initial commit with v2.6.9
[linux-2.6.9-moxart.git] / fs / inode.c
blob8cd74200bdfff89869597b8fc222ce4d40f5d528
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/config.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/dcache.h>
11 #include <linux/init.h>
12 #include <linux/quotaops.h>
13 #include <linux/slab.h>
14 #include <linux/writeback.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
26 * This is needed for the following functions:
27 * - inode_has_buffers
28 * - invalidate_inode_buffers
29 * - fsync_bdev
30 * - invalidate_bdev
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
43 * Famous last words.
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask;
59 static unsigned int i_hash_shift;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 spinlock_t inode_lock = SPIN_LOCK_UNLOCKED;
86 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 DECLARE_MUTEX(iprune_sem);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat;
100 static kmem_cache_t * inode_cachep;
102 static struct inode *alloc_inode(struct super_block *sb)
104 static struct address_space_operations empty_aops;
105 static struct inode_operations empty_iops;
106 static struct file_operations empty_fops;
107 struct inode *inode;
109 if (sb->s_op->alloc_inode)
110 inode = sb->s_op->alloc_inode(sb);
111 else
112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
114 if (inode) {
115 struct address_space * const mapping = &inode->i_data;
117 inode->i_sb = sb;
118 inode->i_blkbits = sb->s_blocksize_bits;
119 inode->i_flags = 0;
120 atomic_set(&inode->i_count, 1);
121 inode->i_sock = 0;
122 inode->i_op = &empty_iops;
123 inode->i_fop = &empty_fops;
124 inode->i_nlink = 1;
125 atomic_set(&inode->i_writecount, 0);
126 inode->i_size = 0;
127 inode->i_blocks = 0;
128 inode->i_bytes = 0;
129 inode->i_generation = 0;
130 #ifdef CONFIG_QUOTA
131 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
132 #endif
133 inode->i_pipe = NULL;
134 inode->i_bdev = NULL;
135 inode->i_cdev = NULL;
136 inode->i_rdev = 0;
137 inode->i_security = NULL;
138 inode->dirtied_when = 0;
139 if (security_inode_alloc(inode)) {
140 if (inode->i_sb->s_op->destroy_inode)
141 inode->i_sb->s_op->destroy_inode(inode);
142 else
143 kmem_cache_free(inode_cachep, (inode));
144 return NULL;
147 mapping->a_ops = &empty_aops;
148 mapping->host = inode;
149 mapping->flags = 0;
150 mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
151 mapping->assoc_mapping = NULL;
152 mapping->backing_dev_info = &default_backing_dev_info;
155 * If the block_device provides a backing_dev_info for client
156 * inodes then use that. Otherwise the inode share the bdev's
157 * backing_dev_info.
159 if (sb->s_bdev) {
160 struct backing_dev_info *bdi;
162 bdi = sb->s_bdev->bd_inode_backing_dev_info;
163 if (!bdi)
164 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
165 mapping->backing_dev_info = bdi;
167 memset(&inode->u, 0, sizeof(inode->u));
168 inode->i_mapping = mapping;
170 return inode;
173 void destroy_inode(struct inode *inode)
175 if (inode_has_buffers(inode))
176 BUG();
177 security_inode_free(inode);
178 if (inode->i_sb->s_op->destroy_inode)
179 inode->i_sb->s_op->destroy_inode(inode);
180 else
181 kmem_cache_free(inode_cachep, (inode));
186 * These are initializations that only need to be done
187 * once, because the fields are idempotent across use
188 * of the inode, so let the slab aware of that.
190 void inode_init_once(struct inode *inode)
192 memset(inode, 0, sizeof(*inode));
193 INIT_HLIST_NODE(&inode->i_hash);
194 INIT_LIST_HEAD(&inode->i_dentry);
195 INIT_LIST_HEAD(&inode->i_devices);
196 sema_init(&inode->i_sem, 1);
197 init_rwsem(&inode->i_alloc_sem);
198 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
199 spin_lock_init(&inode->i_data.tree_lock);
200 spin_lock_init(&inode->i_data.i_mmap_lock);
201 atomic_set(&inode->i_data.truncate_count, 0);
202 INIT_LIST_HEAD(&inode->i_data.private_list);
203 spin_lock_init(&inode->i_data.private_lock);
204 INIT_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
205 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
206 spin_lock_init(&inode->i_lock);
207 i_size_ordered_init(inode);
210 EXPORT_SYMBOL(inode_init_once);
212 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
214 struct inode * inode = (struct inode *) foo;
216 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
217 SLAB_CTOR_CONSTRUCTOR)
218 inode_init_once(inode);
222 * inode_lock must be held
224 void __iget(struct inode * inode)
226 if (atomic_read(&inode->i_count)) {
227 atomic_inc(&inode->i_count);
228 return;
230 atomic_inc(&inode->i_count);
231 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
232 list_move(&inode->i_list, &inode_in_use);
233 inodes_stat.nr_unused--;
237 * clear_inode - clear an inode
238 * @inode: inode to clear
240 * This is called by the filesystem to tell us
241 * that the inode is no longer useful. We just
242 * terminate it with extreme prejudice.
