MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / fs / xfs / xfs_iget.c
blob07641fc90d61350d834ce2b081382ddbaec32c8e
1 /*
2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
26 * http://www.sgi.com
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
33 #include "xfs.h"
35 #include "xfs_macros.h"
36 #include "xfs_types.h"
37 #include "xfs_inum.h"
38 #include "xfs_log.h"
39 #include "xfs_trans.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_ialloc.h"
51 #include "xfs_attr_sf.h"
52 #include "xfs_dir_sf.h"
53 #include "xfs_dir2_sf.h"
54 #include "xfs_dinode.h"
55 #include "xfs_inode.h"
56 #include "xfs_quota.h"
57 #include "xfs_utils.h"
60 * Initialize the inode hash table for the newly mounted file system.
62 * mp -- this is the mount point structure for the file system being
63 * initialized
65 void
66 xfs_ihash_init(xfs_mount_t *mp)
68 int i;
70 mp->m_ihsize = XFS_BUCKETS(mp);
71 mp->m_ihash = (xfs_ihash_t *)kmem_zalloc(mp->m_ihsize
72 * sizeof(xfs_ihash_t), KM_SLEEP);
73 ASSERT(mp->m_ihash != NULL);
74 for (i = 0; i < mp->m_ihsize; i++) {
75 rwlock_init(&(mp->m_ihash[i].ih_lock));
80 * Free up structures allocated by xfs_ihash_init, at unmount time.
82 void
83 xfs_ihash_free(xfs_mount_t *mp)
85 kmem_free(mp->m_ihash, mp->m_ihsize*sizeof(xfs_ihash_t));
86 mp->m_ihash = NULL;
90 * Initialize the inode cluster hash table for the newly mounted file system.
92 * mp -- this is the mount point structure for the file system being
93 * initialized
95 void
96 xfs_chash_init(xfs_mount_t *mp)
98 int i;
101 * m_chash size is based on m_ihash
102 * with a minimum of 37 entries
104 mp->m_chsize = (XFS_BUCKETS(mp)) /
105 (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog);
106 if (mp->m_chsize < 37) {
107 mp->m_chsize = 37;
109 mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize
110 * sizeof(xfs_chash_t),
111 KM_SLEEP);
112 ASSERT(mp->m_chash != NULL);
114 for (i = 0; i < mp->m_chsize; i++) {
115 spinlock_init(&mp->m_chash[i].ch_lock,"xfshash");
120 * Free up structures allocated by xfs_chash_init, at unmount time.
122 void
123 xfs_chash_free(xfs_mount_t *mp)
125 int i;
127 for (i = 0; i < mp->m_chsize; i++) {
128 spinlock_destroy(&mp->m_chash[i].ch_lock);
131 kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t));
132 mp->m_chash = NULL;
136 * Look up an inode by number in the given file system.
137 * The inode is looked up in the hash table for the file system
138 * represented by the mount point parameter mp. Each bucket of
139 * the hash table is guarded by an individual semaphore.
141 * If the inode is found in the hash table, its corresponding vnode
142 * is obtained with a call to vn_get(). This call takes care of
143 * coordination with the reclamation of the inode and vnode. Note
144 * that the vmap structure is filled in while holding the hash lock.
145 * This gives us the state of the inode/vnode when we found it and
146 * is used for coordination in vn_get().
148 * If it is not in core, read it in from the file system's device and
149 * add the inode into the hash table.
151 * The inode is locked according to the value of the lock_flags parameter.
152 * This flag parameter indicates how and if the inode's IO lock and inode lock
153 * should be taken.
155 * mp -- the mount point structure for the current file system. It points
156 * to the inode hash table.
157 * tp -- a pointer to the current transaction if there is one. This is
158 * simply passed through to the xfs_iread() call.
159 * ino -- the number of the inode desired. This is the unique identifier
160 * within the file system for the inode being requested.
161 * lock_flags -- flags indicating how to lock the inode. See the comment
162 * for xfs_ilock() for a list of valid values.
163 * bno -- the block number starting the buffer containing the inode,
164 * if known (as by bulkstat), else 0.
