MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / fs / xfs / xfs_inode.c
blobc661c948b26d6d54cf05aee0057296595953a511
1 /*
2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
26 * http://www.sgi.com
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_trans.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_imap.h"
51 #include "xfs_alloc.h"
52 #include "xfs_ialloc.h"
53 #include "xfs_attr_sf.h"
54 #include "xfs_dir_sf.h"
55 #include "xfs_dir2_sf.h"
56 #include "xfs_dinode.h"
57 #include "xfs_inode_item.h"
58 #include "xfs_inode.h"
59 #include "xfs_bmap.h"
60 #include "xfs_buf_item.h"
61 #include "xfs_rw.h"
62 #include "xfs_error.h"
63 #include "xfs_bit.h"
64 #include "xfs_utils.h"
65 #include "xfs_dir2_trace.h"
66 #include "xfs_quota.h"
67 #include "xfs_mac.h"
68 #include "xfs_acl.h"
71 kmem_zone_t *xfs_ifork_zone;
72 kmem_zone_t *xfs_inode_zone;
73 kmem_zone_t *xfs_chashlist_zone;
76 * Used in xfs_itruncate(). This is the maximum number of extents
77 * freed from a file in a single transaction.
79 #define XFS_ITRUNC_MAX_EXTENTS 2
81 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
82 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
83 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
84 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
87 #ifdef DEBUG
89 * Make sure that the extents in the given memory buffer
90 * are valid.
92 STATIC void
93 xfs_validate_extents(
94 xfs_bmbt_rec_t *ep,
95 int nrecs,
96 int disk,
97 xfs_exntfmt_t fmt)
99 xfs_bmbt_irec_t irec;
100 xfs_bmbt_rec_t rec;
101 int i;
103 for (i = 0; i < nrecs; i++) {
104 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
105 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
106 if (disk)
107 xfs_bmbt_disk_get_all(&rec, &irec);
108 else
109 xfs_bmbt_get_all(&rec, &irec);
110 if (fmt == XFS_EXTFMT_NOSTATE)
111 ASSERT(irec.br_state == XFS_EXT_NORM);
112 ep++;
115 #else /* DEBUG */
116 #define xfs_validate_extents(ep, nrecs, disk, fmt)
117 #endif /* DEBUG */
120 * Check that none of the inode's in the buffer have a next
121 * unlinked field of 0.
123 #if defined(DEBUG)
124 void
125 xfs_inobp_check(
126 xfs_mount_t *mp,
127 xfs_buf_t *bp)
129 int i;
130 int j;
131 xfs_dinode_t *dip;
133 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
135 for (i = 0; i < j; i++) {
136 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
137 i * mp->m_sb.sb_inodesize);
138 if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT)) {
139 xfs_fs_cmn_err(CE_ALERT, mp,
140 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
141 bp);
142 ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
146 #endif
149 * called from bwrite on xfs inode buffers
151 void
152 xfs_inobp_bwcheck(xfs_buf_t *bp)
154 xfs_mount_t *mp;
155 int i;
156 int j;
157 xfs_dinode_t *dip;
159 ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL);
161 mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
164 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
166 for (i = 0; i < j; i++) {
167 dip = (xfs_dinode_t *) xfs_buf_offset(bp,
168 i * mp->m_sb.sb_inodesize);
169 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
170 cmn_err(CE_WARN,
171 "Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x",
172 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
173 (__uint64_t)(__psunsigned_t) bp,
174 (__int64_t) XFS_BUF_ADDR(bp),
175 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
176 xfs_fs_cmn_err(CE_WARN, mp,
177 "corrupt, unmount and run xfs_repair");
179 if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT)) {
180 cmn_err(CE_WARN,
181 "Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x",
182 (__uint64_t)(__psunsigned_t) bp,
183 (__int64_t) XFS_BUF_ADDR(bp),
184 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
185 xfs_fs_cmn_err(CE_WARN, mp,
186 "corrupt, unmount and run xfs_repair");
190 return;
194 * This routine is called to map an inode number within a file
195 * system to the buffer containing the on-disk version of the
196 * inode. It returns a pointer to the buffer containing the
197 * on-disk inode in the bpp parameter, and in the dip parameter
198 * it returns a pointer to the on-disk inode within that buffer.
200 * If a non-zero error is returned, then the contents of bpp and
201 * dipp are undefined.
203 * Use xfs_imap() to determine the size and location of the
204 * buffer to read from disk.
207 xfs_inotobp(
208 xfs_mount_t *mp,
209 xfs_trans_t *tp,
210 xfs_ino_t ino,
211 xfs_dinode_t **dipp,
212 xfs_buf_t **bpp,
213 int *offset)
215 int di_ok;
216 xfs_imap_t imap;
217 xfs_buf_t *bp;
218 int error;
219 xfs_dinode_t *dip;
222 * Call the space managment code to find the location of the
223 * inode on disk.
225 imap.im_blkno = 0;
226 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
227 if (error != 0) {
228 cmn_err(CE_WARN,
229 "xfs_inotobp: xfs_imap() returned an "
230 "error %d on %s. Returning error.", error, mp->m_fsname);
231 return error;
235 * If the inode number maps to a block outside the bounds of the
236 * file system then return NULL rather than calling read_buf
237 * and panicing when we get an error from the driver.
239 if ((imap.im_blkno + imap.im_len) >
240 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
241 cmn_err(CE_WARN,
242 "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
243 "of the file system %s. Returning EINVAL.",
244 imap.im_blkno, imap.im_len,mp->m_fsname);
245 return XFS_ERROR(EINVAL);
249 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
250 * default to just a read_buf() call.
