone
;
1493 realsize
= size
= zones_size
[j
];
1495 realsize
-= zholes_size
[j
];
1497 if (j
== ZONE_DMA
|| j
== ZONE_NORMAL
)
1498 nr_kernel_pages
+= realsize
;
1499 nr_all_pages
+= realsize
;
1501 zone
->spanned_pages
= size
;
1502 zone
->present_pages
= realsize
;
1503 zone
->name
= zone_names
[j
];
1504 spin_lock_init(&zone
->lock
);
1505 spin_lock_init(&zone
->lru_lock
);
1506 zone
->zone_pgdat
= pgdat
;
1507 zone
->free_pages
= 0;
1509 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
1512 * The per-cpu-pages pools are set to around 1000th of the
1513 * size of the zone. But no more than 1/4 of a meg - there's
1514 * no point in going beyond the size of L2 cache.
1516 * OK, so we don't know how big the cache is. So guess.
1518 batch
= zone
->present_pages
/ 1024;
1519 if (batch
* PAGE_SIZE
> 256 * 1024)
1520 batch
= (256 * 1024) / PAGE_SIZE
;
1521 batch
/= 4; /* We effectively *= 4 below */
1525 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
1526 struct per_cpu_pages
*pcp
;
1528 pcp
= &zone
->pageset
[cpu
].pcp
[0]; /* hot */
1530 pcp
->low
= 2 * batch
;
1531 pcp
->high
= 6 * batch
;
1532 pcp
->batch
= 1 * batch
;
1533 INIT_LIST_HEAD(&pcp
->list
);
1535 pcp
= &zone
->pageset
[cpu
].pcp
[1]; /* cold */
1538 pcp
->high
= 2 * batch
;
1539 pcp
->batch
= 1 * batch
;
1540 INIT_LIST_HEAD(&pcp
->list
);
1542 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
1543 zone_names
[j
], realsize
, batch
);
1544 INIT_LIST_HEAD(&zone
->active_list
);
1545 INIT_LIST_HEAD(&zone
->inactive_list
);
1546 zone
->nr_scan_active
= 0;
1547 zone
->nr_scan_inactive
= 0;
1548 zone
->nr_active
= 0;
1549 zone
->nr_inactive
= 0;
1554 * The per-page waitqueue mechanism uses hashed waitqueues
1557 zone
->wait_table_size
= wait_table_size(size
);
1558 zone
->wait_table_bits
=
1559 wait_table_bits(zone
->wait_table_size
);
1560 zone
->wait_table
= (wait_queue_head_t
*)
1561 alloc_bootmem_node(pgdat
, zone
->wait_table_size
1562 * sizeof(wait_queue_head_t
));
1564 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
1565 init_waitqueue_head(zone
->wait_table
+ i
);
1567 pgdat
->nr_zones
= j
+1;
1569 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
1570 zone
->zone_start_pfn
= zone_start_pfn
;
1572 if ((zone_start_pfn
) & (zone_required_alignment
-1))
1573 printk("BUG: wrong zone alignment, it will crash\n");
1575 memmap_init(size
, nid
, j
, zone_start_pfn
);
1577 zone_start_pfn
+= size
;
1579 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
1583 void __init
node_alloc_mem_map(struct pglist_data
*pgdat
)
1587 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
1588 pgdat
->node_mem_map
= alloc_bootmem_node(pgdat
, size
);
1589 #ifndef CONFIG_DISCONTIGMEM
1590 mem_map
= contig_page_data
.node_mem_map
;
1594 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
1595 unsigned long *zones_size
, unsigned long node_start_pfn
,
1596 unsigned long *zholes_size
)
1598 pgdat
->node_id
= nid
;
1599 pgdat
->node_start_pfn
= node_start_pfn
;
1600 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
1602 if (!pfn_to_page(node_start_pfn
))
1603 node_alloc_mem_map(pgdat
);
1605 free_area_init_core(pgdat
, zones_size
, zholes_size
);
1608 #ifndef CONFIG_DISCONTIGMEM
1609 static bootmem_data_t contig_bootmem_data
;
1610 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
1612 EXPORT_SYMBOL(contig_page_data
);
1614 void __init
free_area_init(unsigned long *zones_size
)
1616 free_area_init_node(0, &contig_page_data
, zones_size
,
1617 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
1621 #ifdef CONFIG_PROC_FS
1623 #include <linux/seq_file.h>
1625 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
1630 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
1636 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1638 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1641 return pgdat
->pgdat_next
;
1644 static void frag_stop(struct seq_file
*m
, void *arg
)
1649 * This walks the freelist for each zone. Whilst this is slow, I'd rather
1650 * be slow here than slow down the fast path by keeping stats - mjbligh
1652 static int frag_show(struct seq_file
*m
, void *arg
)
1654 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1656 struct zone
*node_zones
= pgdat
->node_zones
;
1657 unsigned long flags
;
1660 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
1661 if (!zone
