2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
56 * - Read fan speed from FCU, low level fan routines now deal
57 * with errors & check fan status, though higher level don't
59 * - Move a bunch of definitions to .h file
62 * - Fix build on ppc64 kernel
63 * - Move back statics definitions to .c file
64 * - Avoid calling schedule_timeout with a negative number
67 * - Fix typo when reading back fan speed on 2 CPU machines
70 * - Rework code accessing the ADC chips, make it more robust and
71 * closer to the chip spec. Also make sure it is configured properly,
72 * I've seen yet unexplained cases where on startup, I would have stale
73 * values in the configuration register
74 * - Switch back to use of target fan speed for PID, thus lowering
78 #include <linux/config.h>
79 #include <linux/types.h>
80 #include <linux/module.h>
81 #include <linux/errno.h>
82 #include <linux/kernel.h>
83 #include <linux/delay.h>
84 #include <linux/sched.h>
85 #include <linux/i2c.h>
86 #include <linux/slab.h>
87 #include <linux/init.h>
88 #include <linux/spinlock.h>
89 #include <linux/smp_lock.h>
90 #include <linux/wait.h>
91 #include <linux/reboot.h>
92 #include <linux/kmod.h>
93 #include <linux/i2c.h>
94 #include <linux/i2c-dev.h>
96 #include <asm/machdep.h>
98 #include <asm/system.h>
99 #include <asm/sections.h>
100 #include <asm/of_device.h>
102 #include "therm_pm72.h"
104 #define VERSION "0.9"
109 #define DBG(args...) printk(args)
111 #define DBG(args...) do { } while(0)
119 static struct of_device
* of_dev
;
120 static struct i2c_adapter
* u3_0
;
121 static struct i2c_adapter
* u3_1
;
122 static struct i2c_client
* fcu
;
123 static struct cpu_pid_state cpu_state
[2];
124 static struct backside_pid_state backside_state
;
125 static struct drives_pid_state drives_state
;
127 static int cpu_count
;
128 static pid_t ctrl_task
;
129 static struct completion ctrl_complete
;
130 static int critical_state
;
131 static DECLARE_MUTEX(driver_lock
);
134 * i2c_driver structure to attach to the host i2c controller
137 static int therm_pm72_attach(struct i2c_adapter
*adapter
);
138 static int therm_pm72_detach(struct i2c_adapter
*adapter
);
140 static struct i2c_driver therm_pm72_driver
=
142 .name
= "therm_pm72",
144 .flags
= I2C_DF_NOTIFY
,
145 .attach_adapter
= therm_pm72_attach
,
146 .detach_adapter
= therm_pm72_detach
,
150 * Utility function to create an i2c_client structure and
151 * attach it to one of u3 adapters
153 static struct i2c_client
*attach_i2c_chip(int id
, const char *name
)
155 struct i2c_client
*clt
;
156 struct i2c_adapter
*adap
;
165 clt
= kmalloc(sizeof(struct i2c_client
), GFP_KERNEL
);
168 memset(clt
, 0, sizeof(struct i2c_client
));
170 clt
->addr
= (id
>> 1) & 0x7f;
172 clt
->driver
= &therm_pm72_driver
;
173 clt
->id
= 0xDEADBEEF;
174 strncpy(clt
->name
, name
, I2C_NAME_SIZE
-1);
176 if (i2c_attach_client(clt
)) {
177 printk(KERN_ERR
"therm_pm72: Failed to attach to i2c ID 0x%x\n", id
);
185 * Utility function to get rid of the i2c_client structure
186 * (will also detach from the adapter hopepfully)
188 static void detach_i2c_chip(struct i2c_client
*clt
)
190 i2c_detach_client(clt
);
195 * Here are the i2c chip access wrappers
198 static void initialize_adc(struct cpu_pid_state
*state
)
203 /* Read ADC the configuration register and cache it. We
204 * also make sure Config2 contains proper values, I've seen
205 * cases where we got stale grabage in there, thus preventing
206 * proper reading of conv. values
212 i2c_master_send(state
->monitor
, buf
, 2);
214 /* Read & cache Config1 */
216 rc
= i2c_master_send(state
->monitor
, buf
, 1);
218 rc
= i2c_master_recv(state
->monitor
, buf
, 1);
220 state
->adc_config
= buf
[0];
221 DBG("ADC config reg: %02x\n", state
