MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / fs / eventpoll.c
blob7d6a12f66a6fc06dcc57961d165ff5869dd04154
1 /*
2 * fs/eventpoll.c ( Efficent event polling implementation )
3 * Copyright (C) 2001,...,2003 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/file.h>
20 #include <linux/signal.h>
21 #include <linux/errno.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/poll.h>
25 #include <linux/smp_lock.h>
26 #include <linux/string.h>
27 #include <linux/list.h>
28 #include <linux/hash.h>
29 #include <linux/spinlock.h>
30 #include <linux/syscalls.h>
31 #include <linux/rwsem.h>
32 #include <linux/rbtree.h>
33 #include <linux/wait.h>
34 #include <linux/eventpoll.h>
35 #include <linux/mount.h>
36 #include <asm/bitops.h>
37 #include <asm/uaccess.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/mman.h>
41 #include <asm/atomic.h>
42 #include <asm/semaphore.h>
46 * LOCKING:
47 * There are three level of locking required by epoll :
49 * 1) epsem (semaphore)
50 * 2) ep->sem (rw_semaphore)
51 * 3) ep->lock (rw_lock)
53 * The acquire order is the one listed above, from 1 to 3.
54 * We need a spinlock (ep->lock) because we manipulate objects
55 * from inside the poll callback, that might be triggered from
56 * a wake_up() that in turn might be called from IRQ context.
57 * So we can't sleep inside the poll callback and hence we need
58 * a spinlock. During the event transfer loop (from kernel to
59 * user space) we could end up sleeping due a copy_to_user(), so
60 * we need a lock that will allow us to sleep. This lock is a
61 * read-write semaphore (ep->sem). It is acquired on read during
62 * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL)
63 * and during eventpoll_release_file(). Then we also need a global
64 * semaphore to serialize eventpoll_release_file() and ep_free().
65 * This semaphore is acquired by ep_free() during the epoll file
66 * cleanup path and it is also acquired by eventpoll_release_file()
67 * if a file has been pushed inside an epoll set and it is then
68 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
69 * It is possible to drop the "ep->sem" and to use the global
70 * semaphore "epsem" (together with "ep->lock") to have it working,
71 * but having "ep->sem" will make the interface more scalable.
72 * Events that require holding "epsem" are very rare, while for
73 * normal operations the epoll private "ep->sem" will guarantee
74 * a greater scalability.
78 #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */
80 #define DEBUG_EPOLL 0
82 #if DEBUG_EPOLL > 0
83 #define DPRINTK(x) printk x
84 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0)
85 #else /* #if DEBUG_EPOLL > 0 */
86 #define DPRINTK(x) (void) 0
87 #define DNPRINTK(n, x) (void) 0
88 #endif /* #if DEBUG_EPOLL > 0 */
90 #define DEBUG_EPI 0
92 #if DEBUG_EPI != 0
93 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
94 #else /* #if DEBUG_EPI != 0 */
95 #define EPI_SLAB_DEBUG 0
96 #endif /* #if DEBUG_EPI != 0 */
98 /* Epoll private bits inside the event mask */
99 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
101 /* Maximum number of poll wake up nests we are allowing */
102 #define EP_MAX_POLLWAKE_NESTS 4
104 /* Macro to allocate a "struct epitem" from the slab cache */
105 #define EPI_MEM_ALLOC() (struct epitem *) kmem_cache_alloc(epi_cache, SLAB_KERNEL)
107 /* Macro to free a "struct epitem" to the slab cache */
108 #define EPI_MEM_FREE(p) kmem_cache_free(epi_cache, p)
110 /* Macro to allocate a "struct eppoll_entry" from the slab cache */
111 #define PWQ_MEM_ALLOC() (struct eppoll_entry *) kmem_cache_alloc(pwq_cache, SLAB_KERNEL)
113 /* Macro to free a "struct eppoll_entry" to the slab cache */
114 #define PWQ_MEM_FREE(p) kmem_cache_free(pwq_cache, p)
116 /* Fast test to see if the file is an evenpoll file */
117 #define IS_FILE_EPOLL(f) ((f)->f_op == &eventpoll_fops)
119 /* Setup the structure that is used as key for the rb-tree */
120 #define EP_SET_FFD(p, f, d) do { (p)->file = (f); (p)->fd = (d); } while (0)
122 /* Compare rb-tree keys */
123 #define EP_CMP_FFD(p1, p2) ((p1)->file > (p2)->file ? +1: \
124 ((p1)->file < (p2)->file ? -1: (p1)->fd - (p2)->fd))
126 /* Special initialization for the rb-tree node to detect linkage */
127 #define EP_RB_INITNODE(n) (n)->rb_parent = (n)
129 /* Removes a node from the rb-tree and marks it for a fast is-linked check */
130 #define EP_RB_ERASE(n, r) do { rb_erase(n, r); (n)->rb_parent = (n); } while (0)
132 /* Fast check to verify that the item is linked to the main rb-tree */
133 #define EP_RB_LINKED(n) ((n)->rb_parent != (n))
136 * Remove the item from the list and perform its initialization.
137 * This is useful for us because we can test if the item is linked
138 * using "EP_IS_LINKED(p)".
140 #define EP_LIST_DEL(p) do { list_del(p); INIT_LIST_HEAD(p); } while (0)
142 /* Tells us if the item is currently linked */
143 #define EP_IS_LINKED(p) (!list_empty(p))
145 /* Get the "struct epitem" from a wait queue pointer */
146 #define EP_ITEM_FROM_WAIT(p) ((struct epitem *) container_of(p, struct eppoll_entry, wait)->base)
148 /* Get the "struct epitem" from an epoll queue wrapper */
149 #define EP_ITEM_FROM_EPQUEUE(p) (container_of(p, struct ep_pqueue, pt)->epi)
151 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
152 #define EP_OP_HASH_EVENT(op) ((op) != EPOLL_CTL_DEL)
155 struct epoll_filefd {
156 struct file *file;
157 int fd;
161 * Node that is linked into the "wake_task_list" member of the "struct poll_safewake".
