4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 akpm@zip.com.au
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/bio.h>
31 #include <linux/wait.h>
32 #include <linux/err.h>
33 #include <linux/blkdev.h>
34 #include <linux/buffer_head.h>
35 #include <linux/rwsem.h>
36 #include <linux/uio.h>
37 #include <asm/atomic.h>
40 * How many user pages to map in one call to get_user_pages(). This determines
41 * the size of a structure on the stack.
46 * This code generally works in units of "dio_blocks". A dio_block is
47 * somewhere between the hard sector size and the filesystem block size. it
48 * is determined on a per-invocation basis. When talking to the filesystem
49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
51 * to bio_block quantities by shifting left by blkfactor.
53 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
57 * This determines whether we need to do the fancy locking which prevents
58 * direct-IO from being able to read uninitialised disk blocks. If its zero
59 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_sem is
60 * not held for the entire direct write (taken briefly, initially, during a
61 * direct read though, but its never held for the duration of a direct-IO).
65 /* BIO submission state */
66 struct bio
*bio
; /* bio under assembly */
69 int lock_type
; /* doesn't change */
70 unsigned blkbits
; /* doesn't change */
71 unsigned blkfactor
; /* When we're using an alignment which
72 is finer than the filesystem's soft
73 blocksize, this specifies how much
74 finer. blkfactor=2 means 1/4-block
75 alignment. Does not change */
76 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
77 been performed at the start of a
79 int pages_in_io
; /* approximate total IO pages */
80 size_t size
; /* total request size (doesn't change)*/
81 sector_t block_in_file
; /* Current offset into the underlying
82 file in dio_block units. */
83 unsigned blocks_available
; /* At block_in_file. changes */
84 sector_t final_block_in_request
;/* doesn't change */
85 unsigned first_block_in_page
; /* doesn't change, Used only once */
86 int boundary
; /* prev block is at a boundary */
87 int reap_counter
; /* rate limit reaping */
88 get_blocks_t
*get_blocks
; /* block mapping function */
89 dio_iodone_t
*end_io
; /* IO completion function */
90 sector_t final_block_in_bio
; /* current final block in bio + 1 */
91 sector_t next_block_for_io
; /* next block to be put under IO,
92 in dio_blocks units */
93 struct buffer_head map_bh
; /* last get_blocks() result */
96 * Deferred addition of a page to the dio. These variables are
97 * private to dio_send_cur_page(), submit_page_section() and
100 struct page
*cur_page
; /* The page */
101 unsigned cur_page_offset
; /* Offset into it, in bytes */
102 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
103 sector_t cur_page_block
; /* Where it starts */
106 * Page fetching state. These variables belong to dio_refill_pages().
108 int curr_page
; /* changes */
109 int total_pages
; /* doesn't change */
110 unsigned long curr_user_address
;/* changes */
113 * Page queue. These variables belong to dio_refill_pages() and
116 struct page
*pages
[DIO_PAGES
]; /* page buffer */
117 unsigned head
; /* next page to process */
118 unsigned tail
; /* last valid page + 1 */
119 int page_errors
; /* errno from get_user_pages() */
121 /* BIO completion state */
122 spinlock_t bio_lock
; /* protects BIO fields below */
123 int bio_count
; /* nr bios to be completed */
124 int bios_in_flight
; /* nr bios in flight */
125 struct bio
*bio_list
; /* singly linked via bi_private */
126 struct task_struct
*waiter
; /* waiting task (NULL if none) */
128 /* AIO related stuff */
129 struct kiocb
*iocb
; /* kiocb */
130 int is_async
; /* is IO async ? */
131 ssize_t result
; /* IO result */
135 * How many pages are in the queue?
