MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / usb / core / message.c
blob3536414689a4f84e9b1ef07608d603f275034440
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/config.h>
7 #ifdef CONFIG_USB_DEBUG
8 #define DEBUG
9 #else
10 #undef DEBUG
11 #endif
13 #include <linux/pci.h> /* for scatterlist macros */
14 #include <linux/usb.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/mm.h>
19 #include <linux/timer.h>
20 #include <asm/byteorder.h>
22 #include "hcd.h" /* for usbcore internals */
23 #include "usb.h"
25 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
27 complete((struct completion *)urb->context);
31 static void timeout_kill(unsigned long data)
33 struct urb *urb = (struct urb *) data;
35 dev_warn(&urb->dev->dev, "%s timeout on ep%d%s\n",
36 usb_pipecontrol(urb->pipe) ? "control" : "bulk",
37 usb_pipeendpoint(urb->pipe),
38 usb_pipein(urb->pipe) ? "in" : "out");
39 usb_unlink_urb(urb);
42 // Starts urb and waits for completion or timeout
43 // note that this call is NOT interruptible, while
44 // many device driver i/o requests should be interruptible
45 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
47 struct completion done;
48 struct timer_list timer;
49 int status;
51 init_completion(&done);
52 urb->context = &done;
53 urb->transfer_flags |= URB_ASYNC_UNLINK;
54 urb->actual_length = 0;
55 status = usb_submit_urb(urb, GFP_NOIO);
57 #if 0 // mask by Victor Yu. 06-13-20077
58 timeout = 0 ;
59 #endif
60 if (status == 0) {
61 if (timeout > 0) {
62 init_timer(&timer);
63 timer.expires = jiffies + timeout;
64 timer.data = (unsigned long)urb;
65 timer.function = timeout_kill;
66 /* grr. timeout _should_ include submit delays. */
67 add_timer(&timer);
69 wait_for_completion(&done);
70 status = urb->status;
71 /* note: HCDs return ETIMEDOUT for other reasons too */
72 if (status == -ECONNRESET)
73 status = -ETIMEDOUT;
74 if (timeout > 0)
75 del_timer_sync(&timer);
78 if (actual_length)
79 *actual_length = urb->actual_length;
80 usb_free_urb(urb);
81 return status;
84 /*-------------------------------------------------------------------*/
85 // returns status (negative) or length (positive)
86 int usb_internal_control_msg(struct usb_device *usb_dev, unsigned int pipe,
87 struct usb_ctrlrequest *cmd, void *data, int len, int timeout)
89 struct urb *urb;
90 int retv;
91 int length;
94 urb = usb_alloc_urb(0, GFP_NOIO);
95 if (!urb)
96 return -ENOMEM;
100 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
101 len, usb_api_blocking_completion, NULL);
104 retv = usb_start_wait_urb(urb, timeout, &length);
108 if (retv < 0)
109 return retv;
110 else
111 return length;
115 * usb_control_msg - Builds a control urb, sends it off and waits for completion
116 * @dev: pointer to the usb device to send the message to
117 * @pipe: endpoint "pipe" to send the message to
118 * @request: USB message request value
119 * @requesttype: USB message request type value
120 * @value: USB message value
121 * @index: USB message index value
122 * @data: pointer to the data to send
123 * @size: length in bytes of the data to send
124 * @timeout: time in jiffies to wait for the message to complete before
125 * timing out (if 0 the wait is forever)
126 * Context: !in_interrupt ()
128 * This function sends a simple control message to a specified endpoint
129 * and waits for the message to complete, or timeout.
131 * If successful, it returns the number of bytes transferred, otherwise a negative error number.
133 * Don't use this function from within an interrupt context, like a
134 * bottom half handler. If you need an asynchronous message, or need to send
135 * a message from within interrupt context, use usb_submit_urb()
136 * If a thread in your driver uses this call, make sure your disconnect()
137 * method can wait for it to complete. Since you don't have a handle on
138 * the URB used, you can't cancel the request.
140 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
141 __u16 value, __u16 index, void *data, __u16 size, int timeout)
143 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 int ret;
146 if (!dr)
147 return -ENOMEM;
149 dr->bRequestType= requesttype;
150 dr->bRequest = request;
151 dr->wValue = cpu_to_le16p(&value);
152 dr->wIndex = cpu_to_le16p(&index);
153 dr->wLength = cpu_to_le16p(&size);
155 //dbg("usb_control_msg");
158 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
161 kfree(dr);
163 return ret;
168 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
169 * @usb_dev: pointer to the usb device to send the message to
170 * @pipe: endpoint "pipe" to send the message to
171 * @data: pointer to the data to send
172 * @len: length in bytes of the data to send
173 * @actual_length: pointer to a location to put the actual length transferred in bytes
174 * @timeout: time in jiffies to wait for the message to complete before
175 * timing out (if 0 the wait is forever)
176 * Context: !in_interrupt ()
178 * This function sends a simple bulk message to a specified endpoint
179 * and waits for the message to complete, or timeout.
181 * If successful, it returns 0, otherwise a negative error number.
182 * The number of actual bytes transferred will be stored in the
183 * actual_length paramater.
185 * Don't use this function from within an interrupt context, like a
186 * bottom half handler. If you need an asynchronous message, or need to
187 * send a message from within interrupt context, use usb_submit_urb()
188 * If a thread in your driver uses this call, make sure your disconnect()
189 * method can wait for it to complete. Since you don't have a handle on
190 * the URB used, you can't cancel the request.
