MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / acpi / processor.c
blob83fb743aa3e70996887edde7ca2917f315540e14
1 /*
2 * acpi_processor.c - ACPI Processor Driver ($Revision: 71 $)
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 * TBD:
26 * 1. Make # power states dynamic.
27 * 2. Support duty_cycle values that span bit 4.
28 * 3. Optimize by having scheduler determine business instead of
29 * having us try to calculate it here.
30 * 4. Need C1 timing -- must modify kernel (IRQ handler) to get this.
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/pci.h>
38 #include <linux/pm.h>
39 #include <linux/cpufreq.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
43 #include <asm/io.h>
44 #include <asm/system.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
47 #include <asm/processor.h>
48 #include <asm/smp.h>
49 #include <asm/acpi.h>
51 #include <acpi/acpi_bus.h>
52 #include <acpi/acpi_drivers.h>
53 #include <acpi/processor.h>
56 #define ACPI_PROCESSOR_COMPONENT 0x01000000
57 #define ACPI_PROCESSOR_CLASS "processor"
58 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
59 #define ACPI_PROCESSOR_DEVICE_NAME "Processor"
60 #define ACPI_PROCESSOR_FILE_INFO "info"
61 #define ACPI_PROCESSOR_FILE_POWER "power"
62 #define ACPI_PROCESSOR_FILE_THROTTLING "throttling"
63 #define ACPI_PROCESSOR_FILE_LIMIT "limit"
64 #define ACPI_PROCESSOR_FILE_PERFORMANCE "performance"
65 #define ACPI_PROCESSOR_NOTIFY_PERFORMANCE 0x80
66 #define ACPI_PROCESSOR_NOTIFY_POWER 0x81
68 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
73 #define ACPI_PROCESSOR_LIMIT_USER 0
74 #define ACPI_PROCESSOR_LIMIT_THERMAL 1
76 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
77 ACPI_MODULE_NAME ("acpi_processor")
79 MODULE_AUTHOR("Paul Diefenbaugh");
80 MODULE_DESCRIPTION(ACPI_PROCESSOR_DRIVER_NAME);
81 MODULE_LICENSE("GPL");
84 static int acpi_processor_add (struct acpi_device *device);
85 static int acpi_processor_remove (struct acpi_device *device, int type);
86 static int acpi_processor_info_open_fs(struct inode *inode, struct file *file);
87 static int acpi_processor_throttling_open_fs(struct inode *inode, struct file *file);
88 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file);
89 static int acpi_processor_limit_open_fs(struct inode *inode, struct file *file);
90 static int acpi_processor_get_limit_info(struct acpi_processor *pr);
92 static struct acpi_driver acpi_processor_driver = {
93 .name = ACPI_PROCESSOR_DRIVER_NAME,
94 .class = ACPI_PROCESSOR_CLASS,
95 .ids = ACPI_PROCESSOR_HID,
96 .ops = {
97 .add = acpi_processor_add,
98 .remove = acpi_processor_remove,
103 struct acpi_processor_errata {
104 u8 smp;
105 struct {
106 u8 throttle:1;
107 u8 fdma:1;
108 u8 reserved:6;
109 u32 bmisx;
110 } piix4;
113 static struct file_operations acpi_processor_info_fops = {
114 .open = acpi_processor_info_open_fs,
115 .read = seq_read,
116 .llseek = seq_lseek,
117 .release = single_release,
120 static struct file_operations acpi_processor_power_fops = {
121 .open = acpi_processor_power_open_fs,
122 .read = seq_read,
123 .llseek = seq_lseek,
124 .release = single_release,
127 static struct file_operations acpi_processor_throttling_fops = {
128 .open = acpi_processor_throttling_open_fs,
129 .read = seq_read,
130 .llseek = seq_lseek,
131 .release = single_release,
134 static struct file_operations acpi_processor_limit_fops = {
135 .open = acpi_processor_limit_open_fs,
136 .read = seq_read,
137 .llseek = seq_lseek,
138 .release = single_release,
141 static struct acpi_processor *processors[NR_CPUS];
142 static struct acpi_processor_errata errata;
143 static void (*pm_idle_save)(void);
146 /* --------------------------------------------------------------------------
147 Errata Handling
148 -------------------------------------------------------------------------- */
151 acpi_processor_errata_piix4 (
152 struct pci_dev *dev)
154 u8 rev = 0;
155 u8 value1 = 0;
156 u8 value2 = 0;
158 ACPI_FUNCTION_TRACE("acpi_processor_errata_piix4");
160 if (!dev)
161 return_VALUE(-EINVAL);
164 * Note that 'dev' references the PIIX4 ACPI Controller.
167 pci_read_config_byte(dev, PCI_REVISION_ID, &rev);
169 switch (rev) {
170 case 0:
171 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4 A-step\n"));
172 break;
173 case 1:
174 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4 B-step\n"));
175 break;
176 case 2:
177 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4E\n"));
178 break;
179 case 3:
180 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4M\n"));
181 break;
182 default:
183 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found unknown PIIX4\n"));
184 break;
187 switch (rev) {
189 case 0: /* PIIX4 A-step */
190 case 1: /* PIIX4 B-step */
192 * See specification changes #13 ("Manual Throttle Duty Cycle")
193 * and #14 ("Enabling and Disabling Manual Throttle"), plus
194 * erratum #5 ("STPCLK# Deassertion Time") from the January
195 * 2002 PIIX4 specification update. Applies to only older
196 * PIIX4 models.
198 errata.piix4.throttle = 1;
200 case 2: /* PIIX4E */
201 case 3: /* PIIX4M */
203 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
204 * Livelock") from the January 2002 PIIX4 specification update.
205 * Applies to all PIIX4 models.
209 * BM-IDE
210 * ------
211 * Find the PIIX4 IDE Controller and get the Bus Master IDE
212 * Status register address. We'll use this later to read
213 * each IDE controller's DMA status to make sure we catch all
214 * DMA activity.
216 dev = pci_find_subsys(PCI_VENDOR_ID_INTEL,
217 PCI_DEVICE_ID_INTEL_82371AB,
218 PCI_ANY_ID, PCI_ANY_ID, NULL);
219 if (dev)
220 errata.piix4.bmisx = pci_resource_start(dev, 4);
223 * Type-F DMA
224 * ----------
225 * Find the PIIX4 ISA Controller and read the Motherboard
226 * DMA controller's status to see if Type-F (Fast) DMA mode
227 * is enabled (bit 7) on either channel. Note that we'll
228 * disable C3 support if this is enabled, as some legacy
229 * devices won't operate well if fast DMA is disabled.
231 dev = pci_find_subsys(PCI_VENDOR_ID_INTEL,
232 PCI_DEVICE_ID_INTEL_82371AB_0,
233 PCI_ANY_ID, PCI_ANY_ID, NULL);
234 if (dev) {
235 pci_read_config_byte(dev, 0x76, &value1);
236 pci_read_config_byte(dev, 0x77, &value2);
237 if ((value1 & 0x80) || (value2 & 0x80))
238 errata.piix4.fdma = 1;
241 break;
244 if (errata.piix4.bmisx)
245 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
246 "Bus master activity detection (BM-IDE) erratum enabled\n"));
247 if (errata.piix4.fdma)
248 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
249 "Type-F DMA livelock erratum (C3 disabled)\n"));
251 return_VALUE(0);
256 acpi_processor_errata (
257 struct acpi_processor *pr)
259 int result = 0;
260 struct pci_dev *dev = NULL;
262 ACPI_FUNCTION_TRACE("acpi_processor_errata");
264 if (!pr)
265 return_VALUE(-EINVAL);
268 * PIIX4
270 dev = pci_find_subsys(PCI_VENDOR_ID_INTEL,
271 PCI_DEVICE_ID_INTEL_82371AB_3, PCI_ANY_ID, PCI_ANY_ID, NULL);
272 if (dev)
273 result = acpi_processor_errata_piix4(dev);
275 return_VALUE(result);
279 /* --------------------------------------------------------------------------
280 Power Management
281 -------------------------------------------------------------------------- */
283 static inline u32
284 ticks_elapsed (
285 u32 t1,
286 u32 t2)
288 if (t2 >= t1)
289 return (t2 - t1);
290 else if (!acpi_fadt.tmr_val_ext)
291 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
292 else
293 return ((0xFFFFFFFF - t1) + t2);
297 static void
298 acpi_processor_power_activate (
299 struct acpi_processor *pr,
300 int state)
302 if (!pr)
303 return;
305 pr->power.states[pr->power.state].promotion.count = 0;
306 pr->power.states[pr->power.state].demotion.count = 0;
308 /* Cleanup from old state. */
309 switch (pr->power.state) {
310 case ACPI_STATE_C3:
311 /* Disable bus master reload */
312 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
313 break;
316 /* Prepare to use new state. */
317 switch (state) {
318 case ACPI_STATE_C3:
319 /* Enable bus master reload */
320 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK);
321 break;
324 pr->power.state = state;
326 return;
330 static void
331 acpi_processor_idle (void)
333 struct acpi_processor *pr = NULL;
334 struct acpi_processor_cx *cx = NULL;
335 int next_state = 0;
336 int sleep_ticks = 0;
337 u32 t1, t2 = 0;
339 pr = processors[smp_processor_id()];
340 if (!pr)
341 return;
344 * Interrupts must be disabled during bus mastering calculations and
345 * for C2/C3 transitions.
