2 /* Common Flash Interface structures
3 * See http://support.intel.com/design/flash/technote/index.htm
4 * $Id: cfi.h,v 1.45 2004/07/20 02:44:27 dwmw2 Exp $
10 #include <linux/config.h>
11 #include <linux/version.h>
12 #include <linux/delay.h>
13 #include <linux/types.h>
14 #include <linux/interrupt.h>
15 #include <linux/mtd/flashchip.h>
16 #include <linux/mtd/map.h>
17 #include <linux/mtd/cfi_endian.h>
19 #ifdef CONFIG_MTD_CFI_I1
20 #define cfi_interleave(cfi) 1
21 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1)
23 #define cfi_interleave_is_1(cfi) (0)
26 #ifdef CONFIG_MTD_CFI_I2
27 # ifdef cfi_interleave
28 # undef cfi_interleave
29 # define cfi_interleave(cfi) ((cfi)->interleave)
31 # define cfi_interleave(cfi) 2
33 #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2)
35 #define cfi_interleave_is_2(cfi) (0)
38 #ifdef CONFIG_MTD_CFI_I4
39 # ifdef cfi_interleave
40 # undef cfi_interleave
41 # define cfi_interleave(cfi) ((cfi)->interleave)
43 # define cfi_interleave(cfi) 4
45 #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4)
47 #define cfi_interleave_is_4(cfi) (0)
50 #ifdef CONFIG_MTD_CFI_I8
51 # ifdef cfi_interleave
52 # undef cfi_interleave
53 # define cfi_interleave(cfi) ((cfi)->interleave)
55 # define cfi_interleave(cfi) 8
57 #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8)
59 #define cfi_interleave_is_8(cfi) (0)
62 static inline int cfi_interleave_supported(int i
)
65 #ifdef CONFIG_MTD_CFI_I1
68 #ifdef CONFIG_MTD_CFI_I2
71 #ifdef CONFIG_MTD_CFI_I4
74 #ifdef CONFIG_MTD_CFI_I8
85 /* NB: these values must represents the number of bytes needed to meet the
86 * device type (x8, x16, x32). Eg. a 32 bit device is 4 x 8 bytes.
87 * These numbers are used in calculations.
89 #define CFI_DEVICETYPE_X8 (8 / 8)
90 #define CFI_DEVICETYPE_X16 (16 / 8)
91 #define CFI_DEVICETYPE_X32 (32 / 8)
92 #define CFI_DEVICETYPE_X64 (64 / 8)
94 /* NB: We keep these structures in memory in HOST byteorder, except
95 * where individually noted.
98 /* Basic Query Structure */
109 uint8_t WordWriteTimeoutTyp
;
110 uint8_t BufWriteTimeoutTyp
;
111 uint8_t BlockEraseTimeoutTyp
;
112 uint8_t ChipEraseTimeoutTyp
;
113 uint8_t WordWriteTimeoutMax
;
114 uint8_t BufWriteTimeoutMax
;
115 uint8_t BlockEraseTimeoutMax
;
116 uint8_t ChipEraseTimeoutMax
;
118 uint16_t InterfaceDesc
;
119 uint16_t MaxBufWriteSize
;
120 uint8_t NumEraseRegions
;
121 uint32_t EraseRegionInfo
[0]; /* Not host ordered */
122 } __attribute__((packed
));
124 /* Extended Query Structure for both PRI and ALT */
126 struct cfi_extquery
{
128 uint8_t MajorVersion
;
129 uint8_t MinorVersion
;
130 } __attribute__((packed
));
132 /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
134 struct cfi_pri_intelext
{
136 uint8_t MajorVersion
;
137 uint8_t MinorVersion
;
138 uint32_t FeatureSupport
; /* if bit 31 is set then an additional uint32_t feature
139 block follows - FIXME - not currently supported */
140 uint8_t SuspendCmdSupport
;
141 uint16_t BlkStatusRegMask
;
144 uint8_t NumProtectionFields
;
145 uint16_t ProtRegAddr
;
146 uint8_t FactProtRegSize
;
147 uint8_t UserProtRegSize
;
148 } __attribute__((packed
));
150 /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
152 struct cfi_pri_amdstd
{
154 uint8_t MajorVersion
;
155 uint8_t MinorVersion
;
156 uint8_t SiliconRevision
; /* bits 1-0: Address Sensitive Unlock */
157 uint8_t EraseSuspend
;
159 uint8_t TmpBlkUnprotect
;
160 uint8_t BlkProtUnprot
;
161 uint8_t SimultaneousOps
;
167 } __attribute__((packed
));
169 struct cfi_pri_query
{
171 uint32_t ProtField
[1]; /* Not host ordered */
172 } __attribute__((packed
));
174 struct cfi_bri_query
{
175 uint8_t PageModeReadCap
;
177 uint32_t ConfField
[1]; /* Not host ordered */
178 } __attribute__((packed
));
181 #define P_ID_INTEL_EXT 1
182 #define P_ID_AMD_STD 2
183 #define P_ID_INTEL_STD 3
184 #define P_ID_AMD_EXT 4
185 #define P_ID_ST_ADV 32
186 #define P_ID_MITSUBISHI_STD 256
187 #define P_ID_MITSUBISHI_EXT 257
188 #define P_ID_SST_PAGE 258
189 #define P_ID_RESERVED 65535
192 #define CFI_MODE_CFI 1
193 #define CFI_MODE_JEDEC 0
200 int cfi_mode
; /* Are we a JEDEC device pretending to be CFI? */
203 struct mtd_info
*(*cmdset_setup
)(struct map_info
*);
204 struct cfi_ident
*cfiq
; /* For now only one. We insist that all devs
205 must be of the same type. */
208 unsigned long chipshift
; /* Because they're of the same type */
209 const char *im_name
; /* inter_module name for cmdset_setup */
210 struct flchip chips
[0]; /* per-chip data structure for each chip */
214 * Returns the command address according to the given geometry.