244 void clear_inode(struct inode *inode)
246 might_sleep();
247 invalidate_inode_buffers(inode);
249 if (inode->i_data.nrpages)
250 BUG();
251 if (!(inode->i_state & I_FREEING))
252 BUG();
253 if (inode->i_state & I_CLEAR)
254 BUG();
255 wait_on_inode(inode);
256 DQUOT_DROP(inode);
257 if (inode->i_sb && inode->i_sb->s_op->clear_inode)
258 inode->i_sb->s_op->clear_inode(inode);
259 if (inode->i_bdev)
260 bd_forget(inode);
261 if (inode->i_cdev)
262 cd_forget(inode);
263 inode->i_state = I_CLEAR;
266 EXPORT_SYMBOL(clear_inode);
269 * dispose_list - dispose of the contents of a local list
270 * @head: the head of the list to free
272 * Dispose-list gets a local list with local inodes in it, so it doesn't
273 * need to worry about list corruption and SMP locks.
275 static void dispose_list(struct list_head *head)
277 int nr_disposed = 0;
279 while (!list_empty(head)) {
280 struct inode *inode;
282 inode = list_entry(head->next, struct inode, i_list);
283 list_del(&inode->i_list);
285 if (inode->i_data.nrpages)
286 truncate_inode_pages(&inode->i_data, 0);
287 clear_inode(inode);
288 destroy_inode(inode);
289 nr_disposed++;
291 spin_lock(&inode_lock);
292 inodes_stat.nr_inodes -= nr_disposed;
293 spin_unlock(&inode_lock);
297 * Invalidate all inodes for a device.
299 static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose)
301 struct list_head *next;
302 int busy = 0, count = 0;
304 next = head->next;
305 for (;;) {
306 struct list_head * tmp = next;
307 struct inode * inode;
309 next = next->next;
310 if (tmp == head)
311 break;
312 inode = list_entry(tmp, struct inode, i_list);
313 if (inode->i_sb != sb)
314 continue;
315 invalidate_inode_buffers(inode);
316 if (!atomic_read(&inode->i_count)) {
317 hlist_del_init(&inode->i_hash);
318 list_move(&inode->i_list, dispose);
319 inode->i_state |= I_FREEING;
320 count++;
321 continue;
323 busy = 1;
325 /* only unused inodes may be cached with i_count zero */
326 inodes_stat.nr_unused -= count;
327 return busy;
331 * This is a two-stage process. First we collect all
332 * offending inodes onto the throw-away list, and in
333 * the second stage we actually dispose of them. This
334 * is because we don't want to sleep while messing
335 * with the global lists..
339 * invalidate_inodes - discard the inodes on a device
340 * @sb: superblock
342 * Discard all of the inodes for a given superblock. If the discard
343 * fails because there are busy inodes then a non zero value is returned.
344 * If the discard is successful all the inodes have been discarded.
346 int invalidate_inodes(struct super_block * sb)
348 int busy;
349 LIST_HEAD(throw_away);
351 down(&iprune_sem);
352 spin_lock(&inode_lock);
353 busy = invalidate_list(&inode_in_use, sb, &throw_away);
354 busy |= invalidate_list(&inode_unused, sb, &throw_away);
355 busy |= invalidate_list(&sb->s_dirty, sb, &throw_away);
356 busy |= invalidate_list(&sb->s_io, sb, &throw_away);
357 spin_unlock(&inode_lock);
359 dispose_list(&throw_away);
360 up(&iprune_sem);
362 return busy;
365 EXPORT_SYMBOL(invalidate_inodes);
367 int __invalidate_device(struct block_device *bdev, int do_sync)
369 struct super_block *sb;
370 int res;
372 if (do_sync)
373 fsync_bdev(bdev);
375 res = 0;
376 sb = get_super(bdev);
377 if (sb) {
379 * no need to lock the super, get_super holds the
380 * read semaphore so the filesystem cannot go away
381 * under us (->put_super runs with the write lock
382 * hold).
384 shrink_dcache_sb(sb);
385 res = invalidate_inodes(sb);
386 drop_super(sb);
388 invalidate_bdev(bdev, 0);
389 return res;
392 EXPORT_SYMBOL(__invalidate_device);
394 static int can_unuse(struct inode *inode)
396 if (inode->i_state)
397 return 0;
398 if (inode_has_buffers(inode))
399 return 0;
400 if (atomic_read(&inode->i_count))
401 return 0;
402 if (inode->i_data.nrpages)
403 return 0;
404 return 1;
408 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
409 * a temporary list and then are freed outside inode_lock by dispose_list().