166 STATIC int
167 xfs_iget_core(
168 vnode_t *vp,
169 xfs_mount_t *mp,
170 xfs_trans_t *tp,
171 xfs_ino_t ino,
172 uint lock_flags,
173 xfs_inode_t **ipp,
174 xfs_daddr_t bno)
176 xfs_ihash_t *ih;
177 xfs_inode_t *ip;
178 xfs_inode_t *iq;
179 vnode_t *inode_vp;
180 ulong version;
181 int error;
182 /* REFERENCED */
183 int newnode;
184 xfs_chash_t *ch;
185 xfs_chashlist_t *chl, *chlnew;
186 SPLDECL(s);
189 ih = XFS_IHASH(mp, ino);
191 again:
192 read_lock(&ih->ih_lock);
194 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
195 if (ip->i_ino == ino) {
197 inode_vp = XFS_ITOV_NULL(ip);
199 if (inode_vp == NULL) {
200 /* If IRECLAIM is set this inode is
201 * on its way out of the system,
202 * we need to pause and try again.
204 if (ip->i_flags & XFS_IRECLAIM) {
205 read_unlock(&ih->ih_lock);
206 delay(1);
207 XFS_STATS_INC(xs_ig_frecycle);
209 goto again;
212 vn_trace_exit(vp, "xfs_iget.alloc",
213 (inst_t *)__return_address);
215 XFS_STATS_INC(xs_ig_found);
217 ip->i_flags &= ~XFS_IRECLAIMABLE;
218 read_unlock(&ih->ih_lock);
220 XFS_MOUNT_ILOCK(mp);
221 list_del_init(&ip->i_reclaim);
222 XFS_MOUNT_IUNLOCK(mp);
224 goto finish_inode;
226 } else if (vp != inode_vp) {
227 struct inode *inode = LINVFS_GET_IP(inode_vp);
229 /* The inode is being torn down, pause and
230 * try again.
232 if (inode->i_state & (I_FREEING | I_CLEAR)) {
233 read_unlock(&ih->ih_lock);
234 delay(1);
235 XFS_STATS_INC(xs_ig_frecycle);
237 goto again;
239 /* Chances are the other vnode (the one in the inode) is being torn
240 * down right now, and we landed on top of it. Question is, what do
241 * we do? Unhook the old inode and hook up the new one?
243 cmn_err(CE_PANIC,
244 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
245 inode_vp, vp);
248 read_unlock(&ih->ih_lock);
250 XFS_STATS_INC(xs_ig_found);
252 finish_inode:
253 if (lock_flags != 0) {
254 xfs_ilock(ip, lock_flags);
257 newnode = (ip->i_d.di_mode == 0);
258 if (newnode) {
259 xfs_iocore_inode_reinit(ip);
261 ip->i_flags &= ~XFS_ISTALE;
263 vn_trace_exit(vp, "xfs_iget.found",
264 (inst_t *)__return_address);
265 goto return_ip;
270 * Inode cache miss: save the hash chain version stamp and unlock
271 * the chain, so we don't deadlock in vn_alloc.
273 XFS_STATS_INC(xs_ig_missed);
275 version = ih->ih_version;
277 read_unlock(&ih->ih_lock);
280 * Read the disk inode attributes into a new inode structure and get
281 * a new vnode for it. This should also initialize i_ino and i_mount.
283 error = xfs_iread(mp, tp, ino, &ip, bno);
284 if (error) {
285 return error;
288 vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
290 xfs_inode_lock_init(ip, vp);
291 xfs_iocore_inode_init(ip);
293 if (lock_flags != 0) {
294 xfs_ilock(ip, lock_flags);
298 * Put ip on its hash chain, unless someone else hashed a duplicate
299 * after we released the hash lock.
301 write_lock(&ih->ih_lock);
303 if (ih->ih_version != version) {
304 for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) {
305 if (iq->i_ino == ino) {
306 write_unlock(&ih->ih_lock);
307 xfs_idestroy(ip);
309 XFS_STATS_INC(xs_ig_dup);
310 goto again;
316 * These values _must_ be set before releasing ihlock!