347 local_irq_disable();
349 cx = &(pr->power.states[pr->power.state]);
352 * Check BM Activity
353 * -----------------
354 * Check for bus mastering activity (if required), record, and check
355 * for demotion.
357 if (pr->flags.bm_check) {
358 u32 bm_status = 0;
360 pr->power.bm_activity <<= 1;
362 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
363 &bm_status, ACPI_MTX_DO_NOT_LOCK);
364 if (bm_status) {
365 pr->power.bm_activity++;
366 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
367 1, ACPI_MTX_DO_NOT_LOCK);
370 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
371 * the true state of bus mastering activity; forcing us to
372 * manually check the BMIDEA bit of each IDE channel.
374 else if (errata.piix4.bmisx) {
375 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
376 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
377 pr->power.bm_activity++;
380 * Apply bus mastering demotion policy. Automatically demote
381 * to avoid a faulty transition. Note that the processor
382 * won't enter a low-power state during this call (to this
383 * funciton) but should upon the next.
385 * TBD: A better policy might be to fallback to the demotion
386 * state (use it for this quantum only) istead of
387 * demoting -- and rely on duration as our sole demotion
388 * qualification. This may, however, introduce DMA
389 * issues (e.g. floppy DMA transfer overrun/underrun).
391 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
392 local_irq_enable();
393 next_state = cx->demotion.state;
394 goto end;
398 cx->usage++;
401 * Sleep:
402 * ------
403 * Invoke the current Cx state to put the processor to sleep.
405 switch (pr->power.state) {
407 case ACPI_STATE_C1:
408 /* Invoke C1. */
409 safe_halt();
411 * TBD: Can't get time duration while in C1, as resumes
412 * go to an ISR rather than here. Need to instrument
413 * base interrupt handler.
415 sleep_ticks = 0xFFFFFFFF;
416 break;
418 case ACPI_STATE_C2:
419 /* Get start time (ticks) */
420 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
421 /* Invoke C2 */
422 inb(pr->power.states[ACPI_STATE_C2].address);
423 /* Dummy op - must do something useless after P_LVL2 read */
424 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
425 /* Get end time (ticks) */
426 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
427 /* Re-enable interrupts */
428 local_irq_enable();
429 /* Compute time (ticks) that we were actually asleep */
430 sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
431 break;
433 case ACPI_STATE_C3:
434 /* Disable bus master arbitration */
435 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
436 /* Get start time (ticks) */
437 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
438 /* Invoke C3 */
439 inb(pr->power.states[ACPI_STATE_C3].address);
440 /* Dummy op - must do something useless after P_LVL3 read */
441 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
442 /* Get end time (ticks) */
443 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
444 /* Enable bus master arbitration */
445 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
446 /* Re-enable interrupts */
447 local_irq_enable();
448 /* Compute time (ticks) that we were actually asleep */
449 sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
450 break;
452 default:
453 local_irq_enable();
454 return;
457 next_state = pr->power.state;
460 * Promotion?
461 * ----------
462 * Track the number of longs (time asleep is greater than threshold)
463 * and promote when the count threshold is reached. Note that bus
464 * mastering activity may prevent promotions.
466 if (cx->promotion.state) {
467 if (sleep_ticks > cx->promotion.threshold.ticks) {
468 cx->promotion.count++;
469 cx->demotion.count = 0;
470 if (cx->promotion.count >= cx->promotion.threshold.count) {
471 if (pr->flags.bm_check) {
472 if (!(pr->power.bm_activity & cx->promotion.threshold.bm)) {
473 next_state = cx->promotion.state;
474 goto end;
477 else {
478 next_state = cx->promotion.state;
479 goto end;
486 * Demotion?
487 * ---------
488 * Track the number of shorts (time asleep is less than time threshold)
489 * and demote when the usage threshold is reached.
491 if (cx->demotion.state) {
492 if (sleep_ticks < cx->demotion.threshold.ticks) {
493 cx->demotion.count++;
494 cx->promotion.count = 0;
495 if (cx->demotion.count >= cx->demotion.threshold.count) {
496 next_state = cx->demotion.state;
497 goto end;
502 end:
504 * New Cx State?
505 * -------------
506 * If we're going to start using a new Cx state we must clean up
507 * from the previous and prepare to use the new.
509 if (next_state != pr->power.state)
510 acpi_processor_power_activate(pr, next_state);
512 return;
516 static int
517 acpi_processor_set_power_policy (
518 struct acpi_processor *pr)
520 ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
523 * This function sets the default Cx state policy (OS idle handler).
524 * Our scheme is to promote quickly to C2 but more conservatively
525 * to C3. We're favoring C2 for its characteristics of low latency
526 * (quick response), good power savings, and ability to allow bus
527 * mastering activity. Note that the Cx state policy is completely
528 * customizable and can be altered dynamically.
531 if (!pr)
532 return_VALUE(-EINVAL);
535 * C0/C1
536 * -----
538 pr->power.state = ACPI_STATE_C1;
539 pr->power.default_state = ACPI_STATE_C1;
542 * C1/C2
543 * -----
544 * Set the default C1 promotion and C2 demotion policies, where we
545 * promote from C1 to C2 after several (10) successive C1 transitions,
546 * as we cannot (currently) measure the time spent in C1. Demote from
547 * C2 to C1 anytime we experience a 'short' (time spent in C2 is less
548 * than the C2 transtion latency). Note the simplifying assumption
549 * that the 'cost' of a transition is amortized when we sleep for at
550 * least as long as the transition's latency (thus the total transition
551 * time is two times the latency).
553 * TBD: Measure C1 sleep times by instrumenting the core IRQ handler.
554 * TBD: Demote to default C-State after long periods of activity.
555 * TBD: Investigate policy's use of CPU utilization -vs- sleep duration.
557 if (pr->power.states[ACPI_STATE_C2].valid) {
558 pr->power.states[ACPI_STATE_C1].promotion.threshold.count = 10;
559 pr->power.states[ACPI_STATE_C1].promotion.threshold.ticks =
560 pr->power.states[ACPI_STATE_C2].latency_ticks;
561 pr->power.states[ACPI_STATE_C1].promotion.state = ACPI_STATE_C2;
563 pr->power.states[ACPI_STATE_C2].demotion.threshold.count = 1;
564 pr->power.states[ACPI_STATE_C2].demotion.threshold.ticks =
565 pr->power.states[ACPI_STATE_C2].latency_ticks;
566 pr->power.states[ACPI_STATE_C2].demotion.state = ACPI_STATE_C1;
570 * C2/C3
571 * -----
572 * Set default C2 promotion and C3 demotion policies, where we promote
573 * from C2 to C3 after several (4) cycles of no bus mastering activity
574 * while maintaining sleep time criteria. Demote immediately on a
575 * short or whenever bus mastering activity occurs.
577 if ((pr->power.states[ACPI_STATE_C2].valid) &&
578 (pr->power.states[ACPI_STATE_C3].valid)) {
579 pr->power.states[ACPI_STATE_C2].promotion.threshold.count = 4;
580 pr->power.states[ACPI_STATE_C2].promotion.threshold.ticks =
581 pr->power.states[ACPI_STATE_C3].latency_ticks;
582 pr->power.states[ACPI_STATE_C2].promotion.threshold.bm = 0x0F;
583 pr->power.states[ACPI_STATE_C2].promotion.state = ACPI_STATE_C3;
585 pr->power.states[ACPI_STATE_C3].demotion.threshold.count = 1;
586 pr->power.states[ACPI_STATE_C3].demotion.threshold.ticks =
587 pr->power.states[ACPI_STATE_C3].latency_ticks;
588 pr->power.states[ACPI_STATE_C3].demotion.threshold.bm = 0x0F;
589 pr->power.states[ACPI_STATE_C3].demotion.state = ACPI_STATE_C2;
592 return_VALUE(0);
597 acpi_processor_get_power_info (
598 struct acpi_processor *pr)
600 int result = 0;
602 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
604 if (!pr)
605 return_VALUE(-EINVAL);
607 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
608 "lvl2[0x%08x] lvl3[0x%08x]\n",
609 pr->power.states[ACPI_STATE_C2].address,
610 pr->power.states[ACPI_STATE_C3].address));
612 /* TBD: Support ACPI 2.0 objects */
615 * C0
616 * --
617 * This state exists only as filler in our array.
619 pr->power.states[ACPI_STATE_C0].valid = 1;
622 * C1
623 * --
624 * ACPI requires C1 support for all processors.
626 * TBD: What about PROC_C1?
628 pr->power.states[ACPI_STATE_C1].valid = 1;
631 * C2
632 * --
633 * We're (currently) only supporting C2 on UP systems.
635 * TBD: Support for C2 on MP (P_LVL2_UP).
637 if (pr->power.states[ACPI_STATE_C2].address) {
639 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
642 * C2 latency must be less than or equal to 100 microseconds.