162 * It is used to keep track on all tasks that are currently inside the wake_up() code
163 * to 1) short-circuit the one coming from the same task and same wait queue head
164 * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting
165 * 3) let go the ones coming from other tasks.
167 struct wake_task_node {
168 struct list_head llink;
169 task_t *task;
170 wait_queue_head_t *wq;
174 * This is used to implement the safe poll wake up avoiding to reenter
175 * the poll callback from inside wake_up().
177 struct poll_safewake {
178 struct list_head wake_task_list;
179 spinlock_t lock;
183 * This structure is stored inside the "private_data" member of the file
184 * structure and rapresent the main data sructure for the eventpoll
185 * interface.
187 struct eventpoll {
188 /* Protect the this structure access */
189 rwlock_t lock;
192 * This semaphore is used to ensure that files are not removed
193 * while epoll is using them. This is read-held during the event
194 * collection loop and it is write-held during the file cleanup
195 * path, the epoll file exit code and the ctl operations.
197 struct rw_semaphore sem;
199 /* Wait queue used by sys_epoll_wait() */
200 wait_queue_head_t wq;
202 /* Wait queue used by file->poll() */
203 wait_queue_head_t poll_wait;
205 /* List of ready file descriptors */
206 struct list_head rdllist;
208 /* RB-Tree root used to store monitored fd structs */
209 struct rb_root rbr;
212 /* Wait structure used by the poll hooks */
213 struct eppoll_entry {
214 /* List header used to link this structure to the "struct epitem" */
215 struct list_head llink;
217 /* The "base" pointer is set to the container "struct epitem" */
218 void *base;
221 * Wait queue item that will be linked to the target file wait
222 * queue head.
224 wait_queue_t wait;
226 /* The wait queue head that linked the "wait" wait queue item */
227 wait_queue_head_t *whead;
231 * Each file descriptor added to the eventpoll interface will
232 * have an entry of this type linked to the hash.
234 struct epitem {
235 /* RB-Tree node used to link this structure to the eventpoll rb-tree */
236 struct rb_node rbn;
238 /* List header used to link this structure to the eventpoll ready list */
239 struct list_head rdllink;
241 /* The file descriptor information this item refers to */
242 struct epoll_filefd ffd;
244 /* Number of active wait queue attached to poll operations */
245 int nwait;
247 /* List containing poll wait queues */
248 struct list_head pwqlist;
250 /* The "container" of this item */
251 struct eventpoll *ep;
253 /* The structure that describe the interested events and the source fd */
254 struct epoll_event event;
257 * Used to keep track of the usage count of the structure. This avoids
258 * that the structure will desappear from underneath our processing.
260 atomic_t usecnt;
262 /* List header used to link this item to the "struct file" items list */
263 struct list_head fllink;
265 /* List header used to link the item to the transfer list */
266 struct list_head txlink;
269 * This is used during the collection/transfer of events to userspace
270 * to pin items empty events set.
272 unsigned int revents;
275 /* Wrapper struct used by poll queueing */
276 struct ep_pqueue {
277 poll_table pt;
278 struct epitem *epi;
283 static void ep_poll_safewake_init(struct poll_safewake *psw);
284 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq);
285 static int ep_getfd(int *efd, struct inode **einode, struct file **efile);
286 static int ep_file_init(struct file *file);
287 static void ep_free(struct eventpoll *ep);
288 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd);
289 static void ep_use_epitem(struct epitem *epi);
290 static void ep_release_epitem(struct epitem *epi);
291 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
292 poll_table *pt);
293 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi);
294 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
295 struct file *tfile, int fd);
296 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
297 struct epoll_event *event);
298 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi);
299 static int ep_unlink(struct eventpoll *ep, struct epitem *epi);
300 static int ep_remove(struct eventpoll *ep, struct epitem *epi);
301 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key);
302 static int ep_eventpoll_close(struct inode *inode, struct file *file);
303 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait);
304 static int ep_collect_ready_items(struct eventpoll *ep,
305 struct list_head *txlist, int maxevents);
306 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
307 struct epoll_event __user *events);
308 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist);
309 static int ep_events_transfer(struct eventpoll *ep,
310 struct epoll_event __user *events,
311 int maxevents);
312 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
313 int maxevents, long timeout);
314 static int eventpollfs_delete_dentry(struct dentry *dentry);
315 static struct inode *ep_eventpoll_inode(void);
316 static struct super_block *eventpollfs_get_sb(struct file_system_type *fs_type,
317 int flags, const char *dev_name,
318 void *data);
321 * This semaphore is used to serialize ep_free() and eventpoll_release_file().
323 struct semaphore epsem;
325 /* Safe wake up implementation */
326 static struct poll_safewake psw;
328 /* Slab cache used to allocate "struct epitem" */
329 static kmem_cache_t *epi_cache;
331 /* Slab cache used to allocate "struct eppoll_entry" */
332 static kmem_cache_t *pwq_cache;
334 /* Virtual fs used to allocate inodes for eventpoll files */
335 static struct vfsmount *eventpoll_mnt;
337 /* File callbacks that implement the eventpoll file behaviour */
338 static struct file_operations eventpoll_fops = {
339 .release = ep_eventpoll_close,
340 .poll = ep_eventpoll_poll
344 * This is used to register the virtual file system from where
345 * eventpoll inodes are allocated.