->adc_config
);
222 /* Disable shutdown mode */
223 state
->adc_config
&= 0xfe;
225 buf
[1] = state
->adc_config
;
226 rc
= i2c_master_send(state
->monitor
, buf
, 2);
230 printk(KERN_ERR
"therm_pm72: Error reading ADC config"
234 static int read_smon_adc(struct cpu_pid_state
*state
, int chan
)
236 int rc
, data
, tries
= 0;
242 buf
[1] = (state
->adc_config
& 0x1f) | (chan
<< 5);
243 rc
= i2c_master_send(state
->monitor
, buf
, 2);
246 /* Wait for convertion */
248 /* Switch to data register */
250 rc
= i2c_master_send(state
->monitor
, buf
, 1);
254 rc
= i2c_master_recv(state
->monitor
, buf
, 2);
257 data
= ((u16
)buf
[0]) << 8 | (u16
)buf
[1];
260 DBG("Error reading ADC, retrying...\n");
262 printk(KERN_ERR
"therm_pm72: Error reading ADC !\n");
269 static int fan_read_reg(int reg
, unsigned char *buf
, int nb
)
276 nw
= i2c_master_send(fcu
, buf
, 1);
277 if (nw
> 0 || (nw
< 0 && nw
!= -EIO
) || tries
>= 100)
283 printk(KERN_ERR
"Failure writing address to FCU: %d", nw
);
288 nr
= i2c_master_recv(fcu
, buf
, nb
);
289 if (nr
> 0 || (nr
< 0 && nr
!= ENODEV
) || tries
>= 100)
295 printk(KERN_ERR
"Failure reading data from FCU: %d", nw
);
299 static int fan_write_reg(int reg
, const unsigned char *ptr
, int nb
)
302 unsigned char buf
[16];
305 memcpy(buf
+1, ptr
, nb
);
309 nw
= i2c_master_send(fcu
, buf
, nb
);
310 if (nw
> 0 || (nw
< 0 && nw
!= EIO
) || tries
>= 100)
316 printk(KERN_ERR
"Failure writing to FCU: %d", nw
);
320 static int start_fcu(void)
322 unsigned char buf
= 0xff;
325 rc
= fan_write_reg(0xe, &buf
, 1);
328 rc
= fan_write_reg(0x2e, &buf
, 1);
334 static int set_rpm_fan(int fan
, int rpm
)
336 unsigned char buf
[2];
345 rc
= fan_write_reg(0x10 + (fan
* 2), buf
, 2);
351 static int get_rpm_fan(int fan
, int programmed
)
353 unsigned char failure
;
354 unsigned char active
;
355 unsigned char buf
[2];
358 rc
= fan_read_reg(0xb, &failure
, 1);
361 if ((failure
& (1 << fan
)) != 0)
363 rc
= fan_read_reg(0xd, &active
, 1);
366 if ((active
& (1 << fan
)) == 0)
369 /* Programmed value or real current speed */
370 reg_base
= programmed
? 0x10 : 0x11;
371 rc
= fan_read_reg(reg_base
+ (fan
* 2), buf
, 2);
375 return (buf
[0] << 5) | buf
[1] >> 3;
378 static int set_pwm_fan(int fan
, int pwm
)
380 unsigned char buf
[2];
387 pwm
= (pwm
* 2559) / 1000;
389 rc
= fan_write_reg(0x30 + (fan
* 2), buf
, 1);
395 static int get_pwm_fan(int fan
)
397 unsigned char failure
;
398 unsigned char active
;
399 unsigned char buf
[2];
402 rc
= fan_read_reg(0x2b, &failure
, 1);
405 if ((failure
& (1 << fan
)) != 0)
407 rc
= fan_read_reg(0x2d, &active
, 1);
410 if ((active
& (1 << fan
)) == 0)
413 /* Programmed value or real current speed */
414 rc
= fan_read_reg(0x30 + (fan
* 2), buf
, 1);
418 return (buf
[0] * 1000) / 2559;
422 * Utility routine to read the CPU calibration EEPROM data
423 * from the device-tree
425 static int read_eeprom(int cpu
, struct mpu_data
*out
)
427 struct device_node
*np
;
432 /* prom.c routine for finding a node by path is a bit brain dead
433 * and requires exact @xxx unit numbers. This is a bit ugly but
434 * will work for these machines
436 sprintf(nodename
, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu
? 2 : 0);
437 np
= of_find_node_by_path(nodename
);
439 printk(KERN_ERR
"therm_pm72: Failed to retreive cpuid node from device-tree\n");
442 data
= (u8
*)get_property(np
, "cpuid", &len
);
444 printk(KERN_ERR
"therm_pm72: Failed to retreive cpuid property from device-tree\n");
448 memcpy(out
, data
, sizeof(struct mpu_data
));
455 * Now, unfortunately, sysfs doesn't give us a nice void * we could
456 * pass around to the attribute functions, so we don't really have
457 * choice but implement a bunch of them...