192 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
193 void *data, int len, int *actual_length, int timeout)
195 struct urb *urb;
197 if (len < 0)
198 return -EINVAL;
200 urb=usb_alloc_urb(0, GFP_KERNEL);
201 if (!urb)
202 return -ENOMEM;
204 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
205 usb_api_blocking_completion, NULL);
207 return usb_start_wait_urb(urb,timeout,actual_length);
210 /*-------------------------------------------------------------------*/
212 static void sg_clean (struct usb_sg_request *io)
214 if (io->urbs) {
215 while (io->entries--)
216 usb_free_urb (io->urbs [io->entries]);
217 kfree (io->urbs);
218 io->urbs = NULL;
220 if (io->dev->dev.dma_mask != 0)
221 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
222 io->dev = NULL;
225 static void sg_complete (struct urb *urb, struct pt_regs *regs)
227 struct usb_sg_request *io = (struct usb_sg_request *) urb->context;
229 spin_lock (&io->lock);
231 /* In 2.5 we require hcds' endpoint queues not to progress after fault
232 * reports, until the completion callback (this!) returns. That lets
233 * device driver code (like this routine) unlink queued urbs first,
234 * if it needs to, since the HC won't work on them at all. So it's
235 * not possible for page N+1 to overwrite page N, and so on.
237 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
238 * complete before the HCD can get requests away from hardware,
239 * though never during cleanup after a hard fault.
241 if (io->status
242 && (io->status != -ECONNRESET
243 || urb->status != -ECONNRESET)
244 && urb->actual_length) {
245 dev_err (io->dev->bus->controller,
246 "dev %s ep%d%s scatterlist error %d/%d\n",
247 io->dev->devpath,
248 usb_pipeendpoint (urb->pipe),
249 usb_pipein (urb->pipe) ? "in" : "out",
250 urb->status, io->status);
251 // BUG ();
254 if (urb->status && urb->status != -ECONNRESET) {
255 int i, found, status;
257 io->status = urb->status;
259 /* the previous urbs, and this one, completed already.
260 * unlink pending urbs so they won't rx/tx bad data.
262 for (i = 0, found = 0; i < io->entries; i++) {
263 if (!io->urbs [i] || !io->urbs [i]->dev)
264 continue;
265 if (found) {
266 status = usb_unlink_urb (io->urbs [i]);
267 if (status != -EINPROGRESS && status != -EBUSY)
268 dev_err (&io->dev->dev,
269 "%s, unlink --> %d\n",
270 __FUNCTION__, status);
271 } else if (urb == io->urbs [i])
272 found = 1;
275 urb->dev = NULL;
277 /* on the last completion, signal usb_sg_wait() */
278 io->bytes += urb->actual_length;
279 io->count--;
280 if (!io->count)
281 complete (&io->complete);
283 spin_unlock (&io->lock);
288 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
289 * @io: request block being initialized. until usb_sg_wait() returns,
290 * treat this as a pointer to an opaque block of memory,
291 * @dev: the usb device that will send or receive the data
292 * @pipe: endpoint "pipe" used to transfer the data
293 * @period: polling rate for interrupt endpoints, in frames or
294 * (for high speed endpoints) microframes; ignored for bulk
295 * @sg: scatterlist entries
296 * @nents: how many entries in the scatterlist
297 * @length: how many bytes to send from the scatterlist, or zero to
298 * send every byte identified in the list.
299 * @mem_flags: SLAB_* flags affecting memory allocations in this call
301 * Returns zero for success, else a negative errno value. This initializes a
302 * scatter/gather request, allocating resources such as I/O mappings and urb
303 * memory (except maybe memory used by USB controller drivers).
305 * The request must be issued using usb_sg_wait(), which waits for the I/O to
306 * complete (or to be canceled) and then cleans up all resources allocated by
307 * usb_sg_init().
309 * The request may be canceled with usb_sg_cancel(), either before or after
310 * usb_sg_wait() is called.
312 int usb_sg_init (
313 struct usb_sg_request *io,
314 struct usb_device *dev,
315 unsigned pipe,
316 unsigned period,
317 struct scatterlist *sg,
318 int nents,
319 size_t length,
320 int mem_flags
323 int i;
324 int urb_flags;
325 int dma;
327 if (!io || !dev || !sg
328 || usb_pipecontrol (pipe)
329 || usb_pipeisoc (pipe)
330 || nents <= 0)
331 return -EINVAL;
333 spin_lock_init (&io->lock);
334 io->dev = dev;
335 io->pipe = pipe;
336 io->sg = sg;
337 io->nents = nents;
339 /* not all host controllers use DMA (like the mainstream pci ones);
340 * they can use PIO (sl811) or be software over another transport.