347 static struct file_system_type eventpoll_fs_type = {
348 .name = "eventpollfs",
349 .get_sb = eventpollfs_get_sb,
350 .kill_sb = kill_anon_super,
353 /* Very basic directory entry operations for the eventpoll virtual file system */
354 static struct dentry_operations eventpollfs_dentry_operations = {
355 .d_delete = eventpollfs_delete_dentry,
360 /* Initialize the poll safe wake up structure */
361 static void ep_poll_safewake_init(struct poll_safewake *psw)
364 INIT_LIST_HEAD(&psw->wake_task_list);
365 spin_lock_init(&psw->lock);
370 * Perform a safe wake up of the poll wait list. The problem is that
371 * with the new callback'd wake up system, it is possible that the
372 * poll callback is reentered from inside the call to wake_up() done
373 * on the poll wait queue head. The rule is that we cannot reenter the
374 * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times,
375 * and we cannot reenter the same wait queue head at all. This will
376 * enable to have a hierarchy of epoll file descriptor of no more than
377 * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock
378 * because this one gets called by the poll callback, that in turn is called
379 * from inside a wake_up(), that might be called from irq context.
381 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq)
383 int wake_nests = 0;
384 unsigned long flags;
385 task_t *this_task = current;
386 struct list_head *lsthead = &psw->wake_task_list, *lnk;
387 struct wake_task_node *tncur;
388 struct wake_task_node tnode;
390 spin_lock_irqsave(&psw->lock, flags);
392 /* Try to see if the current task is already inside this wakeup call */
393 list_for_each(lnk, lsthead) {
394 tncur = list_entry(lnk, struct wake_task_node, llink);
396 if (tncur->wq == wq ||
397 (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) {
399 * Ops ... loop detected or maximum nest level reached.
400 * We abort this wake by breaking the cycle itself.
402 spin_unlock_irqrestore(&psw->lock, flags);
403 return;
407 /* Add the current task to the list */
408 tnode.task = this_task;
409 tnode.wq = wq;
410 list_add(&tnode.llink, lsthead);
412 spin_unlock_irqrestore(&psw->lock, flags);
414 /* Do really wake up now */
415 wake_up(wq);
417 /* Remove the current task from the list */
418 spin_lock_irqsave(&psw->lock, flags);
419 list_del(&tnode.llink);
420 spin_unlock_irqrestore(&psw->lock, flags);
424 /* Used to initialize the epoll bits inside the "struct file" */
425 void eventpoll_init_file(struct file *file)
428 INIT_LIST_HEAD(&file->f_ep_links);
429 spin_lock_init(&file->f_ep_lock);
434 * This is called from eventpoll_release() to unlink files from the eventpoll
435 * interface. We need to have this facility to cleanup correctly files that are
436 * closed without being removed from the eventpoll interface.
438 void eventpoll_release_file(struct file *file)
440 struct list_head *lsthead = &file->f_ep_links;
441 struct eventpoll *ep;
442 struct epitem *epi;
445 * We don't want to get "file->f_ep_lock" because it is not
446 * necessary. It is not necessary because we're in the "struct file"
447 * cleanup path, and this means that noone is using this file anymore.
448 * The only hit might come from ep_free() but by holding the semaphore
449 * will correctly serialize the operation. We do need to acquire
450 * "ep->sem" after "epsem" because ep_remove() requires it when called
451 * from anywhere but ep_free().
453 down(&epsem);
455 while (!list_empty(lsthead)) {
456 epi = list_entry(lsthead->next, struct epitem, fllink);
458 ep = epi->ep;
459 EP_LIST_DEL(&epi->fllink);
460 down_write(&ep->sem);
461 ep_remove(ep, epi);
462 up_write(&ep->sem);
465 up(&epsem);
470 * It opens an eventpoll file descriptor by suggesting a storage of "size"
471 * file descriptors. The size parameter is just an hint about how to size
472 * data structures. It won't prevent the user to store more than "size"
473 * file descriptors inside the epoll interface. It is the kernel part of
474 * the userspace epoll_create(2).
476 asmlinkage long sys_epoll_create(int size)
478 int error, fd;
479 struct inode *inode;
480 struct file *file;
482 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
483 current, size));
485 /* Sanity check on the size parameter */
486 error = -EINVAL;
487 if (size <= 0)
488 goto eexit_1;
491 * Creates all the items needed to setup an eventpoll file. That is,
492 * a file structure, and inode and a free file descriptor.
494 error = ep_getfd(&fd, &inode, &file);
495 if (error)
496 goto eexit_1;
498 /* Setup the file internal data structure ( "struct eventpoll" ) */
499 error = ep_file_init(file);
500 if (error)
501 goto eexit_2;
504 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
505 current, size, fd));
507 return fd;
509 eexit_2:
510 sys_close(fd);
511 eexit_1:
512 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
513 current, size, error));
514 return error;
519 * The following function implements the controller interface for
520 * the eventpoll file that enables the insertion/removal/change of
521 * file descriptors inside the interest set. It represents
522 * the kernel part of the user space epoll_ctl(2).
524 asmlinkage long
525 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
527 int error;
528 struct file *file, *tfile;
529 struct eventpoll *ep;
530 struct epitem *epi;
531 struct epoll_event epds;
533 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
534 current, epfd, op, fd, event));
536 error = -EFAULT;
537 if (EP_OP_HASH_EVENT(op) &&
538 copy_from_user(&epds, event, sizeof(struct epoll_event)))
539 goto eexit_1;
541 /* Get the "struct file *" for the eventpoll file */
542 error = -EBADF;
543 file = fget(epfd);
544 if (!file)
545 goto eexit_1;
547 /* Get the "struct file *" for the target file */
548 tfile = fget(fd);
549 if (!tfile)
550 goto eexit_2;
552 /* The target file descriptor must support poll */
553 error = -EPERM;
554 if (!tfile->f_op || !tfile->f_op->poll)
555 goto eexit_3;
558 * We have to check that the file structure underneath the file descriptor
559 * the user passed to us _is_ an eventpoll file. And also we do not permit
560 * adding an epoll file descriptor inside itself.
562 error = -EINVAL;
563 if (file == tfile || !IS_FILE_EPOLL(file))
564 goto eexit_3;
567 * At this point it is safe to assume that the "private_data" contains
568 * our own data structure.