644 if (acpi_fadt.plvl2_lat > ACPI_PROCESSOR_MAX_C2_LATENCY)
645 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
646 "C2 latency too large [%d]\n",
647 acpi_fadt.plvl2_lat));
649 * Only support C2 on UP systems (see TBD above).
651 else if (errata.smp)
652 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
653 "C2 not supported in SMP mode\n"));
655 * Otherwise we've met all of our C2 requirements.
656 * Normalize the C2 latency to expidite policy.
658 else {
659 pr->power.states[ACPI_STATE_C2].valid = 1;
660 pr->power.states[ACPI_STATE_C2].latency_ticks =
661 US_TO_PM_TIMER_TICKS(acpi_fadt.plvl2_lat);
666 * C3
667 * --
668 * TBD: Investigate use of WBINVD on UP/SMP system in absence of
669 * bm_control.
671 if (pr->power.states[ACPI_STATE_C3].address) {
673 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
676 * C3 latency must be less than or equal to 1000 microseconds.
678 if (acpi_fadt.plvl3_lat > ACPI_PROCESSOR_MAX_C3_LATENCY)
679 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
680 "C3 latency too large [%d]\n",
681 acpi_fadt.plvl3_lat));
683 * Only support C3 when bus mastering arbitration control
684 * is present (able to disable bus mastering to maintain
685 * cache coherency while in C3).
687 else if (!pr->flags.bm_control)
688 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
689 "C3 support requires bus mastering control\n"));
691 * Only support C3 on UP systems, as bm_control is only viable
692 * on a UP system and flushing caches (e.g. WBINVD) is simply
693 * too costly (at this time).
695 else if (errata.smp)
696 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
697 "C3 not supported in SMP mode\n"));
699 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
700 * DMA transfers are used by any ISA device to avoid livelock.
701 * Note that we could disable Type-F DMA (as recommended by
702 * the erratum), but this is known to disrupt certain ISA
703 * devices thus we take the conservative approach.
705 else if (errata.piix4.fdma) {
706 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
707 "C3 not supported on PIIX4 with Type-F DMA\n"));
710 * Otherwise we've met all of our C3 requirements.
711 * Normalize the C2 latency to expidite policy. Enable
712 * checking of bus mastering status (bm_check) so we can
713 * use this in our C3 policy.
715 else {
716 pr->power.states[ACPI_STATE_C3].valid = 1;
717 pr->power.states[ACPI_STATE_C3].latency_ticks =
718 US_TO_PM_TIMER_TICKS(acpi_fadt.plvl3_lat);
719 pr->flags.bm_check = 1;
724 * Set Default Policy
725 * ------------------
726 * Now that we know which state are supported, set the default
727 * policy. Note that this policy can be changed dynamically
728 * (e.g. encourage deeper sleeps to conserve battery life when
729 * not on AC).
731 result = acpi_processor_set_power_policy(pr);
732 if (result)
733 return_VALUE(result);
736 * If this processor supports C2 or C3 we denote it as being 'power
737 * manageable'. Note that there's really no policy involved for
738 * when only C1 is supported.
740 if (pr->power.states[ACPI_STATE_C2].valid
741 || pr->power.states[ACPI_STATE_C3].valid)
742 pr->flags.power = 1;
744 return_VALUE(0);
748 /* --------------------------------------------------------------------------
749 Performance Management
750 -------------------------------------------------------------------------- */
751 #ifdef CONFIG_CPU_FREQ
753 static DECLARE_MUTEX(performance_sem);
756 * _PPC support is implemented as a CPUfreq policy notifier:
757 * This means each time a CPUfreq driver registered also with
758 * the ACPI core is asked to change the speed policy, the maximum
759 * value is adjusted so that it is within the platform limit.
761 * Also, when a new platform limit value is detected, the CPUfreq
762 * policy is adjusted accordingly.
765 static int acpi_processor_ppc_is_init = 0;
767 static int acpi_processor_ppc_notifier(struct notifier_block *nb,
768 unsigned long event,
769 void *data)
771 struct cpufreq_policy *policy = data;
772 struct acpi_processor *pr;
773 unsigned int ppc = 0;
775 down(&performance_sem);
777 if (event != CPUFREQ_INCOMPATIBLE)
778 goto out;
780 pr = processors[policy->cpu];
781 if (!pr || !pr->performance)
782 goto out;
784 ppc = (unsigned int) pr->performance_platform_limit;
785 if (!ppc)
786 goto out;
788 if (ppc > pr->performance->state_count)
789 goto out;
791 cpufreq_verify_within_limits(policy, 0,
792 pr->performance->states[ppc].core_frequency * 1000);
794 out:
795 up(&performance_sem);
797 return 0;
801 static struct notifier_block acpi_ppc_notifier_block = {
802 .notifier_call = acpi_processor_ppc_notifier,
806 static int
807 acpi_processor_get_platform_limit (
808 struct acpi_processor* pr)
810 acpi_status status = 0;
811 unsigned long ppc = 0;
813 ACPI_FUNCTION_TRACE("acpi_processor_get_platform_limit");
815 if (!pr)
816 return_VALUE(-EINVAL);
819 * _PPC indicates the maximum state currently supported by the platform
820 * (e.g. 0 = states 0..n; 1 = states 1..n; etc.
822 status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc);
823 if(ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
824 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PPC\n"));
825 return_VALUE(-ENODEV);
828 pr->performance_platform_limit = (int) ppc;
830 return_VALUE(0);
834 static int acpi_processor_ppc_has_changed(
835 struct acpi_processor *pr)
837 int ret = acpi_processor_get_platform_limit(pr);
838 if (ret < 0)
839 return (ret);
840 else
841 return cpufreq_update_policy(pr->id);
845 static void acpi_processor_ppc_init(void) {
846 if (!cpufreq_register_notifier(&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER))
847 acpi_processor_ppc_is_init = 1;
848 else
849 printk(KERN_DEBUG "Warning: Processor Platform Limit not supported.\n");
853 static void acpi_processor_ppc_exit(void) {
854 if (acpi_processor_ppc_is_init)
855 cpufreq_unregister_notifier(&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER);
857 acpi_processor_ppc_is_init = 0;
861 * when registering a cpufreq driver with this ACPI processor driver, the
862 * _PCT and _PSS structures are read out and written into struct
863 * acpi_processor_performance.
865 static int acpi_processor_set_pdc (struct acpi_processor *pr)
867 acpi_status status = AE_OK;
868 u32 arg0_buf[3];
869 union acpi_object arg0 = {ACPI_TYPE_BUFFER};
870 struct acpi_object_list no_object = {1, &arg0};
871 struct acpi_object_list *pdc;
873 ACPI_FUNCTION_TRACE("acpi_processor_set_pdc");
875 arg0.buffer.length = 12;
876 arg0.buffer.pointer = (u8 *) arg0_buf;
877 arg0_buf[0] = ACPI_PDC_REVISION_ID;
878 arg0_buf[1] = 0;
879 arg0_buf[2] = 0;
881 pdc = (pr->performance->pdc) ? pr->performance->pdc : &no_object;
883 status = acpi_evaluate_object(pr->handle, "_PDC", pdc, NULL);
885 if ((ACPI_FAILURE(status)) && (pr->performance->pdc))
886 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Error evaluating _PDC, using legacy perf. control...\n"));
888 return_VALUE(status);
892 static int
893 acpi_processor_get_performance_control (
894 struct acpi_processor *pr)
896 int result = 0;
897 acpi_status status = 0;
898 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
899 union acpi_object *pct = NULL;
900 union acpi_object obj = {0};
902 ACPI_FUNCTION_TRACE("acpi_processor_get_performance_control");
904 status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer);
905 if(ACPI_FAILURE(status)) {
906 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PCT\n"));
907 return_VALUE(-ENODEV);
910 pct = (union acpi_object *) buffer.pointer;
911 if (!pct || (pct->type != ACPI_TYPE_PACKAGE)
912 || (pct->package.count != 2)) {
913 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PCT data\n"));
914 result = -EFAULT;
915 goto end;
919 * control_register
922 obj = pct->package.elements[0];
924 if ((obj.type != ACPI_TYPE_BUFFER)
925 || (obj.buffer.length < sizeof(struct acpi_pct_register))
926 || (obj.buffer.pointer == NULL)) {
927 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
928 "Invalid _PCT data (control_register)\n"));
929 result = -EFAULT;
930 goto end;
932 memcpy(&pr->performance->control_register, obj.buffer.pointer, sizeof(struct acpi_pct_register));
936 * status_register
939 obj = pct->package.elements[1];
941 if ((obj.type != ACPI_TYPE_BUFFER)
942 || (obj.buffer.length < sizeof(struct acpi_pct_register))
943 || (obj.buffer.pointer == NULL)) {
944 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
945 "Invalid _PCT data (status_register)\n"));
946 result = -EFAULT;
947 goto end;
950 memcpy(&pr->performance->status_register, obj.buffer.pointer, sizeof(struct acpi_pct_register));
952 end:
953 acpi_os_free(buffer.pointer);
955 return_VALUE(result);
959 static int
960 acpi_processor_get_performance_states (
961 struct acpi_processor *pr)
963 int result = 0;
964 acpi_status status = AE_OK;
965 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
966 struct acpi_buffer format = {sizeof("NNNNNN"), "NNNNNN"};
967 struct acpi_buffer state = {0, NULL};
968 union acpi_object *pss = NULL;
969 int i = 0;
971 ACPI_FUNCTION_TRACE("acpi_processor_get_performance_states");
973 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
974 if(ACPI_FAILURE(status)) {
975 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PSS\n"));
976 return_VALUE(-ENODEV);
979 pss = (union acpi_object *) buffer.pointer;
980 if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) {