342 dma = (dev->dev.dma_mask != 0);
343 if (dma)
344 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
345 else
346 io->entries = nents;
348 /* initialize all the urbs we'll use */
349 if (io->entries <= 0)
350 return io->entries;
352 io->count = io->entries;
353 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
354 if (!io->urbs)
355 goto nomem;
357 urb_flags = URB_ASYNC_UNLINK | URB_NO_TRANSFER_DMA_MAP
358 | URB_NO_INTERRUPT;
359 if (usb_pipein (pipe))
360 urb_flags |= URB_SHORT_NOT_OK;
362 for (i = 0; i < io->entries; i++) {
363 unsigned len;
365 io->urbs [i] = usb_alloc_urb (0, mem_flags);
366 if (!io->urbs [i]) {
367 io->entries = i;
368 goto nomem;
371 io->urbs [i]->dev = NULL;
372 io->urbs [i]->pipe = pipe;
373 io->urbs [i]->interval = period;
374 io->urbs [i]->transfer_flags = urb_flags;
376 io->urbs [i]->complete = sg_complete;
377 io->urbs [i]->context = io;
378 io->urbs [i]->status = -EINPROGRESS;
379 io->urbs [i]->actual_length = 0;
381 if (dma) {
382 /* hc may use _only_ transfer_dma */
383 io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
384 len = sg_dma_len (sg + i);
385 } else {
386 /* hc may use _only_ transfer_buffer */
387 io->urbs [i]->transfer_buffer =
388 page_address (sg [i].page) + sg [i].offset;
389 len = sg [i].length;
392 if (length) {
393 len = min_t (unsigned, len, length);
394 length -= len;
395 if (length == 0)
396 io->entries = i + 1;
398 io->urbs [i]->transfer_buffer_length = len;
400 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
402 /* transaction state */
403 io->status = 0;
404 io->bytes = 0;
405 init_completion (&io->complete);
406 return 0;
408 nomem:
409 sg_clean (io);
410 return -ENOMEM;
415 * usb_sg_wait - synchronously execute scatter/gather request
416 * @io: request block handle, as initialized with usb_sg_init().
417 * some fields become accessible when this call returns.
418 * Context: !in_interrupt ()
420 * This function blocks until the specified I/O operation completes. It
421 * leverages the grouping of the related I/O requests to get good transfer
422 * rates, by queueing the requests. At higher speeds, such queuing can
423 * significantly improve USB throughput.
425 * There are three kinds of completion for this function.
426 * (1) success, where io->status is zero. The number of io->bytes
427 * transferred is as requested.
428 * (2) error, where io->status is a negative errno value. The number
429 * of io->bytes transferred before the error is usually less
430 * than requested, and can be nonzero.
431 * (3) cancelation, a type of error with status -ECONNRESET that
432 * is initiated by usb_sg_cancel().
434 * When this function returns, all memory allocated through usb_sg_init() or
435 * this call will have been freed. The request block parameter may still be
436 * passed to usb_sg_cancel(), or it may be freed. It could also be
437 * reinitialized and then reused.
439 * Data Transfer Rates:
441 * Bulk transfers are valid for full or high speed endpoints.
442 * The best full speed data rate is 19 packets of 64 bytes each
443 * per frame, or 1216 bytes per millisecond.
444 * The best high speed data rate is 13 packets of 512 bytes each
445 * per microframe, or 52 KBytes per millisecond.
447 * The reason to use interrupt transfers through this API would most likely
448 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
449 * could be transferred. That capability is less useful for low or full
450 * speed interrupt endpoints, which allow at most one packet per millisecond,
451 * of at most 8 or 64 bytes (respectively).
453 void usb_sg_wait (struct usb_sg_request *io)
455 int i, entries = io->entries;
457 /* queue the urbs. */
458 spin_lock_irq (&io->lock);
459 for (i = 0; i < entries && !io->status; i++) {
460 int retval;
462 io->urbs [i]->dev = io->dev;
463 retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);
465 /* after we submit, let completions or cancelations fire;
466 * we handshake using io->status.
468 spin_unlock_irq (&io->lock);
469 switch (retval) {
470 /* maybe we retrying will recover */
471 case -ENXIO: // hc didn't queue this one
472 case -EAGAIN:
473 case -ENOMEM:
474 io->urbs[i]->dev = NULL;
475 retval = 0;
476 i--;
477 yield ();
478 break;
480 /* no error? continue immediately.
482 * NOTE: to work better with UHCI (4K I/O buffer may
483 * need 3K of TDs) it may be good to limit how many
484 * URBs are queued at once; N milliseconds?
486 case 0:
487 cpu_relax ();
488 break;
490 /* fail any uncompleted urbs */
491 default:
492 io->urbs [i]->dev = NULL;
493 io->urbs [i]->status = retval;
494 dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
495 __FUNCTION__, retval);
496 usb_sg_cancel (io);
498 spin_lock_irq (&io->lock);
499 if (retval && (io->status == 0 || io->status == -ECONNRESET))
500 io->status = retval;
502 io->count -= entries - i;
503 if (io->count == 0)
504 complete (&io->complete);
505 spin_unlock_irq (&io->lock);
507 /* OK, yes, this could be packaged as non-blocking.
508 * So could the submit loop above ... but it's easier to
509 * solve neither problem than to solve both!
511 wait_for_completion (&io->complete);
513 sg_clean (io);
517 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
518 * @io: request block, initialized with usb_sg_init()
520 * This stops a request after it has been started by usb_sg_wait().
521 * It can also prevents one initialized by usb_sg_init() from starting,
522 * so that call just frees resources allocated to the request.
524 void usb_sg_cancel (struct usb_sg_request *io)
526 unsigned long flags;
528 spin_lock_irqsave (&io->lock, flags);
530 /* shut everything down, if it didn't already */
531 if (!io->status) {
532 int i;
534 io->status = -ECONNRESET;
535 for (i = 0; i < io->entries; i++) {
536 int retval;
538 if (!io->urbs [i]->dev)
539 continue;
540 retval = usb_unlink_urb (io->urbs [i]);
541 if (retval != -EINPROGRESS && retval != -EBUSY)
542 dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
543 __FUNCTION__, retval);
546 spin_unlock_irqrestore (&io->lock, flags);
549 /*-------------------------------------------------------------------*/
552 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
553 * @dev: the device whose descriptor is being retrieved
554 * @type: the descriptor type (USB_DT_*)
555 * @index: the number of the descriptor
556 * @buf: where to put the descriptor
557 * @size: how big is "buf"?