570 ep = file->private_data;
572 down_write(&ep->sem);
574 /* Try to lookup the file inside our hash table */
575 epi = ep_find(ep, tfile, fd);
577 error = -EINVAL;
578 switch (op) {
579 case EPOLL_CTL_ADD:
580 if (!epi) {
581 epds.events |= POLLERR | POLLHUP;
583 error = ep_insert(ep, &epds, tfile, fd);
584 } else
585 error = -EEXIST;
586 break;
587 case EPOLL_CTL_DEL:
588 if (epi)
589 error = ep_remove(ep, epi);
590 else
591 error = -ENOENT;
592 break;
593 case EPOLL_CTL_MOD:
594 if (epi) {
595 epds.events |= POLLERR | POLLHUP;
596 error = ep_modify(ep, epi, &epds);
597 } else
598 error = -ENOENT;
599 break;
603 * The function ep_find() increments the usage count of the structure
604 * so, if this is not NULL, we need to release it.
606 if (epi)
607 ep_release_epitem(epi);
609 up_write(&ep->sem);
611 eexit_3:
612 fput(tfile);
613 eexit_2:
614 fput(file);
615 eexit_1:
616 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
617 current, epfd, op, fd, event, error));
619 return error;
624 * Implement the event wait interface for the eventpoll file. It is the kernel
625 * part of the user space epoll_wait(2).
627 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
628 int maxevents, int timeout)
630 int error;
631 struct file *file;
632 struct eventpoll *ep;
634 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
635 current, epfd, events, maxevents, timeout));
637 /* The maximum number of event must be greater than zero */
638 if (maxevents <= 0)
639 return -EINVAL;
641 /* Verify that the area passed by the user is writeable */
642 if ((error = verify_area(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))))
643 goto eexit_1;
645 /* Get the "struct file *" for the eventpoll file */
646 error = -EBADF;
647 file = fget(epfd);
648 if (!file)
649 goto eexit_1;
652 * We have to check that the file structure underneath the fd
653 * the user passed to us _is_ an eventpoll file.
655 error = -EINVAL;
656 if (!IS_FILE_EPOLL(file))
657 goto eexit_2;
660 * At this point it is safe to assume that the "private_data" contains
661 * our own data structure.
663 ep = file->private_data;
665 /* Time to fish for events ... */
666 error = ep_poll(ep, events, maxevents, timeout);
668 eexit_2:
669 fput(file);
670 eexit_1:
671 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
672 current, epfd, events, maxevents, timeout, error));
674 return error;
679 * Creates the file descriptor to be used by the epoll interface.
681 static int ep_getfd(int *efd, struct inode **einode, struct file **efile)
683 struct qstr this;
684 char name[32];
685 struct dentry *dentry;
686 struct inode *inode;
687 struct file *file;
688 int error, fd;
690 /* Get an ready to use file */
691 error = -ENFILE;
692 file = get_empty_filp();
693 if (!file)
694 goto eexit_1;
696 /* Allocates an inode from the eventpoll file system */
697 inode = ep_eventpoll_inode();
698 error = PTR_ERR(inode);
699 if (IS_ERR(inode))
700 goto eexit_2;
702 /* Allocates a free descriptor to plug the file onto */
703 error = get_unused_fd();
704 if (error < 0)
705 goto eexit_3;
706 fd = error;
709 * Link the inode to a directory entry by creating a unique name
710 * using the inode number.
712 error = -ENOMEM;
713 sprintf(name, "[%lu]", inode->i_ino);
714 this.name = name;
715 this.len = strlen(name);
716 this.hash = inode->i_ino;
717 dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this);
718 if (!dentry)
719 goto eexit_4;
720 dentry->d_op = &eventpollfs_dentry_operations;
721 d_add(dentry, inode);
722 file->f_vfsmnt = mntget(eventpoll_mnt);
723 file->f_dentry = dentry;
724 file->f_mapping = inode->i_mapping;
726 file->f_pos = 0;
727 file->f_flags = O_RDONLY;
728 file->f_op = &eventpoll_fops;
729 file->f_mode = FMODE_READ;
730 file->f_version = 0;
731 file->private_data = NULL;
733 /* Install the new setup file into the allocated fd. */
734 fd_install(fd, file);
736 *efd = fd;
737 *einode = inode;
738 *efile = file;
739 return 0;
741 eexit_4:
742 put_unused_fd(fd);
743 eexit_3:
744 iput(inode);
745 eexit_2:
746 put_filp(file);
747 eexit_1:
748 return error;
752 static int ep_file_init(struct file *file)
754 struct eventpoll *ep;
756 if (!(ep = kmalloc(sizeof(struct eventpoll), GFP_KERNEL)))
757 return -ENOMEM;
759 memset(ep, 0, sizeof(*ep));
760 rwlock_init(&ep->lock);
761 init_rwsem(&ep->sem);
762 init_waitqueue_head(&ep->wq);
763 init_waitqueue_head(&ep->poll_wait);
764 INIT_LIST_HEAD(&ep->rdllist);
765 ep->rbr = RB_ROOT;
767 file->private_data = ep;
769 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_file_init() ep=%p\n",
770 current, ep));
771 return 0;
775 static void ep_free(struct eventpoll *ep)
777 struct rb_node *rbp;
778 struct epitem *epi;
780 /* We need to release all tasks waiting for these file */
781 if (waitqueue_active(&ep->poll_wait))
782 ep_poll_safewake(&psw, &ep->poll_wait);
785 * We need to lock this because we could be hit by
786 * eventpoll_release_file() while we're freeing the "struct eventpoll".
787 * We do not need to hold "ep->sem" here because the epoll file
788 * is on the way to be removed and no one has references to it
789 * anymore. The only hit might come from eventpoll_release_file() but
790 * holding "epsem" is sufficent here.
792 down(&epsem);
795 * Walks through the whole tree by unregistering poll callbacks.