459 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
460 * the input twice... I accept patches :)
462 #define BUILD_SHOW_FUNC_FIX(name, data) \
463 static ssize_t show_##name(struct device *dev, char *buf) \
466 down(&driver_lock); \
467 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
471 #define BUILD_SHOW_FUNC_INT(name, data) \
472 static ssize_t show_##name(struct device *dev, char *buf) \
474 return sprintf(buf, "%d", data); \
477 BUILD_SHOW_FUNC_FIX(cpu0_temperature
, cpu_state
[0].last_temp
)
478 BUILD_SHOW_FUNC_FIX(cpu0_voltage
, cpu_state
[0].voltage
)
479 BUILD_SHOW_FUNC_FIX(cpu0_current
, cpu_state
[0].current_a
)
480 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm
, cpu_state
[0].rpm
)
481 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm
, cpu_state
[0].intake_rpm
)
483 BUILD_SHOW_FUNC_FIX(cpu1_temperature
, cpu_state
[1].last_temp
)
484 BUILD_SHOW_FUNC_FIX(cpu1_voltage
, cpu_state
[1].voltage
)
485 BUILD_SHOW_FUNC_FIX(cpu1_current
, cpu_state
[1].current_a
)
486 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm
, cpu_state
[1].rpm
)
487 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm
, cpu_state
[1].intake_rpm
)
489 BUILD_SHOW_FUNC_FIX(backside_temperature
, backside_state
.last_temp
)
490 BUILD_SHOW_FUNC_INT(backside_fan_pwm
, backside_state
.pwm
)
492 BUILD_SHOW_FUNC_FIX(drives_temperature
, drives_state
.last_temp
)
493 BUILD_SHOW_FUNC_INT(drives_fan_rpm
, drives_state
.rpm
)
495 static DEVICE_ATTR(cpu0_temperature
,S_IRUGO
,show_cpu0_temperature
,NULL
);
496 static DEVICE_ATTR(cpu0_voltage
,S_IRUGO
,show_cpu0_voltage
,NULL
);
497 static DEVICE_ATTR(cpu0_current
,S_IRUGO
,show_cpu0_current
,NULL
);
498 static DEVICE_ATTR(cpu0_exhaust_fan_rpm
,S_IRUGO
,show_cpu0_exhaust_fan_rpm
,NULL
);
499 static DEVICE_ATTR(cpu0_intake_fan_rpm
,S_IRUGO
,show_cpu0_intake_fan_rpm
,NULL
);
501 static DEVICE_ATTR(cpu1_temperature
,S_IRUGO
,show_cpu1_temperature
,NULL
);
502 static DEVICE_ATTR(cpu1_voltage
,S_IRUGO
,show_cpu1_voltage
,NULL
);
503 static DEVICE_ATTR(cpu1_current
,S_IRUGO
,show_cpu1_current
,NULL
);
504 static DEVICE_ATTR(cpu1_exhaust_fan_rpm
,S_IRUGO
,show_cpu1_exhaust_fan_rpm
,NULL
);
505 static DEVICE_ATTR(cpu1_intake_fan_rpm
,S_IRUGO
,show_cpu1_intake_fan_rpm
,NULL
);
507 static DEVICE_ATTR(backside_temperature
,S_IRUGO
,show_backside_temperature
,NULL
);
508 static DEVICE_ATTR(backside_fan_pwm
,S_IRUGO
,show_backside_fan_pwm
,NULL
);
510 static DEVICE_ATTR(drives_temperature
,S_IRUGO
,show_drives_temperature
,NULL
);
511 static DEVICE_ATTR(drives_fan_rpm
,S_IRUGO
,show_drives_fan_rpm
,NULL
);
514 * CPUs fans control loop
516 static void do_monitor_cpu(struct cpu_pid_state
*state
)
518 s32 temp
, voltage
, current_a
, power
, power_target
;
519 s32 integral
, derivative
, proportional
, adj_in_target
, sval
;
520 s64 integ_p
, deriv_p
, prop_p
, sum
;
523 DBG("cpu %d:\n", state
->index
);
525 /* Read current fan status */
526 if (state
->index
== 0)
527 rc
= get_rpm_fan(CPUA_EXHAUST_FAN_RPM_ID
, !RPM_PID_USE_ACTUAL_SPEED
);
529 rc
= get_rpm_fan(CPUB_EXHAUST_FAN_RPM_ID
, !RPM_PID_USE_ACTUAL_SPEED
);
531 printk(KERN_WARNING
"Error %d reading CPU %d exhaust fan !\n",
533 /* XXX What do we do now ? */
536 DBG(" current rpm: %d\n", state
->rpm
);
538 /* Get some sensor readings and scale it */
539 temp
= read_smon_adc(state
, 1);
544 voltage
= read_smon_adc(state
, 3);
545 current_a
= read_smon_adc(state
, 4);
547 /* Fixup temperature according to diode calibration
549 DBG(" temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
550 temp
, state
->mpu
.mdiode
, state
->mpu
.bdiode
);
551 temp
= ((s32
)temp
* (s32
)state
->mpu
.mdiode
+ ((s32
)state
->mpu
.bdiode
<< 12)) >> 2;
552 state
->last_temp
= temp
;
553 DBG(" temp: %d.%03d\n", FIX32TOPRINT(temp
));
555 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
556 * full blown immediately and try to trigger a shutdown
558 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