981 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSS data\n"));
982 result = -EFAULT;
983 goto end;
986 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n",
987 pss->package.count));
989 pr->performance->state_count = pss->package.count;
990 pr->performance->states = kmalloc(sizeof(struct acpi_processor_px) * pss->package.count, GFP_KERNEL);
991 if (!pr->performance->states) {
992 result = -ENOMEM;
993 goto end;
996 for (i = 0; i < pr->performance->state_count; i++) {
998 struct acpi_processor_px *px = &(pr->performance->states[i]);
1000 state.length = sizeof(struct acpi_processor_px);
1001 state.pointer = px;
1003 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i));
1005 status = acpi_extract_package(&(pss->package.elements[i]),
1006 &format, &state);
1007 if (ACPI_FAILURE(status)) {
1008 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSS data\n"));
1009 result = -EFAULT;
1010 kfree(pr->performance->states);
1011 goto end;
1014 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1015 "State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n",
1017 (u32) px->core_frequency,
1018 (u32) px->power,
1019 (u32) px->transition_latency,
1020 (u32) px->bus_master_latency,
1021 (u32) px->control,
1022 (u32) px->status));
1024 if (!px->core_frequency) {
1025 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSS data: freq is zero\n"));
1026 result = -EFAULT;
1027 kfree(pr->performance->states);
1028 goto end;
1032 end:
1033 acpi_os_free(buffer.pointer);
1035 return_VALUE(result);
1039 static int
1040 acpi_processor_get_performance_info (
1041 struct acpi_processor *pr)
1043 int result = 0;
1044 acpi_status status = AE_OK;
1045 acpi_handle handle = NULL;
1047 ACPI_FUNCTION_TRACE("acpi_processor_get_performance_info");
1049 if (!pr || !pr->performance || !pr->handle)
1050 return_VALUE(-EINVAL);
1052 acpi_processor_set_pdc(pr);
1054 status = acpi_get_handle(pr->handle, "_PCT", &handle);
1055 if (ACPI_FAILURE(status)) {
1056 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1057 "ACPI-based processor performance control unavailable\n"));
1058 return_VALUE(-ENODEV);
1061 result = acpi_processor_get_performance_control(pr);
1062 if (result)
1063 return_VALUE(result);
1065 result = acpi_processor_get_performance_states(pr);
1066 if (result)
1067 return_VALUE(result);
1069 result = acpi_processor_get_platform_limit(pr);
1070 if (result)
1071 return_VALUE(result);
1073 return_VALUE(0);
1077 #ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF
1078 /* /proc/acpi/processor/../performance interface (DEPRECATED) */
1080 static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file);
1081 static struct file_operations acpi_processor_perf_fops = {
1082 .open = acpi_processor_perf_open_fs,
1083 .read = seq_read,
1084 .llseek = seq_lseek,
1085 .release = single_release,
1088 static int acpi_processor_perf_seq_show(struct seq_file *seq, void *offset)
1090 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
1091 int i = 0;
1093 ACPI_FUNCTION_TRACE("acpi_processor_perf_seq_show");
1095 if (!pr)
1096 goto end;
1098 if (!pr->performance) {
1099 seq_puts(seq, "<not supported>\n");
1100 goto end;
1103 seq_printf(seq, "state count: %d\n"
1104 "active state: P%d\n",
1105 pr->performance->state_count,
1106 pr->performance->state);
1108 seq_puts(seq, "states:\n");
1109 for (i = 0; i < pr->performance->state_count; i++)
1110 seq_printf(seq, " %cP%d: %d MHz, %d mW, %d uS\n",
1111 (i == pr->performance->state?'*':' '), i,
1112 (u32) pr->performance->states[i].core_frequency,
1113 (u32) pr->performance->states[i].power,
1114 (u32) pr->performance->states[i].transition_latency);
1116 end:
1117 return 0;
1120 static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file)
1122 return single_open(file, acpi_processor_perf_seq_show,
1123 PDE(inode)->data);
1126 static ssize_t
1127 acpi_processor_write_performance (
1128 struct file *file,
1129 const char __user *buffer,
1130 size_t count,
1131 loff_t *data)
1133 int result = 0;
1134 struct seq_file *m = (struct seq_file *) file->private_data;
1135 struct acpi_processor *pr = (struct acpi_processor *) m->private;
1136 struct acpi_processor_performance *perf;
1137 char state_string[12] = {'\0'};
1138 unsigned int new_state = 0;
1139 struct cpufreq_policy policy;
1141 ACPI_FUNCTION_TRACE("acpi_processor_write_performance");
1143 if (!pr || (count > sizeof(state_string) - 1))
1144 return_VALUE(-EINVAL);
1146 perf = pr->performance;
1147 if (!perf)
1148 return_VALUE(-EINVAL);
1150 if (copy_from_user(state_string, buffer, count))
1151 return_VALUE(-EFAULT);
1153 state_string[count] = '\0';
1154 new_state = simple_strtoul(state_string, NULL, 0);
1156 if (new_state >= perf->state_count)
1157 return_VALUE(-EINVAL);
1159 cpufreq_get_policy(&policy, pr->id);
1161 policy.cpu = pr->id;
1162 policy.min = perf->states[new_state].core_frequency * 1000;
1163 policy.max = perf->states[new_state].core_frequency * 1000;
1165 result = cpufreq_set_policy(&policy);
1166 if (result)
1167 return_VALUE(result);
1169 return_VALUE(count);
1172 static void
1173 acpi_cpufreq_add_file (
1174 struct acpi_processor *pr)
1176 struct proc_dir_entry *entry = NULL;
1177 struct acpi_device *device = NULL;
1179 ACPI_FUNCTION_TRACE("acpi_cpufreq_addfile");
1181 if (acpi_bus_get_device(pr->handle, &device))
1182 return_VOID;
1184 /* add file 'performance' [R/W] */
1185 entry = create_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE,
1186 S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
1187 if (!entry)
1188 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1189 "Unable to create '%s' fs entry\n",
1190 ACPI_PROCESSOR_FILE_PERFORMANCE));
1191 else {
1192 entry->proc_fops = &acpi_processor_perf_fops;
1193 entry->proc_fops->write = acpi_processor_write_performance;
1194 entry->data = acpi_driver_data(device);
1195 entry->owner = THIS_MODULE;
1197 return_VOID;
1200 static void
1201 acpi_cpufreq_remove_file (
1202 struct acpi_processor *pr)
1204 struct acpi_device *device = NULL;
1206 ACPI_FUNCTION_TRACE("acpi_cpufreq_addfile");
1208 if (acpi_bus_get_device(pr->handle, &device))
1209 return_VOID;
1211 /* remove file 'performance' */
1212 remove_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE,
1213 acpi_device_dir(device));
1215 return_VOID;
1218 #else
1219 static void acpi_cpufreq_add_file (struct acpi_processor *pr) { return; }
1220 static void acpi_cpufreq_remove_file (struct acpi_processor *pr) { return; }
1221 #endif /* CONFIG_X86_ACPI_CPUFREQ_PROC_INTF */
1224 int
1225 acpi_processor_register_performance (
1226 struct acpi_processor_performance * performance,
1227 unsigned int cpu)
1229 struct acpi_processor *pr;
1231 ACPI_FUNCTION_TRACE("acpi_processor_register_performance");
1233 if (!acpi_processor_ppc_is_init)
1234 return_VALUE(-EINVAL);
1236 down(&performance_sem);
1238 pr = processors[cpu];
1239 if (!pr) {
1240 up(&performance_sem);
1241 return_VALUE(-ENODEV);
1244 if (pr->performance) {
1245 up(&performance_sem);
1246 return_VALUE(-EBUSY);
1249 pr->performance = performance;
1251 if (acpi_processor_get_performance_info(pr)) {
1252 pr->performance = NULL;
1253 up(&performance_sem);
1254 return_VALUE(-EIO);
1257 acpi_cpufreq_add_file(pr);
1259 up(&performance_sem);
1260 return_VALUE(0);
1262 EXPORT_SYMBOL(acpi_processor_register_performance);
1265 void
1266 acpi_processor_unregister_performance (
1267 struct acpi_processor_performance * performance,
1268 unsigned int cpu)
1270 struct acpi_processor *pr;
1272 ACPI_FUNCTION_TRACE("acpi_processor_unregister_performance");
1274 if (!acpi_processor_ppc_is_init)
1275 return_VOID;
1277 down(&performance_sem);
1279 pr = processors[cpu];
1280 if (!pr) {
1281 up(&performance_sem);
1282 return_VOID;
1285 kfree(pr->performance->states);
1286 pr->performance = NULL;
1288 acpi_cpufreq_remove_file(pr);
1290 up(&performance_sem);
1292 return_VOID;
1294 EXPORT_SYMBOL(acpi_processor_unregister_performance);
1297 /* for the rest of it, check arch/i386/kernel/cpu/cpufreq/acpi.c */
1299 #else /* !CONFIG_CPU_FREQ */
1301 static void acpi_processor_ppc_init(void) { return; }
1302 static void acpi_processor_ppc_exit(void) { return; }
1304 static int acpi_processor_ppc_has_changed(struct acpi_processor *pr) {
1305 static unsigned int printout = 1;
1306 if (printout) {
1307 printk(KERN_WARNING "Warning: Processor Platform Limit event detected, but not handled.\n");
1308 printk(KERN_WARNING "Consider compiling CPUfreq support into your kernel.\n");
1309 printout = 0;
1311 return 0;
1314 #endif /* CONFIG_CPU_FREQ */
1316 /* --------------------------------------------------------------------------
1317 Throttling Control
1318 -------------------------------------------------------------------------- */
1320 static int
1321 acpi_processor_get_throttling (
1322 struct acpi_processor *pr)
1324 int state = 0;
1325 u32 value = 0;
1326 u32 duty_mask = 0;
1327 u32 duty_value = 0;
1329 ACPI_FUNCTION_TRACE("acpi_processor_get_throttling");
1331 if (!pr)
1332 return_VALUE(-EINVAL);
1334 if (!pr->flags.throttling)
1335 return_VALUE(-ENODEV);
1337 pr->throttling.state = 0;
1339 local_irq_disable();
1341 duty_mask = pr->throttling.state_count - 1;
1343 duty_mask <<= pr->throttling.duty_offset;
1345 value = inl(pr->throttling.address);
1348 * Compute the current throttling state when throttling is enabled
1349 * (bit 4 is on).