797 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
798 epi = rb_entry(rbp, struct epitem, rbn);
800 ep_unregister_pollwait(ep, epi);
804 * Walks through the whole hash by freeing each "struct epitem". At this
805 * point we are sure no poll callbacks will be lingering around, and also by
806 * write-holding "sem" we can be sure that no file cleanup code will hit
807 * us during this operation. So we can avoid the lock on "ep->lock".
809 while ((rbp = rb_first(&ep->rbr)) != 0) {
810 epi = rb_entry(rbp, struct epitem, rbn);
811 ep_remove(ep, epi);
814 up(&epsem);
819 * Search the file inside the eventpoll hash. It add usage count to
820 * the returned item, so the caller must call ep_release_epitem()
821 * after finished using the "struct epitem".
823 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
825 int kcmp;
826 unsigned long flags;
827 struct rb_node *rbp;
828 struct epitem *epi, *epir = NULL;
829 struct epoll_filefd ffd;
831 EP_SET_FFD(&ffd, file, fd);
832 read_lock_irqsave(&ep->lock, flags);
833 for (rbp = ep->rbr.rb_node; rbp; ) {
834 epi = rb_entry(rbp, struct epitem, rbn);
835 kcmp = EP_CMP_FFD(&ffd, &epi->ffd);
836 if (kcmp > 0)
837 rbp = rbp->rb_right;
838 else if (kcmp < 0)
839 rbp = rbp->rb_left;
840 else {
841 ep_use_epitem(epi);
842 epir = epi;
843 break;
846 read_unlock_irqrestore(&ep->lock, flags);
848 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n",
849 current, file, epir));
851 return epir;
856 * Increment the usage count of the "struct epitem" making it sure
857 * that the user will have a valid pointer to reference.
859 static void ep_use_epitem(struct epitem *epi)
862 atomic_inc(&epi->usecnt);
867 * Decrement ( release ) the usage count by signaling that the user
868 * has finished using the structure. It might lead to freeing the
869 * structure itself if the count goes to zero.
871 static void ep_release_epitem(struct epitem *epi)
874 if (atomic_dec_and_test(&epi->usecnt))
875 EPI_MEM_FREE(epi);
880 * This is the callback that is used to add our wait queue to the
881 * target file wakeup lists.
883 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
884 poll_table *pt)
886 struct epitem *epi = EP_ITEM_FROM_EPQUEUE(pt);
887 struct eppoll_entry *pwq;
889 if (epi->nwait >= 0 && (pwq = PWQ_MEM_ALLOC())) {
890 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
891 pwq->whead = whead;
892 pwq->base = epi;
893 add_wait_queue(whead, &pwq->wait);
894 list_add_tail(&pwq->llink, &epi->pwqlist);
895 epi->nwait++;
896 } else {
897 /* We have to signal that an error occurred */
898 epi->nwait = -1;
903 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
905 int kcmp;
906 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
907 struct epitem *epic;
909 while (*p) {
910 parent = *p;
911 epic = rb_entry(parent, struct epitem, rbn);
912 kcmp = EP_CMP_FFD(&epi->ffd, &epic->ffd);
913 if (kcmp > 0)
914 p = &parent->rb_right;
915 else
916 p = &parent->rb_left;
918 rb_link_node(&epi->rbn, parent, p);
919 rb_insert_color(&epi->rbn, &ep->rbr);
923 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
924 struct file *tfile, int fd)
926 int error, revents, pwake = 0;
927 unsigned long flags;
928 struct epitem *epi;
929 struct ep_pqueue epq;
931 error = -ENOMEM;
932 if (!(epi = EPI_MEM_ALLOC()))
933 goto eexit_1;
935 /* Item initialization follow here ... */
936 EP_RB_INITNODE(&epi->rbn);
937 INIT_LIST_HEAD(&epi->rdllink);
938 INIT_LIST_HEAD(&epi->fllink);
939 INIT_LIST_HEAD(&epi->txlink);
940 INIT_LIST_HEAD(&epi->pwqlist);
941 epi->ep = ep;
942 EP_SET_FFD(&epi->ffd, tfile, fd);
943 epi->event = *event;
944 atomic_set(&epi->usecnt, 1);
945 epi->nwait = 0;
947 /* Initialize the poll table using the queue callback */
948 epq.epi = epi;
949 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
952 * Attach the item to the poll hooks and get current event bits.
953 * We can safely use the file* here because its usage count has
954 * been increased by the caller of this function.
956 revents = tfile->f_op->poll(tfile, &epq.pt);
959 * We have to check if something went wrong during the poll wait queue
960 * install process. Namely an allocation for a wait queue failed due
961 * high memory pressure.
963 if (epi->nwait < 0)
964 goto eexit_2;
966 /* Add the current item to the list of active epoll hook for this file */
967 spin_lock(&tfile->f_ep_lock);
968 list_add_tail(&epi->fllink, &tfile->f_ep_links);
969 spin_unlock(&tfile->f_ep_lock);
971 /* We have to drop the new item inside our item list to keep track of it */
972 write_lock_irqsave(&ep->lock, flags);
974 /* Add the current item to the rb-tree */
975 ep_rbtree_insert(ep, epi);
977 /* If the file is already "ready" we drop it inside the ready list */
978 if ((revents & event->events) && !EP_IS_LINKED(&epi->rdllink)) {
979 list_add_tail(&epi->rdllink, &ep->rdllist);
981 /* Notify waiting tasks that events are available */
982 if (waitqueue_active(&ep->wq))
983 wake_up(&ep->wq);
984 if (waitqueue_active(&ep->poll_wait))
985 pwake++;
988 write_unlock_irqrestore(&ep->lock, flags);
990 /* We have to call this outside the lock */
991 if (pwake)
992 ep_poll_safewake(&psw, &ep->poll_wait);
994 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
995 current, ep, tfile, fd));
997 return 0;
999 eexit_2:
1000 ep_unregister_pollwait(ep, epi);
1003 * We need to do this because an event could have been arrived on some
1004 * allocated wait queue.