559 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
561 state
->index
, temp
>> 16);
562 state
->overtemp
= CPU_MAX_OVERTEMP
;
563 } else if (temp
> (state
->mpu
.tmax
<< 16))
567 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
569 if (state
->overtemp
> 0) {
570 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
571 state
->intake_rpm
= intake
= state
->mpu
.rmaxn_intake_fan
;
575 /* Scale other sensor values according to fixed scales
576 * obtained in Darwin and calculate power from I and V
578 state
->voltage
= voltage
*= ADC_CPU_VOLTAGE_SCALE
;
579 state
->current_a
= current_a
*= ADC_CPU_CURRENT_SCALE
;
580 power
= (((u64
)current_a
) * ((u64
)voltage
)) >> 16;
582 /* Calculate power target value (could be done once for all)
583 * and convert to a 16.16 fp number
585 power_target
= ((u32
)(state
->mpu
.pmaxh
- state
->mpu
.padjmax
)) << 16;
587 DBG(" current: %d.%03d, voltage: %d.%03d\n",
588 FIX32TOPRINT(current_a
), FIX32TOPRINT(voltage
));
589 DBG(" power: %d.%03d W, target: %d.%03d, error: %d.%03d\n", FIX32TOPRINT(power
),
590 FIX32TOPRINT(power_target
), FIX32TOPRINT(power_target
- power
));
592 /* Store temperature and power in history array */
593 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
594 state
->temp_history
[state
->cur_temp
] = temp
;
595 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
596 state
->power_history
[state
->cur_power
] = power
;
597 state
->error_history
[state
->cur_power
] = power_target
- power
;
599 /* If first loop, fill the history table */
601 for (i
= 0; i
< (state
->count_power
- 1); i
++) {
602 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
603 state
->power_history
[state
->cur_power
] = power
;
604 state
->error_history
[state
->cur_power
] = power_target
- power
;
606 for (i
= 0; i
< (CPU_TEMP_HISTORY_SIZE
- 1); i
++) {
607 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
608 state
->temp_history
[state
->cur_temp
] = temp
;
613 /* Calculate the integral term normally based on the "power" values */
616 for (i
= 0; i
< state
->count_power
; i
++)
617 integral
+= state
->error_history
[i
];
618 integral
*= CPU_PID_INTERVAL
;
619 DBG(" integral: %08x\n", integral
);
621 /* Calculate the adjusted input (sense value).
624 * so the result is 28.36
626 * input target is mpu.ttarget, input max is mpu.tmax
628 integ_p
= ((s64
)state
->mpu
.pid_gr
) * (s64
)integral
;
629 DBG(" integ_p: %d\n", (int)(deriv_p
>> 36));
630 sval
= (state
->mpu
.tmax
<< 16) - ((integ_p
>> 20) & 0xffffffff);
631 adj_in_target
= (state
->mpu
.ttarget
<< 16);
632 if (adj_in_target
> sval
)
633 adj_in_target
= sval
;
634 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target
),
637 /* Calculate the derivative term */
638 derivative
= state
->temp_history
[state
->cur_temp
] -
639 state
->temp_history
[(state
->cur_temp
+ CPU_TEMP_HISTORY_SIZE
- 1)
640 % CPU_TEMP_HISTORY_SIZE
];
641 derivative
/= CPU_PID_INTERVAL
;
642 deriv_p
= ((s64
)state
->mpu
.pid_gd
) * (s64
)derivative
;
643 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
646 /* Calculate the proportional term */
647 proportional
= temp
- adj_in_target
;
648 prop_p
= ((s64
)state
->mpu
.pid_gp
) * (s64
)proportional
;
649 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
655 DBG(" sum: %d\n", (int)sum
);
656 state
->rpm
+= (s32
)sum
;
658 if (state
->rpm
< state
->mpu
.rminn_exhaust_fan
)
659 state
->rpm
= state
->mpu
.rminn_exhaust_fan
;
660 if (state
->rpm
> state
->mpu
.rmaxn_exhaust_fan
)
661 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
663 intake
= (state
->rpm
* CPU_INTAKE_SCALE
) >> 16;
664 if (intake
< state
->mpu
.rminn_intake_fan
)
665 intake
= state
->mpu
.rminn_intake_fan
;
666 if (intake
> state
->mpu
.rmaxn_intake_fan
)
667 intake
= state
->mpu
.rmaxn_intake_fan
;
668 state
->intake_rpm
= intake
;
671 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
672 state
->index
, (int)state
->rpm
, intake
, state
->overtemp
);
674 /* We should check for errors, shouldn't we ? But then, what