558 * Context: !in_interrupt ()
560 * Gets a USB descriptor. Convenience functions exist to simplify
561 * getting some types of descriptors. Use
562 * usb_get_device_descriptor() for USB_DT_DEVICE (not exported),
563 * and usb_get_string() or usb_string() for USB_DT_STRING.
564 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
565 * are part of the device structure.
566 * In addition to a number of USB-standard descriptors, some
567 * devices also use class-specific or vendor-specific descriptors.
569 * This call is synchronous, and may not be used in an interrupt context.
571 * Returns the number of bytes received on success, or else the status code
572 * returned by the underlying usb_control_msg() call.
574 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
576 int i;
577 int result;
579 memset(buf,0,size); // Make sure we parse really received data
581 for (i = 0; i < 3; ++i) {
582 /* retry on length 0 or stall; some devices are flakey */
583 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
584 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
585 (type << 8) + index, 0, buf, size,
586 HZ * USB_CTRL_GET_TIMEOUT);
587 if (result == 0 || result == -EPIPE)
588 continue;
589 if (result > 1 && ((u8 *)buf)[1] != type) {
590 result = -EPROTO;
591 continue;
593 break;
595 return result;
599 * usb_get_string - gets a string descriptor
600 * @dev: the device whose string descriptor is being retrieved
601 * @langid: code for language chosen (from string descriptor zero)
602 * @index: the number of the descriptor
603 * @buf: where to put the string
604 * @size: how big is "buf"?
605 * Context: !in_interrupt ()
607 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
608 * in little-endian byte order).
609 * The usb_string() function will often be a convenient way to turn
610 * these strings into kernel-printable form.
612 * Strings may be referenced in device, configuration, interface, or other
613 * descriptors, and could also be used in vendor-specific ways.
615 * This call is synchronous, and may not be used in an interrupt context.
617 * Returns the number of bytes received on success, or else the status code
618 * returned by the underlying usb_control_msg() call.
620 int usb_get_string(struct usb_device *dev, unsigned short langid,
621 unsigned char index, void *buf, int size)
623 int i;
624 int result;
626 for (i = 0; i < 3; ++i) {
627 /* retry on length 0 or stall; some devices are flakey */
628 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
629 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
630 (USB_DT_STRING << 8) + index, langid, buf, size,
631 HZ * USB_CTRL_GET_TIMEOUT);
632 if (!(result == 0 || result == -EPIPE))
633 break;
635 return result;
638 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
639 unsigned int index, unsigned char *buf)
641 int rc;
643 /* Try to read the string descriptor by asking for the maximum
644 * possible number of bytes */
645 rc = usb_get_string(dev, langid, index, buf, 255);
647 /* If that failed try to read the descriptor length, then
648 * ask for just that many bytes */
649 if (rc < 0) {
650 rc = usb_get_string(dev, langid, index, buf, 2);
651 if (rc == 2)
652 rc = usb_get_string(dev, langid, index, buf, buf[0]);
655 if (rc >= 0) {
656 /* There might be extra junk at the end of the descriptor */
657 if (buf[0] < rc)
658 rc = buf[0];
659 if (rc < 2)
660 rc = -EINVAL;
662 return rc;
666 * usb_string - returns ISO 8859-1 version of a string descriptor
667 * @dev: the device whose string descriptor is being retrieved
668 * @index: the number of the descriptor
669 * @buf: where to put the string
670 * @size: how big is "buf"?
671 * Context: !in_interrupt ()
673 * This converts the UTF-16LE encoded strings returned by devices, from
674 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
675 * that are more usable in most kernel contexts. Note that all characters
676 * in the chosen descriptor that can't be encoded using ISO-8859-1
677 * are converted to the question mark ("?") character, and this function
678 * chooses strings in the first language supported by the device.
680 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
681 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
682 * and is appropriate for use many uses of English and several other
683 * Western European languages. (But it doesn't include the "Euro" symbol.)
685 * This call is synchronous, and may not be used in an interrupt context.
687 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
689 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
691 unsigned char *tbuf;
692 int err;
693 unsigned int u, idx;
695 if (size <= 0 || !buf || !index)
696 return -EINVAL;
697 buf[0] = 0;
698 tbuf = kmalloc(256, GFP_KERNEL);
699 if (!tbuf)
700 return -ENOMEM;
702 /* get langid for strings if it's not yet known */
703 if (!dev->have_langid) {
704 err = usb_string_sub(dev, 0, 0, tbuf);
705 if (err < 0) {
706 dev_err (&dev->dev,
707 "string descriptor 0 read error: %d\n",
708 err);
709 goto errout;
710 } else if (err < 4) {
711 dev_err (&dev->dev, "string descriptor 0 too short\n");
712 err = -EINVAL;
713 goto errout;
714 } else {
715 dev->have_langid = -1;
716 dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
717 /* always use the first langid listed */
718 dev_dbg (&dev->dev, "default language 0x%04x\n",
719 dev->string_langid);
723 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
724 if (err < 0)
725 goto errout;
727 size--; /* leave room for trailing NULL char in output buffer */
728 for (idx = 0, u = 2; u < err; u += 2) {
729 if (idx >= size)
730 break;
731 if (tbuf[u+1]) /* high byte */
732 buf[idx++] = '?'; /* non ISO-8859-1 character */
733 else
734 buf[idx++] = tbuf[u];
736 buf[idx] = 0;
737 err = idx;
739 errout:
740 kfree(tbuf);
741 return err;
745 * usb_get_device_descriptor - (re)reads the device descriptor
746 * @dev: the device whose device descriptor is being updated
747 * @size: how much of the descriptor to read
748 * Context: !in_interrupt ()
750 * Updates the copy of the device descriptor stored in the device structure,
751 * which dedicates space for this purpose. Note that several fields are
752 * converted to the host CPU's byte order: the USB version (bcdUSB), and
753 * vendors product and version fields (idVendor, idProduct, and bcdDevice).