1006 write_lock_irqsave(&ep->lock, flags);
1007 if (EP_IS_LINKED(&epi->rdllink))
1008 EP_LIST_DEL(&epi->rdllink);
1009 write_unlock_irqrestore(&ep->lock, flags);
1011 EPI_MEM_FREE(epi);
1012 eexit_1:
1013 return error;
1018 * Modify the interest event mask by dropping an event if the new mask
1019 * has a match in the current file status.
1021 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1023 int pwake = 0;
1024 unsigned int revents;
1025 unsigned long flags;
1028 * Set the new event interest mask before calling f_op->poll(), otherwise
1029 * a potential race might occur. In fact if we do this operation inside
1030 * the lock, an event might happen between the f_op->poll() call and the
1031 * new event set registering.
1033 epi->event.events = event->events;
1036 * Get current event bits. We can safely use the file* here because
1037 * its usage count has been increased by the caller of this function.
1039 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1041 write_lock_irqsave(&ep->lock, flags);
1043 /* Copy the data member from inside the lock */
1044 epi->event.data = event->data;
1047 * If the item is not linked to the hash it means that it's on its
1048 * way toward the removal. Do nothing in this case.
1050 if (EP_RB_LINKED(&epi->rbn)) {
1052 * If the item is "hot" and it is not registered inside the ready
1053 * list, push it inside. If the item is not "hot" and it is currently
1054 * registered inside the ready list, unlink it.
1056 if (revents & event->events) {
1057 if (!EP_IS_LINKED(&epi->rdllink)) {
1058 list_add_tail(&epi->rdllink, &ep->rdllist);
1060 /* Notify waiting tasks that events are available */
1061 if (waitqueue_active(&ep->wq))
1062 wake_up(&ep->wq);
1063 if (waitqueue_active(&ep->poll_wait))
1064 pwake++;
1069 write_unlock_irqrestore(&ep->lock, flags);
1071 /* We have to call this outside the lock */
1072 if (pwake)
1073 ep_poll_safewake(&psw, &ep->poll_wait);
1075 return 0;
1080 * This function unregister poll callbacks from the associated file descriptor.
1081 * Since this must be called without holding "ep->lock" the atomic exchange trick
1082 * will protect us from multiple unregister.
1084 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1086 int nwait;
1087 struct list_head *lsthead = &epi->pwqlist;
1088 struct eppoll_entry *pwq;
1090 /* This is called without locks, so we need the atomic exchange */
1091 nwait = xchg(&epi->nwait, 0);
1093 if (nwait) {
1094 while (!list_empty(lsthead)) {
1095 pwq = list_entry(lsthead->next, struct eppoll_entry, llink);
1097 EP_LIST_DEL(&pwq->llink);
1098 remove_wait_queue(pwq->whead, &pwq->wait);
1099 PWQ_MEM_FREE(pwq);
1106 * Unlink the "struct epitem" from all places it might have been hooked up.
1107 * This function must be called with write IRQ lock on "ep->lock".
1109 static int ep_unlink(struct eventpoll *ep, struct epitem *epi)
1111 int error;
1114 * It can happen that this one is called for an item already unlinked.
1115 * The check protect us from doing a double unlink ( crash ).
1117 error = -ENOENT;
1118 if (!EP_RB_LINKED(&epi->rbn))
1119 goto eexit_1;
1122 * Clear the event mask for the unlinked item. This will avoid item
1123 * notifications to be sent after the unlink operation from inside
1124 * the kernel->userspace event transfer loop.
1126 epi->event.events = 0;
1129 * At this point is safe to do the job, unlink the item from our rb-tree.
1130 * This operation togheter with the above check closes the door to
1131 * double unlinks.
1133 EP_RB_ERASE(&epi->rbn, &ep->rbr);
1136 * If the item we are going to remove is inside the ready file descriptors
1137 * we want to remove it from this list to avoid stale events.
1139 if (EP_IS_LINKED(&epi->rdllink))
1140 EP_LIST_DEL(&epi->rdllink);
1142 error = 0;
1143 eexit_1:
1145 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n",
1146 current, ep, epi->file, error));
1148 return error;
1153 * Removes a "struct epitem" from the eventpoll hash and deallocates
1154 * all the associated resources.
1156 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
1158 int error;
1159 unsigned long flags;
1160 struct file *file = epi->ffd.file;
1163 * Removes poll wait queue hooks. We _have_ to do this without holding
1164 * the "ep->lock" otherwise a deadlock might occur. This because of the
1165 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
1166 * queue head lock when unregistering the wait queue. The wakeup callback
1167 * will run by holding the wait queue head lock and will call our callback
1168 * that will try to get "ep->lock".
1170 ep_unregister_pollwait(ep, epi);
1172 /* Remove the current item from the list of epoll hooks */
1173 spin_lock(&file->f_ep_lock);
1174 if (EP_IS_LINKED(&epi->fllink))
1175 EP_LIST_DEL(&epi->fllink);
1176 spin_unlock(&file->f_ep_lock);
1178 /* We need to acquire the write IRQ lock before calling ep_unlink() */
1179 write_lock_irqsave(&ep->lock, flags);
1181 /* Really unlink the item from the hash */
1182 error = ep_unlink(ep, epi);
1184 write_unlock_irqrestore(&ep->lock, flags);
1186 if (error)
1187 goto eexit_1;
1189 /* At this point it is safe to free the eventpoll item */
1190 ep_release_epitem(epi);
1192 error = 0;
1193 eexit_1:
1194 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n",
1195 current, ep, file, error));
1197 return error;
1202 * This is the callback that is passed to the wait queue wakeup
1203 * machanism. It is called by the stored file descriptors when they
1204 * have events to report.
1206 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1208 int pwake = 0;
1209 unsigned long flags;
1210 struct epitem *epi = EP_ITEM_FROM_WAIT(wait);
1211 struct eventpoll *ep = epi->ep;
1213 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
1214 current, epi->file, epi, ep));
1216 write_lock_irqsave(&ep->lock, flags);
1219 * If the event mask does not contain any poll(2) event, we consider the
1220 * descriptor to be disabled. This condition is likely the effect of the
1221 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1222 * until the next EPOLL_CTL_MOD will be issued.