675 * do we do once the error occurs ? For FCU notified fan
676 * failures (-EFAULT) we probably want to notify userland
679 if (state
->index
== 0) {
680 set_rpm_fan(CPUA_INTAKE_FAN_RPM_ID
, intake
);
681 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_ID
, state
->rpm
);
683 set_rpm_fan(CPUB_INTAKE_FAN_RPM_ID
, intake
);
684 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_ID
, state
->rpm
);
689 * Initialize the state structure for one CPU control loop
691 static int init_cpu_state(struct cpu_pid_state
*state
, int index
)
693 state
->index
= index
;
697 state
->adc_config
= 0x00;
700 state
->monitor
= attach_i2c_chip(SUPPLY_MONITOR_ID
, "CPU0_monitor");
702 state
->monitor
= attach_i2c_chip(SUPPLY_MONITORB_ID
, "CPU1_monitor");
703 if (state
->monitor
== NULL
)
706 if (read_eeprom(index
, &state
->mpu
))
709 state
->count_power
= state
->mpu
.tguardband
;
710 if (state
->count_power
> CPU_POWER_HISTORY_SIZE
) {
711 printk(KERN_WARNING
"Warning ! too many power history slots\n");
712 state
->count_power
= CPU_POWER_HISTORY_SIZE
;
714 DBG("CPU %d Using %d power history entries\n", index
, state
->count_power
);
717 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
718 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
719 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
720 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
721 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
723 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
724 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
725 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
726 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
727 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
733 detach_i2c_chip(state
->monitor
);
734 state
->monitor
= NULL
;
740 * Dispose of the state data for one CPU control loop
742 static void dispose_cpu_state(struct cpu_pid_state
*state
)
744 if (state
->monitor
== NULL
)
747 if (state
->index
== 0) {
748 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
749 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
750 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
751 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
752 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
754 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
755 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
756 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
757 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
758 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
761 detach_i2c_chip(state
->monitor
);
762 state
->monitor
= NULL
;
766 * Motherboard backside & U3 heatsink fan control loop
768 static void do_monitor_backside(struct backside_pid_state
*state
)
770 s32 temp
, integral
, derivative
;
771 s64 integ_p
, deriv_p
, prop_p
, sum
;
774 if (--state
->ticks
!= 0)
776 state
->ticks
= BACKSIDE_PID_INTERVAL
;
780 /* Check fan status */
781 rc
= get_pwm_fan(BACKSIDE_FAN_PWM_ID
);
783 printk(KERN_WARNING
"Error %d reading backside fan !\n", rc
);
784 /* XXX What do we do now ? */
787 DBG(" current pwm: %d\n", state
->pwm
);
789 /* Get some sensor readings */
790 temp
= i2c_smbus_read_byte_data(state
->monitor
, MAX6690_EXT_TEMP
) << 16;
791 state
->last_temp
= temp
;
792 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
793 FIX32TOPRINT(BACKSIDE_PID_INPUT_TARGET
));
795 /* Store temperature and error in history array */
796 state
->cur_sample
= (state
->cur_sample
+ 1) % BACKSIDE_PID_HISTORY_SIZE
;
797 state
->sample_history
[state
->cur_sample
] = temp
;
798 state
->error_history
[state
->cur_sample
] = temp
- BACKSIDE_PID_INPUT_TARGET
;
800 /* If first loop, fill the history table */
802 for (i
= 0; i
< (BACKSIDE_PID_HISTORY_SIZE
- 1); i
++) {
803 state
->cur_sample
= (state
->cur_sample
+ 1) %
804 BACKSIDE_PID_HISTORY_SIZE
;
805 state
->sample_history
[state
->cur_sample
] = temp
;
806 state
->error_history
[state
->cur_sample