411 * Any inodes which are pinned purely because of attached pagecache have their
412 * pagecache removed. We expect the final iput() on that inode to add it to
413 * the front of the inode_unused list. So look for it there and if the
414 * inode is still freeable, proceed. The right inode is found 99.9% of the
415 * time in testing on a 4-way.
417 * If the inode has metadata buffers attached to mapping->private_list then
418 * try to remove them.
420 static void prune_icache(int nr_to_scan)
422 LIST_HEAD(freeable);
423 int nr_pruned = 0;
424 int nr_scanned;
425 unsigned long reap = 0;
427 down(&iprune_sem);
428 spin_lock(&inode_lock);
429 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
430 struct inode *inode;
432 if (list_empty(&inode_unused))
433 break;
435 inode = list_entry(inode_unused.prev, struct inode, i_list);
437 if (inode->i_state || atomic_read(&inode->i_count)) {
438 list_move(&inode->i_list, &inode_unused);
439 continue;
441 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
442 __iget(inode);
443 spin_unlock(&inode_lock);
444 if (remove_inode_buffers(inode))
445 reap += invalidate_inode_pages(&inode->i_data);
446 iput(inode);
447 spin_lock(&inode_lock);
449 if (inode != list_entry(inode_unused.next,
450 struct inode, i_list))
451 continue; /* wrong inode or list_empty */
452 if (!can_unuse(inode))
453 continue;
455 hlist_del_init(&inode->i_hash);
456 list_move(&inode->i_list, &freeable);
457 inode->i_state |= I_FREEING;
458 nr_pruned++;
460 inodes_stat.nr_unused -= nr_pruned;
461 spin_unlock(&inode_lock);
463 dispose_list(&freeable);
464 up(&iprune_sem);
466 if (current_is_kswapd())
467 mod_page_state(kswapd_inodesteal, reap);
468 else
469 mod_page_state(pginodesteal, reap);
473 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
474 * "unused" means that no dentries are referring to the inodes: the files are
475 * not open and the dcache references to those inodes have already been
476 * reclaimed.
478 * This function is passed the number of inodes to scan, and it returns the
479 * total number of remaining possibly-reclaimable inodes.
481 static int shrink_icache_memory(int nr, unsigned int gfp_mask)
483 if (nr) {
485 * Nasty deadlock avoidance. We may hold various FS locks,
486 * and we don't want to recurse into the FS that called us
487 * in clear_inode() and friends..
489 if (!(gfp_mask & __GFP_FS))
490 return -1;
491 prune_icache(nr);
493 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
496 static void __wait_on_freeing_inode(struct inode *inode);
498 * Called with the inode lock held.
499 * NOTE: we are not increasing the inode-refcount, you must call __iget()
500 * by hand after calling find_inode now! This simplifies iunique and won't
501 * add any additional branch in the common code.
503 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
505 struct hlist_node *node;
506 struct inode * inode = NULL;
508 repeat:
509 hlist_for_each (node, head) {
510 inode = hlist_entry(node, struct inode, i_hash);
511 if (inode->i_sb != sb)
512 continue;
513 if (!test(inode, data))
514 continue;
515 if (inode->i_state & (I_FREEING|I_CLEAR)) {
516 __wait_on_freeing_inode(inode);
517 goto repeat;
519 break;
521 return node ? inode : NULL;
525 * find_inode_fast is the fast path version of find_inode, see the comment at
526 * iget_locked for details.
528 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
530 struct hlist_node *node;
531 struct inode * inode = NULL;
533 repeat:
534 hlist_for_each (node, head) {
535 inode = hlist_entry(node, struct inode, i_hash);
536 if (inode->i_ino != ino)
537 continue;
538 if (inode->i_sb != sb)
539 continue;
540 if (inode->i_state & (I_FREEING|I_CLEAR)) {
541 __wait_on_freeing_inode(inode);
542 goto repeat;
544 break;
546 return node ? inode : NULL;
550 * new_inode - obtain an inode
551 * @sb: superblock
553 * Allocates a new inode for given superblock.
555 struct inode *new_inode(struct super_block *sb)
557 static unsigned long last_ino;
558 struct inode * inode;
560 spin_lock_prefetch(&inode_lock);
562 inode = alloc_inode(sb);
563 if (inode) {
564 spin_lock(&inode_lock);
565 inodes_stat.nr_inodes++;
566 list_add(&inode->i_list, &inode_in_use);
567 inode->i_ino = ++last_ino;
568 inode->i_state = 0;
569 spin_unlock(&inode_lock);
571 return inode;
574 EXPORT_SYMBOL(new_inode);
576 void unlock_new_inode(struct inode *inode)
579 * This is special! We do not need the spinlock
580 * when clearing I_LOCK, because we're guaranteed
581 * that nobody else tries to do anything about the
582 * state of the inode when it is locked, as we
583 * just created it (so there can be no old holders
584 * that haven't tested I_LOCK).