137 static inline unsigned dio_pages_present(struct dio
*dio
)
139 return dio
->tail
- dio
->head
;
143 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
145 static int dio_refill_pages(struct dio
*dio
)
150 nr_pages
= min(dio
->total_pages
- dio
->curr_page
, DIO_PAGES
);
151 down_read(¤t
->mm
->mmap_sem
);
152 ret
= get_user_pages(
153 current
, /* Task for fault acounting */
154 current
->mm
, /* whose pages? */
155 dio
->curr_user_address
, /* Where from? */
156 nr_pages
, /* How many pages? */
157 dio
->rw
== READ
, /* Write to memory? */
161 up_read(¤t
->mm
->mmap_sem
);
163 if (ret
< 0 && dio
->blocks_available
&& (dio
->rw
== WRITE
)) {
165 * A memory fault, but the filesystem has some outstanding
166 * mapped blocks. We need to use those blocks up to avoid
167 * leaking stale data in the file.
169 if (dio
->page_errors
== 0)
170 dio
->page_errors
= ret
;
171 dio
->pages
[0] = ZERO_PAGE(dio
->curr_user_address
);
179 dio
->curr_user_address
+= ret
* PAGE_SIZE
;
180 dio
->curr_page
+= ret
;
190 * Get another userspace page. Returns an ERR_PTR on error. Pages are
191 * buffered inside the dio so that we can call get_user_pages() against a
192 * decent number of pages, less frequently. To provide nicer use of the
195 static struct page
*dio_get_page(struct dio
*dio
)
197 if (dio_pages_present(dio
) == 0) {
200 ret
= dio_refill_pages(dio
);
203 BUG_ON(dio_pages_present(dio
) == 0);
205 return dio
->pages
[dio
->head
++];
209 * Called when all DIO BIO I/O has been completed - let the filesystem
210 * know, if it registered an interest earlier via get_blocks. Pass the
211 * private field of the map buffer_head so that filesystems can use it
212 * to hold additional state between get_blocks calls and dio_complete.
214 static void dio_complete(struct dio
*dio
, loff_t offset
, ssize_t bytes
)
216 if (dio
->end_io
&& dio
->result
)
217 dio
->end_io(dio
->inode
, offset
, bytes
, dio
->map_bh
.b_private
);
218 if (dio
->lock_type
!= DIO_NO_LOCKING
)
219 up_read(&dio
->inode
->i_alloc_sem
);
223 * Called when a BIO has been processed. If the count goes to zero then IO is
224 * complete and we can signal this to the AIO layer.
226 static void finished_one_bio(struct dio
*dio
)
230 spin_lock_irqsave(&dio
->bio_lock
, flags
);
231 if (dio
->bio_count
== 1) {
234 * Last reference to the dio is going away.
235 * Drop spinlock and complete the DIO.
237 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
238 dio_complete(dio
, dio
->block_in_file
<< dio
->blkbits
,
240 /* Complete AIO later if falling back to buffered i/o */
241 if (dio
->result
== dio
->size
||
242 ((dio
->rw
== READ
) && dio
->result
)) {
243 aio_complete(dio
->iocb
, dio
->result
, 0);
248 * Falling back to buffered
250 spin_lock_irqsave(&dio
->bio_lock
, flags
);
253 wake_up_process(dio
->waiter
);
254 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
260 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
263 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
265 * Asynchronous IO callback.
267 static int dio_bio_end_aio(struct bio
*bio
, unsigned int bytes_done
, int error
)
269 struct dio
*dio
= bio
->bi_private
;
274 /* cleanup the bio */
275 dio_bio_complete(dio
, bio
);
280 * The BIO completion handler simply queues the BIO up for the process-context
283 * During I/O bi_private points at the dio. After I/O, bi_private is used to
284 * implement a singly-linked list of completed BIOs, at dio->bio_list.
286 static int dio_bio_end_io(struct bio
*bio
, unsigned int bytes_done
, int error
)
288 struct dio
*dio
= bio
->bi_private
;
294 spin_lock_irqsave(&dio
->bio_lock
, flags
);
295 bio
->bi_private
= dio
->bio_list
;
297 dio
->bios_in_flight
--;
298 if (dio
->waiter
&& dio
->bios_in_flight
== 0)
299 wake_up_process(dio
->waiter
);
300 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
305 dio_bio_alloc(struct dio
*dio
, struct block_device
*bdev
,
306 sector_t first_sector
, int nr_vecs
)
310 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
315 bio
->bi_sector
= first_sector
;
317 bio
->bi_end_io
= dio_bio_end_aio
;
319 bio
->bi_end_io
= dio_bio_end_io
;
326 * In the AIO read case we speculatively dirty the pages before starting IO.