754 * That lets device drivers compare against non-byteswapped constants.
756 * Not exported, only for use by the core. If drivers really want to read
757 * the device descriptor directly, they can call usb_get_descriptor() with
758 * type = USB_DT_DEVICE and index = 0.
760 * This call is synchronous, and may not be used in an interrupt context.
762 * Returns the number of bytes received on success, or else the status code
763 * returned by the underlying usb_control_msg() call.
765 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
767 struct usb_device_descriptor *desc;
768 int ret;
770 if (size > sizeof(*desc))
771 return -EINVAL;
772 desc = kmalloc(sizeof(*desc), GFP_NOIO);
773 if (!desc)
774 return -ENOMEM;
776 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
777 if (ret >= 0) {
778 le16_to_cpus(&desc->bcdUSB);
779 le16_to_cpus(&desc->idVendor);
780 le16_to_cpus(&desc->idProduct);
781 le16_to_cpus(&desc->bcdDevice);
782 memcpy(&dev->descriptor, desc, size);
784 kfree(desc);
785 return ret;
789 * usb_get_status - issues a GET_STATUS call
790 * @dev: the device whose status is being checked
791 * @type: USB_RECIP_*; for device, interface, or endpoint
792 * @target: zero (for device), else interface or endpoint number
793 * @data: pointer to two bytes of bitmap data
794 * Context: !in_interrupt ()
796 * Returns device, interface, or endpoint status. Normally only of
797 * interest to see if the device is self powered, or has enabled the
798 * remote wakeup facility; or whether a bulk or interrupt endpoint
799 * is halted ("stalled").
801 * Bits in these status bitmaps are set using the SET_FEATURE request,
802 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
803 * function should be used to clear halt ("stall") status.
805 * This call is synchronous, and may not be used in an interrupt context.
807 * Returns the number of bytes received on success, or else the status code
808 * returned by the underlying usb_control_msg() call.
810 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
812 return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
813 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, data, 2,
814 HZ * USB_CTRL_GET_TIMEOUT);
818 * usb_clear_halt - tells device to clear endpoint halt/stall condition
819 * @dev: device whose endpoint is halted
820 * @pipe: endpoint "pipe" being cleared
821 * Context: !in_interrupt ()
823 * This is used to clear halt conditions for bulk and interrupt endpoints,
824 * as reported by URB completion status. Endpoints that are halted are
825 * sometimes referred to as being "stalled". Such endpoints are unable
826 * to transmit or receive data until the halt status is cleared. Any URBs
827 * queued for such an endpoint should normally be unlinked by the driver
828 * before clearing the halt condition, as described in sections 5.7.5
829 * and 5.8.5 of the USB 2.0 spec.
831 * Note that control and isochronous endpoints don't halt, although control
832 * endpoints report "protocol stall" (for unsupported requests) using the
833 * same status code used to report a true stall.
835 * This call is synchronous, and may not be used in an interrupt context.
837 * Returns zero on success, or else the status code returned by the
838 * underlying usb_control_msg() call.
840 int usb_clear_halt(struct usb_device *dev, int pipe)
842 int result;
843 int endp = usb_pipeendpoint(pipe);
845 if (usb_pipein (pipe))
846 endp |= USB_DIR_IN;
848 /* we don't care if it wasn't halted first. in fact some devices
849 * (like some ibmcam model 1 units) seem to expect hosts to make
850 * this request for iso endpoints, which can't halt!
852 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
853 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
854 USB_ENDPOINT_HALT, endp, NULL, 0,
855 HZ * USB_CTRL_SET_TIMEOUT);
857 /* don't un-halt or force to DATA0 except on success */
858 if (result < 0)
859 return result;
861 /* NOTE: seems like Microsoft and Apple don't bother verifying
862 * the clear "took", so some devices could lock up if you check...
863 * such as the Hagiwara FlashGate DUAL. So we won't bother.
865 * NOTE: make sure the logic here doesn't diverge much from
866 * the copy in usb-storage, for as long as we need two copies.
869 /* toggle was reset by the clear */
870 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
872 return 0;
876 * usb_disable_endpoint -- Disable an endpoint by address
877 * @dev: the device whose endpoint is being disabled
878 * @epaddr: the endpoint's address. Endpoint number for output,
879 * endpoint number + USB_DIR_IN for input
881 * Deallocates hcd/hardware state for this endpoint ... and nukes all
882 * pending urbs.
884 * If the HCD hasn't registered a disable() function, this sets the
885 * endpoint's maxpacket size to 0 to prevent further submissions.
887 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
889 if (dev && dev->bus && dev->bus->op && dev->bus->op->disable)
890 dev->bus->op->disable(dev, epaddr);
891 else {
892 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
894 if (usb_endpoint_out(epaddr))
895 dev->epmaxpacketout[epnum] = 0;
896 else
897 dev->epmaxpacketin[epnum] = 0;
902 * usb_disable_interface -- Disable all endpoints for an interface
903 * @dev: the device whose interface is being disabled
904 * @intf: pointer to the interface descriptor
906 * Disables all the endpoints for the interface's current altsetting.
908 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
910 struct usb_host_interface *alt = intf->cur_altsetting;
911 int i;
913 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
914 usb_disable_endpoint(dev,
915 alt->endpoint[i].desc.bEndpointAddress);
920 * usb_disable_device - Disable all the endpoints for a USB device
921 * @dev: the device whose endpoints are being disabled
922 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
924 * Disables all the device's endpoints, potentially including endpoint 0.