->present_pages
)
1664 spin_lock_irqsave(&zone
->lock
, flags
);
1665 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1666 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1667 unsigned long nr_bufs
= 0;
1668 struct list_head
*elem
;
1670 list_for_each(elem
, &(zone
->free_area
[order
].free_list
))
1672 seq_printf(m
, "%6lu ", nr_bufs
);
1674 spin_unlock_irqrestore(&zone
->lock
, flags
);
1680 struct seq_operations fragmentation_op
= {
1681 .start
= frag_start
,
1687 static char *vmstat_text
[] = {
1691 "nr_page_table_pages",
1716 "pgscan_kswapd_high",
1717 "pgscan_kswapd_normal",
1719 "pgscan_kswapd_dma",
1720 "pgscan_direct_high",
1721 "pgscan_direct_normal",
1722 "pgscan_direct_dma",
1727 "kswapd_inodesteal",
1734 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1736 struct page_state
*ps
;
1738 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1741 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
1744 return ERR_PTR(-ENOMEM
);
1745 get_full_page_state(ps
);
1746 ps
->pgpgin
/= 2; /* sectors -> kbytes */
1748 return (unsigned long *)ps
+ *pos
;
1751 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1754 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1756 return (unsigned long *)m
->private + *pos
;
1759 static int vmstat_show(struct seq_file
*m
, void *arg
)
1761 unsigned long *l
= arg
;
1762 unsigned long off
= l
- (unsigned long *)m
->private;
1764 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1768 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1774 struct seq_operations vmstat_op
= {
1775 .start
= vmstat_start
,
1776 .next
= vmstat_next
,
1777 .stop
= vmstat_stop
,
1778 .show
= vmstat_show
,
1781 #endif /* CONFIG_PROC_FS */
1783 #ifdef CONFIG_HOTPLUG_CPU
1784 static int page_alloc_cpu_notify(struct notifier_block
*self
,
1785 unsigned long action
, void *hcpu
)
1787 int cpu
= (unsigned long)hcpu
;
1790 if (action
== CPU_DEAD
) {
1791 /* Drain local pagecache count. */
1792 count
= &per_cpu(nr_pagecache_local
, cpu
);
1793 atomic_add(*count
, &nr_pagecache
);
1795 local_irq_disable();
1801 #endif /* CONFIG_HOTPLUG_CPU */
1803 void __init
page_alloc_init(void)
1805 hotcpu_notifier(page_alloc_cpu_notify
, 0);
1808 static unsigned long higherzone_val(struct zone
*z
, int max_zone
,
1811 int z_idx
= zone_idx(z
);
1812 struct zone
*higherzone
;
1813 unsigned long pages
;
1815 /* there is no higher zone to get a contribution from */
1816 if (z_idx
== MAX_NR_ZONES
-1)
1819 higherzone
= &z
->zone_pgdat
->node_zones
[z_idx
+1];
1821 /* We always start with the higher zone's protection value */
1822 pages
= higherzone
->protection
[alloc_type
];
1825 * We get a lower-zone-protection contribution only if there are
1826 * pages in the higher zone and if we're not the highest zone
1827 * in the current zonelist. e.g., never happens for GFP_DMA. Happens
1828 * only for ZONE_DMA in a GFP_KERNEL allocation and happens for ZONE_DMA
1829 * and ZONE_NORMAL for a GFP_HIGHMEM allocation.
1831 if (higherzone
->present_pages
&& z_idx
< alloc_type
)
1832 pages
+= higherzone
->pages_low
* sysctl_lower_zone_protection
;
1838 * setup_per_zone_protection - called whenver min_free_kbytes or
1839 * sysctl_lower_zone_protection changes. Ensures that each zone
1840 * has a correct pages_protected value, so an adequate number of
1841 * pages are left in the zone after a successful __alloc_pages().
1843 * This algorithm is way confusing. I tries to keep the same behavior
1844 * as we had with the incremental min iterative algorithm.
1846 static void setup_per_zone_protection(void)
1848 struct pglist_data
*pgdat
;
1849 struct zone
*zones
, *zone
;
1853 for_each_pgdat(pgdat
) {
1854 zones
= pgdat
->node_zones
;
1856 for (i
= 0, max_zone
= 0; i
< MAX_NR_ZONES
; i
++)
1857 if (zones
[i
].present_pages
)
1861 * For each of the different allocation types:
1862 * GFP_DMA -> GFP_KERNEL -> GFP_HIGHMEM
1864 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1866 * For each of the zones:
1867 * ZONE_HIGHMEM -> ZONE_NORMAL -> ZONE_DMA
1869 for (j
= MAX_NR_ZONES
-1; j
>= 0; j
--) {
1873 * We never protect zones that don't have memory
1874 * in them (j>max_zone) or zones that aren't in
1875 * the zonelists for a certain type of
1876 * allocation (j>=i). We have to assign these
1877 * to zero because the lower zones take
1878 * contributions from the higher zones.