252 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
253 (int)imap.im_len, XFS_BUF_LOCK, &bp);
255 if (error) {
256 cmn_err(CE_WARN,
257 "xfs_inotobp: xfs_trans_read_buf() returned an "
258 "error %d on %s. Returning error.", error, mp->m_fsname);
259 return error;
261 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
262 di_ok =
263 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
264 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
265 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
266 XFS_RANDOM_ITOBP_INOTOBP))) {
267 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
268 xfs_trans_brelse(tp, bp);
269 cmn_err(CE_WARN,
270 "xfs_inotobp: XFS_TEST_ERROR() returned an "
271 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
272 return XFS_ERROR(EFSCORRUPTED);
275 xfs_inobp_check(mp, bp);
278 * Set *dipp to point to the on-disk inode in the buffer.
280 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
281 *bpp = bp;
282 *offset = imap.im_boffset;
283 return 0;
288 * This routine is called to map an inode to the buffer containing
289 * the on-disk version of the inode. It returns a pointer to the
290 * buffer containing the on-disk inode in the bpp parameter, and in
291 * the dip parameter it returns a pointer to the on-disk inode within
292 * that buffer.
294 * If a non-zero error is returned, then the contents of bpp and
295 * dipp are undefined.
297 * If the inode is new and has not yet been initialized, use xfs_imap()
298 * to determine the size and location of the buffer to read from disk.
299 * If the inode has already been mapped to its buffer and read in once,
300 * then use the mapping information stored in the inode rather than
301 * calling xfs_imap(). This allows us to avoid the overhead of looking
302 * at the inode btree for small block file systems (see xfs_dilocate()).
303 * We can tell whether the inode has been mapped in before by comparing
304 * its disk block address to 0. Only uninitialized inodes will have
305 * 0 for the disk block address.
308 xfs_itobp(
309 xfs_mount_t *mp,
310 xfs_trans_t *tp,
311 xfs_inode_t *ip,
312 xfs_dinode_t **dipp,
313 xfs_buf_t **bpp,
314 xfs_daddr_t bno)
316 xfs_buf_t *bp;
317 int error;
318 xfs_imap_t imap;
319 #ifdef __KERNEL__
320 int i;
321 int ni;
322 #endif
324 if (ip->i_blkno == (xfs_daddr_t)0) {
326 * Call the space management code to find the location of the
327 * inode on disk.
329 imap.im_blkno = bno;
330 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
331 if (error != 0) {
332 return error;
336 * If the inode number maps to a block outside the bounds
337 * of the file system then return NULL rather than calling
338 * read_buf and panicing when we get an error from the
339 * driver.
341 if ((imap.im_blkno + imap.im_len) >
342 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
343 #ifdef DEBUG
344 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
345 "(imap.im_blkno (0x%llx) "
346 "+ imap.im_len (0x%llx)) > "
347 " XFS_FSB_TO_BB(mp, "
348 "mp->m_sb.sb_dblocks) (0x%llx)",
349 (unsigned long long) imap.im_blkno,
350 (unsigned long long) imap.im_len,
351 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
352 #endif /* DEBUG */
353 return XFS_ERROR(EINVAL);
357 * Fill in the fields in the inode that will be used to
358 * map the inode to its buffer from now on.
360 ip->i_blkno = imap.im_blkno;
361 ip->i_len = imap.im_len;
362 ip->i_boffset = imap.im_boffset;
363 } else {
365 * We've already mapped the inode once, so just use the
366 * mapping that we saved the first time.
368 imap.im_blkno = ip->i_blkno;
369 imap.im_len = ip->i_len;
370 imap.im_boffset = ip->i_boffset;
372 ASSERT(bno == 0 || bno == imap.im_blkno);
375 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
376 * default to just a read_buf() call.
378 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
379 (int)imap.im_len, XFS_BUF_LOCK, &bp);
381 if (error) {
382 #ifdef DEBUG
383 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
384 "xfs_trans_read_buf() returned error %d, "
385 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
386 error, (unsigned long long) imap.im_blkno,
387 (unsigned long long) imap.im_len);
388 #endif /* DEBUG */
389 return error;
391 #ifdef __KERNEL__
393 * Validate the magic number and version of every inode in the buffer
394 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
396 #ifdef DEBUG
397 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
398 #else
399 ni = 1;
400 #endif
401 for (i = 0; i < ni; i++) {
402 int di_ok;
403 xfs_dinode_t *dip;
405 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
406 (i << mp->m_sb.sb_inodelog));
407 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
408 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
409 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
410 XFS_RANDOM_ITOBP_INOTOBP))) {
411 #ifdef DEBUG
412 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
413 mp->m_ddev_targp,
414 (unsigned long long)imap.im_blkno, i,
415 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
416 #endif
417 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
418 mp, dip);
419 xfs_trans_brelse(tp, bp);
420 return XFS_ERROR(EFSCORRUPTED);
423 #endif /* __KERNEL__ */
425 xfs_inobp_check(mp, bp);
428 * Mark the buffer as an inode buffer now that it looks good
430 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
433 * Set *dipp to point to the on-disk inode in the buffer.
435 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
436 *bpp = bp;
437 return 0;
441 * Move inode type and inode format specific information from the
442 * on-disk inode to the in-core inode. For fifos, devs, and sockets
443 * this means set if_rdev to the proper value. For files, directories,
444 * and symlinks this means to bring in the in-line data or extent
445 * pointers. For a file in B-tree format, only the root is immediately
446 * brought in-core. The rest will be in-lined in if_extents when it
447 * is first referenced (see xfs_iread_extents()).