327 * During IO completion, any of these pages which happen to have been written
328 * back will be redirtied by bio_check_pages_dirty().
330 static void dio_bio_submit(struct dio
*dio
)
332 struct bio
*bio
= dio
->bio
;
335 bio
->bi_private
= dio
;
336 spin_lock_irqsave(&dio
->bio_lock
, flags
);
338 dio
->bios_in_flight
++;
339 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
340 if (dio
->is_async
&& dio
->rw
== READ
)
341 bio_set_pages_dirty(bio
);
342 submit_bio(dio
->rw
, bio
);
349 * Release any resources in case of a failure
351 static void dio_cleanup(struct dio
*dio
)
353 while (dio_pages_present(dio
))
354 page_cache_release(dio_get_page(dio
));
358 * Wait for the next BIO to complete. Remove it and return it.
360 static struct bio
*dio_await_one(struct dio
*dio
)
365 spin_lock_irqsave(&dio
->bio_lock
, flags
);
366 while (dio
->bio_list
== NULL
) {
367 set_current_state(TASK_UNINTERRUPTIBLE
);
368 if (dio
->bio_list
== NULL
) {
369 dio
->waiter
= current
;
370 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
371 blk_run_address_space(dio
->inode
->i_mapping
);
373 spin_lock_irqsave(&dio
->bio_lock
, flags
);
376 set_current_state(TASK_RUNNING
);
379 dio
->bio_list
= bio
->bi_private
;
380 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
385 * Process one completed BIO. No locks are held.
387 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
389 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
390 struct bio_vec
*bvec
= bio
->bi_io_vec
;
396 if (dio
->is_async
&& dio
->rw
== READ
) {
397 bio_check_pages_dirty(bio
); /* transfers ownership */
399 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
400 struct page
*page
= bvec
[page_no
].bv_page
;
402 if (dio
->rw
== READ
&& !PageCompound(page
))
403 set_page_dirty_lock(page
);
404 page_cache_release(page
);
408 finished_one_bio(dio
);
409 return uptodate
? 0 : -EIO
;
413 * Wait on and process all in-flight BIOs.
415 static int dio_await_completion(struct dio
*dio
)
423 * The bio_lock is not held for the read of bio_count.
424 * This is ok since it is the dio_bio_complete() that changes
427 while (dio
->bio_count
) {
428 struct bio
*bio
= dio_await_one(dio
);
431 ret2
= dio_bio_complete(dio
, bio
);
439 * A really large O_DIRECT read or write can generate a lot of BIOs. So
440 * to keep the memory consumption sane we periodically reap any completed BIOs
441 * during the BIO generation phase.
443 * This also helps to limit the peak amount of pinned userspace memory.
445 static int dio_bio_reap(struct dio
*dio
)
449 if (dio
->reap_counter
++ >= 64) {
450 while (dio
->bio_list
) {
455 spin_lock_irqsave(&dio
->bio_lock
, flags
);
457 dio
->bio_list
= bio
->bi_private
;
458 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
459 ret2
= dio_bio_complete(dio
, bio
);
463 dio
->reap_counter
= 0;
469 * Call into the fs to map some more disk blocks. We record the current number
470 * of available blocks at dio->blocks_available. These are in units of the
471 * fs blocksize, (1 << inode->i_blkbits).
473 * The fs is allowed to map lots of blocks at once. If it wants to do that,
474 * it uses the passed inode-relative block number as the file offset, as usual.
476 * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io
477 * has remaining to do. The fs should not map more than this number of blocks.
479 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
480 * indicate how much contiguous disk space has been made available at
483 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
484 * This isn't very efficient...
486 * In the case of filesystem holes: the fs may return an arbitrarily-large
487 * hole by returning an appropriate value in b_size and by clearing
488 * buffer_mapped(). However the direct-io code will only process holes one
489 * block at a time - it will repeatedly call get_blocks() as it walks the hole.