925 * Deallocates hcd/hardware state for the endpoints (nuking all or most
926 * pending urbs) and usbcore state for the interfaces, so that usbcore
927 * must usb_set_configuration() before any interfaces could be used.
929 void usb_disable_device(struct usb_device *dev, int skip_ep0)
931 int i;
933 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
934 skip_ep0 ? "non-ep0" : "all");
935 for (i = skip_ep0; i < 16; ++i) {
936 usb_disable_endpoint(dev, i);
937 usb_disable_endpoint(dev, i + USB_DIR_IN);
939 dev->toggle[0] = dev->toggle[1] = 0;
941 /* getting rid of interfaces will disconnect
942 * any drivers bound to them (a key side effect)
944 if (dev->actconfig) {
945 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
946 struct usb_interface *interface;
948 /* remove this interface */
949 interface = dev->actconfig->interface[i];
950 dev_dbg (&dev->dev, "unregistering interface %s\n",
951 interface->dev.bus_id);
952 usb_remove_sysfs_intf_files(interface);
953 device_del (&interface->dev);
956 /* Now that the interfaces are unbound, nobody should
957 * try to access them.
959 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
960 put_device (&dev->actconfig->interface[i]->dev);
961 dev->actconfig->interface[i] = NULL;
963 dev->actconfig = NULL;
964 if (dev->state == USB_STATE_CONFIGURED)
965 usb_set_device_state(dev, USB_STATE_ADDRESS);
971 * usb_enable_endpoint - Enable an endpoint for USB communications
972 * @dev: the device whose interface is being enabled
973 * @epd: pointer to the endpoint descriptor
975 * Resets the endpoint toggle and stores its maxpacket value.
976 * For control endpoints, both the input and output sides are handled.
978 void usb_enable_endpoint(struct usb_device *dev,
979 struct usb_endpoint_descriptor *epd)
981 int maxsize = epd->wMaxPacketSize;
982 unsigned int epaddr = epd->bEndpointAddress;
983 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
984 int is_control = ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
985 USB_ENDPOINT_XFER_CONTROL);
987 if (usb_endpoint_out(epaddr) || is_control) {
988 usb_settoggle(dev, epnum, 1, 0);
989 dev->epmaxpacketout[epnum] = maxsize;
991 if (!usb_endpoint_out(epaddr) || is_control) {
992 usb_settoggle(dev, epnum, 0, 0);
993 dev->epmaxpacketin[epnum] = maxsize;
998 * usb_enable_interface - Enable all the endpoints for an interface
999 * @dev: the device whose interface is being enabled
1000 * @intf: pointer to the interface descriptor
1002 * Enables all the endpoints for the interface's current altsetting.
1004 void usb_enable_interface(struct usb_device *dev,
1005 struct usb_interface *intf)
1007 struct usb_host_interface *alt = intf->cur_altsetting;
1008 int i;
1010 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1011 usb_enable_endpoint(dev, &alt->endpoint[i].desc);
1015 * usb_set_interface - Makes a particular alternate setting be current
1016 * @dev: the device whose interface is being updated
1017 * @interface: the interface being updated
1018 * @alternate: the setting being chosen.
1019 * Context: !in_interrupt ()
1021 * This is used to enable data transfers on interfaces that may not
1022 * be enabled by default. Not all devices support such configurability.
1023 * Only the driver bound to an interface may change its setting.
1025 * Within any given configuration, each interface may have several
1026 * alternative settings. These are often used to control levels of
1027 * bandwidth consumption. For example, the default setting for a high
1028 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1029 * while interrupt transfers of up to 3KBytes per microframe are legal.
1030 * Also, isochronous endpoints may never be part of an
1031 * interface's default setting. To access such bandwidth, alternate
1032 * interface settings must be made current.
1034 * Note that in the Linux USB subsystem, bandwidth associated with
1035 * an endpoint in a given alternate setting is not reserved until an URB
1036 * is submitted that needs that bandwidth. Some other operating systems
1037 * allocate bandwidth early, when a configuration is chosen.
1039 * This call is synchronous, and may not be used in an interrupt context.
1040 * Also, drivers must not change altsettings while urbs are scheduled for
1041 * endpoints in that interface; all such urbs must first be completed
1042 * (perhaps forced by unlinking).
1044 * Returns zero on success, or else the status code returned by the
1045 * underlying usb_control_msg() call.
1047 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1049 struct usb_interface *iface;
1050 struct usb_host_interface *alt;
1051 int ret;
1052 int manual = 0;
1054 if (dev->state == USB_STATE_SUSPENDED)
1055 return -EHOSTUNREACH;
1057 iface = usb_ifnum_to_if(dev, interface);
1058 if (!iface) {
1059 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1060 interface);
1061 return -EINVAL;
1064 alt = usb_altnum_to_altsetting(iface, alternate);
1065 if (!alt) {
1066 warn("selecting invalid altsetting %d", alternate);
1067 return -EINVAL;
1070 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1071 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1072 alternate, interface, NULL, 0, HZ * 5);
1074 /* 9.4.10 says devices don't need this and are free to STALL the
1075 * request if the interface only has one alternate setting.
1077 if (ret == -EPIPE && iface->num_altsetting == 1) {
1078 dev_dbg(&dev->dev,
1079 "manual set_interface for iface %d, alt %d\n",
1080 interface, alternate);
1081 manual = 1;
1082 } else if (ret < 0)
1083 return ret;
1085 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1086 * when they implement async or easily-killable versions of this or
1087 * other "should-be-internal" functions (like clear_halt).