318 ip->i_hash = ih;
319 if ((iq = ih->ih_next)) {
320 iq->i_prevp = &ip->i_next;
322 ip->i_next = iq;
323 ip->i_prevp = &ih->ih_next;
324 ih->ih_next = ip;
325 ip->i_udquot = ip->i_gdquot = NULL;
326 ih->ih_version++;
328 write_unlock(&ih->ih_lock);
331 * put ip on its cluster's hash chain
333 ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL &&
334 ip->i_cnext == NULL);
336 chlnew = NULL;
337 ch = XFS_CHASH(mp, ip->i_blkno);
338 chlredo:
339 s = mutex_spinlock(&ch->ch_lock);
340 for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
341 if (chl->chl_blkno == ip->i_blkno) {
343 /* insert this inode into the doubly-linked list
344 * where chl points */
345 if ((iq = chl->chl_ip)) {
346 ip->i_cprev = iq->i_cprev;
347 iq->i_cprev->i_cnext = ip;
348 iq->i_cprev = ip;
349 ip->i_cnext = iq;
350 } else {
351 ip->i_cnext = ip;
352 ip->i_cprev = ip;
354 chl->chl_ip = ip;
355 ip->i_chash = chl;
356 break;
360 /* no hash list found for this block; add a new hash list */
361 if (chl == NULL) {
362 if (chlnew == NULL) {
363 mutex_spinunlock(&ch->ch_lock, s);
364 ASSERT(xfs_chashlist_zone != NULL);
365 chlnew = (xfs_chashlist_t *)
366 kmem_zone_alloc(xfs_chashlist_zone,
367 KM_SLEEP);
368 ASSERT(chlnew != NULL);
369 goto chlredo;
370 } else {
371 ip->i_cnext = ip;
372 ip->i_cprev = ip;
373 ip->i_chash = chlnew;
374 chlnew->chl_ip = ip;
375 chlnew->chl_blkno = ip->i_blkno;
376 chlnew->chl_next = ch->ch_list;
377 ch->ch_list = chlnew;
378 chlnew = NULL;
380 } else {
381 if (chlnew != NULL) {
382 kmem_zone_free(xfs_chashlist_zone, chlnew);
386 mutex_spinunlock(&ch->ch_lock, s);
390 * Link ip to its mount and thread it on the mount's inode list.
392 XFS_MOUNT_ILOCK(mp);
393 if ((iq = mp->m_inodes)) {
394 ASSERT(iq->i_mprev->i_mnext == iq);
395 ip->i_mprev = iq->i_mprev;
396 iq->i_mprev->i_mnext = ip;
397 iq->i_mprev = ip;
398 ip->i_mnext = iq;
399 } else {
400 ip->i_mnext = ip;
401 ip->i_mprev = ip;
403 mp->m_inodes = ip;
405 XFS_MOUNT_IUNLOCK(mp);
407 newnode = 1;
409 return_ip:
410 ASSERT(ip->i_df.if_ext_max ==
411 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
413 ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
414 ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
416 *ipp = ip;
419 * If we have a real type for an on-disk inode, we can set ops(&unlock)
420 * now. If it's a new inode being created, xfs_ialloc will handle it.
422 VFS_INIT_VNODE(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1);
424 return 0;
429 * The 'normal' internal xfs_iget, if needed it will
430 * 'allocate', or 'get', the vnode.
433 xfs_iget(
434 xfs_mount_t *mp,
435 xfs_trans_t *tp,
436 xfs_ino_t ino,
437 uint lock_flags,
438 xfs_inode_t **ipp,
439 xfs_daddr_t bno)
441 struct inode *inode;
442 vnode_t *vp = NULL;
443 int error;
445 retry:
446 XFS_STATS_INC(xs_ig_attempts);
448 if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) {
449 bhv_desc_t *bdp;
450 xfs_inode_t *ip;
451 int newnode;
453 vp = LINVFS_GET_VP(inode);
454 if (inode->i_state & I_NEW) {
455 inode_allocate:
456 vn_initialize(inode);
457 error = xfs_iget_core(vp, mp, tp, ino,
458 lock_flags, ipp, bno);
459 if (error) {
460 vn_mark_bad(vp);
461 if (inode->i_state & I_NEW)
462 unlock_new_inode(inode);
463 iput(inode);
465 } else {
466 /* These are true if the inode is in inactive or
467 * reclaim. The linux inode is about to go away,
468 * wait for that path to finish, and try again.
470 if (vp->v_flag & (VINACT | VRECLM)) {
471 vn_wait(vp);
472 iput(inode);
473 goto retry;
476 bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
477 if (bdp == NULL) {
478 XFS_STATS_INC(xs_ig_dup);
479 goto inode_allocate;
481 ip = XFS_BHVTOI(bdp);
482 if (lock_flags != 0)
483 xfs_ilock(ip, lock_flags);
484 newnode = (ip->i_d.di_mode == 0);
485 if (newnode)
486 xfs_iocore_inode_reinit(ip);
487 XFS_STATS_INC(xs_ig_found);
488 *ipp = ip;
489 error = 0;
491 } else
492 error = ENOMEM; /* If we got no inode we are out of memory */
494 return error;
498 * Do the setup for the various locks within the incore inode.