1351 if (value & 0x10) {
1352 duty_value = value & duty_mask;
1353 duty_value >>= pr->throttling.duty_offset;
1355 if (duty_value)
1356 state = pr->throttling.state_count-duty_value;
1359 pr->throttling.state = state;
1361 local_irq_enable();
1363 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1364 "Throttling state is T%d (%d%% throttling applied)\n",
1365 state, pr->throttling.states[state].performance));
1367 return_VALUE(0);
1371 static int
1372 acpi_processor_set_throttling (
1373 struct acpi_processor *pr,
1374 int state)
1376 u32 value = 0;
1377 u32 duty_mask = 0;
1378 u32 duty_value = 0;
1380 ACPI_FUNCTION_TRACE("acpi_processor_set_throttling");
1382 if (!pr)
1383 return_VALUE(-EINVAL);
1385 if ((state < 0) || (state > (pr->throttling.state_count - 1)))
1386 return_VALUE(-EINVAL);
1388 if (!pr->flags.throttling)
1389 return_VALUE(-ENODEV);
1391 if (state == pr->throttling.state)
1392 return_VALUE(0);
1394 local_irq_disable();
1397 * Calculate the duty_value and duty_mask.
1399 if (state) {
1400 duty_value = pr->throttling.state_count - state;
1402 duty_value <<= pr->throttling.duty_offset;
1404 /* Used to clear all duty_value bits */
1405 duty_mask = pr->throttling.state_count - 1;
1407 duty_mask <<= acpi_fadt.duty_offset;
1408 duty_mask = ~duty_mask;
1412 * Disable throttling by writing a 0 to bit 4. Note that we must
1413 * turn it off before you can change the duty_value.
1415 value = inl(pr->throttling.address);
1416 if (value & 0x10) {
1417 value &= 0xFFFFFFEF;
1418 outl(value, pr->throttling.address);
1422 * Write the new duty_value and then enable throttling. Note
1423 * that a state value of 0 leaves throttling disabled.
1425 if (state) {
1426 value &= duty_mask;
1427 value |= duty_value;
1428 outl(value, pr->throttling.address);
1430 value |= 0x00000010;
1431 outl(value, pr->throttling.address);
1434 pr->throttling.state = state;
1436 local_irq_enable();
1438 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1439 "Throttling state set to T%d (%d%%)\n", state,
1440 (pr->throttling.states[state].performance?pr->throttling.states[state].performance/10:0)));
1442 return_VALUE(0);
1446 static int
1447 acpi_processor_get_throttling_info (
1448 struct acpi_processor *pr)
1450 int result = 0;
1451 int step = 0;
1452 int i = 0;
1454 ACPI_FUNCTION_TRACE("acpi_processor_get_throttling_info");
1456 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1457 "pblk_address[0x%08x] duty_offset[%d] duty_width[%d]\n",
1458 pr->throttling.address,
1459 pr->throttling.duty_offset,
1460 pr->throttling.duty_width));
1462 if (!pr)
1463 return_VALUE(-EINVAL);
1465 /* TBD: Support ACPI 2.0 objects */
1467 if (!pr->throttling.address) {
1468 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No throttling register\n"));
1469 return_VALUE(0);
1471 else if (!pr->throttling.duty_width) {
1472 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No throttling states\n"));
1473 return_VALUE(0);
1475 /* TBD: Support duty_cycle values that span bit 4. */
1476 else if ((pr->throttling.duty_offset
1477 + pr->throttling.duty_width) > 4) {
1478 ACPI_DEBUG_PRINT((ACPI_DB_WARN, "duty_cycle spans bit 4\n"));
1479 return_VALUE(0);
1483 * PIIX4 Errata: We don't support throttling on the original PIIX4.
1484 * This shouldn't be an issue as few (if any) mobile systems ever
1485 * used this part.
1487 if (errata.piix4.throttle) {
1488 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1489 "Throttling not supported on PIIX4 A- or B-step\n"));
1490 return_VALUE(0);
1493 pr->throttling.state_count = 1 << acpi_fadt.duty_width;
1496 * Compute state values. Note that throttling displays a linear power/
1497 * performance relationship (at 50% performance the CPU will consume
1498 * 50% power). Values are in 1/10th of a percent to preserve accuracy.
1501 step = (1000 / pr->throttling.state_count);
1503 for (i=0; i<pr->throttling.state_count; i++) {
1504 pr->throttling.states[i].performance = step * i;
1505 pr->throttling.states[i].power = step * i;
1508 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d throttling states\n",
1509 pr->throttling.state_count));
1511 pr->flags.throttling = 1;
1514 * Disable throttling (if enabled). We'll let subsequent policy (e.g.
1515 * thermal) decide to lower performance if it so chooses, but for now
1516 * we'll crank up the speed.
1519 result = acpi_processor_get_throttling(pr);
1520 if (result)
1521 goto end;
1523 if (pr->throttling.state) {
1524 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Disabling throttling (was T%d)\n",
1525 pr->throttling.state));
1526 result = acpi_processor_set_throttling(pr, 0);
1527 if (result)
1528 goto end;
1531 end:
1532 if (result)
1533 pr->flags.throttling = 0;
1535 return_VALUE(result);
1539 /* --------------------------------------------------------------------------
1540 Limit Interface
1541 -------------------------------------------------------------------------- */
1543 static int
1544 acpi_processor_apply_limit (
1545 struct acpi_processor* pr)
1547 int result = 0;
1548 u16 px = 0;
1549 u16 tx = 0;
1551 ACPI_FUNCTION_TRACE("acpi_processor_apply_limit");
1553 if (!pr)
1554 return_VALUE(-EINVAL);
1556 if (!pr->flags.limit)
1557 return_VALUE(-ENODEV);
1559 if (pr->flags.throttling) {
1560 if (pr->limit.user.tx > tx)
1561 tx = pr->limit.user.tx;
1562 if (pr->limit.thermal.tx > tx)
1563 tx = pr->limit.thermal.tx;
1565 result = acpi_processor_set_throttling(pr, tx);
1566 if (result)
1567 goto end;
1570 pr->limit.state.px = px;
1571 pr->limit.state.tx = tx;
1573 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Processor [%d] limit set to (P%d:T%d)\n",
1574 pr->id,
1575 pr->limit.state.px,
1576 pr->limit.state.tx));
1578 end:
1579 if (result)
1580 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to set limit\n"));
1582 return_VALUE(result);
1586 #ifdef CONFIG_CPU_FREQ
1588 /* If a passive cooling situation is detected, primarily CPUfreq is used, as it
1589 * offers (in most cases) voltage scaling in addition to frequency scaling, and
1590 * thus a cubic (instead of linear) reduction of energy. Also, we allow for
1591 * _any_ cpufreq driver and not only the acpi-cpufreq driver.