586 inode->i_state &= ~(I_LOCK|I_NEW);
587 wake_up_inode(inode);
590 EXPORT_SYMBOL(unlock_new_inode);
593 * This is called without the inode lock held.. Be careful.
595 * We no longer cache the sb_flags in i_flags - see fs.h
596 * -- rmk@arm.uk.linux.org
598 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
600 struct inode * inode;
602 inode = alloc_inode(sb);
603 if (inode) {
604 struct inode * old;
606 spin_lock(&inode_lock);
607 /* We released the lock, so.. */
608 old = find_inode(sb, head, test, data);
609 if (!old) {
610 if (set(inode, data))
611 goto set_failed;
613 inodes_stat.nr_inodes++;
614 list_add(&inode->i_list, &inode_in_use);
615 hlist_add_head(&inode->i_hash, head);
616 inode->i_state = I_LOCK|I_NEW;
617 spin_unlock(&inode_lock);
619 /* Return the locked inode with I_NEW set, the
620 * caller is responsible for filling in the contents
622 return inode;
626 * Uhhuh, somebody else created the same inode under
627 * us. Use the old inode instead of the one we just
628 * allocated.
630 __iget(old);
631 spin_unlock(&inode_lock);
632 destroy_inode(inode);
633 inode = old;
634 wait_on_inode(inode);
636 return inode;
638 set_failed:
639 spin_unlock(&inode_lock);
640 destroy_inode(inode);
641 return NULL;
645 * get_new_inode_fast is the fast path version of get_new_inode, see the
646 * comment at iget_locked for details.
648 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
650 struct inode * inode;
652 inode = alloc_inode(sb);
653 if (inode) {
654 struct inode * old;
656 spin_lock(&inode_lock);
657 /* We released the lock, so.. */
658 old = find_inode_fast(sb, head, ino);
659 if (!old) {
660 inode->i_ino = ino;
661 inodes_stat.nr_inodes++;
662 list_add(&inode->i_list, &inode_in_use);
663 hlist_add_head(&inode->i_hash, head);
664 inode->i_state = I_LOCK|I_NEW;
665 spin_unlock(&inode_lock);
667 /* Return the locked inode with I_NEW set, the
668 * caller is responsible for filling in the contents
670 return inode;
674 * Uhhuh, somebody else created the same inode under
675 * us. Use the old inode instead of the one we just
676 * allocated.
678 __iget(old);
679 spin_unlock(&inode_lock);
680 destroy_inode(inode);
681 inode = old;
682 wait_on_inode(inode);
684 return inode;
687 static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
689 unsigned long tmp;
691 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
692 L1_CACHE_BYTES;
693 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
694 return tmp & I_HASHMASK;
698 * iunique - get a unique inode number
699 * @sb: superblock
700 * @max_reserved: highest reserved inode number
702 * Obtain an inode number that is unique on the system for a given
703 * superblock. This is used by file systems that have no natural
704 * permanent inode numbering system. An inode number is returned that
705 * is higher than the reserved limit but unique.
707 * BUGS:
708 * With a large number of inodes live on the file system this function
709 * currently becomes quite slow.
711 ino_t iunique(struct super_block *sb, ino_t max_reserved)
713 static ino_t counter;
714 struct inode *inode;
715 struct hlist_head * head;
716 ino_t res;
717 spin_lock(&inode_lock);
718 retry:
719 if (counter > max_reserved) {
720 head = inode_hashtable + hash(sb,counter);
721 res = counter++;
722 inode = find_inode_fast(sb, head, res);
723 if (!inode) {
724 spin_unlock(&inode_lock);
725 return res;
727 } else {
728 counter = max_reserved + 1;
730 goto retry;
734 EXPORT_SYMBOL(iunique);
736 struct inode *igrab(struct inode *inode)
738 spin_lock(&inode_lock);
739 if (!(inode->i_state & I_FREEING))
740 __iget(inode);
741 else
743 * Handle the case where s_op->clear_inode is not been
744 * called yet, and somebody is calling igrab
745 * while the inode is getting freed.
747 inode = NULL;
748 spin_unlock(&inode_lock);
749 return inode;
752 EXPORT_SYMBOL(igrab);
755 * ifind - internal function, you want ilookup5() or iget5().