1088 * should hcd+usbcore postprocess control requests?
1091 /* prevent submissions using previous endpoint settings */
1092 usb_disable_interface(dev, iface);
1094 iface->cur_altsetting = alt;
1096 /* If the interface only has one altsetting and the device didn't
1097 * accept the request, we attempt to carry out the equivalent action
1098 * by manually clearing the HALT feature for each endpoint in the
1099 * new altsetting.
1101 if (manual) {
1102 int i;
1104 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1105 unsigned int epaddr =
1106 alt->endpoint[i].desc.bEndpointAddress;
1107 unsigned int pipe =
1108 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1109 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1111 usb_clear_halt(dev, pipe);
1115 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1117 * Note:
1118 * Despite EP0 is always present in all interfaces/AS, the list of
1119 * endpoints from the descriptor does not contain EP0. Due to its
1120 * omnipresence one might expect EP0 being considered "affected" by
1121 * any SetInterface request and hence assume toggles need to be reset.
1122 * However, EP0 toggles are re-synced for every individual transfer
1123 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1124 * (Likewise, EP0 never "halts" on well designed devices.)
1126 usb_enable_interface(dev, iface);
1128 return 0;
1132 * usb_reset_configuration - lightweight device reset
1133 * @dev: the device whose configuration is being reset
1135 * This issues a standard SET_CONFIGURATION request to the device using
1136 * the current configuration. The effect is to reset most USB-related
1137 * state in the device, including interface altsettings (reset to zero),
1138 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1139 * endpoints). Other usbcore state is unchanged, including bindings of
1140 * usb device drivers to interfaces.
1142 * Because this affects multiple interfaces, avoid using this with composite
1143 * (multi-interface) devices. Instead, the driver for each interface may
1144 * use usb_set_interface() on the interfaces it claims. Resetting the whole
1145 * configuration would affect other drivers' interfaces.
1147 * Returns zero on success, else a negative error code.
1149 int usb_reset_configuration(struct usb_device *dev)
1151 int i, retval;
1152 struct usb_host_config *config;
1154 if (dev->state == USB_STATE_SUSPENDED)
1155 return -EHOSTUNREACH;
1157 /* caller must own dev->serialize (config won't change)
1158 * and the usb bus readlock (so driver bindings are stable);
1159 * so calls during probe() are fine
1162 for (i = 1; i < 16; ++i) {
1163 usb_disable_endpoint(dev, i);
1164 usb_disable_endpoint(dev, i + USB_DIR_IN);
1167 config = dev->actconfig;
1168 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1169 USB_REQ_SET_CONFIGURATION, 0,
1170 config->desc.bConfigurationValue, 0,
1171 NULL, 0, HZ * USB_CTRL_SET_TIMEOUT);
1172 if (retval < 0) {
1173 usb_set_device_state(dev, USB_STATE_ADDRESS);
1174 return retval;
1177 dev->toggle[0] = dev->toggle[1] = 0;
1179 /* re-init hc/hcd interface/endpoint state */
1180 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1181 struct usb_interface *intf = config->interface[i];
1182 struct usb_host_interface *alt;
1184 alt = usb_altnum_to_altsetting(intf, 0);
1186 /* No altsetting 0? We'll assume the first altsetting.
1187 * We could use a GetInterface call, but if a device is
1188 * so non-compliant that it doesn't have altsetting 0
1189 * then I wouldn't trust its reply anyway.
1191 if (!alt)
1192 alt = &intf->altsetting[0];
1194 intf->cur_altsetting = alt;
1195 usb_enable_interface(dev, intf);
1197 return 0;
1200 static void release_interface(struct device *dev)
1202 struct usb_interface *intf = to_usb_interface(dev);
1203 struct usb_interface_cache *intfc =
1204 altsetting_to_usb_interface_cache(intf->altsetting);
1206 kref_put(&intfc->ref, usb_release_interface_cache);
1207 kfree(intf);
1211 * usb_set_configuration - Makes a particular device setting be current
1212 * @dev: the device whose configuration is being updated
1213 * @configuration: the configuration being chosen.
1214 * Context: !in_interrupt(), caller holds dev->serialize
1216 * This is used to enable non-default device modes. Not all devices
1217 * use this kind of configurability; many devices only have one
1218 * configuration.
1220 * USB device configurations may affect Linux interoperability,
1221 * power consumption and the functionality available. For example,
1222 * the default configuration is limited to using 100mA of bus power,
1223 * so that when certain device functionality requires more power,
1224 * and the device is bus powered, that functionality should be in some
1225 * non-default device configuration. Other device modes may also be
1226 * reflected as configuration options, such as whether two ISDN
1227 * channels are available independently; and choosing between open
1228 * standard device protocols (like CDC) or proprietary ones.
1230 * Note that USB has an additional level of device configurability,
1231 * associated with interfaces. That configurability is accessed using
1232 * usb_set_interface().
1234 * This call is synchronous. The calling context must be able to sleep,
1235 * and must not hold the driver model lock for USB; usb device driver
1236 * probe() methods may not use this routine.
1238 * Returns zero on success, or else the status code returned by the
1239 * underlying call that failed. On succesful completion, each interface
1240 * in the original device configuration has been destroyed, and each one
1241 * in the new configuration has been probed by all relevant usb device
1242 * drivers currently known to the kernel.