449 STATIC int
450 xfs_iformat(
451 xfs_inode_t *ip,
452 xfs_dinode_t *dip)
454 xfs_attr_shortform_t *atp;
455 int size;
456 int error;
457 xfs_fsize_t di_size;
458 ip->i_df.if_ext_max =
459 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
460 error = 0;
462 if (unlikely(
463 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
464 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
465 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
466 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
467 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
468 " Unmount and run xfs_repair.",
469 (unsigned long long)ip->i_ino,
470 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
471 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
472 (unsigned long long)
473 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
474 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
475 ip->i_mount, dip);
476 return XFS_ERROR(EFSCORRUPTED);
479 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
480 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
481 "corrupt dinode %Lu, forkoff = 0x%x."
482 " Unmount and run xfs_repair.",
483 (unsigned long long)ip->i_ino,
484 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
485 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
486 ip->i_mount, dip);
487 return XFS_ERROR(EFSCORRUPTED);
490 switch (ip->i_d.di_mode & S_IFMT) {
491 case S_IFIFO:
492 case S_IFCHR:
493 case S_IFBLK:
494 case S_IFSOCK:
495 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
496 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
497 ip->i_mount, dip);
498 return XFS_ERROR(EFSCORRUPTED);
500 ip->i_d.di_size = 0;
501 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
502 break;
504 case S_IFREG:
505 case S_IFLNK:
506 case S_IFDIR:
507 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
508 case XFS_DINODE_FMT_LOCAL:
510 * no local regular files yet
512 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
513 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
514 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
515 (unsigned long long) ip->i_ino);
516 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
517 XFS_ERRLEVEL_LOW,
518 ip->i_mount, dip);
519 return XFS_ERROR(EFSCORRUPTED);
522 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
523 if (unlikely(di_size >
524 XFS_DFORK_DSIZE_ARCH(dip, ip->i_mount, ARCH_CONVERT))) {
525 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
526 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
527 (unsigned long long) ip->i_ino,
528 (long long) di_size);
529 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
530 XFS_ERRLEVEL_LOW,
531 ip->i_mount, dip);
532 return XFS_ERROR(EFSCORRUPTED);
535 size = (int)di_size;
536 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
537 break;
538 case XFS_DINODE_FMT_EXTENTS:
539 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
540 break;
541 case XFS_DINODE_FMT_BTREE:
542 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
543 break;
544 default:
545 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
546 ip->i_mount);
547 return XFS_ERROR(EFSCORRUPTED);
549 break;
551 default:
552 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
553 return XFS_ERROR(EFSCORRUPTED);
555 if (error) {
556 return error;
558 if (!XFS_DFORK_Q_ARCH(dip, ARCH_CONVERT))
559 return 0;
560 ASSERT(ip->i_afp == NULL);
561 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
562 ip->i_afp->if_ext_max =
563 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
564 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
565 case XFS_DINODE_FMT_LOCAL:
566 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR_ARCH(dip, ARCH_CONVERT);
567 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
568 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
569 break;
570 case XFS_DINODE_FMT_EXTENTS:
571 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
572 break;
573 case XFS_DINODE_FMT_BTREE:
574 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
575 break;
576 default:
577 error = XFS_ERROR(EFSCORRUPTED);
578 break;
580 if (error) {
581 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
582 ip->i_afp = NULL;
583 xfs_idestroy_fork(ip, XFS_DATA_FORK);
585 return error;
589 * The file is in-lined in the on-disk inode.
590 * If it fits into if_inline_data, then copy
591 * it there, otherwise allocate a buffer for it
592 * and copy the data there. Either way, set
593 * if_data to point at the data.
594 * If we allocate a buffer for the data, make
595 * sure that its size is a multiple of 4 and
596 * record the real size in i_real_bytes.
598 STATIC int
599 xfs_iformat_local(
600 xfs_inode_t *ip,
601 xfs_dinode_t *dip,
602 int whichfork,
603 int size)
605 xfs_ifork_t *ifp;
606 int real_size;
609 * If the size is unreasonable, then something
610 * is wrong and we just bail out rather than crash in
611 * kmem_alloc() or memcpy() below.
613 if (unlikely(size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
614 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
615 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
616 (unsigned long long) ip->i_ino, size,
617 XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT));
618 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
619 ip->i_mount, dip);
620 return XFS_ERROR(EFSCORRUPTED);
622 ifp = XFS_IFORK_PTR(ip, whichfork);
623 real_size = 0;
624 if (size == 0)
625 ifp->if_u1.if_data = NULL;
626 else if (size <= sizeof(ifp->if_u2.if_inline_data))
627 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
628 else {
629 real_size = roundup(size, 4);
630 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
632 ifp->if_bytes = size;
633 ifp->if_real_bytes = real_size;
634 if (size)
635 memcpy(ifp->if_u1.if_data,
636 XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT), size);
637 ifp->if_flags &= ~XFS_IFEXTENTS;
638 ifp->if_flags |= XFS_IFINLINE;
639 return 0;
643 * The file consists of a set of extents all
644 * of which fit into the on-disk inode.
645 * If there are few enough extents to fit into
646 * the if_inline_ext, then copy them there.
647 * Otherwise allocate a buffer for them and copy
648 * them into it. Either way, set if_extents
649 * to point at the extents.
651 STATIC int
652 xfs_iformat_extents(
653 xfs_inode_t *ip,
654 xfs_dinode_t *dip,
655 int whichfork)
657 xfs_bmbt_rec_t *ep, *dp;
658 xfs_ifork_t *ifp;
659 int nex;
660 int real_size;
661 int size;
662 int i;
664 ifp = XFS_IFORK_PTR(ip, whichfork);
665 nex = XFS_DFORK_NEXTENTS_ARCH(dip, whichfork, ARCH_CONVERT);
666 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
669 * If the number of extents is unreasonable, then something
670 * is wrong and we just bail out rather than crash in
671 * kmem_alloc() or memcpy() below.