756 * @sb: super block of file system to search
757 * @head: the head of the list to search
758 * @test: callback used for comparisons between inodes
759 * @data: opaque data pointer to pass to @test
761 * ifind() searches for the inode specified by @data in the inode
762 * cache. This is a generalized version of ifind_fast() for file systems where
763 * the inode number is not sufficient for unique identification of an inode.
765 * If the inode is in the cache, the inode is returned with an incremented
766 * reference count.
768 * Otherwise NULL is returned.
770 * Note, @test is called with the inode_lock held, so can't sleep.
772 static inline struct inode *ifind(struct super_block *sb,
773 struct hlist_head *head, int (*test)(struct inode *, void *),
774 void *data)
776 struct inode *inode;
778 spin_lock(&inode_lock);
779 inode = find_inode(sb, head, test, data);
780 if (inode) {
781 __iget(inode);
782 spin_unlock(&inode_lock);
783 wait_on_inode(inode);
784 return inode;
786 spin_unlock(&inode_lock);
787 return NULL;
791 * ifind_fast - internal function, you want ilookup() or iget().
792 * @sb: super block of file system to search
793 * @head: head of the list to search
794 * @ino: inode number to search for
796 * ifind_fast() searches for the inode @ino in the inode cache. This is for
797 * file systems where the inode number is sufficient for unique identification
798 * of an inode.
800 * If the inode is in the cache, the inode is returned with an incremented
801 * reference count.
803 * Otherwise NULL is returned.
805 static inline struct inode *ifind_fast(struct super_block *sb,
806 struct hlist_head *head, unsigned long ino)
808 struct inode *inode;
810 spin_lock(&inode_lock);
811 inode = find_inode_fast(sb, head, ino);
812 if (inode) {
813 __iget(inode);
814 spin_unlock(&inode_lock);
815 wait_on_inode(inode);
816 return inode;
818 spin_unlock(&inode_lock);
819 return NULL;
823 * ilookup5 - search for an inode in the inode cache
824 * @sb: super block of file system to search
825 * @hashval: hash value (usually inode number) to search for
826 * @test: callback used for comparisons between inodes
827 * @data: opaque data pointer to pass to @test
829 * ilookup5() uses ifind() to search for the inode specified by @hashval and
830 * @data in the inode cache. This is a generalized version of ilookup() for
831 * file systems where the inode number is not sufficient for unique
832 * identification of an inode.
834 * If the inode is in the cache, the inode is returned with an incremented
835 * reference count.
837 * Otherwise NULL is returned.
839 * Note, @test is called with the inode_lock held, so can't sleep.
841 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
842 int (*test)(struct inode *, void *), void *data)
844 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
846 return ifind(sb, head, test, data);
849 EXPORT_SYMBOL(ilookup5);
852 * ilookup - search for an inode in the inode cache
853 * @sb: super block of file system to search
854 * @ino: inode number to search for
856 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
857 * This is for file systems where the inode number is sufficient for unique
858 * identification of an inode.
860 * If the inode is in the cache, the inode is returned with an incremented
861 * reference count.
863 * Otherwise NULL is returned.
865 struct inode *ilookup(struct super_block *sb, unsigned long ino)
867 struct hlist_head *head = inode_hashtable + hash(sb, ino);
869 return ifind_fast(sb, head, ino);
872 EXPORT_SYMBOL(ilookup);
875 * iget5_locked - obtain an inode from a mounted file system
876 * @sb: super block of file system
877 * @hashval: hash value (usually inode number) to get
878 * @test: callback used for comparisons between inodes
879 * @set: callback used to initialize a new struct inode
880 * @data: opaque data pointer to pass to @test and @set
882 * This is iget() without the read_inode() portion of get_new_inode().
884 * iget5_locked() uses ifind() to search for the inode specified by @hashval
885 * and @data in the inode cache and if present it is returned with an increased
886 * reference count. This is a generalized version of iget_locked() for file
887 * systems where the inode number is not sufficient for unique identification
888 * of an inode.
890 * If the inode is not in cache, get_new_inode() is called to allocate a new
891 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
892 * file system gets to fill it in before unlocking it via unlock_new_inode().
894 * Note both @test and @set are called with the inode_lock held, so can't sleep.
896 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
897 int (*test)(struct inode *, void *),
898 int (*set)(struct inode *, void *), void *data)
900 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
901 struct inode *inode;
903 inode = ifind(sb, head, test, data);
904 if (inode)
905 return inode;
907 * get_new_inode() will do the right thing, re-trying the search
908 * in case it had to block at any point.
910 return get_new_inode(sb, head, test, set, data);
913 EXPORT_SYMBOL(iget5_locked);
916 * iget_locked - obtain an inode from a mounted file system
917 * @sb: super block of file system
918 * @ino: inode number to get
920 * This is iget() without the read_inode() portion of get_new_inode_fast().