1594 static unsigned int cpufreq_thermal_reduction_pctg[NR_CPUS];
1595 static unsigned int acpi_thermal_cpufreq_is_init = 0;
1598 static int cpu_has_cpufreq(unsigned int cpu)
1600 struct cpufreq_policy policy;
1601 if (!acpi_thermal_cpufreq_is_init)
1602 return -ENODEV;
1603 if (!cpufreq_get_policy(&policy, cpu))
1604 return -ENODEV;
1605 return 0;
1609 static int acpi_thermal_cpufreq_increase(unsigned int cpu)
1611 if (!cpu_has_cpufreq(cpu))
1612 return -ENODEV;
1614 if (cpufreq_thermal_reduction_pctg[cpu] < 60) {
1615 cpufreq_thermal_reduction_pctg[cpu] += 20;
1616 cpufreq_update_policy(cpu);
1617 return 0;
1620 return -ERANGE;
1624 static int acpi_thermal_cpufreq_decrease(unsigned int cpu)
1626 if (!cpu_has_cpufreq(cpu))
1627 return -ENODEV;
1629 if (cpufreq_thermal_reduction_pctg[cpu] >= 20) {
1630 cpufreq_thermal_reduction_pctg[cpu] -= 20;
1631 cpufreq_update_policy(cpu);
1632 return 0;
1635 return -ERANGE;
1639 static int acpi_thermal_cpufreq_notifier(
1640 struct notifier_block *nb,
1641 unsigned long event,
1642 void *data)
1644 struct cpufreq_policy *policy = data;
1645 unsigned long max_freq = 0;
1647 if (event != CPUFREQ_ADJUST)
1648 goto out;
1650 max_freq = (policy->cpuinfo.max_freq * (100 - cpufreq_thermal_reduction_pctg[policy->cpu])) / 100;
1652 cpufreq_verify_within_limits(policy, 0, max_freq);
1654 out:
1655 return 0;
1659 static struct notifier_block acpi_thermal_cpufreq_notifier_block = {
1660 .notifier_call = acpi_thermal_cpufreq_notifier,
1664 static void acpi_thermal_cpufreq_init(void) {
1665 int i;
1667 for (i=0; i<NR_CPUS; i++)
1668 cpufreq_thermal_reduction_pctg[i] = 0;
1670 i = cpufreq_register_notifier(&acpi_thermal_cpufreq_notifier_block, CPUFREQ_POLICY_NOTIFIER);
1671 if (!i)
1672 acpi_thermal_cpufreq_is_init = 1;
1675 static void acpi_thermal_cpufreq_exit(void) {
1676 if (acpi_thermal_cpufreq_is_init)
1677 cpufreq_unregister_notifier(&acpi_thermal_cpufreq_notifier_block, CPUFREQ_POLICY_NOTIFIER);
1679 acpi_thermal_cpufreq_is_init = 0;
1682 #else /* ! CONFIG_CPU_FREQ */
1684 static void acpi_thermal_cpufreq_init(void) { return; }
1685 static void acpi_thermal_cpufreq_exit(void) { return; }
1686 static int acpi_thermal_cpufreq_increase(unsigned int cpu) { return -ENODEV; }
1687 static int acpi_thermal_cpufreq_decrease(unsigned int cpu) { return -ENODEV; }
1690 #endif
1694 acpi_processor_set_thermal_limit (
1695 acpi_handle handle,
1696 int type)
1698 int result = 0;
1699 struct acpi_processor *pr = NULL;
1700 struct acpi_device *device = NULL;
1701 int tx = 0;
1703 ACPI_FUNCTION_TRACE("acpi_processor_set_thermal_limit");
1705 if ((type < ACPI_PROCESSOR_LIMIT_NONE)
1706 || (type > ACPI_PROCESSOR_LIMIT_DECREMENT))
1707 return_VALUE(-EINVAL);
1709 result = acpi_bus_get_device(handle, &device);
1710 if (result)
1711 return_VALUE(result);
1713 pr = (struct acpi_processor *) acpi_driver_data(device);
1714 if (!pr)
1715 return_VALUE(-ENODEV);
1717 /* Thermal limits are always relative to the current Px/Tx state. */
1718 if (pr->flags.throttling)
1719 pr->limit.thermal.tx = pr->throttling.state;
1722 * Our default policy is to only use throttling at the lowest
1723 * performance state.
1726 tx = pr->limit.thermal.tx;
1728 switch (type) {
1730 case ACPI_PROCESSOR_LIMIT_NONE:
1731 do {
1732 result = acpi_thermal_cpufreq_decrease(pr->id);
1733 } while (!result);
1734 tx = 0;
1735 break;
1737 case ACPI_PROCESSOR_LIMIT_INCREMENT:
1738 /* if going up: P-states first, T-states later */
1740 result = acpi_thermal_cpufreq_increase(pr->id);
1741 if (!result)
1742 goto end;
1743 else if (result == -ERANGE)
1744 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1745 "At maximum performance state\n"));
1747 if (pr->flags.throttling) {
1748 if (tx == (pr->throttling.state_count - 1))
1749 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1750 "At maximum throttling state\n"));
1751 else
1752 tx++;
1754 break;
1756 case ACPI_PROCESSOR_LIMIT_DECREMENT:
1757 /* if going down: T-states first, P-states later */
1759 if (pr->flags.throttling) {
1760 if (tx == 0)
1761 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1762 "At minimum throttling state\n"));
1763 else {
1764 tx--;
1765 goto end;
1769 result = acpi_thermal_cpufreq_decrease(pr->id);
1770 if (result == -ERANGE)
1771 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1772 "At minimum performance state\n"));
1774 break;
1777 end:
1778 if (pr->flags.throttling) {
1779 pr->limit.thermal.px = 0;
1780 pr->limit.thermal.tx = tx;
1782 result = acpi_processor_apply_limit(pr);
1783 if (result)
1784 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1785 "Unable to set thermal limit\n"));
1787 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Thermal limit now (P%d:T%d)\n",
1788 pr->limit.thermal.px,
1789 pr->limit.thermal.tx));
1790 } else
1791 result = 0;
1793 return_VALUE(result);
1797 static int
1798 acpi_processor_get_limit_info (
1799 struct acpi_processor *pr)
1801 ACPI_FUNCTION_TRACE("acpi_processor_get_limit_info");
1803 if (!pr)
1804 return_VALUE(-EINVAL);
1806 if (pr->flags.throttling)
1807 pr->flags.limit = 1;
1809 return_VALUE(0);
1813 /* --------------------------------------------------------------------------
1814 FS Interface (/proc)
1815 -------------------------------------------------------------------------- */
1817 struct proc_dir_entry *acpi_processor_dir = NULL;
1819 static int acpi_processor_info_seq_show(struct seq_file *seq, void *offset)
1821 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
1823 ACPI_FUNCTION_TRACE("acpi_processor_info_seq_show");
1825 if (!pr)
1826 goto end;
1828 seq_printf(seq, "processor id: %d\n"
1829 "acpi id: %d\n"
1830 "bus mastering control: %s\n"
1831 "power management: %s\n"
1832 "throttling control: %s\n"
1833 "limit interface: %s\n",
1834 pr->id,
1835 pr->acpi_id,
1836 pr->flags.bm_control ? "yes" : "no",
1837 pr->flags.power ? "yes" : "no",
1838 pr->flags.throttling ? "yes" : "no",
1839 pr->flags.limit ? "yes" : "no");
1841 end:
1842 return 0;
1845 static int acpi_processor_info_open_fs(struct inode *inode, struct file *file)
1847 return single_open(file, acpi_processor_info_seq_show,
1848 PDE(inode)->data);
1851 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1853 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
1854 int i = 0;
1856 ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
1858 if (!pr)
1859 goto end;
1861 seq_printf(seq, "active state: C%d\n"
1862 "default state: C%d\n"
1863 "bus master activity: %08x\n",
1864 pr->power.state,
1865 pr->power.default_state,
1866 pr->power.bm_activity);
1868 seq_puts(seq, "states:\n");
1870 for (i = 1; i < ACPI_C_STATE_COUNT; i++) {
1871 seq_printf(seq, " %cC%d: ",
1872 (i == pr->power.state?'*':' '), i);
1874 if (!pr->power.states[i].valid) {
1875 seq_puts(seq, "<not supported>\n");
1876 continue;
1879 if (pr->power.states[i].promotion.state)
1880 seq_printf(seq, "promotion[C%d] ",
1881 pr->power.states[i].promotion.state);
1882 else
1883 seq_puts(seq, "promotion[--] ");
1885 if (pr->power.states[i].demotion.state)
1886 seq_printf(seq, "demotion[C%d] ",
1887 pr->power.states[i].demotion.state);
1888 else
1889 seq_puts(seq, "demotion[--] ");
1891 seq_printf(seq, "latency[%03d] usage[%08d]\n",
1892 pr->power.states[i].latency,
1893 pr->power.states[i].usage);
1896 end:
1897 return 0;
1900 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1902 return single_open(file, acpi_processor_power_seq_show,
1903 PDE(inode)->data);
1906 static int acpi_processor_throttling_seq_show(struct seq_file *seq, void *offset)
1908 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
1909 int i = 0;
1910 int result = 0;
1912 ACPI_FUNCTION_TRACE("acpi_processor_throttling_seq_show");
1914 if (!pr)
1915 goto end;
1917 if (!(pr->throttling.state_count > 0)) {
1918 seq_puts(seq, "<not supported>\n");
1919 goto end;
1922 result = acpi_processor_get_throttling(pr);
1924 if (result) {