216 static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs
, int interleave
, int type
)
218 return (cmd_ofs
* type
) * interleave
;
222 * Transforms the CFI command for the given geometry (bus width & interleave).
223 * It looks too long to be inline, but in the common case it should almost all
224 * get optimised away.
226 static inline map_word
cfi_build_cmd(u_char cmd
, struct map_info
*map
, struct cfi_private
*cfi
)
228 map_word val
= { {0} };
229 int wordwidth
, words_per_bus
, chip_mode
, chips_per_word
;
230 unsigned long onecmd
;
233 /* We do it this way to give the compiler a fighting chance
234 of optimising away all the crap for 'bankwidth' larger than
235 an unsigned long, in the common case where that support is
237 if (map_bankwidth_is_large(map
)) {
238 wordwidth
= sizeof(unsigned long);
239 words_per_bus
= (map_bankwidth(map
)) / wordwidth
; // i.e. normally 1
241 wordwidth
= map_bankwidth(map
);
245 chip_mode
= map_bankwidth(map
) / cfi_interleave(cfi
);
246 chips_per_word
= wordwidth
* cfi_interleave(cfi
) / map_bankwidth(map
);
248 /* First, determine what the bit-pattern should be for a single
249 device, according to chip mode and endianness... */
256 onecmd
= cpu_to_cfi16(cmd
);
259 onecmd
= cpu_to_cfi32(cmd
);
263 /* Now replicate it across the size of an unsigned long, or
264 just to the bus width as appropriate */
265 switch (chips_per_word
) {
267 #if BITS_PER_LONG >= 64
269 onecmd
|= (onecmd
<< (chip_mode
* 32));
272 onecmd
|= (onecmd
<< (chip_mode
* 16));
274 onecmd
|= (onecmd
<< (chip_mode
* 8));
279 /* And finally, for the multi-word case, replicate it
280 in all words in the structure */
281 for (i
=0; i
< words_per_bus
; i
++) {
287 #define CMD(x) cfi_build_cmd((x), map, cfi)
290 * Sends a CFI command to a bank of flash for the given geometry.
292 * Returns the offset in flash where the command was written.
293 * If prev_val is non-null, it will be set to the value at the command address,
294 * before the command was written.
296 static inline uint32_t cfi_send_gen_cmd(u_char cmd
, uint32_t cmd_addr
, uint32_t base
,
297 struct map_info
*map
, struct cfi_private
*cfi
,
298 int type
, map_word
*prev_val
)
301 uint32_t addr
= base
+ cfi_build_cmd_addr(cmd_addr
, cfi_interleave(cfi
), type
);
303 val
= cfi_build_cmd(cmd
, map
, cfi
);
306 *prev_val
= map_read(map
, addr
);
308 map_write(map
, val
, addr
);
313 static inline uint8_t cfi_read_query(struct map_info
*map
, uint32_t addr
)
315 map_word val
= map_read(map
, addr
);
317 if (map_bankwidth_is_1(map
)) {
319 } else if (map_bankwidth_is_2(map
)) {
320 return cfi16_to_cpu(val
.x
[0]);
322 /* No point in a 64-bit byteswap since that would just be
323 swapping the responses from different chips, and we are
324 only interested in one chip (a representative sample) */
325 return cfi32_to_cpu(val
.x
[0]);
329 static inline void cfi_udelay(int us
)
331 unsigned long t
= us
* HZ
/ 1000000;
333 set_current_state(TASK_UNINTERRUPTIBLE
);
341 static inline void cfi_spin_lock(spinlock_t
*mutex
)
346 static inline void cfi_spin_unlock(spinlock_t
*mutex
)
348 spin_unlock_bh(mutex
);
351 struct cfi_extquery
*cfi_read_pri(struct map_info
*map
, uint16_t adr
, uint16_t size
,
357 void (*fixup
)(struct map_info
*map
, void* param
);
361 #define CFI_MFR_ANY 0xffff
362 #define CFI_ID_ANY 0xffff
364 void cfi_fixup(struct map_info
*map
, struct cfi_fixup
* fixups
);
366 #endif /* __MTD_CFI_H__ */