500 void
501 xfs_inode_lock_init(
502 xfs_inode_t *ip,
503 vnode_t *vp)
505 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
506 "xfsino", (long)vp->v_number);
507 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number);
508 init_waitqueue_head(&ip->i_ipin_wait);
509 atomic_set(&ip->i_pincount, 0);
510 init_sema(&ip->i_flock, 1, "xfsfino", vp->v_number);
514 * Look for the inode corresponding to the given ino in the hash table.
515 * If it is there and its i_transp pointer matches tp, return it.
516 * Otherwise, return NULL.
518 xfs_inode_t *
519 xfs_inode_incore(xfs_mount_t *mp,
520 xfs_ino_t ino,
521 xfs_trans_t *tp)
523 xfs_ihash_t *ih;
524 xfs_inode_t *ip;
526 ih = XFS_IHASH(mp, ino);
527 read_lock(&ih->ih_lock);
528 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
529 if (ip->i_ino == ino) {
531 * If we find it and tp matches, return it.
532 * Otherwise break from the loop and return
533 * NULL.
535 if (ip->i_transp == tp) {
536 read_unlock(&ih->ih_lock);
537 return (ip);
539 break;
542 read_unlock(&ih->ih_lock);
543 return (NULL);
547 * Decrement reference count of an inode structure and unlock it.
549 * ip -- the inode being released
550 * lock_flags -- this parameter indicates the inode's locks to be
551 * to be released. See the comment on xfs_iunlock() for a list
552 * of valid values.
554 void
555 xfs_iput(xfs_inode_t *ip,
556 uint lock_flags)
558 vnode_t *vp = XFS_ITOV(ip);
560 vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address);
562 xfs_iunlock(ip, lock_flags);
564 VN_RELE(vp);
568 * Special iput for brand-new inodes that are still locked
570 void
571 xfs_iput_new(xfs_inode_t *ip,
572 uint lock_flags)
574 vnode_t *vp = XFS_ITOV(ip);
575 struct inode *inode = LINVFS_GET_IP(vp);
577 vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address);
579 if (inode->i_state & I_NEW)
580 unlock_new_inode(inode);
581 if (lock_flags)
582 xfs_iunlock(ip, lock_flags);
583 VN_RELE(vp);
588 * This routine embodies the part of the reclaim code that pulls
589 * the inode from the inode hash table and the mount structure's
590 * inode list.
591 * This should only be called from xfs_reclaim().
593 void
594 xfs_ireclaim(xfs_inode_t *ip)
596 vnode_t *vp;
599 * Remove from old hash list and mount list.
601 XFS_STATS_INC(xs_ig_reclaims);
603 xfs_iextract(ip);
606 * Here we do a spurious inode lock in order to coordinate with
607 * xfs_sync(). This is because xfs_sync() references the inodes
608 * in the mount list without taking references on the corresponding
609 * vnodes. We make that OK here by ensuring that we wait until
610 * the inode is unlocked in xfs_sync() before we go ahead and
611 * free it. We get both the regular lock and the io lock because
612 * the xfs_sync() code may need to drop the regular one but will
613 * still hold the io lock.
615 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
618 * Release dquots (and their references) if any. An inode may escape
619 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
621 XFS_QM_DQDETACH(ip->i_mount, ip);
624 * Pull our behavior descriptor from the vnode chain.
626 vp = XFS_ITOV_NULL(ip);
627 if (vp) {
628 vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip));
632 * Free all memory associated with the inode.
634 xfs_idestroy(ip);
638 * This routine removes an about-to-be-destroyed inode from
639 * all of the lists in which it is located with the exception
640 * of the behavior chain.
642 void
643 xfs_iextract(
644 xfs_inode_t *ip)
646 xfs_ihash_t *ih;
647 xfs_inode_t *iq;
648 xfs_mount_t *mp;
649 xfs_chash_t *ch;
650 xfs_chashlist_t *chl, *chm;
651 SPLDECL(s);
653 ih = ip->i_hash;
654 write_lock(&ih->ih_lock);
655 if ((iq = ip->i_next)) {
656 iq->i_prevp = ip->i_prevp;
658 *ip->i_prevp = iq;
659 write_unlock(&ih->ih_lock);
662 * Remove from cluster hash list
663 * 1) delete the chashlist if this is the last inode on the chashlist
664 * 2) unchain from list of inodes
665 * 3) point chashlist->chl_ip to 'chl_next' if to this inode.