1925 seq_puts(seq, "Could not determine current throttling state.\n");
1926 goto end;
1929 seq_printf(seq, "state count: %d\n"
1930 "active state: T%d\n",
1931 pr->throttling.state_count,
1932 pr->throttling.state);
1934 seq_puts(seq, "states:\n");
1935 for (i = 0; i < pr->throttling.state_count; i++)
1936 seq_printf(seq, " %cT%d: %02d%%\n",
1937 (i == pr->throttling.state?'*':' '), i,
1938 (pr->throttling.states[i].performance?pr->throttling.states[i].performance/10:0));
1940 end:
1941 return 0;
1944 static int acpi_processor_throttling_open_fs(struct inode *inode, struct file *file)
1946 return single_open(file, acpi_processor_throttling_seq_show,
1947 PDE(inode)->data);
1950 static ssize_t
1951 acpi_processor_write_throttling (
1952 struct file *file,
1953 const char __user *buffer,
1954 size_t count,
1955 loff_t *data)
1957 int result = 0;
1958 struct seq_file *m = (struct seq_file *)file->private_data;
1959 struct acpi_processor *pr = (struct acpi_processor *)m->private;
1960 char state_string[12] = {'\0'};
1962 ACPI_FUNCTION_TRACE("acpi_processor_write_throttling");
1964 if (!pr || (count > sizeof(state_string) - 1))
1965 return_VALUE(-EINVAL);
1967 if (copy_from_user(state_string, buffer, count))
1968 return_VALUE(-EFAULT);
1970 state_string[count] = '\0';
1972 result = acpi_processor_set_throttling(pr,
1973 simple_strtoul(state_string, NULL, 0));
1974 if (result)
1975 return_VALUE(result);
1977 return_VALUE(count);
1980 static int acpi_processor_limit_seq_show(struct seq_file *seq, void *offset)
1982 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
1984 ACPI_FUNCTION_TRACE("acpi_processor_limit_seq_show");
1986 if (!pr)
1987 goto end;
1989 if (!pr->flags.limit) {
1990 seq_puts(seq, "<not supported>\n");
1991 goto end;
1994 seq_printf(seq, "active limit: P%d:T%d\n"
1995 "user limit: P%d:T%d\n"
1996 "thermal limit: P%d:T%d\n",
1997 pr->limit.state.px, pr->limit.state.tx,
1998 pr->limit.user.px, pr->limit.user.tx,
1999 pr->limit.thermal.px, pr->limit.thermal.tx);
2001 end:
2002 return 0;
2005 static int acpi_processor_limit_open_fs(struct inode *inode, struct file *file)
2007 return single_open(file, acpi_processor_limit_seq_show,
2008 PDE(inode)->data);
2011 static ssize_t
2012 acpi_processor_write_limit (
2013 struct file *file,
2014 const char __user *buffer,
2015 size_t count,
2016 loff_t *data)
2018 int result = 0;
2019 struct seq_file *m = (struct seq_file *)file->private_data;
2020 struct acpi_processor *pr = (struct acpi_processor *)m->private;
2021 char limit_string[25] = {'\0'};
2022 int px = 0;
2023 int tx = 0;
2025 ACPI_FUNCTION_TRACE("acpi_processor_write_limit");
2027 if (!pr || (count > sizeof(limit_string) - 1)) {
2028 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid argument\n"));
2029 return_VALUE(-EINVAL);
2032 if (copy_from_user(limit_string, buffer, count)) {
2033 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data\n"));
2034 return_VALUE(-EFAULT);
2037 limit_string[count] = '\0';
2039 if (sscanf(limit_string, "%d:%d", &px, &tx) != 2) {
2040 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data format\n"));
2041 return_VALUE(-EINVAL);
2044 if (pr->flags.throttling) {
2045 if ((tx < 0) || (tx > (pr->throttling.state_count - 1))) {
2046 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid tx\n"));
2047 return_VALUE(-EINVAL);
2049 pr->limit.user.tx = tx;
2052 result = acpi_processor_apply_limit(pr);
2054 return_VALUE(count);
2058 static int
2059 acpi_processor_add_fs (
2060 struct acpi_device *device)
2062 struct proc_dir_entry *entry = NULL;
2064 ACPI_FUNCTION_TRACE("acpi_processor_add_fs");
2066 if (!acpi_device_dir(device)) {
2067 acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device),
2068 acpi_processor_dir);
2069 if (!acpi_device_dir(device))
2070 return_VALUE(-ENODEV);
2072 acpi_device_dir(device)->owner = THIS_MODULE;
2074 /* 'info' [R] */
2075 entry = create_proc_entry(ACPI_PROCESSOR_FILE_INFO,
2076 S_IRUGO, acpi_device_dir(device));
2077 if (!entry)
2078 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
2079 "Unable to create '%s' fs entry\n",
2080 ACPI_PROCESSOR_FILE_INFO));
2081 else {
2082 entry->proc_fops = &acpi_processor_info_fops;
2083 entry->data = acpi_driver_data(device);
2084 entry->owner = THIS_MODULE;
2087 /* 'power' [R] */
2088 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
2089 S_IRUGO, acpi_device_dir(device));
2090 if (!entry)
2091 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
2092 "Unable to create '%s' fs entry\n",
2093 ACPI_PROCESSOR_FILE_POWER));
2094 else {
2095 entry->proc_fops = &acpi_processor_power_fops;
2096 entry->data = acpi_driver_data(device);
2097 entry->owner = THIS_MODULE;
2100 /* 'throttling' [R/W] */
2101 entry = create_proc_entry(ACPI_PROCESSOR_FILE_THROTTLING,
2102 S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
2103 if (!entry)
2104 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
2105 "Unable to create '%s' fs entry\n",
2106 ACPI_PROCESSOR_FILE_THROTTLING));
2107 else {
2108 entry->proc_fops = &acpi_processor_throttling_fops;
2109 entry->proc_fops->write = acpi_processor_write_throttling;
2110 entry->data = acpi_driver_data(device);
2111 entry->owner = THIS_MODULE;
2114 /* 'limit' [R/W] */
2115 entry = create_proc_entry(ACPI_PROCESSOR_FILE_LIMIT,
2116 S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device));
2117 if (!entry)
2118 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
2119 "Unable to create '%s' fs entry\n",
2120 ACPI_PROCESSOR_FILE_LIMIT));
2121 else {
2122 entry->proc_fops = &acpi_processor_limit_fops;
2123 entry->proc_fops->write = acpi_processor_write_limit;
2124 entry->data = acpi_driver_data(device);
2125 entry->owner = THIS_MODULE;
2128 return_VALUE(0);
2132 static int
2133 acpi_processor_remove_fs (
2134 struct acpi_device *device)
2136 ACPI_FUNCTION_TRACE("acpi_processor_remove_fs");
2138 if (acpi_device_dir(device)) {
2139 remove_proc_entry(ACPI_PROCESSOR_FILE_INFO,acpi_device_dir(device));
2140 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,acpi_device_dir(device));
2141 remove_proc_entry(ACPI_PROCESSOR_FILE_THROTTLING,
2142 acpi_device_dir(device));
2143 remove_proc_entry(ACPI_PROCESSOR_FILE_LIMIT,acpi_device_dir(device));
2144 remove_proc_entry(acpi_device_bid(device), acpi_processor_dir);
2145 acpi_device_dir(device) = NULL;
2148 return_VALUE(0);
2151 /* Use the acpiid in MADT to map cpus in case of SMP */
2152 #ifndef CONFIG_SMP
2153 #define convert_acpiid_to_cpu(acpi_id) (0xff)
2154 #else
2156 #ifdef CONFIG_IA64
2157 #define arch_acpiid_to_apicid ia64_acpiid_to_sapicid
2158 #define arch_cpu_to_apicid ia64_cpu_to_sapicid
2159 #define ARCH_BAD_APICID (0xffff)
2160 #else
2161 #define arch_acpiid_to_apicid x86_acpiid_to_apicid
2162 #define arch_cpu_to_apicid x86_cpu_to_apicid
2163 #define ARCH_BAD_APICID (0xff)
2164 #endif
2166 static u8 convert_acpiid_to_cpu(u8 acpi_id)
2168 u16 apic_id;
2169 int i;
2171 apic_id = arch_acpiid_to_apicid[acpi_id];
2172 if (apic_id == ARCH_BAD_APICID)
2173 return -1;
2175 for (i = 0; i < NR_CPUS; i++) {
2176 if (arch_cpu_to_apicid[i] == apic_id)
2177 return i;
2179 return -1;
2181 #endif
2183 /* --------------------------------------------------------------------------
2184 Driver Interface
2185 -------------------------------------------------------------------------- */
2187 static int
2188 acpi_processor_get_info (
2189 struct acpi_processor *pr)
2191 acpi_status status = 0;
2192 union acpi_object object = {0};
2193 struct acpi_buffer buffer = {sizeof(union acpi_object), &object};
2194 u8 cpu_index;
2195 static int cpu0_initialized;
2197 ACPI_FUNCTION_TRACE("acpi_processor_get_info");
2199 if (!pr)
2200 return_VALUE(-EINVAL);
2202 if (num_online_cpus() > 1)
2203 errata.smp = TRUE;
2205 acpi_processor_errata(pr);
2208 * Check to see if we have bus mastering arbitration control. This
2209 * is required for proper C3 usage (to maintain cache coherency).