491 static int get_more_blocks(struct dio
*dio
)
494 struct buffer_head
*map_bh
= &dio
->map_bh
;
495 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
496 unsigned long fs_count
; /* Number of filesystem-sized blocks */
497 unsigned long dio_count
;/* Number of dio_block-sized blocks */
498 unsigned long blkmask
;
502 * If there was a memory error and we've overwritten all the
503 * mapped blocks then we can now return that memory error
505 ret
= dio
->page_errors
;
509 BUG_ON(dio
->block_in_file
>= dio
->final_block_in_request
);
510 fs_startblk
= dio
->block_in_file
>> dio
->blkfactor
;
511 dio_count
= dio
->final_block_in_request
- dio
->block_in_file
;
512 fs_count
= dio_count
>> dio
->blkfactor
;
513 blkmask
= (1 << dio
->blkfactor
) - 1;
514 if (dio_count
& blkmask
)
517 create
= dio
->rw
== WRITE
;
518 if (dio
->lock_type
== DIO_LOCKING
) {
519 if (dio
->block_in_file
< (i_size_read(dio
->inode
) >>
522 } else if (dio
->lock_type
== DIO_NO_LOCKING
) {
526 * For writes inside i_size we forbid block creations: only
527 * overwrites are permitted. We fall back to buffered writes
528 * at a higher level for inside-i_size block-instantiating
531 ret
= (*dio
->get_blocks
)(dio
->inode
, fs_startblk
, fs_count
,
538 * There is no bio. Make one now.
540 static int dio_new_bio(struct dio
*dio
, sector_t start_sector
)
545 ret
= dio_bio_reap(dio
);
548 sector
= start_sector
<< (dio
->blkbits
- 9);
549 nr_pages
= min(dio
->pages_in_io
, bio_get_nr_vecs(dio
->map_bh
.b_bdev
));
550 BUG_ON(nr_pages
<= 0);
551 ret
= dio_bio_alloc(dio
, dio
->map_bh
.b_bdev
, sector
, nr_pages
);
558 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
559 * that was successful then update final_block_in_bio and take a ref against
560 * the just-added page.
562 * Return zero on success. Non-zero means the caller needs to start a new BIO.
564 static int dio_bio_add_page(struct dio
*dio
)
568 ret
= bio_add_page(dio
->bio
, dio
->cur_page
,
569 dio
->cur_page_len
, dio
->cur_page_offset
);
570 if (ret
== dio
->cur_page_len
) {
572 * Decrement count only, if we are done with this page
574 if ((dio
->cur_page_len
+ dio
->cur_page_offset
) == PAGE_SIZE
)
576 page_cache_get(dio
->cur_page
);
577 dio
->final_block_in_bio
= dio
->cur_page_block
+
578 (dio
->cur_page_len
>> dio
->blkbits
);
587 * Put cur_page under IO. The section of cur_page which is described by
588 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
589 * starts on-disk at cur_page_block.
591 * We take a ref against the page here (on behalf of its presence in the bio).
593 * The caller of this function is responsible for removing cur_page from the
594 * dio, and for dropping the refcount which came from that presence.
596 static int dio_send_cur_page(struct dio
*dio
)
602 * See whether this new request is contiguous with the old
604 if (dio
->final_block_in_bio
!= dio
->cur_page_block
)
607 * Submit now if the underlying fs is about to perform a
614 if (dio
->bio
== NULL
) {
615 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
620 if (dio_bio_add_page(dio
) != 0) {
622 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
624 ret
= dio_bio_add_page(dio
);
633 * An autonomous function to put a chunk of a page under deferred IO.
635 * The caller doesn't actually know (or care) whether this piece of page is in
636 * a BIO, or is under IO or whatever. We just take care of all possible
637 * situations here. The separation between the logic of do_direct_IO() and
638 * that of submit_page_section() is important for clarity. Please don't break.
640 * The chunk of page starts on-disk at blocknr.
642 * We perform deferred IO, by recording the last-submitted page inside our
643 * private part of the dio structure. If possible, we just expand the IO
644 * across that page here.