673 if (unlikely(size < 0 || size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) {
674 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
675 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
676 (unsigned long long) ip->i_ino, nex);
677 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
678 ip->i_mount, dip);
679 return XFS_ERROR(EFSCORRUPTED);
682 real_size = 0;
683 if (nex == 0)
684 ifp->if_u1.if_extents = NULL;
685 else if (nex <= XFS_INLINE_EXTS)
686 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
687 else {
688 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
689 ASSERT(ifp->if_u1.if_extents != NULL);
690 real_size = size;
692 ifp->if_bytes = size;
693 ifp->if_real_bytes = real_size;
694 if (size) {
695 dp = (xfs_bmbt_rec_t *)
696 XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
697 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
698 ep = ifp->if_u1.if_extents;
699 for (i = 0; i < nex; i++, ep++, dp++) {
700 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
701 ARCH_CONVERT);
702 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
703 ARCH_CONVERT);
705 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
706 whichfork);
707 if (whichfork != XFS_DATA_FORK ||
708 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
709 if (unlikely(xfs_check_nostate_extents(
710 ifp->if_u1.if_extents, nex))) {
711 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
712 XFS_ERRLEVEL_LOW,
713 ip->i_mount);
714 return XFS_ERROR(EFSCORRUPTED);
717 ifp->if_flags |= XFS_IFEXTENTS;
718 return 0;
722 * The file has too many extents to fit into
723 * the inode, so they are in B-tree format.
724 * Allocate a buffer for the root of the B-tree
725 * and copy the root into it. The i_extents
726 * field will remain NULL until all of the
727 * extents are read in (when they are needed).
729 STATIC int
730 xfs_iformat_btree(
731 xfs_inode_t *ip,
732 xfs_dinode_t *dip,
733 int whichfork)
735 xfs_bmdr_block_t *dfp;
736 xfs_ifork_t *ifp;
737 /* REFERENCED */
738 int nrecs;
739 int size;
741 ifp = XFS_IFORK_PTR(ip, whichfork);
742 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
743 size = XFS_BMAP_BROOT_SPACE(dfp);
744 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
747 * blow out if -- fork has less extents than can fit in
748 * fork (fork shouldn't be a btree format), root btree
749 * block has more records than can fit into the fork,
750 * or the number of extents is greater than the number of
751 * blocks.
753 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
754 || XFS_BMDR_SPACE_CALC(nrecs) >
755 XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT)
756 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
757 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
758 "corrupt inode %Lu (btree). Unmount and run xfs_repair.",
759 (unsigned long long) ip->i_ino);
760 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
761 ip->i_mount);
762 return XFS_ERROR(EFSCORRUPTED);
765 ifp->if_broot_bytes = size;
766 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
767 ASSERT(ifp->if_broot != NULL);
769 * Copy and convert from the on-disk structure
770 * to the in-memory structure.
772 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT),
773 ifp->if_broot, size);
774 ifp->if_flags &= ~XFS_IFEXTENTS;
775 ifp->if_flags |= XFS_IFBROOT;
777 return 0;
781 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
782 * and native format
784 * buf = on-disk representation
785 * dip = native representation
786 * dir = direction - +ve -> disk to native
787 * -ve -> native to disk
788 * arch = on-disk architecture
790 void
791 xfs_xlate_dinode_core(
792 xfs_caddr_t buf,
793 xfs_dinode_core_t *dip,
794 int dir,
795 xfs_arch_t arch)
797 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
798 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
800 ASSERT(dir);
801 if (arch == ARCH_NOCONVERT) {
802 if (dir > 0) {
803 memcpy((xfs_caddr_t)mem_core, (xfs_caddr_t)buf_core,
804 sizeof(xfs_dinode_core_t));
805 } else {
806 memcpy((xfs_caddr_t)buf_core, (xfs_caddr_t)mem_core,
807 sizeof(xfs_dinode_core_t));
809 return;
812 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
813 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
814 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
815 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
816 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
817 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
818 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
819 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
820 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
822 if (dir > 0) {
823 memcpy(mem_core->di_pad, buf_core->di_pad,
824 sizeof(buf_core->di_pad));
825 } else {
826 memcpy(buf_core->di_pad, mem_core->di_pad,
827 sizeof(buf_core->di_pad));
830 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
832 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
833 dir, arch);
834 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
835 dir, arch);
836 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
837 dir, arch);
838 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
839 dir, arch);
840 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
841 dir, arch);
842 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
843 dir, arch);
844 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
845 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
846 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
847 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
848 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
849 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
850 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
851 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
852 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
853 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
854 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
857 uint
858 xfs_dic2xflags(
859 xfs_dinode_core_t *dic,
860 xfs_arch_t arch)
862 __uint16_t di_flags;
863 uint flags;
865 di_flags = INT_GET(dic->di_flags, arch);
866 flags = XFS_CFORK_Q_ARCH(dic, arch) ? XFS_XFLAG_HASATTR : 0;
867 if (di_flags & XFS_DIFLAG_ANY) {
868 if (di_flags & XFS_DIFLAG_REALTIME)
869 flags |= XFS_XFLAG_REALTIME;
870 if (di_flags & XFS_DIFLAG_PREALLOC)
871 flags |= XFS_XFLAG_PREALLOC;
872 if (di_flags & XFS_DIFLAG_IMMUTABLE)
873 flags |= XFS_XFLAG_IMMUTABLE;
874 if (di_flags & XFS_DIFLAG_APPEND)
875 flags |= XFS_XFLAG_APPEND;
876 if (di_flags & XFS_DIFLAG_SYNC)
877 flags |= XFS_XFLAG_SYNC;
878 if (di_flags & XFS_DIFLAG_NOATIME)
879 flags |= XFS_XFLAG_NOATIME;
880 if (di_flags & XFS_DIFLAG_NODUMP)
881 flags |= XFS_XFLAG_NODUMP;
882 if (di_flags & XFS_DIFLAG_RTINHERIT)
883 flags |= XFS_XFLAG_RTINHERIT;
884 if (di_flags & XFS_DIFLAG_PROJINHERIT)
885 flags |= XFS_XFLAG_PROJINHERIT;
886 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
887 flags |= XFS_XFLAG_NOSYMLINKS;
889 return flags;
893 * Given a mount structure and an inode number, return a pointer
894 * to a newly allocated in-core inode coresponding to the given
895 * inode number.