1224 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1225 goto is_disabled;
1227 /* If this file is already in the ready list we exit soon */
1228 if (EP_IS_LINKED(&epi->rdllink))
1229 goto is_linked;
1231 list_add_tail(&epi->rdllink, &ep->rdllist);
1233 is_linked:
1235 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1236 * wait list.
1238 if (waitqueue_active(&ep->wq))
1239 wake_up(&ep->wq);
1240 if (waitqueue_active(&ep->poll_wait))
1241 pwake++;
1243 is_disabled:
1244 write_unlock_irqrestore(&ep->lock, flags);
1246 /* We have to call this outside the lock */
1247 if (pwake)
1248 ep_poll_safewake(&psw, &ep->poll_wait);
1250 return 1;
1254 static int ep_eventpoll_close(struct inode *inode, struct file *file)
1256 struct eventpoll *ep = file->private_data;
1258 if (ep) {
1259 ep_free(ep);
1260 kfree(ep);
1263 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep));
1264 return 0;
1268 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
1270 unsigned int pollflags = 0;
1271 unsigned long flags;
1272 struct eventpoll *ep = file->private_data;
1274 /* Insert inside our poll wait queue */
1275 poll_wait(file, &ep->poll_wait, wait);
1277 /* Check our condition */
1278 read_lock_irqsave(&ep->lock, flags);
1279 if (!list_empty(&ep->rdllist))
1280 pollflags = POLLIN | POLLRDNORM;
1281 read_unlock_irqrestore(&ep->lock, flags);
1283 return pollflags;
1288 * Since we have to release the lock during the __copy_to_user() operation and
1289 * during the f_op->poll() call, we try to collect the maximum number of items
1290 * by reducing the irqlock/irqunlock switching rate.
1292 static int ep_collect_ready_items(struct eventpoll *ep, struct list_head *txlist, int maxevents)
1294 int nepi;
1295 unsigned long flags;
1296 struct list_head *lsthead = &ep->rdllist, *lnk;
1297 struct epitem *epi;
1299 write_lock_irqsave(&ep->lock, flags);
1301 for (nepi = 0, lnk = lsthead->next; lnk != lsthead && nepi < maxevents;) {
1302 epi = list_entry(lnk, struct epitem, rdllink);
1304 lnk = lnk->next;
1306 /* If this file is already in the ready list we exit soon */
1307 if (!EP_IS_LINKED(&epi->txlink)) {
1309 * This is initialized in this way so that the default
1310 * behaviour of the reinjecting code will be to push back
1311 * the item inside the ready list.
1313 epi->revents = epi->event.events;
1315 /* Link the ready item into the transfer list */
1316 list_add(&epi->txlink, txlist);
1317 nepi++;
1320 * Unlink the item from the ready list.
1322 EP_LIST_DEL(&epi->rdllink);
1326 write_unlock_irqrestore(&ep->lock, flags);
1328 return nepi;
1333 * This function is called without holding the "ep->lock" since the call to
1334 * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ
1335 * because of the way poll() is traditionally implemented in Linux.
1337 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
1338 struct epoll_event __user *events)
1340 int eventcnt = 0;
1341 unsigned int revents;
1342 struct list_head *lnk;
1343 struct epitem *epi;
1346 * We can loop without lock because this is a task private list.
1347 * The test done during the collection loop will guarantee us that
1348 * another task will not try to collect this file. Also, items
1349 * cannot vanish during the loop because we are holding "sem".
1351 list_for_each(lnk, txlist) {
1352 epi = list_entry(lnk, struct epitem, txlink);
1355 * Get the ready file event set. We can safely use the file
1356 * because we are holding the "sem" in read and this will
1357 * guarantee that both the file and the item will not vanish.
1359 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1362 * Set the return event set for the current file descriptor.
1363 * Note that only the task task was successfully able to link
1364 * the item to its "txlist" will write this field.
1366 epi->revents = revents & epi->event.events;
1368 if (epi->revents) {
1369 if (__put_user(epi->revents,
1370 &events[eventcnt].events) ||
1371 __put_user(epi->event.data,
1372 &events[eventcnt].data))
1373 return -EFAULT;
1374 if (epi->event.events & EPOLLONESHOT)
1375 epi->event.events &= EP_PRIVATE_BITS;
1376 eventcnt++;
1379 return eventcnt;
1384 * Walk through the transfer list we collected with ep_collect_ready_items()
1385 * and, if 1) the item is still "alive" 2) its event set is not empty 3) it's
1386 * not already linked, links it to the ready list. Same as above, we are holding
1387 * "sem" so items cannot vanish underneath our nose.
1389 static void ep_reinject_items(struct eventpoll *ep, struct list_head *txlist)
1391 int ricnt = 0, pwake = 0;
1392 unsigned long flags;
1393 struct epitem *epi;
1395 write_lock_irqsave(&ep->lock, flags);
1397 while (!list_empty(txlist)) {
1398 epi = list_entry(txlist->next, struct epitem, txlink);
1400 /* Unlink the current item from the transfer list */
1401 EP_LIST_DEL(&epi->txlink);
1404 * If the item is no more linked to the interest set, we don't
1405 * have to push it inside the ready list because the following
1406 * ep_release_epitem() is going to drop it. Also, if the current
1407 * item is set to have an Edge Triggered behaviour, we don't have
1408 * to push it back either.
1410 if (EP_RB_LINKED(&epi->rbn) && !(epi->event.events & EPOLLET) &&
1411 (epi->revents & epi->event.events) && !EP_IS_LINKED(&epi->rdllink)) {
1412 list_add_tail(&epi->rdllink, &ep->rdllist);
1413 ricnt++;
1417 if (ricnt) {
1419 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1420 * wait list.