] =
807 temp
- BACKSIDE_PID_INPUT_TARGET
;
812 /* Calculate the integral term */
815 for (i
= 0; i
< BACKSIDE_PID_HISTORY_SIZE
; i
++)
816 integral
+= state
->error_history
[i
];
817 integral
*= BACKSIDE_PID_INTERVAL
;
818 DBG(" integral: %08x\n", integral
);
819 integ_p
= ((s64
)BACKSIDE_PID_G_r
) * (s64
)integral
;
820 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
823 /* Calculate the derivative term */
824 derivative
= state
->error_history
[state
->cur_sample
] -
825 state
->error_history
[(state
->cur_sample
+ BACKSIDE_PID_HISTORY_SIZE
- 1)
826 % BACKSIDE_PID_HISTORY_SIZE
];
827 derivative
/= BACKSIDE_PID_INTERVAL
;
828 deriv_p
= ((s64
)BACKSIDE_PID_G_d
) * (s64
)derivative
;
829 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
832 /* Calculate the proportional term */
833 prop_p
= ((s64
)BACKSIDE_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
834 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
840 DBG(" sum: %d\n", (int)sum
);
841 state
->pwm
+= (s32
)sum
;
842 if (state
->pwm
< BACKSIDE_PID_OUTPUT_MIN
)
843 state
->pwm
= BACKSIDE_PID_OUTPUT_MIN
;
844 if (state
->pwm
> BACKSIDE_PID_OUTPUT_MAX
)
845 state
->pwm
= BACKSIDE_PID_OUTPUT_MAX
;
847 DBG("** BACKSIDE PWM: %d\n", (int)state
->pwm
);
848 set_pwm_fan(BACKSIDE_FAN_PWM_ID
, state
->pwm
);
852 * Initialize the state structure for the backside fan control loop
854 static int init_backside_state(struct backside_pid_state
*state
)
860 state
->monitor
= attach_i2c_chip(BACKSIDE_MAX_ID
, "backside_temp");
861 if (state
->monitor
== NULL
)
864 device_create_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
865 device_create_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
871 * Dispose of the state data for the backside control loop
873 static void dispose_backside_state(struct backside_pid_state
*state
)
875 if (state
->monitor
== NULL
)
878 device_remove_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
879 device_remove_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
881 detach_i2c_chip(state
->monitor
);
882 state
->monitor
= NULL
;
886 * Drives bay fan control loop
888 static void do_monitor_drives(struct drives_pid_state
*state
)
890 s32 temp
, integral
, derivative
;
891 s64 integ_p
, deriv_p
, prop_p
, sum
;
894 if (--state
->ticks
!= 0)
896 state
->ticks
= DRIVES_PID_INTERVAL
;
900 /* Check fan status */
901 rc
= get_rpm_fan(DRIVES_FAN_RPM_ID
, !RPM_PID_USE_ACTUAL_SPEED
);
903 printk(KERN_WARNING
"Error %d reading drives fan !\n", rc
);
904 /* XXX What do we do now ? */
907 DBG(" current rpm: %d\n", state
->rpm
);
909 /* Get some sensor readings */
910 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
, DS1775_TEMP
)) << 8;
911 state
->last_temp
= temp
;
912 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
913 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET
));
915 /* Store temperature and error in history array */
916 state
->cur_sample
= (state
->cur_sample
+ 1) % DRIVES_PID_HISTORY_SIZE
;
917 state
->sample_history
[state
->cur_sample
] = temp
;
918 state
->error_history
[state
->cur_sample
] = temp
- DRIVES_PID_INPUT_TARGET
;
920 /* If first loop, fill the history table */
922 for (i
= 0; i
< (DRIVES_PID_HISTORY_SIZE
- 1); i
++) {
923 state
->cur_sample
= (state
->cur_sample
+ 1) %
924 DRIVES_PID_HISTORY_SIZE
;
925 state
->sample_history
[state
->cur_sample
] = temp
;
926 state
->error_history
[state
->cur_sample
] =
927 temp
- DRIVES_PID_INPUT_TARGET
;
932 /* Calculate the integral term */
935 for (i
= 0; i
< DRIVES_PID_HISTORY_SIZE
; i
++)
936 integral
+= state
->error_history
[i
];
937 integral
*= DRIVES_PID_INTERVAL
;
938 DBG(" integral: %08x\n", integral
);
939 integ_p
= ((s64
)DRIVES_PID_G_r
) * (s64
)integral
;
940 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
943 /* Calculate the derivative term */
944 derivative
= state
->error_history
[state
->cur_sample
] -
945 state
->error_history
[(state
->cur_sample
+ DRIVES_PID_HISTORY_SIZE
- 1)
946 % DRIVES_PID_HISTORY_SIZE