1880 if (j
> max_zone
|| j
>= i
) {
1881 zone
->protection
[i
] = 0;
1885 * The contribution of the next higher zone
1887 zone
->protection
[i
] = higherzone_val(zone
,
1895 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
1896 * that the pages_{min,low,high} values for each zone are set correctly
1897 * with respect to min_free_kbytes.
1899 static void setup_per_zone_pages_min(void)
1901 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
1902 unsigned long lowmem_pages
= 0;
1904 unsigned long flags
;
1906 /* Calculate total number of !ZONE_HIGHMEM pages */
1907 for_each_zone(zone
) {
1908 if (!is_highmem(zone
))
1909 lowmem_pages
+= zone
->present_pages
;
1912 for_each_zone(zone
) {
1913 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1914 if (is_highmem(zone
)) {
1916 * Often, highmem doesn't need to reserve any pages.
1917 * But the pages_min/low/high values are also used for
1918 * batching up page reclaim activity so we need a
1919 * decent value here.
1923 min_pages
= zone
->present_pages
/ 1024;
1924 if (min_pages
< SWAP_CLUSTER_MAX
)
1925 min_pages
= SWAP_CLUSTER_MAX
;
1926 if (min_pages
> 128)
1928 zone
->pages_min
= min_pages
;
1930 /* if it's a lowmem zone, reserve a number of pages
1931 * proportionate to the zone's size.
1933 zone
->pages_min
= (pages_min
* zone
->present_pages
) /
1937 zone
->pages_low
= zone
->pages_min
* 2;
1938 zone
->pages_high
= zone
->pages_min
* 3;
1939 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1944 * Initialise min_free_kbytes.
1946 * For small machines we want it small (128k min). For large machines
1947 * we want it large (16MB max). But it is not linear, because network
1948 * bandwidth does not increase linearly with machine size. We use
1950 * min_free_kbytes = sqrt(lowmem_kbytes)
1966 static int __init
init_per_zone_pages_min(void)
1968 unsigned long lowmem_kbytes
;
1970 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
1972 min_free_kbytes
= int_sqrt(lowmem_kbytes
);
1973 if (min_free_kbytes
< 128)
1974 min_free_kbytes
= 128;
1975 if (min_free_kbytes
> 16384)
1976 min_free_kbytes
= 16384;
1977 setup_per_zone_pages_min();
1978 setup_per_zone_protection();
1981 module_init(init_per_zone_pages_min
)
1984 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1985 * that we can call two helper functions whenever min_free_kbytes
1988 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
1989 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1991 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1992 setup_per_zone_pages_min();
1993 setup_per_zone_protection();
1998 * lower_zone_protection_sysctl_handler - just a wrapper around
1999 * proc_dointvec() so that we can call setup_per_zone_protection()
2000 * whenever sysctl_lower_zone_protection changes.
2002 int lower_zone_protection_sysctl_handler(ctl_table
*table
, int write
,
2003 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2005 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2006 setup_per_zone_protection();
2011 * allocate a large system hash table from bootmem
2012 * - it is assumed that the hash table must contain an exact power-of-2
2013 * quantity of entries
2015 void *__init
alloc_large_system_hash(const char *tablename
,
2016 unsigned long bucketsize
,
2017 unsigned long numentries
,
2019 int consider_highmem
,
2020 unsigned int *_hash_shift
,
2021 unsigned int *_hash_mask
)
2023 unsigned long long max
;
2024 unsigned long log2qty
, size
;
2027 /* allow the kernel cmdline to have a say */
2029 /* round applicable memory size up to nearest megabyte */
2030 numentries
= consider_highmem
? nr_all_pages
: nr_kernel_pages
;
2031 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2032 numentries
>>= 20 - PAGE_SHIFT
;
2033 numentries
<<= 20 - PAGE_SHIFT
;
2035 /* limit to 1 bucket per 2^scale bytes of low memory */
2036 if (scale
> PAGE_SHIFT
)
2037 numentries
>>= (scale
- PAGE_SHIFT
);
2039 numentries
<<= (PAGE_SHIFT
- scale
);
2041 /* rounded up to nearest power of 2 in size */
2042 numentries
= 1UL << (long_log2(numentries
) + 1);
2044 /* limit allocation size to 1/16 total memory */
2045 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2046 do_div(max
, bucketsize
);
2048 if (numentries
> max
)
2051 log2qty
= long_log2(numentries
);
2054 size
= bucketsize
<< log2qty
;
2055 table
= alloc_bootmem(size
);
2056 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2059 panic("Failed to allocate %s hash table\n", tablename
);
2061 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2064 long_log2(size
) - PAGE_SHIFT
,
2068 *_hash_shift
= log2qty
;
2070 *_hash_mask
= (1 << log2qty
) - 1;