646 * If that doesn't work out then we put the old page into the bio and add this
647 * page to the dio instead.
650 submit_page_section(struct dio
*dio
, struct page
*page
,
651 unsigned offset
, unsigned len
, sector_t blocknr
)
656 * Can we just grow the current page's presence in the dio?
658 if ( (dio
->cur_page
== page
) &&
659 (dio
->cur_page_offset
+ dio
->cur_page_len
== offset
) &&
660 (dio
->cur_page_block
+
661 (dio
->cur_page_len
>> dio
->blkbits
) == blocknr
)) {
662 dio
->cur_page_len
+= len
;
665 * If dio->boundary then we want to schedule the IO now to
666 * avoid metadata seeks.
669 ret
= dio_send_cur_page(dio
);
670 page_cache_release(dio
->cur_page
);
671 dio
->cur_page
= NULL
;
677 * If there's a deferred page already there then send it.
680 ret
= dio_send_cur_page(dio
);
681 page_cache_release(dio
->cur_page
);
682 dio
->cur_page
= NULL
;
687 page_cache_get(page
); /* It is in dio */
688 dio
->cur_page
= page
;
689 dio
->cur_page_offset
= offset
;
690 dio
->cur_page_len
= len
;
691 dio
->cur_page_block
= blocknr
;
697 * Clean any dirty buffers in the blockdev mapping which alias newly-created
698 * file blocks. Only called for S_ISREG files - blockdevs do not set
701 static void clean_blockdev_aliases(struct dio
*dio
)
706 nblocks
= dio
->map_bh
.b_size
>> dio
->inode
->i_blkbits
;
708 for (i
= 0; i
< nblocks
; i
++) {
709 unmap_underlying_metadata(dio
->map_bh
.b_bdev
,
710 dio
->map_bh
.b_blocknr
+ i
);
715 * If we are not writing the entire block and get_block() allocated
716 * the block for us, we need to fill-in the unused portion of the
717 * block with zeros. This happens only if user-buffer, fileoffset or
718 * io length is not filesystem block-size multiple.
720 * `end' is zero if we're doing the start of the IO, 1 at the end of the
723 static void dio_zero_block(struct dio
*dio
, int end
)
725 unsigned dio_blocks_per_fs_block
;
726 unsigned this_chunk_blocks
; /* In dio_blocks */
727 unsigned this_chunk_bytes
;
730 dio
->start_zero_done
= 1;
731 if (!dio
->blkfactor
|| !buffer_new(&dio
->map_bh
))
734 dio_blocks_per_fs_block
= 1 << dio
->blkfactor
;
735 this_chunk_blocks
= dio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
737 if (!this_chunk_blocks
)
741 * We need to zero out part of an fs block. It is either at the
742 * beginning or the end of the fs block.
745 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
747 this_chunk_bytes
= this_chunk_blocks
<< dio
->blkbits
;
749 page
= ZERO_PAGE(dio
->curr_user_address
);
750 if (submit_page_section(dio
, page
, 0, this_chunk_bytes
,
751 dio
->next_block_for_io
))
754 dio
->next_block_for_io
+= this_chunk_blocks
;
758 * Walk the user pages, and the file, mapping blocks to disk and generating
759 * a sequence of (page,offset,len,block) mappings. These mappings are injected
760 * into submit_page_section(), which takes care of the next stage of submission
762 * Direct IO against a blockdev is different from a file. Because we can
763 * happily perform page-sized but 512-byte aligned IOs. It is important that
764 * blockdev IO be able to have fine alignment and large sizes.
766 * So what we do is to permit the ->get_blocks function to populate bh.b_size
767 * with the size of IO which is permitted at this offset and this i_blkbits.
769 * For best results, the blockdev should be set up with 512-byte i_blkbits and
770 * it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives
771 * fine alignment but still allows this function to work in PAGE_SIZE units.