];
947 derivative
/= DRIVES_PID_INTERVAL
;
948 deriv_p
= ((s64
)DRIVES_PID_G_d
) * (s64
)derivative
;
949 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
952 /* Calculate the proportional term */
953 prop_p
= ((s64
)DRIVES_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
954 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
960 DBG(" sum: %d\n", (int)sum
);
961 state
->rpm
+= (s32
)sum
;
962 if (state
->rpm
< DRIVES_PID_OUTPUT_MIN
)
963 state
->rpm
= DRIVES_PID_OUTPUT_MIN
;
964 if (state
->rpm
> DRIVES_PID_OUTPUT_MAX
)
965 state
->rpm
= DRIVES_PID_OUTPUT_MAX
;
967 DBG("** DRIVES RPM: %d\n", (int)state
->rpm
);
968 set_rpm_fan(DRIVES_FAN_RPM_ID
, state
->rpm
);
972 * Initialize the state structure for the drives bay fan control loop
974 static int init_drives_state(struct drives_pid_state
*state
)
980 state
->monitor
= attach_i2c_chip(DRIVES_DALLAS_ID
, "drives_temp");
981 if (state
->monitor
== NULL
)
984 device_create_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
985 device_create_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
991 * Dispose of the state data for the drives control loop
993 static void dispose_drives_state(struct drives_pid_state
*state
)
995 if (state
->monitor
== NULL
)
998 device_remove_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
999 device_remove_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1001 detach_i2c_chip(state
->monitor
);
1002 state
->monitor
= NULL
;
1005 static int call_critical_overtemp(void)
1007 char *argv
[] = { critical_overtemp_path
, NULL
};
1008 static char *envp
[] = { "HOME=/",
1010 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1013 return call_usermodehelper(critical_overtemp_path
, argv
, envp
, 0);
1018 * Here's the kernel thread that calls the various control loops
1020 static int main_control_loop(void *x
)
1024 DBG("main_control_loop started\n");
1028 if (start_fcu() < 0) {
1029 printk(KERN_ERR
"kfand: failed to start FCU\n");
1034 /* Set the PCI fan once for now */
1035 set_pwm_fan(SLOTS_FAN_PWM_ID
, SLOTS_FAN_DEFAULT_PWM
);
1037 /* Initialize ADCs */
1038 initialize_adc(&cpu_state
[0]);
1039 if (cpu_state
[1].monitor
!= NULL
)
1040 initialize_adc(&cpu_state
[1]);
1044 while (state
== state_attached
) {
1045 unsigned long elapsed
, start
;
1050 do_monitor_cpu(&cpu_state
[0]);
1051 if (cpu_state
[1].monitor
!= NULL
)
1052 do_monitor_cpu(&cpu_state
[1]);
1053 do_monitor_backside(&backside_state
);
1054 do_monitor_drives(&drives_state
);
1057 if (critical_state
== 1) {
1058 printk(KERN_WARNING
"Temperature control detected a critical condition\n");
1059 printk(KERN_WARNING
"Attempting to shut down...\n");
1060 if (call_critical_overtemp()) {
1061 printk(KERN_WARNING
"Can't call %s, power off now!\n",
1062 critical_overtemp_path
);
1063 machine_power_off();
1066 if (critical_state
> 0)
1068 if (critical_state
> MAX_CRITICAL_STATE
) {
1069 printk(KERN_WARNING
"Shutdown timed out, power off now !\n");
1070 machine_power_off();
1073 // FIXME: Deal with signals
1074 set_current_state(TASK_INTERRUPTIBLE
);
1075 elapsed
= jiffies
- start
;
1077 schedule_timeout(HZ
- elapsed
);
1081 DBG("main_control_loop ended\n");
1084 complete_and_exit(&ctrl_complete
, 0);
1088 * Dispose the control loops when tearing down
1090 static void dispose_control_loops(void)
1092 dispose_cpu_state(&cpu_state
[0]);
1093 dispose_cpu_state(&cpu_state
[1]);
1095 dispose_backside_state(&backside_state
);
1096 dispose_drives_state(&drives_state
);
1100 * Create the control loops. U3-0 i2c bus is up, so we can now
1101 * get to the various sensors
1103 static int create_control_loops(void)
1105 struct device_node
*np
;
1107 /* Count CPUs from the device-tree, we don't care how many are
1108 * actually used by Linux
1111 for (np
= NULL
; NULL
!= (np
= of_find_node_by_type(np
, "cpu"));)
1114 DBG("counted %d CPUs in the device-tree\n", cpu_count
);
1116 /* Create control loops for everything. If any fail, everything