2211 if (acpi_fadt.V1_pm2_cnt_blk && acpi_fadt.pm2_cnt_len) {
2212 pr->flags.bm_control = 1;
2213 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
2214 "Bus mastering arbitration control present\n"));
2216 else
2217 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
2218 "No bus mastering arbitration control\n"));
2221 * Evalute the processor object. Note that it is common on SMP to
2222 * have the first (boot) processor with a valid PBLK address while
2223 * all others have a NULL address.
2225 status = acpi_evaluate_object(pr->handle, NULL, NULL, &buffer);
2226 if (ACPI_FAILURE(status)) {
2227 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
2228 "Error evaluating processor object\n"));
2229 return_VALUE(-ENODEV);
2233 * TBD: Synch processor ID (via LAPIC/LSAPIC structures) on SMP.
2234 * >>> 'acpi_get_processor_id(acpi_id, &id)' in arch/xxx/acpi.c
2236 pr->acpi_id = object.processor.proc_id;
2238 cpu_index = convert_acpiid_to_cpu(pr->acpi_id);
2240 if ( !cpu0_initialized && (cpu_index == 0xff)) {
2241 /* Handle UP system running SMP kernel, with no LAPIC in MADT */
2242 cpu_index = 0;
2243 } else if (cpu_index > num_online_cpus()) {
2245 * Extra Processor objects may be enumerated on MP systems with
2246 * less than the max # of CPUs. They should be ignored.
2248 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
2249 "Error getting cpuindex for acpiid 0x%x\n",
2250 pr->acpi_id));
2251 return_VALUE(-ENODEV);
2253 cpu0_initialized = 1;
2255 pr->id = cpu_index;
2257 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Processor [%d:%d]\n", pr->id,
2258 pr->acpi_id));
2260 if (!object.processor.pblk_address)
2261 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No PBLK (NULL address)\n"));
2262 else if (object.processor.pblk_length != 6)
2263 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid PBLK length [%d]\n",
2264 object.processor.pblk_length));
2265 else {
2266 pr->throttling.address = object.processor.pblk_address;
2267 pr->throttling.duty_offset = acpi_fadt.duty_offset;
2268 pr->throttling.duty_width = acpi_fadt.duty_width;
2269 pr->power.states[ACPI_STATE_C2].address =
2270 object.processor.pblk_address + 4;
2271 pr->power.states[ACPI_STATE_C3].address =
2272 object.processor.pblk_address + 5;
2275 * We don't care about error returns - we just try to mark
2276 * these reserved so that nobody else is confused into thinking
2277 * that this region might be unused..
2279 * (In particular, allocating the IO range for Cardbus)
2281 request_region(pr->throttling.address, 6, "ACPI CPU throttle");
2284 acpi_processor_get_power_info(pr);
2285 #ifdef CONFIG_CPU_FREQ
2286 acpi_processor_ppc_has_changed(pr);
2287 #endif
2288 acpi_processor_get_throttling_info(pr);
2289 acpi_processor_get_limit_info(pr);
2291 return_VALUE(0);
2295 static void
2296 acpi_processor_notify (
2297 acpi_handle handle,
2298 u32 event,
2299 void *data)
2301 struct acpi_processor *pr = (struct acpi_processor *) data;
2302 struct acpi_device *device = NULL;
2304 ACPI_FUNCTION_TRACE("acpi_processor_notify");
2306 if (!pr)
2307 return_VOID;
2309 if (acpi_bus_get_device(pr->handle, &device))
2310 return_VOID;
2312 switch (event) {
2313 case ACPI_PROCESSOR_NOTIFY_PERFORMANCE:
2314 acpi_processor_ppc_has_changed(pr);
2315 acpi_bus_generate_event(device, event,
2316 pr->performance_platform_limit);
2317 break;
2318 case ACPI_PROCESSOR_NOTIFY_POWER:
2319 /* TBD */
2320 acpi_bus_generate_event(device, event, 0);
2321 break;
2322 default:
2323 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
2324 "Unsupported event [0x%x]\n", event));
2325 break;
2328 return_VOID;
2332 static int
2333 acpi_processor_add (
2334 struct acpi_device *device)
2336 int result = 0;
2337 acpi_status status = AE_OK;
2338 struct acpi_processor *pr = NULL;
2339 u32 i = 0;
2341 ACPI_FUNCTION_TRACE("acpi_processor_add");
2343 if (!device)
2344 return_VALUE(-EINVAL);
2346 pr = kmalloc(sizeof(struct acpi_processor), GFP_KERNEL);
2347 if (!pr)
2348 return_VALUE(-ENOMEM);
2349 memset(pr, 0, sizeof(struct acpi_processor));
2351 pr->handle = device->handle;
2352 strcpy(acpi_device_name(device), ACPI_PROCESSOR_DEVICE_NAME);
2353 strcpy(acpi_device_class(device), ACPI_PROCESSOR_CLASS);
2354 acpi_driver_data(device) = pr;
2356 result = acpi_processor_get_info(pr);
2357 if (result)
2358 goto end;
2360 result = acpi_processor_add_fs(device);
2361 if (result)
2362 goto end;
2364 status = acpi_install_notify_handler(pr->handle, ACPI_DEVICE_NOTIFY,
2365 acpi_processor_notify, pr);
2366 if (ACPI_FAILURE(status)) {
2367 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
2368 "Error installing notify handler\n"));
2369 result = -ENODEV;
2370 goto end;
2373 processors[pr->id] = pr;
2376 * Install the idle handler if processor power management is supported.
2377 * Note that the default idle handler (default_idle) will be used on
2378 * platforms that only support C1.
2380 if ((pr->id == 0) && (pr->flags.power)) {
2381 pm_idle_save = pm_idle;
2382 pm_idle = acpi_processor_idle;
2385 printk(KERN_INFO PREFIX "%s [%s] (supports",
2386 acpi_device_name(device), acpi_device_bid(device));
2387 for (i=1; i<ACPI_C_STATE_COUNT; i++)
2388 if (pr->power.states[i].valid)
2389 printk(" C%d", i);
2390 if (pr->flags.throttling)
2391 printk(", %d throttling states", pr->throttling.state_count);
2392 printk(")\n");
2394 end:
2395 if (result) {
2396 acpi_processor_remove_fs(device);
2397 kfree(pr);
2400 return_VALUE(result);
2404 static int
2405 acpi_processor_remove (
2406 struct acpi_device *device,
2407 int type)
2409 acpi_status status = AE_OK;
2410 struct acpi_processor *pr = NULL;
2412 ACPI_FUNCTION_TRACE("acpi_processor_remove");
2414 if (!device || !acpi_driver_data(device))
2415 return_VALUE(-EINVAL);
2417 pr = (struct acpi_processor *) acpi_driver_data(device);
2419 /* Unregister the idle handler when processor #0 is removed. */
2420 if (pr->id == 0) {
2421 pm_idle = pm_idle_save;
2423 * We are about to unload the current idle thread pm callback
2424 * (pm_idle), Wait for all processors to update cached/local
2425 * copies of pm_idle before proceeding.
2427 synchronize_kernel();
2430 status = acpi_remove_notify_handler(pr->handle, ACPI_DEVICE_NOTIFY,
2431 acpi_processor_notify);
2432 if (ACPI_FAILURE(status)) {
2433 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
2434 "Error removing notify handler\n"));
2437 acpi_processor_remove_fs(device);
2439 processors[pr->id] = NULL;
2441 kfree(pr);
2443 return_VALUE(0);
2447 static int __init
2448 acpi_processor_init (void)
2450 int result = 0;
2452 ACPI_FUNCTION_TRACE("acpi_processor_init");
2454 memset(&processors, 0, sizeof(processors));
2455 memset(&errata, 0, sizeof(errata));
2457 acpi_processor_dir = proc_mkdir(ACPI_PROCESSOR_CLASS, acpi_root_dir);
2458 if (!acpi_processor_dir)
2459 return_VALUE(-ENODEV);
2460 acpi_processor_dir->owner = THIS_MODULE;
2462 result = acpi_bus_register_driver(&acpi_processor_driver);
2463 if (result < 0) {
2464 remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir);
2465 return_VALUE(-ENODEV);
2468 acpi_thermal_cpufreq_init();
2470 acpi_processor_ppc_init();
2472 return_VALUE(0);
2476 static void __exit
2477 acpi_processor_exit (void)
2479 ACPI_FUNCTION_TRACE("acpi_processor_exit");
2481 acpi_processor_ppc_exit();
2483 acpi_thermal_cpufreq_exit();
2485 acpi_bus_unregister_driver(&acpi_processor_driver);
2487 remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir);
2489 return_VOID;
2493 module_init(acpi_processor_init);
2494 module_exit(acpi_processor_exit);
2496 EXPORT_SYMBOL(acpi_processor_set_thermal_limit);