667 mp = ip->i_mount;
668 ch = XFS_CHASH(mp, ip->i_blkno);
669 s = mutex_spinlock(&ch->ch_lock);
671 if (ip->i_cnext == ip) {
672 /* Last inode on chashlist */
673 ASSERT(ip->i_cnext == ip && ip->i_cprev == ip);
674 ASSERT(ip->i_chash != NULL);
675 chm=NULL;
676 for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
677 if (chl->chl_blkno == ip->i_blkno) {
678 if (chm == NULL) {
679 /* first item on the list */
680 ch->ch_list = chl->chl_next;
681 } else {
682 chm->chl_next = chl->chl_next;
684 kmem_zone_free(xfs_chashlist_zone, chl);
685 break;
686 } else {
687 ASSERT(chl->chl_ip != ip);
688 chm = chl;
691 ASSERT_ALWAYS(chl != NULL);
692 } else {
693 /* delete one inode from a non-empty list */
694 iq = ip->i_cnext;
695 iq->i_cprev = ip->i_cprev;
696 ip->i_cprev->i_cnext = iq;
697 if (ip->i_chash->chl_ip == ip) {
698 ip->i_chash->chl_ip = iq;
700 ip->i_chash = __return_address;
701 ip->i_cprev = __return_address;
702 ip->i_cnext = __return_address;
704 mutex_spinunlock(&ch->ch_lock, s);
707 * Remove from mount's inode list.
709 XFS_MOUNT_ILOCK(mp);
710 ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
711 iq = ip->i_mnext;
712 iq->i_mprev = ip->i_mprev;
713 ip->i_mprev->i_mnext = iq;
716 * Fix up the head pointer if it points to the inode being deleted.
718 if (mp->m_inodes == ip) {
719 if (ip == iq) {
720 mp->m_inodes = NULL;
721 } else {
722 mp->m_inodes = iq;
726 /* Deal with the deleted inodes list */
727 list_del_init(&ip->i_reclaim);
729 mp->m_ireclaims++;
730 XFS_MOUNT_IUNLOCK(mp);
734 * This is a wrapper routine around the xfs_ilock() routine
735 * used to centralize some grungy code. It is used in places
736 * that wish to lock the inode solely for reading the extents.
737 * The reason these places can't just call xfs_ilock(SHARED)
738 * is that the inode lock also guards to bringing in of the
739 * extents from disk for a file in b-tree format. If the inode
740 * is in b-tree format, then we need to lock the inode exclusively
741 * until the extents are read in. Locking it exclusively all
742 * the time would limit our parallelism unnecessarily, though.
743 * What we do instead is check to see if the extents have been
744 * read in yet, and only lock the inode exclusively if they
745 * have not.
747 * The function returns a value which should be given to the
748 * corresponding xfs_iunlock_map_shared(). This value is
749 * the mode in which the lock was actually taken.
751 uint
752 xfs_ilock_map_shared(
753 xfs_inode_t *ip)
755 uint lock_mode;
757 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
758 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
759 lock_mode = XFS_ILOCK_EXCL;
760 } else {
761 lock_mode = XFS_ILOCK_SHARED;
764 xfs_ilock(ip, lock_mode);
766 return lock_mode;
770 * This is simply the unlock routine to go with xfs_ilock_map_shared().
771 * All it does is call xfs_iunlock() with the given lock_mode.
773 void
774 xfs_iunlock_map_shared(
775 xfs_inode_t *ip,
776 unsigned int lock_mode)
778 xfs_iunlock(ip, lock_mode);
782 * The xfs inode contains 2 locks: a multi-reader lock called the
783 * i_iolock and a multi-reader lock called the i_lock. This routine
784 * allows either or both of the locks to be obtained.
786 * The 2 locks should always be ordered so that the IO lock is
787 * obtained first in order to prevent deadlock.
789 * ip -- the inode being locked
790 * lock_flags -- this parameter indicates the inode's locks
791 * to be locked. It can be:
792 * XFS_IOLOCK_SHARED,
793 * XFS_IOLOCK_EXCL,
794 * XFS_ILOCK_SHARED,
795 * XFS_ILOCK_EXCL,
796 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
797 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
798 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
799 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
801 void
802 xfs_ilock(xfs_inode_t *ip,
803 uint lock_flags)
806 * You can't set both SHARED and EXCL for the same lock,
807 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
808 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
810 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
811 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
812 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
813 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
814 ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
816 if (lock_flags & XFS_IOLOCK_EXCL) {
817 mrupdate(&ip->i_iolock);
818 } else if (lock_flags & XFS_IOLOCK_SHARED) {
819 mraccess(&ip->i_iolock);
821 if (lock_flags & XFS_ILOCK_EXCL) {
822 mrupdate(&ip->i_lock);
823 } else if (lock_flags & XFS_ILOCK_SHARED) {
824 mraccess(&ip->i_lock);
826 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
830 * This is just like xfs_ilock(), except that the caller
831 * is guaranteed not to sleep. It returns 1 if it gets
832 * the requested locks and 0 otherwise. If the IO lock is
833 * obtained but the inode lock cannot be, then the IO lock
834 * is dropped before returning.