1244 int usb_set_configuration(struct usb_device *dev, int configuration)
1246 int i, ret;
1247 struct usb_host_config *cp = NULL;
1248 struct usb_interface **new_interfaces = NULL;
1249 int n, nintf;
1251 /* dev->serialize guards all config changes */
1253 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1254 if (dev->config[i].desc.bConfigurationValue == configuration) {
1255 cp = &dev->config[i];
1256 break;
1259 if ((!cp && configuration != 0))
1260 return -EINVAL;
1262 /* The USB spec says configuration 0 means unconfigured.
1263 * But if a device includes a configuration numbered 0,
1264 * we will accept it as a correctly configured state.
1266 if (cp && configuration == 0)
1267 dev_warn(&dev->dev, "config 0 descriptor??\n");
1269 if (dev->state == USB_STATE_SUSPENDED)
1270 return -EHOSTUNREACH;
1272 /* Allocate memory for new interfaces before doing anything else,
1273 * so that if we run out then nothing will have changed. */
1274 n = nintf = 0;
1275 if (cp) {
1276 nintf = cp->desc.bNumInterfaces;
1277 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1278 GFP_KERNEL);
1279 if (!new_interfaces) {
1280 dev_err(&dev->dev, "Out of memory");
1281 return -ENOMEM;
1284 for (; n < nintf; ++n) {
1285 new_interfaces[n] = kmalloc(
1286 sizeof(struct usb_interface),
1287 GFP_KERNEL);
1288 if (!new_interfaces[n]) {
1289 dev_err(&dev->dev, "Out of memory");
1290 ret = -ENOMEM;
1291 free_interfaces:
1292 while (--n >= 0)
1293 kfree(new_interfaces[n]);
1294 kfree(new_interfaces);
1295 return ret;
1300 /* if it's already configured, clear out old state first.
1301 * getting rid of old interfaces means unbinding their drivers.
1303 if (dev->state != USB_STATE_ADDRESS)
1304 usb_disable_device (dev, 1); // Skip ep0
1306 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1307 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1308 NULL, 0, HZ * USB_CTRL_SET_TIMEOUT)) < 0)
1309 goto free_interfaces;
1311 dev->actconfig = cp;
1312 if (!cp)
1313 usb_set_device_state(dev, USB_STATE_ADDRESS);
1314 else {
1315 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1317 /* Initialize the new interface structures and the
1318 * hc/hcd/usbcore interface/endpoint state.
1320 for (i = 0; i < nintf; ++i) {
1321 struct usb_interface_cache *intfc;
1322 struct usb_interface *intf;
1323 struct usb_host_interface *alt;
1325 cp->interface[i] = intf = new_interfaces[i];
1326 memset(intf, 0, sizeof(*intf));
1327 intfc = cp->intf_cache[i];
1328 intf->altsetting = intfc->altsetting;
1329 intf->num_altsetting = intfc->num_altsetting;
1330 kref_get(&intfc->ref);
1332 alt = usb_altnum_to_altsetting(intf, 0);
1334 /* No altsetting 0? We'll assume the first altsetting.
1335 * We could use a GetInterface call, but if a device is
1336 * so non-compliant that it doesn't have altsetting 0
1337 * then I wouldn't trust its reply anyway.
1339 if (!alt)
1340 alt = &intf->altsetting[0];
1342 intf->cur_altsetting = alt;
1343 usb_enable_interface(dev, intf);
1344 intf->dev.parent = &dev->dev;
1345 intf->dev.driver = NULL;
1346 intf->dev.bus = &usb_bus_type;
1347 intf->dev.dma_mask = dev->dev.dma_mask;
1348 intf->dev.release = release_interface;
1349 device_initialize (&intf->dev);
1350 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1351 dev->bus->busnum, dev->devpath,
1352 configuration,
1353 alt->desc.bInterfaceNumber);
1355 kfree(new_interfaces);
1357 /* Now that all the interfaces are set up, register them
1358 * to trigger binding of drivers to interfaces. probe()
1359 * routines may install different altsettings and may
1360 * claim() any interfaces not yet bound. Many class drivers
1361 * need that: CDC, audio, video, etc.
1363 for (i = 0; i < nintf; ++i) {
1364 struct usb_interface *intf = cp->interface[i];
1365 struct usb_interface_descriptor *desc;
1367 desc = &intf->altsetting [0].desc;
1368 dev_dbg (&dev->dev,
1369 "adding %s (config #%d, interface %d)\n",
1370 intf->dev.bus_id, configuration,
1371 desc->bInterfaceNumber);
1372 ret = device_add (&intf->dev);
1373 if (ret != 0) {
1374 dev_err(&dev->dev,
1375 "device_add(%s) --> %d\n",
1376 intf->dev.bus_id,
1377 ret);
1378 continue;
1380 usb_create_sysfs_intf_files (intf);
1384 return ret;
1387 // synchronous request completion model
1388 EXPORT_SYMBOL(usb_control_msg);
1389 EXPORT_SYMBOL(usb_bulk_msg);
1391 EXPORT_SYMBOL(usb_sg_init);
1392 EXPORT_SYMBOL(usb_sg_cancel);
1393 EXPORT_SYMBOL(usb_sg_wait);
1395 // synchronous control message convenience routines
1396 EXPORT_SYMBOL(usb_get_descriptor);
1397 EXPORT_SYMBOL(usb_get_status);
1398 EXPORT_SYMBOL(usb_get_string);
1399 EXPORT_SYMBOL(usb_string);
1401 // synchronous calls that also maintain usbcore state
1402 EXPORT_SYMBOL(usb_clear_halt);
1403 EXPORT_SYMBOL(usb_reset_configuration);
1404 EXPORT_SYMBOL(usb_set_interface);