initial commit with v2.6.9
[linux-2.6.9-moxart.git] / include / linux / mtd / cfi.h
bloba3efae0cd9a2df764c3d4277f850ce5b585ec12b
2 /* Common Flash Interface structures
3 * See http://support.intel.com/design/flash/technote/index.htm
4 * $Id: cfi.h,v 1.45 2004/07/20 02:44:27 dwmw2 Exp $
5 */
7 #ifndef __MTD_CFI_H__
8 #define __MTD_CFI_H__
10 #include <linux/config.h>
11 #include <linux/version.h>
12 #include <linux/delay.h>
13 #include <linux/types.h>
14 #include <linux/interrupt.h>
15 #include <linux/mtd/flashchip.h>
16 #include <linux/mtd/map.h>
17 #include <linux/mtd/cfi_endian.h>
19 #ifdef CONFIG_MTD_CFI_I1
20 #define cfi_interleave(cfi) 1
21 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1)
22 #else
23 #define cfi_interleave_is_1(cfi) (0)
24 #endif
26 #ifdef CONFIG_MTD_CFI_I2
27 # ifdef cfi_interleave
28 # undef cfi_interleave
29 # define cfi_interleave(cfi) ((cfi)->interleave)
30 # else
31 # define cfi_interleave(cfi) 2
32 # endif
33 #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2)
34 #else
35 #define cfi_interleave_is_2(cfi) (0)
36 #endif
38 #ifdef CONFIG_MTD_CFI_I4
39 # ifdef cfi_interleave
40 # undef cfi_interleave
41 # define cfi_interleave(cfi) ((cfi)->interleave)
42 # else
43 # define cfi_interleave(cfi) 4
44 # endif
45 #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4)
46 #else
47 #define cfi_interleave_is_4(cfi) (0)
48 #endif
50 #ifdef CONFIG_MTD_CFI_I8
51 # ifdef cfi_interleave
52 # undef cfi_interleave
53 # define cfi_interleave(cfi) ((cfi)->interleave)
54 # else
55 # define cfi_interleave(cfi) 8
56 # endif
57 #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8)
58 #else
59 #define cfi_interleave_is_8(cfi) (0)
60 #endif
62 static inline int cfi_interleave_supported(int i)
64 switch (i) {
65 #ifdef CONFIG_MTD_CFI_I1
66 case 1:
67 #endif
68 #ifdef CONFIG_MTD_CFI_I2
69 case 2:
70 #endif
71 #ifdef CONFIG_MTD_CFI_I4
72 case 4:
73 #endif
74 #ifdef CONFIG_MTD_CFI_I8
75 case 8:
76 #endif
77 return 1;
79 default:
80 return 0;
85 /* NB: these values must represents the number of bytes needed to meet the
86 * device type (x8, x16, x32). Eg. a 32 bit device is 4 x 8 bytes.
87 * These numbers are used in calculations.
89 #define CFI_DEVICETYPE_X8 (8 / 8)
90 #define CFI_DEVICETYPE_X16 (16 / 8)
91 #define CFI_DEVICETYPE_X32 (32 / 8)
92 #define CFI_DEVICETYPE_X64 (64 / 8)
94 /* NB: We keep these structures in memory in HOST byteorder, except
95 * where individually noted.