773 static int do_direct_IO(struct dio
*dio
)
775 const unsigned blkbits
= dio
->blkbits
;
776 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
778 unsigned block_in_page
;
779 struct buffer_head
*map_bh
= &dio
->map_bh
;
782 /* The I/O can start at any block offset within the first page */
783 block_in_page
= dio
->first_block_in_page
;
785 while (dio
->block_in_file
< dio
->final_block_in_request
) {
786 page
= dio_get_page(dio
);
792 while (block_in_page
< blocks_per_page
) {
793 unsigned offset_in_page
= block_in_page
<< blkbits
;
794 unsigned this_chunk_bytes
; /* # of bytes mapped */
795 unsigned this_chunk_blocks
; /* # of blocks */
798 if (dio
->blocks_available
== 0) {
800 * Need to go and map some more disk
802 unsigned long blkmask
;
803 unsigned long dio_remainder
;
805 ret
= get_more_blocks(dio
);
807 page_cache_release(page
);
810 if (!buffer_mapped(map_bh
))
813 dio
->blocks_available
=
814 map_bh
->b_size
>> dio
->blkbits
;
815 dio
->next_block_for_io
=
816 map_bh
->b_blocknr
<< dio
->blkfactor
;
817 if (buffer_new(map_bh
))
818 clean_blockdev_aliases(dio
);
823 blkmask
= (1 << dio
->blkfactor
) - 1;
824 dio_remainder
= (dio
->block_in_file
& blkmask
);
827 * If we are at the start of IO and that IO
828 * starts partway into a fs-block,
829 * dio_remainder will be non-zero. If the IO
830 * is a read then we can simply advance the IO
831 * cursor to the first block which is to be
832 * read. But if the IO is a write and the
833 * block was newly allocated we cannot do that;
834 * the start of the fs block must be zeroed out
837 if (!buffer_new(map_bh
))
838 dio
->next_block_for_io
+= dio_remainder
;
839 dio
->blocks_available
-= dio_remainder
;
843 if (!buffer_mapped(map_bh
)) {
846 /* AKPM: eargh, -ENOTBLK is a hack */
847 if (dio
->rw
== WRITE
)
850 if (dio
->block_in_file
>=
851 i_size_read(dio
->inode
)>>blkbits
) {
853 page_cache_release(page
);
856 kaddr
= kmap_atomic(page
, KM_USER0
);
857 memset(kaddr
+ (block_in_page
<< blkbits
),
859 flush_dcache_page(page
);
860 kunmap_atomic(kaddr
, KM_USER0
);
861 dio
->block_in_file
++;
867 * If we're performing IO which has an alignment which
868 * is finer than the underlying fs, go check to see if
869 * we must zero out the start of this block.
871 if (unlikely(dio
->blkfactor
&& !dio
->start_zero_done
))
872 dio_zero_block(dio
, 0);
875 * Work out, in this_chunk_blocks, how much disk we
876 * can add to this page
878 this_chunk_blocks
= dio
->blocks_available
;
879 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
880 if (this_chunk_blocks
> u
)
881 this_chunk_blocks
= u
;
882 u
= dio
->final_block_in_request
- dio
->block_in_file
;
883 if (this_chunk_blocks
> u
)
884 this_chunk_blocks
= u
;
885 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
886 BUG_ON(this_chunk_bytes
== 0);
888 dio
->boundary
= buffer_boundary(map_bh
);
889 ret
= submit_page_section(dio
, page
, offset_in_page
,
890 this_chunk_bytes
, dio
->next_block_for_io
);
892 page_cache_release(page
);
895 dio
->next_block_for_io
+= this_chunk_blocks
;
897 dio
->block_in_file
+= this_chunk_blocks
;
898 block_in_page
+= this_chunk_blocks
;
899 dio
->blocks_available
-= this_chunk_blocks
;
901 if (dio
->block_in_file
> dio
->final_block_in_request
)
903 if (dio
->block_in_file
== dio
->final_block_in_request
)
907 /* Drop the ref which was taken in get_user_pages() */
908 page_cache_release(page
);
916 * Releases both i_sem and i_alloc_sem
919 direct_io_worker(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
920 const struct iovec
*iov
, loff_t offset
, unsigned long nr_segs
,
921 unsigned blkbits
, get_blocks_t get_blocks
, dio_iodone_t end_io
,
924 unsigned long user_addr
;
933 dio
->blkbits
= blkbits
;
934 dio
->blkfactor
= inode
->i_blkbits
- blkbits
;
935 dio
->start_zero_done
= 0;
937 dio
->block_in_file
= offset
>> blkbits
;
938 dio
->blocks_available
= 0;
939 dio
->cur_page
= NULL
;
942 dio
->reap_counter
= 0;
943 dio
->get_blocks
= get_blocks
;
944 dio
->end_io
= end_io
;
945 dio
->map_bh
.b_private
= NULL
;
946 dio
->final_block_in_bio
= -1;
947 dio
->next_block_for_io
= -1;
949 dio
->page_errors
= 0;
954 * BIO completion state.