897 * Initialize the inode's attributes and extent pointers if it
898 * already has them (it will not if the inode has no links).
901 xfs_iread(
902 xfs_mount_t *mp,
903 xfs_trans_t *tp,
904 xfs_ino_t ino,
905 xfs_inode_t **ipp,
906 xfs_daddr_t bno)
908 xfs_buf_t *bp;
909 xfs_dinode_t *dip;
910 xfs_inode_t *ip;
911 int error;
913 ASSERT(xfs_inode_zone != NULL);
915 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
916 ip->i_ino = ino;
917 ip->i_mount = mp;
920 * Get pointer's to the on-disk inode and the buffer containing it.
921 * If the inode number refers to a block outside the file system
922 * then xfs_itobp() will return NULL. In this case we should
923 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
924 * know that this is a new incore inode.
926 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
928 if (error != 0) {
929 kmem_zone_free(xfs_inode_zone, ip);
930 return error;
934 * Initialize inode's trace buffers.
935 * Do this before xfs_iformat in case it adds entries.
937 #ifdef XFS_BMAP_TRACE
938 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
939 #endif
940 #ifdef XFS_BMBT_TRACE
941 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
942 #endif
943 #ifdef XFS_RW_TRACE
944 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
945 #endif
946 #ifdef XFS_ILOCK_TRACE
947 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
948 #endif
949 #ifdef XFS_DIR2_TRACE
950 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
951 #endif
954 * If we got something that isn't an inode it means someone
955 * (nfs or dmi) has a stale handle.
957 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
958 kmem_zone_free(xfs_inode_zone, ip);
959 xfs_trans_brelse(tp, bp);
960 #ifdef DEBUG
961 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
962 "dip->di_core.di_magic (0x%x) != "
963 "XFS_DINODE_MAGIC (0x%x)",
964 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
965 XFS_DINODE_MAGIC);
966 #endif /* DEBUG */
967 return XFS_ERROR(EINVAL);
971 * If the on-disk inode is already linked to a directory
972 * entry, copy all of the inode into the in-core inode.
973 * xfs_iformat() handles copying in the inode format
974 * specific information.
975 * Otherwise, just get the truly permanent information.
977 if (!INT_ISZERO(dip->di_core.di_mode, ARCH_CONVERT)) {
978 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
979 &(ip->i_d), 1, ARCH_CONVERT);
980 error = xfs_iformat(ip, dip);
981 if (error) {
982 kmem_zone_free(xfs_inode_zone, ip);
983 xfs_trans_brelse(tp, bp);
984 #ifdef DEBUG
985 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
986 "xfs_iformat() returned error %d",
987 error);
988 #endif /* DEBUG */
989 return error;
991 } else {
992 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
993 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
994 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
995 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
997 * Make sure to pull in the mode here as well in
998 * case the inode is released without being used.
999 * This ensures that xfs_inactive() will see that
1000 * the inode is already free and not try to mess
1001 * with the uninitialized part of it.
1003 ip->i_d.di_mode = 0;
1005 * Initialize the per-fork minima and maxima for a new
1006 * inode here. xfs_iformat will do it for old inodes.
1008 ip->i_df.if_ext_max =
1009 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1012 INIT_LIST_HEAD(&ip->i_reclaim);
1015 * The inode format changed when we moved the link count and
1016 * made it 32 bits long. If this is an old format inode,
1017 * convert it in memory to look like a new one. If it gets
1018 * flushed to disk we will convert back before flushing or
1019 * logging it. We zero out the new projid field and the old link
1020 * count field. We'll handle clearing the pad field (the remains
1021 * of the old uuid field) when we actually convert the inode to
1022 * the new format. We don't change the version number so that we
1023 * can distinguish this from a real new format inode.
1025 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1026 ip->i_d.di_nlink = ip->i_d.di_onlink;
1027 ip->i_d.di_onlink = 0;
1028 ip->i_d.di_projid = 0;
1031 ip->i_delayed_blks = 0;
1034 * Mark the buffer containing the inode as something to keep
1035 * around for a while. This helps to keep recently accessed
1036 * meta-data in-core longer.
1038 XFS_BUF_SET_REF(bp, XFS_INO_REF);
1041 * Use xfs_trans_brelse() to release the buffer containing the
1042 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1043 * in xfs_itobp() above. If tp is NULL, this is just a normal
1044 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1045 * will only release the buffer if it is not dirty within the
1046 * transaction. It will be OK to release the buffer in this case,
1047 * because inodes on disk are never destroyed and we will be
1048 * locking the new in-core inode before putting it in the hash
1049 * table where other processes can find it. Thus we don't have
1050 * to worry about the inode being changed just because we released
1051 * the buffer.
1053 xfs_trans_brelse(tp, bp);
1054 *ipp = ip;
1055 return 0;
1059 * Read in extents from a btree-format inode.