922 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
923 * the inode cache and if present it is returned with an increased reference
924 * count. This is for file systems where the inode number is sufficient for
925 * unique identification of an inode.
927 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
928 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
929 * The file system gets to fill it in before unlocking it via
930 * unlock_new_inode().
932 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
934 struct hlist_head *head = inode_hashtable + hash(sb, ino);
935 struct inode *inode;
937 inode = ifind_fast(sb, head, ino);
938 if (inode)
939 return inode;
941 * get_new_inode_fast() will do the right thing, re-trying the search
942 * in case it had to block at any point.
944 return get_new_inode_fast(sb, head, ino);
947 EXPORT_SYMBOL(iget_locked);
950 * __insert_inode_hash - hash an inode
951 * @inode: unhashed inode
952 * @hashval: unsigned long value used to locate this object in the
953 * inode_hashtable.
955 * Add an inode to the inode hash for this superblock.
957 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
959 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
960 spin_lock(&inode_lock);
961 hlist_add_head(&inode->i_hash, head);
962 spin_unlock(&inode_lock);
965 EXPORT_SYMBOL(__insert_inode_hash);
968 * remove_inode_hash - remove an inode from the hash
969 * @inode: inode to unhash
971 * Remove an inode from the superblock.
973 void remove_inode_hash(struct inode *inode)
975 spin_lock(&inode_lock);
976 hlist_del_init(&inode->i_hash);
977 spin_unlock(&inode_lock);
980 EXPORT_SYMBOL(remove_inode_hash);
983 * Tell the filesystem that this inode is no longer of any interest and should
984 * be completely destroyed.
986 * We leave the inode in the inode hash table until *after* the filesystem's
987 * ->delete_inode completes. This ensures that an iget (such as nfsd might
988 * instigate) will always find up-to-date information either in the hash or on
989 * disk.
991 * I_FREEING is set so that no-one will take a new reference to the inode while
992 * it is being deleted.
994 void generic_delete_inode(struct inode *inode)
996 struct super_operations *op = inode->i_sb->s_op;
998 list_del_init(&inode->i_list);
999 inode->i_state|=I_FREEING;
1000 inodes_stat.nr_inodes--;
1001 spin_unlock(&inode_lock);
1003 if (inode->i_data.nrpages)
1004 truncate_inode_pages(&inode->i_data, 0);
1006 security_inode_delete(inode);
1008 if (op->delete_inode) {
1009 void (*delete)(struct inode *) = op->delete_inode;
1010 if (!is_bad_inode(inode))
1011 DQUOT_INIT(inode);
1012 /* s_op->delete_inode internally recalls clear_inode() */
1013 delete(inode);
1014 } else
1015 clear_inode(inode);
1016 spin_lock(&inode_lock);
1017 hlist_del_init(&inode->i_hash);
1018 spin_unlock(&inode_lock);
1019 wake_up_inode(inode);
1020 if (inode->i_state != I_CLEAR)
1021 BUG();
1022 destroy_inode(inode);
1025 EXPORT_SYMBOL(generic_delete_inode);
1027 static void generic_forget_inode(struct inode *inode)
1029 struct super_block *sb = inode->i_sb;
1031 if (!hlist_unhashed(&inode->i_hash)) {
1032 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1033 list_move(&inode->i_list, &inode_unused);
1034 inodes_stat.nr_unused++;
1035 spin_unlock(&inode_lock);
1036 if (!sb || (sb->s_flags & MS_ACTIVE))
1037 return;
1038 write_inode_now(inode, 1);
1039 spin_lock(&inode_lock);
1040 inodes_stat.nr_unused--;
1041 hlist_del_init(&inode->i_hash);
1043 list_del_init(&inode->i_list);
1044 inode->i_state|=I_FREEING;
1045 inodes_stat.nr_inodes--;
1046 spin_unlock(&inode_lock);
1047 if (inode->i_data.nrpages)
1048 truncate_inode_pages(&inode->i_data, 0);
1049 clear_inode(inode);
1050 destroy_inode(inode);
1054 * Normal UNIX filesystem behaviour: delete the
1055 * inode when the usage count drops to zero, and
1056 * i_nlink is zero.
1058 static void generic_drop_inode(struct inode *inode)
1060 if (!inode->i_nlink)
1061 generic_delete_inode(inode);
1062 else
1063 generic_forget_inode(inode);
1067 * Called when we're dropping the last reference
1068 * to an inode.
1070 * Call the FS "drop()" function, defaulting to
1071 * the legacy UNIX filesystem behaviour..
1073 * NOTE! NOTE! NOTE! We're called with the inode lock
1074 * held, and the drop function is supposed to release
1075 * the lock!