1119 if (init_cpu_state(&cpu_state
[0], 0))
1121 if (cpu_count
> 1 && init_cpu_state(&cpu_state
[1], 1))
1123 if (init_backside_state(&backside_state
))
1125 if (init_drives_state(&drives_state
))
1128 DBG("all control loops up !\n");
1133 DBG("failure creating control loops, disposing\n");
1135 dispose_control_loops();
1141 * Start the control loops after everything is up, that is create
1142 * the thread that will make them run
1144 static void start_control_loops(void)
1146 init_completion(&ctrl_complete
);
1148 ctrl_task
= kernel_thread(main_control_loop
, NULL
, SIGCHLD
| CLONE_KERNEL
);
1152 * Stop the control loops when tearing down
1154 static void stop_control_loops(void)
1157 wait_for_completion(&ctrl_complete
);
1161 * Attach to the i2c FCU after detecting U3-1 bus
1163 static int attach_fcu(void)
1165 fcu
= attach_i2c_chip(FAN_CTRLER_ID
, "fcu");
1169 DBG("FCU attached\n");
1175 * Detach from the i2c FCU when tearing down
1177 static void detach_fcu(void)
1180 detach_i2c_chip(fcu
);
1185 * Attach to the i2c controller. We probe the various chips based
1186 * on the device-tree nodes and build everything for the driver to
1187 * run, we then kick the driver monitoring thread
1189 static int therm_pm72_attach(struct i2c_adapter
*adapter
)
1194 if (state
== state_detached
)
1195 state
= state_attaching
;
1196 if (state
!= state_attaching
) {
1201 /* Check if we are looking for one of these */
1202 if (u3_0
== NULL
&& !strcmp(adapter
->name
, "u3 0")) {
1204 DBG("found U3-0, creating control loops\n");
1205 if (create_control_loops())
1207 } else if (u3_1
== NULL
&& !strcmp(adapter
->name
, "u3 1")) {
1209 DBG("found U3-1, attaching FCU\n");
1213 /* We got all we need, start control loops */
1214 if (u3_0
!= NULL
&& u3_1
!= NULL
) {
1215 DBG("everything up, starting control loops\n");
1216 state
= state_attached
;
1217 start_control_loops();
1225 * Called on every adapter when the driver or the i2c controller
1228 static int therm_pm72_detach(struct i2c_adapter
*adapter
)
1232 if (state
!= state_detached
)
1233 state
= state_detaching
;
1235 /* Stop control loops if any */
1236 DBG("stopping control loops\n");
1238 stop_control_loops();
1241 if (u3_0
!= NULL
&& !strcmp(adapter
->name
, "u3 0")) {
1242 DBG("lost U3-0, disposing control loops\n");
1243 dispose_control_loops();
1247 if (u3_1
!= NULL
&& !strcmp(adapter
->name
, "u3 1")) {
1248 DBG("lost U3-1, detaching FCU\n");
1252 if (u3_0
== NULL
&& u3_1
== NULL
)
1253 state
= state_detached
;
1260 static int fcu_of_probe(struct of_device
* dev
, const struct of_match
*match
)
1264 state
= state_detached
;
1266 rc
= i2c_add_driver(&therm_pm72_driver
);
1272 static int fcu_of_remove(struct of_device
* dev
)
1274 i2c_del_driver(&therm_pm72_driver
);
1279 static struct of_match fcu_of_match
[] =
1282 .name
= OF_ANY_MATCH
,
1284 .compatible
= OF_ANY_MATCH
1289 static struct of_platform_driver fcu_of_platform_driver
=
1291 .name
= "temperature",
1292 .match_table
= fcu_of_match
,
1293 .probe
= fcu_of_probe
,
1294 .remove
= fcu_of_remove
1298 * Check machine type, attach to i2c controller
1300 static int __init
therm_pm72_init(void)
1302 struct device_node
*np
;
1304 if (!machine_is_compatible("PowerMac7,2"))
1307 printk(KERN_INFO
"PowerMac G5 Thermal control driver %s\n", VERSION
);
1309 np
= of_find_node_by_type(NULL
, "fcu");
1311 printk(KERN_ERR
"Can't find FCU in device-tree !\n");
1314 of_dev
= of_platform_device_create(np
, "temperature");
1315 if (of_dev
== NULL
) {
1316 printk(KERN_ERR
"Can't register FCU platform device !\n");
1320 of_register_driver(&fcu_of_platform_driver
);
1325 static void __exit
therm_pm72_exit(void)
1327 of_unregister_driver(&fcu_of_platform_driver
);
1330 of_device_unregister(of_dev
);
1333 module_init(therm_pm72_init
);
1334 module_exit(therm_pm72_exit
);
1336 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
1337 MODULE_DESCRIPTION("Driver for Apple's PowerMac7,2 G5 thermal control");
1338 MODULE_LICENSE("GPL");