1060 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1063 xfs_iread_extents(
1064 xfs_trans_t *tp,
1065 xfs_inode_t *ip,
1066 int whichfork)
1068 int error;
1069 xfs_ifork_t *ifp;
1070 size_t size;
1072 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1073 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1074 ip->i_mount);
1075 return XFS_ERROR(EFSCORRUPTED);
1077 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1078 ifp = XFS_IFORK_PTR(ip, whichfork);
1080 * We know that the size is valid (it's checked in iformat_btree)
1082 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1083 ASSERT(ifp->if_u1.if_extents != NULL);
1084 ifp->if_lastex = NULLEXTNUM;
1085 ifp->if_bytes = ifp->if_real_bytes = (int)size;
1086 ifp->if_flags |= XFS_IFEXTENTS;
1087 error = xfs_bmap_read_extents(tp, ip, whichfork);
1088 if (error) {
1089 kmem_free(ifp->if_u1.if_extents, size);
1090 ifp->if_u1.if_extents = NULL;
1091 ifp->if_bytes = ifp->if_real_bytes = 0;
1092 ifp->if_flags &= ~XFS_IFEXTENTS;
1093 return error;
1095 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1096 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1097 return 0;
1101 * Allocate an inode on disk and return a copy of its in-core version.
1102 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1103 * appropriately within the inode. The uid and gid for the inode are
1104 * set according to the contents of the given cred structure.
1106 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1107 * has a free inode available, call xfs_iget()
1108 * to obtain the in-core version of the allocated inode. Finally,
1109 * fill in the inode and log its initial contents. In this case,
1110 * ialloc_context would be set to NULL and call_again set to false.
1112 * If xfs_dialloc() does not have an available inode,
1113 * it will replenish its supply by doing an allocation. Since we can
1114 * only do one allocation within a transaction without deadlocks, we
1115 * must commit the current transaction before returning the inode itself.
1116 * In this case, therefore, we will set call_again to true and return.
1117 * The caller should then commit the current transaction, start a new
1118 * transaction, and call xfs_ialloc() again to actually get the inode.
1120 * To ensure that some other process does not grab the inode that
1121 * was allocated during the first call to xfs_ialloc(), this routine
1122 * also returns the [locked] bp pointing to the head of the freelist
1123 * as ialloc_context. The caller should hold this buffer across
1124 * the commit and pass it back into this routine on the second call.
1127 xfs_ialloc(
1128 xfs_trans_t *tp,
1129 xfs_inode_t *pip,
1130 mode_t mode,
1131 nlink_t nlink,
1132 xfs_dev_t rdev,
1133 cred_t *cr,
1134 xfs_prid_t prid,
1135 int okalloc,
1136 xfs_buf_t **ialloc_context,
1137 boolean_t *call_again,
1138 xfs_inode_t **ipp)
1140 xfs_ino_t ino;
1141 xfs_inode_t *ip;
1142 vnode_t *vp;
1143 uint flags;
1144 int error;
1147 * Call the space management code to pick
1148 * the on-disk inode to be allocated.
1150 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1151 ialloc_context, call_again, &ino);
1152 if (error != 0) {
1153 return error;
1155 if (*call_again || ino == NULLFSINO) {
1156 *ipp = NULL;
1157 return 0;
1159 ASSERT(*ialloc_context == NULL);
1162 * Get the in-core inode with the lock held exclusively.
1163 * This is because we're setting fields here we need
1164 * to prevent others from looking at until we're done.
1166 error = xfs_trans_iget(tp->t_mountp, tp, ino, XFS_ILOCK_EXCL, &ip);
1167 if (error != 0) {
1168 return error;
1170 ASSERT(ip != NULL);
1172 vp = XFS_ITOV(ip);
1173 vp->v_type = IFTOVT(mode);
1174 ip->i_d.di_mode = (__uint16_t)mode;
1175 ip->i_d.di_onlink = 0;
1176 ip->i_d.di_nlink = nlink;
1177 ASSERT(ip->i_d.di_nlink == nlink);
1178 ip->i_d.di_uid = current_fsuid(cr);
1179 ip->i_d.di_gid = current_fsgid(cr);
1180 ip->i_d.di_projid = prid;
1181 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1184 * If the superblock version is up to where we support new format
1185 * inodes and this is currently an old format inode, then change
1186 * the inode version number now. This way we only do the conversion
1187 * here rather than here and in the flush/logging code.
1189 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1190 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1191 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1193 * We've already zeroed the old link count, the projid field,
1194 * and the pad field.
1199 * Project ids won't be stored on disk if we are using a version 1 inode.
1201 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1202 xfs_bump_ino_vers2(tp, ip);
1204 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1205 ip->i_d.di_gid = pip->i_d.di_gid;
1206 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1207 ip->i_d.di_mode |= S_ISGID;
1212 * If the group ID of the new file does not match the effective group
1213 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1214 * (and only if the irix_sgid_inherit compatibility variable is set).
1216 if ((irix_sgid_inherit) &&
1217 (ip->i_d.di_mode & S_ISGID) &&
1218 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1219 ip->i_d.di_mode &= ~S_ISGID;
1222 ip->i_d.di_size = 0;
1223 ip->i_d.di_nextents = 0;
1224 ASSERT(ip->i_d.di_nblocks == 0);
1225 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1227 * di_gen will have been taken care of in xfs_iread.