956 * ->bio_count starts out at one, and we decrement it to zero after all
957 * BIOs are submitted. This to avoid the situation where a really fast
958 * (or synchronous) device could take the count to zero while we're
959 * still submitting BIOs.
962 dio
->bios_in_flight
= 0;
963 spin_lock_init(&dio
->bio_lock
);
964 dio
->bio_list
= NULL
;
968 * In case of non-aligned buffers, we may need 2 more
969 * pages since we need to zero out first and last block.
971 if (unlikely(dio
->blkfactor
))
972 dio
->pages_in_io
= 2;
974 dio
->pages_in_io
= 0;
976 for (seg
= 0; seg
< nr_segs
; seg
++) {
977 user_addr
= (unsigned long)iov
[seg
].iov_base
;
979 ((user_addr
+iov
[seg
].iov_len
+PAGE_SIZE
-1)/PAGE_SIZE
980 - user_addr
/PAGE_SIZE
);
983 for (seg
= 0; seg
< nr_segs
; seg
++) {
984 user_addr
= (unsigned long)iov
[seg
].iov_base
;
985 dio
->size
+= bytes
= iov
[seg
].iov_len
;
987 /* Index into the first page of the first block */
988 dio
->first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
989 dio
->final_block_in_request
= dio
->block_in_file
+
991 /* Page fetching state */
996 dio
->total_pages
= 0;
997 if (user_addr
& (PAGE_SIZE
-1)) {
999 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
1001 dio
->total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1002 dio
->curr_user_address
= user_addr
;
1004 ret
= do_direct_IO(dio
);
1006 dio
->result
+= iov
[seg
].iov_len
-
1007 ((dio
->final_block_in_request
- dio
->block_in_file
) <<
1014 } /* end iovec loop */
1016 if (ret
== -ENOTBLK
&& rw
== WRITE
) {
1018 * The remaining part of the request will be
1019 * be handled by buffered I/O when we return
1024 * There may be some unwritten disk at the end of a part-written
1025 * fs-block-sized block. Go zero that now.
1027 dio_zero_block(dio
, 1);
1029 if (dio
->cur_page
) {
1030 ret2
= dio_send_cur_page(dio
);
1033 page_cache_release(dio
->cur_page
);
1034 dio
->cur_page
= NULL
;
1037 dio_bio_submit(dio
);
1040 * It is possible that, we return short IO due to end of file.
1041 * In that case, we need to release all the pages we got hold on.
1046 * All block lookups have been performed. For READ requests
1047 * we can let i_sem go now that its achieved its purpose
1048 * of protecting us from looking up uninitialized blocks.
1050 if ((rw
== READ
) && (dio
->lock_type
== DIO_LOCKING
))
1051 up(&dio
->inode
->i_sem
);
1054 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1055 * reflect the number of to-be-processed BIOs.