98 /* Basic Query Structure */
99 struct cfi_ident {
100 uint8_t qry[3];
101 uint16_t P_ID;
102 uint16_t P_ADR;
103 uint16_t A_ID;
104 uint16_t A_ADR;
105 uint8_t VccMin;
106 uint8_t VccMax;
107 uint8_t VppMin;
108 uint8_t VppMax;
109 uint8_t WordWriteTimeoutTyp;
110 uint8_t BufWriteTimeoutTyp;
111 uint8_t BlockEraseTimeoutTyp;
112 uint8_t ChipEraseTimeoutTyp;
113 uint8_t WordWriteTimeoutMax;
114 uint8_t BufWriteTimeoutMax;
115 uint8_t BlockEraseTimeoutMax;
116 uint8_t ChipEraseTimeoutMax;
117 uint8_t DevSize;
118 uint16_t InterfaceDesc;
119 uint16_t MaxBufWriteSize;
120 uint8_t NumEraseRegions;
121 uint32_t EraseRegionInfo[0]; /* Not host ordered */
122 } __attribute__((packed));
124 /* Extended Query Structure for both PRI and ALT */
126 struct cfi_extquery {
127 uint8_t pri[3];
128 uint8_t MajorVersion;
129 uint8_t MinorVersion;
130 } __attribute__((packed));
132 /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
134 struct cfi_pri_intelext {
135 uint8_t pri[3];
136 uint8_t MajorVersion;
137 uint8_t MinorVersion;
138 uint32_t FeatureSupport; /* if bit 31 is set then an additional uint32_t feature
139 block follows - FIXME - not currently supported */
140 uint8_t SuspendCmdSupport;
141 uint16_t BlkStatusRegMask;
142 uint8_t VccOptimal;
143 uint8_t VppOptimal;
144 uint8_t NumProtectionFields;
145 uint16_t ProtRegAddr;
146 uint8_t FactProtRegSize;
147 uint8_t UserProtRegSize;
148 } __attribute__((packed));
150 /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
152 struct cfi_pri_amdstd {
153 uint8_t pri[3];
154 uint8_t MajorVersion;
155 uint8_t MinorVersion;
156 uint8_t SiliconRevision; /* bits 1-0: Address Sensitive Unlock */
157 uint8_t EraseSuspend;
158 uint8_t BlkProt;
159 uint8_t TmpBlkUnprotect;
160 uint8_t BlkProtUnprot;
161 uint8_t SimultaneousOps;
162 uint8_t BurstMode;
163 uint8_t PageMode;
164 uint8_t VppMin;
165 uint8_t VppMax;
166 uint8_t TopBottom;
167 } __attribute__((packed));
169 struct cfi_pri_query {
170 uint8_t NumFields;
171 uint32_t ProtField[1]; /* Not host ordered */
172 } __attribute__((packed));
174 struct cfi_bri_query {
175 uint8_t PageModeReadCap;
176 uint8_t NumFields;
177 uint32_t ConfField[1]; /* Not host ordered */
178 } __attribute__((packed));
180 #define P_ID_NONE 0
181 #define P_ID_INTEL_EXT 1
182 #define P_ID_AMD_STD 2
183 #define P_ID_INTEL_STD 3
184 #define P_ID_AMD_EXT 4
185 #define P_ID_ST_ADV 32
186 #define P_ID_MITSUBISHI_STD 256
187 #define P_ID_MITSUBISHI_EXT 257
188 #define P_ID_SST_PAGE 258
189 #define P_ID_RESERVED 65535
192 #define CFI_MODE_CFI 1
193 #define CFI_MODE_JEDEC 0
195 struct cfi_private {
196 uint16_t cmdset;
197 void *cmdset_priv;
198 int interleave;
199 int device_type;
200 int cfi_mode; /* Are we a JEDEC device pretending to be CFI? */
201 int addr_unlock1;
202 int addr_unlock2;
203 struct mtd_info *(*cmdset_setup)(struct map_info *);
204 struct cfi_ident *cfiq; /* For now only one. We insist that all devs
205 must be of the same type. */
206 int mfr, id;
207 int numchips;
208 unsigned long chipshift; /* Because they're of the same type */
209 const char *im_name; /* inter_module name for cmdset_setup */
210 struct flchip chips[0]; /* per-chip data structure for each chip */
214 * Returns the command address according to the given geometry.
216 static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs, int interleave, int type)
218 return (cmd_ofs * type) * interleave;
222 * Transforms the CFI command for the given geometry (bus width & interleave).
223 * It looks too long to be inline, but in the common case it should almost all
224 * get optimised away.