1229 ip->i_d.di_extsize = 0;
1230 ip->i_d.di_dmevmask = 0;
1231 ip->i_d.di_dmstate = 0;
1232 ip->i_d.di_flags = 0;
1233 flags = XFS_ILOG_CORE;
1234 switch (mode & S_IFMT) {
1235 case S_IFIFO:
1236 case S_IFCHR:
1237 case S_IFBLK:
1238 case S_IFSOCK:
1239 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1240 ip->i_df.if_u2.if_rdev = rdev;
1241 ip->i_df.if_flags = 0;
1242 flags |= XFS_ILOG_DEV;
1243 break;
1244 case S_IFREG:
1245 case S_IFDIR:
1246 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1247 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1248 if ((mode & S_IFMT) == S_IFDIR) {
1249 ip->i_d.di_flags |= XFS_DIFLAG_RTINHERIT;
1250 } else {
1251 ip->i_d.di_flags |= XFS_DIFLAG_REALTIME;
1252 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1255 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1256 xfs_inherit_noatime)
1257 ip->i_d.di_flags |= XFS_DIFLAG_NOATIME;
1258 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1259 xfs_inherit_nodump)
1260 ip->i_d.di_flags |= XFS_DIFLAG_NODUMP;
1261 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1262 xfs_inherit_sync)
1263 ip->i_d.di_flags |= XFS_DIFLAG_SYNC;
1264 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1265 xfs_inherit_nosymlinks)
1266 ip->i_d.di_flags |= XFS_DIFLAG_NOSYMLINKS;
1268 /* FALLTHROUGH */
1269 case S_IFLNK:
1270 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1271 ip->i_df.if_flags = XFS_IFEXTENTS;
1272 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1273 ip->i_df.if_u1.if_extents = NULL;
1274 break;
1275 default:
1276 ASSERT(0);
1279 * Attribute fork settings for new inode.
1281 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1282 ip->i_d.di_anextents = 0;
1285 * Log the new values stuffed into the inode.
1287 xfs_trans_log_inode(tp, ip, flags);
1289 /* now that we have a v_type we can set Linux inode ops (& unlock) */
1290 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1292 *ipp = ip;
1293 return 0;
1297 * Check to make sure that there are no blocks allocated to the
1298 * file beyond the size of the file. We don't check this for
1299 * files with fixed size extents or real time extents, but we
1300 * at least do it for regular files.
1302 #ifdef DEBUG
1303 void
1304 xfs_isize_check(
1305 xfs_mount_t *mp,
1306 xfs_inode_t *ip,
1307 xfs_fsize_t isize)
1309 xfs_fileoff_t map_first;
1310 int nimaps;
1311 xfs_bmbt_irec_t imaps[2];
1313 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1314 return;
1316 if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1317 return;
1319 nimaps = 2;
1320 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1322 * The filesystem could be shutting down, so bmapi may return
1323 * an error.
1325 if (xfs_bmapi(NULL, ip, map_first,
1326 (XFS_B_TO_FSB(mp,
1327 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1328 map_first),
1329 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1330 NULL))
1331 return;
1332 ASSERT(nimaps == 1);
1333 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1335 #endif /* DEBUG */
1338 * Calculate the last possible buffered byte in a file. This must
1339 * include data that was buffered beyond the EOF by the write code.
1340 * This also needs to deal with overflowing the xfs_fsize_t type
1341 * which can happen for sizes near the limit.
1343 * We also need to take into account any blocks beyond the EOF. It
1344 * may be the case that they were buffered by a write which failed.
1345 * In that case the pages will still be in memory, but the inode size
1346 * will never have been updated.
1348 xfs_fsize_t
1349 xfs_file_last_byte(
1350 xfs_inode_t *ip)
1352 xfs_mount_t *mp;
1353 xfs_fsize_t last_byte;
1354 xfs_fileoff_t last_block;
1355 xfs_fileoff_t size_last_block;
1356 int error;
1358 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1360 mp = ip->i_mount;
1362 * Only check for blocks beyond the EOF if the extents have
1363 * been read in. This eliminates the need for the inode lock,
1364 * and it also saves us from looking when it really isn't
1365 * necessary.
1367 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1368 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1369 XFS_DATA_FORK);
1370 if (error) {
1371 last_block = 0;
1373 } else {
1374 last_block = 0;
1376 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1377 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1379 last_byte = XFS_FSB_TO_B(mp, last_block);
1380 if (last_byte < 0) {
1381 return XFS_MAXIOFFSET(mp);
1383 last_byte += (1 << mp->m_writeio_log);
1384 if (last_byte < 0) {
1385 return XFS_MAXIOFFSET(mp);
1387 return last_byte;
1390 #if defined(XFS_RW_TRACE)
1391 STATIC void
1392 xfs_itrunc_trace(
1393 int tag,
1394 xfs_inode_t *ip,
1395 int flag,
1396 xfs_fsize_t new_size,
1397 xfs_off_t toss_start,
1398 xfs_off_t toss_finish)
1400 if (ip->i_rwtrace == NULL) {
1401 return;
1404 ktrace_enter(ip->i_rwtrace,
1405 (void*)((long)tag),
1406 (void*)ip,
1407 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1408 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1409 (void*)((long)flag),
1410 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1411 (void*)(unsigned long)(new_size & 0xffffffff),
1412 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1413 (void*)(unsigned long)(toss_start & 0xffffffff),
1414 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1415 (void*)(unsigned long)(toss_finish & 0xffffffff),
1416 (void*)(unsigned long)current_cpu(),
1417 (void*)0,
1418 (void*)0,
1419 (void*)0,
1420 (void*)0);
1422 #else
1423 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1424 #endif
1427 * Start the truncation of the file to new_size. The new size
1428 * must be smaller than the current size. This routine will
1429 * clear the buffer and page caches of file data in the removed
1430 * range, and xfs_itruncate_finish() will remove the underlying
1431 * disk blocks.
1433 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1434 * must NOT have the inode lock held at all. This is because we're
1435 * calling into the buffer/page cache code and we can't hold the
1436 * inode lock when we do so.
1438 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1439 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1440 * in the case that the caller is locking things out of order and
1441 * may not be able to call xfs_itruncate_finish() with the inode lock
1442 * held without dropping the I/O lock. If the caller must drop the
1443 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1444 * must be called again with all the same restrictions as the initial
1445 * call.