1057 if (dio
->is_async
) {
1058 int should_wait
= 0;
1060 if (dio
->result
< dio
->size
&& rw
== WRITE
) {
1061 dio
->waiter
= current
;
1066 finished_one_bio(dio
); /* This can free the dio */
1067 blk_run_address_space(inode
->i_mapping
);
1069 unsigned long flags
;
1071 * Wait for already issued I/O to drain out and
1072 * release its references to user-space pages
1073 * before returning to fallback on buffered I/O
1076 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1077 set_current_state(TASK_UNINTERRUPTIBLE
);
1078 while (dio
->bio_count
) {
1079 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1081 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1082 set_current_state(TASK_UNINTERRUPTIBLE
);
1084 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1085 set_current_state(TASK_RUNNING
);
1089 ssize_t transferred
= 0;
1091 finished_one_bio(dio
);
1092 ret2
= dio_await_completion(dio
);
1096 ret
= dio
->page_errors
;
1098 loff_t i_size
= i_size_read(inode
);
1100 transferred
= dio
->result
;
1102 * Adjust the return value if the read crossed a
1103 * non-block-aligned EOF.
1105 if (rw
== READ
&& (offset
+ transferred
> i_size
))
1106 transferred
= i_size
- offset
;
1108 dio_complete(dio
, offset
, transferred
);
1112 /* We could have also come here on an AIO file extend */
1113 if (!is_sync_kiocb(iocb
) && rw
== WRITE
&&
1114 ret
>= 0 && dio
->result
== dio
->size
)
1116 * For AIO writes where we have completed the
1117 * i/o, we have to mark the the aio complete.
1119 aio_complete(iocb
, ret
, 0);
1126 * This is a library function for use by filesystem drivers.
1128 * For writes to S_ISREG files, we are called under i_sem and return with i_sem
1129 * held, even though it is internally dropped.
1131 * For writes to S_ISBLK files, i_sem is not held on entry; it is never taken.
1134 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1135 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1136 unsigned long nr_segs
, get_blocks_t get_blocks
, dio_iodone_t end_io
,
1142 unsigned blkbits
= inode
->i_blkbits
;
1143 unsigned bdev_blkbits
= 0;
1144 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1145 ssize_t retval
= -EINVAL
;
1146 loff_t end
= offset
;
1150 bdev_blkbits
= blksize_bits(bdev_hardsect_size(bdev
));
1152 if (offset
& blocksize_mask
) {
1154 blkbits
= bdev_blkbits
;
1155 blocksize_mask
= (1 << blkbits
) - 1;
1156 if (offset
& blocksize_mask
)
1160 /* Check the memory alignment. Blocks cannot straddle pages */
1161 for (seg
= 0; seg
< nr_segs
; seg
++) {
1162 addr
= (unsigned long)iov
[seg
].iov_base
;
1163 size
= iov
[seg
].iov_len
;
1165 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
)) {
1167 blkbits
= bdev_blkbits
;
1168 blocksize_mask
= (1 << blkbits
) - 1;
1169 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1174 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1180 * For regular files using DIO_LOCKING,
1181 * readers need to grab i_sem and i_alloc_sem
1182 * writers need to grab i_alloc_sem only (i_sem is already held)
1183 * For regular files using DIO_OWN_LOCKING,
1184 * both readers and writers need to grab i_alloc_sem
1185 * neither readers nor writers hold i_sem on entry (nor exit)
1187 dio
->lock_type
= dio_lock_type
;
1188 if (dio_lock_type
!= DIO_NO_LOCKING
) {
1190 struct address_space
*mapping
;
1192 mapping
= iocb
->ki_filp
->f_mapping
;
1193 down(&inode
->i_sem
);
1194 retval
= filemap_write_and_wait(mapping
);
1200 down_read(&inode
->i_alloc_sem
);
1201 if (dio_lock_type
== DIO_OWN_LOCKING
)
1204 down_read(&inode
->i_alloc_sem
);
1208 * For file extending writes updating i_size before data
1209 * writeouts complete can expose uninitialized blocks. So
1210 * even for AIO, we need to wait for i/o to complete before
1211 * returning in this case.
1213 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
== WRITE
) &&
1214 (end
> i_size_read(inode
)));
1216 retval
= direct_io_worker(rw
, iocb
, inode
, iov
, offset
,
1217 nr_segs
, blkbits
, get_blocks
, end_io
, dio
);
1221 EXPORT_SYMBOL(__blockdev_direct_IO
);