226 static inline map_word cfi_build_cmd(u_char cmd, struct map_info *map, struct cfi_private *cfi)
228 map_word val = { {0} };
229 int wordwidth, words_per_bus, chip_mode, chips_per_word;
230 unsigned long onecmd;
231 int i;
233 /* We do it this way to give the compiler a fighting chance
234 of optimising away all the crap for 'bankwidth' larger than
235 an unsigned long, in the common case where that support is
236 disabled */
237 if (map_bankwidth_is_large(map)) {
238 wordwidth = sizeof(unsigned long);
239 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
240 } else {
241 wordwidth = map_bankwidth(map);
242 words_per_bus = 1;
245 chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
246 chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
248 /* First, determine what the bit-pattern should be for a single
249 device, according to chip mode and endianness... */
250 switch (chip_mode) {
251 default: BUG();
252 case 1:
253 onecmd = cmd;
254 break;
255 case 2:
256 onecmd = cpu_to_cfi16(cmd);
257 break;
258 case 4:
259 onecmd = cpu_to_cfi32(cmd);
260 break;
263 /* Now replicate it across the size of an unsigned long, or
264 just to the bus width as appropriate */
265 switch (chips_per_word) {
266 default: BUG();
267 #if BITS_PER_LONG >= 64
268 case 8:
269 onecmd |= (onecmd << (chip_mode * 32));
270 #endif
271 case 4:
272 onecmd |= (onecmd << (chip_mode * 16));
273 case 2:
274 onecmd |= (onecmd << (chip_mode * 8));
275 case 1:
279 /* And finally, for the multi-word case, replicate it
280 in all words in the structure */
281 for (i=0; i < words_per_bus; i++) {
282 val.x[i] = onecmd;
285 return val;
287 #define CMD(x) cfi_build_cmd((x), map, cfi)
290 * Sends a CFI command to a bank of flash for the given geometry.
292 * Returns the offset in flash where the command was written.
293 * If prev_val is non-null, it will be set to the value at the command address,
294 * before the command was written.
296 static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
297 struct map_info *map, struct cfi_private *cfi,
298 int type, map_word *prev_val)
300 map_word val;
301 uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, cfi_interleave(cfi), type);
303 val = cfi_build_cmd(cmd, map, cfi);
305 if (prev_val)
306 *prev_val = map_read(map, addr);
308 map_write(map, val, addr);
310 return addr - base;
313 static inline uint8_t cfi_read_query(struct map_info *map, uint32_t addr)
315 map_word val = map_read(map, addr);
317 if (map_bankwidth_is_1(map)) {
318 return val.x[0];
319 } else if (map_bankwidth_is_2(map)) {
320 return cfi16_to_cpu(val.x[0]);
321 } else {
322 /* No point in a 64-bit byteswap since that would just be
323 swapping the responses from different chips, and we are
324 only interested in one chip (a representative sample) */
325 return cfi32_to_cpu(val.x[0]);
329 static inline void cfi_udelay(int us)
331 unsigned long t = us * HZ / 1000000;
332 if (t) {
333 set_current_state(TASK_UNINTERRUPTIBLE);
334 schedule_timeout(t);
335 return;
337 udelay(us);
338 cond_resched();
341 static inline void cfi_spin_lock(spinlock_t *mutex)
343 spin_lock_bh(mutex);
346 static inline void cfi_spin_unlock(spinlock_t *mutex)
348 spin_unlock_bh(mutex);
351 struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
352 const char* name);
354 struct cfi_fixup {
355 uint16_t mfr;
356 uint16_t id;
357 void (*fixup)(struct map_info *map, void* param);
358 void* param;
361 #define CFI_MFR_ANY 0xffff
362 #define CFI_ID_ANY 0xffff
364 void cfi_fixup(struct map_info *map, struct cfi_fixup* fixups);
366 #endif /* __MTD_CFI_H__ */