836 * ip -- the inode being locked
837 * lock_flags -- this parameter indicates the inode's locks to be
838 * to be locked. See the comment for xfs_ilock() for a list
839 * of valid values.
843 xfs_ilock_nowait(xfs_inode_t *ip,
844 uint lock_flags)
846 int iolocked;
847 int ilocked;
850 * You can't set both SHARED and EXCL for the same lock,
851 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
852 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
854 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
855 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
856 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
857 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
858 ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
860 iolocked = 0;
861 if (lock_flags & XFS_IOLOCK_EXCL) {
862 iolocked = mrtryupdate(&ip->i_iolock);
863 if (!iolocked) {
864 return 0;
866 } else if (lock_flags & XFS_IOLOCK_SHARED) {
867 iolocked = mrtryaccess(&ip->i_iolock);
868 if (!iolocked) {
869 return 0;
872 if (lock_flags & XFS_ILOCK_EXCL) {
873 ilocked = mrtryupdate(&ip->i_lock);
874 if (!ilocked) {
875 if (iolocked) {
876 mrunlock(&ip->i_iolock);
878 return 0;
880 } else if (lock_flags & XFS_ILOCK_SHARED) {
881 ilocked = mrtryaccess(&ip->i_lock);
882 if (!ilocked) {
883 if (iolocked) {
884 mrunlock(&ip->i_iolock);
886 return 0;
889 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
890 return 1;
894 * xfs_iunlock() is used to drop the inode locks acquired with
895 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
896 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
897 * that we know which locks to drop.
899 * ip -- the inode being unlocked
900 * lock_flags -- this parameter indicates the inode's locks to be
901 * to be unlocked. See the comment for xfs_ilock() for a list
902 * of valid values for this parameter.
905 void
906 xfs_iunlock(xfs_inode_t *ip,
907 uint lock_flags)
910 * You can't set both SHARED and EXCL for the same lock,
911 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
912 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
914 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
915 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
916 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
917 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
918 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0);
919 ASSERT(lock_flags != 0);
921 if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
922 ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
923 (ismrlocked(&ip->i_iolock, MR_ACCESS)));
924 ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
925 (ismrlocked(&ip->i_iolock, MR_UPDATE)));
926 mrunlock(&ip->i_iolock);
929 if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
930 ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
931 (ismrlocked(&ip->i_lock, MR_ACCESS)));
932 ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
933 (ismrlocked(&ip->i_lock, MR_UPDATE)));
934 mrunlock(&ip->i_lock);
937 * Let the AIL know that this item has been unlocked in case
938 * it is in the AIL and anyone is waiting on it. Don't do
939 * this if the caller has asked us not to.
941 if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
942 ip->i_itemp != NULL) {
943 xfs_trans_unlocked_item(ip->i_mount,
944 (xfs_log_item_t*)(ip->i_itemp));
947 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
951 * give up write locks. the i/o lock cannot be held nested
952 * if it is being demoted.
954 void
955 xfs_ilock_demote(xfs_inode_t *ip,
956 uint lock_flags)
958 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
959 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
961 if (lock_flags & XFS_ILOCK_EXCL) {
962 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
963 mrdemote(&ip->i_lock);
965 if (lock_flags & XFS_IOLOCK_EXCL) {
966 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
967 mrdemote(&ip->i_iolock);
972 * The following three routines simply manage the i_flock
973 * semaphore embedded in the inode. This semaphore synchronizes
974 * processes attempting to flush the in-core inode back to disk.
976 void
977 xfs_iflock(xfs_inode_t *ip)
979 psema(&(ip->i_flock), PINOD|PLTWAIT);
983 xfs_iflock_nowait(xfs_inode_t *ip)
985 return (cpsema(&(ip->i_flock)));
988 void
989 xfs_ifunlock(xfs_inode_t *ip)
991 ASSERT(valusema(&(ip->i_flock)) <= 0);
992 vsema(&(ip->i_flock));