1077 static inline void iput_final(struct inode *inode)
1079 struct super_operations *op = inode->i_sb->s_op;
1080 void (*drop)(struct inode *) = generic_drop_inode;
1082 if (op && op->drop_inode)
1083 drop = op->drop_inode;
1084 drop(inode);
1088 * iput - put an inode
1089 * @inode: inode to put
1091 * Puts an inode, dropping its usage count. If the inode use count hits
1092 * zero the inode is also then freed and may be destroyed.
1094 void iput(struct inode *inode)
1096 if (inode) {
1097 struct super_operations *op = inode->i_sb->s_op;
1099 if (inode->i_state == I_CLEAR)
1100 BUG();
1102 if (op && op->put_inode)
1103 op->put_inode(inode);
1105 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1106 iput_final(inode);
1110 EXPORT_SYMBOL(iput);
1113 * bmap - find a block number in a file
1114 * @inode: inode of file
1115 * @block: block to find
1117 * Returns the block number on the device holding the inode that
1118 * is the disk block number for the block of the file requested.
1119 * That is, asked for block 4 of inode 1 the function will return the
1120 * disk block relative to the disk start that holds that block of the
1121 * file.
1123 sector_t bmap(struct inode * inode, sector_t block)
1125 sector_t res = 0;
1126 if (inode->i_mapping->a_ops->bmap)
1127 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1128 return res;
1131 EXPORT_SYMBOL(bmap);
1134 * Return true if the filesystem which backs this inode considers the two
1135 * passed timespecs to be sufficiently different to warrant flushing the
1136 * altered time out to disk.
1138 static int inode_times_differ(struct inode *inode,
1139 struct timespec *old, struct timespec *new)
1141 if (IS_ONE_SECOND(inode))
1142 return old->tv_sec != new->tv_sec;
1143 return !timespec_equal(old, new);
1147 * update_atime - update the access time
1148 * @inode: inode accessed
1150 * Update the accessed time on an inode and mark it for writeback.
1151 * This function automatically handles read only file systems and media,
1152 * as well as the "noatime" flag and inode specific "noatime" markers.
1154 void update_atime(struct inode *inode)
1156 struct timespec now;
1158 if (IS_NOATIME(inode))
1159 return;
1160 if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode))
1161 return;
1162 if (IS_RDONLY(inode))
1163 return;
1165 now = current_kernel_time();
1166 if (inode_times_differ(inode, &inode->i_atime, &now)) {
1167 inode->i_atime = now;
1168 mark_inode_dirty_sync(inode);
1169 } else {
1170 if (!timespec_equal(&inode->i_atime, &now))
1171 inode->i_atime = now;
1175 EXPORT_SYMBOL(update_atime);
1178 * inode_update_time - update mtime and ctime time
1179 * @inode: inode accessed
1180 * @ctime_too: update ctime too
1182 * Update the mtime time on an inode and mark it for writeback.
1183 * When ctime_too is specified update the ctime too.
1186 void inode_update_time(struct inode *inode, int ctime_too)
1188 struct timespec now;
1189 int sync_it = 0;
1191 if (IS_NOCMTIME(inode))
1192 return;
1193 if (IS_RDONLY(inode))
1194 return;
1196 now = current_kernel_time();
1198 if (inode_times_differ(inode, &inode->i_mtime, &now))
1199 sync_it = 1;
1200 inode->i_mtime = now;
1202 if (ctime_too) {
1203 if (inode_times_differ(inode, &inode->i_ctime, &now))
1204 sync_it = 1;
1205 inode->i_ctime = now;
1207 if (sync_it)
1208 mark_inode_dirty_sync(inode);
1211 EXPORT_SYMBOL(inode_update_time);
1213 int inode_needs_sync(struct inode *inode)
1215 if (IS_SYNC(inode))
1216 return 1;
1217 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1218 return 1;
1219 return 0;
1222 EXPORT_SYMBOL(inode_needs_sync);
1225 * Quota functions that want to walk the inode lists..
1227 #ifdef CONFIG_QUOTA
1229 /* Function back in dquot.c */
1230 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1232 void remove_dquot_ref(struct super_block *sb, int type, struct list_head *tofree_head)
1234 struct inode *inode;
1235 struct list_head *act_head;
1237 if (!sb->dq_op)
1238 return; /* nothing to do */
1239 spin_lock(&inode_lock); /* This lock is for inodes code */
1241 /* We hold dqptr_sem so we are safe against the quota code */
1242 list_for_each(act_head, &inode_in_use) {
1243 inode = list_entry(act_head, struct inode, i_list);
1244 if (inode->i_sb == sb && !IS_NOQUOTA(inode))
1245 remove_inode_dquot_ref(inode, type, tofree_head);
1247 list_for_each(act_head, &inode_unused) {
1248 inode = list_entry(act_head, struct inode, i_list);
1249 if (inode->i_sb == sb && !IS_NOQUOTA(inode))
1250 remove_inode_dquot_ref(inode, type, tofree_head);
1252 list_for_each(act_head, &sb->s_dirty) {
1253 inode = list_entry(act_head, struct inode, i_list);
1254 if (!IS_NOQUOTA(inode))
1255 remove_inode_dquot_ref(inode, type, tofree_head);
1257 list_for_each(act_head, &sb->s_io) {
1258 inode = list_entry(act_head, struct inode, i_list);
1259 if (!IS_NOQUOTA(inode))
1260 remove_inode_dquot_ref(inode, type, tofree_head);
1262 spin_unlock(&inode_lock);
1265 #endif
1268 * Hashed waitqueues for wait_on_inode(). The table is pretty small - the
1269 * kernel doesn't lock many inodes at the same time.