1422 if (waitqueue_active(&ep->wq))
1423 wake_up(&ep->wq);
1424 if (waitqueue_active(&ep->poll_wait))
1425 pwake++;
1428 write_unlock_irqrestore(&ep->lock, flags);
1430 /* We have to call this outside the lock */
1431 if (pwake)
1432 ep_poll_safewake(&psw, &ep->poll_wait);
1437 * Perform the transfer of events to user space.
1439 static int ep_events_transfer(struct eventpoll *ep,
1440 struct epoll_event __user *events, int maxevents)
1442 int eventcnt = 0;
1443 struct list_head txlist;
1445 INIT_LIST_HEAD(&txlist);
1448 * We need to lock this because we could be hit by
1449 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
1451 down_read(&ep->sem);
1453 /* Collect/extract ready items */
1454 if (ep_collect_ready_items(ep, &txlist, maxevents) > 0) {
1455 /* Build result set in userspace */
1456 eventcnt = ep_send_events(ep, &txlist, events);
1458 /* Reinject ready items into the ready list */
1459 ep_reinject_items(ep, &txlist);
1462 up_read(&ep->sem);
1464 return eventcnt;
1468 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1469 int maxevents, long timeout)
1471 int res, eavail;
1472 unsigned long flags;
1473 long jtimeout;
1474 wait_queue_t wait;
1477 * Calculate the timeout by checking for the "infinite" value ( -1 )
1478 * and the overflow condition. The passed timeout is in milliseconds,
1479 * that why (t * HZ) / 1000.
1481 jtimeout = timeout == -1 || timeout > (MAX_SCHEDULE_TIMEOUT - 1000) / HZ ?
1482 MAX_SCHEDULE_TIMEOUT: (timeout * HZ + 999) / 1000;
1484 retry:
1485 write_lock_irqsave(&ep->lock, flags);
1487 res = 0;
1488 if (list_empty(&ep->rdllist)) {
1490 * We don't have any available event to return to the caller.
1491 * We need to sleep here, and we will be wake up by
1492 * ep_poll_callback() when events will become available.
1494 init_waitqueue_entry(&wait, current);
1495 add_wait_queue(&ep->wq, &wait);
1497 for (;;) {
1499 * We don't want to sleep if the ep_poll_callback() sends us
1500 * a wakeup in between. That's why we set the task state
1501 * to TASK_INTERRUPTIBLE before doing the checks.
1503 set_current_state(TASK_INTERRUPTIBLE);
1504 if (!list_empty(&ep->rdllist) || !jtimeout)
1505 break;
1506 if (signal_pending(current)) {
1507 res = -EINTR;
1508 break;
1511 write_unlock_irqrestore(&ep->lock, flags);
1512 jtimeout = schedule_timeout(jtimeout);
1513 write_lock_irqsave(&ep->lock, flags);
1515 remove_wait_queue(&ep->wq, &wait);
1517 set_current_state(TASK_RUNNING);
1520 /* Is it worth to try to dig for events ? */
1521 eavail = !list_empty(&ep->rdllist);
1523 write_unlock_irqrestore(&ep->lock, flags);
1526 * Try to transfer events to user space. In case we get 0 events and
1527 * there's still timeout left over, we go trying again in search of
1528 * more luck.
1530 if (!res && eavail &&
1531 !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
1532 goto retry;
1534 return res;
1538 static int eventpollfs_delete_dentry(struct dentry *dentry)
1541 return 1;
1545 static struct inode *ep_eventpoll_inode(void)
1547 int error = -ENOMEM;
1548 struct inode *inode = new_inode(eventpoll_mnt->mnt_sb);
1550 if (!inode)
1551 goto eexit_1;
1553 inode->i_fop = &eventpoll_fops;
1556 * Mark the inode dirty from the very beginning,
1557 * that way it will never be moved to the dirty
1558 * list because mark_inode_dirty() will think
1559 * that it already _is_ on the dirty list.
1561 inode->i_state = I_DIRTY;
1562 inode->i_mode = S_IRUSR | S_IWUSR;
1563 inode->i_uid = current->fsuid;
1564 inode->i_gid = current->fsgid;
1565 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1566 inode->i_blksize = PAGE_SIZE;
1567 return inode;
1569 eexit_1:
1570 return ERR_PTR(error);
1574 static struct super_block *
1575 eventpollfs_get_sb(struct file_system_type *fs_type, int flags,
1576 const char *dev_name, void *data)
1578 return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC);
1582 static int __init eventpoll_init(void)
1584 int error;
1586 init_MUTEX(&epsem);
1588 /* Initialize the structure used to perform safe poll wait head wake ups */
1589 ep_poll_safewake_init(&psw);
1591 /* Allocates slab cache used to allocate "struct epitem" items */
1592 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1593 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
1594 NULL, NULL);
1596 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1597 pwq_cache = kmem_cache_create("eventpoll_pwq",
1598 sizeof(struct eppoll_entry), 0,
1599 EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);
1602 * Register the virtual file system that will be the source of inodes
1603 * for the eventpoll files
1605 error = register_filesystem(&eventpoll_fs_type);
1606 if (error)
1607 goto epanic;
1609 /* Mount the above commented virtual file system */
1610 eventpoll_mnt = kern_mount(&eventpoll_fs_type);
1611 error = PTR_ERR(eventpoll_mnt);
1612 if (IS_ERR(eventpoll_mnt))
1613 goto epanic;
1615 DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n",
1616 current));
1617 return 0;
1619 epanic:
1620 panic("eventpoll_init() failed\n");
1624 static void __exit eventpoll_exit(void)
1626 /* Undo all operations done inside eventpoll_init() */
1627 unregister_filesystem(&eventpoll_fs_type);
1628 mntput(eventpoll_mnt);
1629 kmem_cache_destroy(pwq_cache);
1630 kmem_cache_destroy(epi_cache);
1633 module_init(eventpoll_init);
1634 module_exit(eventpoll_exit);
1636 MODULE_LICENSE("GPL");