1271 #define I_WAIT_TABLE_ORDER 3
1272 static struct i_wait_queue_head {
1273 wait_queue_head_t wqh;
1274 } ____cacheline_aligned_in_smp i_wait_queue_heads[1<<I_WAIT_TABLE_ORDER];
1277 * Return the address of the waitqueue_head to be used for this inode
1279 static wait_queue_head_t *i_waitq_head(struct inode *inode)
1281 return &i_wait_queue_heads[hash_ptr(inode, I_WAIT_TABLE_ORDER)].wqh;
1284 void __wait_on_inode(struct inode *inode)
1286 DECLARE_WAITQUEUE(wait, current);
1287 wait_queue_head_t *wq = i_waitq_head(inode);
1289 add_wait_queue(wq, &wait);
1290 repeat:
1291 set_current_state(TASK_UNINTERRUPTIBLE);
1292 if (inode->i_state & I_LOCK) {
1293 schedule();
1294 goto repeat;
1296 remove_wait_queue(wq, &wait);
1297 __set_current_state(TASK_RUNNING);
1301 * If we try to find an inode in the inode hash while it is being deleted, we
1302 * have to wait until the filesystem completes its deletion before reporting
1303 * that it isn't found. This is because iget will immediately call
1304 * ->read_inode, and we want to be sure that evidence of the deletion is found
1305 * by ->read_inode.
1307 * This call might return early if an inode which shares the waitq is woken up.
1308 * This is most easily handled by the caller which will loop around again
1309 * looking for the inode.
1311 * This is called with inode_lock held.
1313 static void __wait_on_freeing_inode(struct inode *inode)
1315 DECLARE_WAITQUEUE(wait, current);
1316 wait_queue_head_t *wq = i_waitq_head(inode);
1318 add_wait_queue(wq, &wait);
1319 set_current_state(TASK_UNINTERRUPTIBLE);
1320 spin_unlock(&inode_lock);
1321 schedule();
1322 remove_wait_queue(wq, &wait);
1323 spin_lock(&inode_lock);
1326 void wake_up_inode(struct inode *inode)
1328 wait_queue_head_t *wq = i_waitq_head(inode);
1331 * Prevent speculative execution through spin_unlock(&inode_lock);
1333 smp_mb();
1334 if (waitqueue_active(wq))
1335 wake_up_all(wq);
1338 static __initdata unsigned long ihash_entries;
1339 static int __init set_ihash_entries(char *str)
1341 if (!str)
1342 return 0;
1343 ihash_entries = simple_strtoul(str, &str, 0);
1344 return 1;
1346 __setup("ihash_entries=", set_ihash_entries);
1349 * Initialize the waitqueues and inode hash table.
1351 void __init inode_init_early(void)
1353 int loop;
1355 inode_hashtable =
1356 alloc_large_system_hash("Inode-cache",
1357 sizeof(struct hlist_head),
1358 ihash_entries,
1361 &i_hash_shift,
1362 &i_hash_mask);
1364 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1365 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1368 void __init inode_init(unsigned long mempages)
1370 int i;
1372 for (i = 0; i < ARRAY_SIZE(i_wait_queue_heads); i++)
1373 init_waitqueue_head(&i_wait_queue_heads[i].wqh);
1375 /* inode slab cache */
1376 inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
1377 0, SLAB_PANIC, init_once, NULL);
1378 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1381 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1383 inode->i_mode = mode;
1384 if (S_ISCHR(mode)) {
1385 inode->i_fop = &def_chr_fops;
1386 inode->i_rdev = rdev;
1387 } else if (S_ISBLK(mode)) {
1388 inode->i_fop = &def_blk_fops;
1389 inode->i_rdev = rdev;
1390 } else if (S_ISFIFO(mode))
1391 inode->i_fop = &def_fifo_fops;
1392 else if (S_ISSOCK(mode))
1393 inode->i_fop = &bad_sock_fops;
1394 else
1395 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1396 mode);
1398 EXPORT_SYMBOL(init_special_inode);