1447 void
1448 xfs_itruncate_start(
1449 xfs_inode_t *ip,
1450 uint flags,
1451 xfs_fsize_t new_size)
1453 xfs_fsize_t last_byte;
1454 xfs_off_t toss_start;
1455 xfs_mount_t *mp;
1456 vnode_t *vp;
1458 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1459 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1460 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1461 (flags == XFS_ITRUNC_MAYBE));
1463 mp = ip->i_mount;
1464 vp = XFS_ITOV(ip);
1466 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1467 * overlapping the region being removed. We have to use
1468 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1469 * caller may not be able to finish the truncate without
1470 * dropping the inode's I/O lock. Make sure
1471 * to catch any pages brought in by buffers overlapping
1472 * the EOF by searching out beyond the isize by our
1473 * block size. We round new_size up to a block boundary
1474 * so that we don't toss things on the same block as
1475 * new_size but before it.
1477 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1478 * call remapf() over the same region if the file is mapped.
1479 * This frees up mapped file references to the pages in the
1480 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1481 * that we get the latest mapped changes flushed out.
1483 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1484 toss_start = XFS_FSB_TO_B(mp, toss_start);
1485 if (toss_start < 0) {
1487 * The place to start tossing is beyond our maximum
1488 * file size, so there is no way that the data extended
1489 * out there.
1491 return;
1493 last_byte = xfs_file_last_byte(ip);
1494 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1495 last_byte);
1496 if (last_byte > toss_start) {
1497 if (flags & XFS_ITRUNC_DEFINITE) {
1498 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1499 } else {
1500 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1504 #ifdef DEBUG
1505 if (new_size == 0) {
1506 ASSERT(VN_CACHED(vp) == 0);
1508 #endif
1512 * Shrink the file to the given new_size. The new
1513 * size must be smaller than the current size.
1514 * This will free up the underlying blocks
1515 * in the removed range after a call to xfs_itruncate_start()
1516 * or xfs_atruncate_start().
1518 * The transaction passed to this routine must have made
1519 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1520 * This routine may commit the given transaction and
1521 * start new ones, so make sure everything involved in
1522 * the transaction is tidy before calling here.
1523 * Some transaction will be returned to the caller to be
1524 * committed. The incoming transaction must already include
1525 * the inode, and both inode locks must be held exclusively.
1526 * The inode must also be "held" within the transaction. On
1527 * return the inode will be "held" within the returned transaction.
1528 * This routine does NOT require any disk space to be reserved
1529 * for it within the transaction.
1531 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1532 * and it indicates the fork which is to be truncated. For the
1533 * attribute fork we only support truncation to size 0.
1535 * We use the sync parameter to indicate whether or not the first
1536 * transaction we perform might have to be synchronous. For the attr fork,
1537 * it needs to be so if the unlink of the inode is not yet known to be
1538 * permanent in the log. This keeps us from freeing and reusing the
1539 * blocks of the attribute fork before the unlink of the inode becomes
1540 * permanent.
1542 * For the data fork, we normally have to run synchronously if we're
1543 * being called out of the inactive path or we're being called
1544 * out of the create path where we're truncating an existing file.
1545 * Either way, the truncate needs to be sync so blocks don't reappear
1546 * in the file with altered data in case of a crash. wsync filesystems
1547 * can run the first case async because anything that shrinks the inode
1548 * has to run sync so by the time we're called here from inactive, the
1549 * inode size is permanently set to 0.
1551 * Calls from the truncate path always need to be sync unless we're
1552 * in a wsync filesystem and the file has already been unlinked.
1554 * The caller is responsible for correctly setting the sync parameter.
1555 * It gets too hard for us to guess here which path we're being called
1556 * out of just based on inode state.
1559 xfs_itruncate_finish(
1560 xfs_trans_t **tp,
1561 xfs_inode_t *ip,
1562 xfs_fsize_t new_size,
1563 int fork,
1564 int sync)
1566 xfs_fsblock_t first_block;
1567 xfs_fileoff_t first_unmap_block;
1568 xfs_fileoff_t last_block;
1569 xfs_filblks_t unmap_len=0;
1570 xfs_mount_t *mp;
1571 xfs_trans_t *ntp;
1572 int done;
1573 int committed;
1574 xfs_bmap_free_t free_list;
1575 int error;
1577 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1578 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1579 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1580 ASSERT(*tp != NULL);
1581 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1582 ASSERT(ip->i_transp == *tp);
1583 ASSERT(ip->i_itemp != NULL);
1584 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1587 ntp = *tp;
1588 mp = (ntp)->t_mountp;
1589 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1592 * We only support truncating the entire attribute fork.
1594 if (fork == XFS_ATTR_FORK) {
1595 new_size = 0LL;
1597 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1598 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1600 * The first thing we do is set the size to new_size permanently
1601 * on disk. This way we don't have to worry about anyone ever
1602 * being able to look at the data being freed even in the face
1603 * of a crash. What we're getting around here is the case where
1604 * we free a block, it is allocated to another file, it is written
1605 * to, and then we crash. If the new data gets written to the
1606 * file but the log buffers containing the free and reallocation
1607 * don't, then we'd end up with garbage in the blocks being freed.
1608 * As long as we make the new_size permanent before actually
1609 * freeing any blocks it doesn't matter if they get writtten to.
1611 * The callers must signal into us whether or not the size
1612 * setting here must be synchronous. There are a few cases
1613 * where it doesn't have to be synchronous. Those cases
1614 * occur if the file is unlinked and we know the unlink is
1615 * permanent or if the blocks being truncated are guaranteed
1616 * to be beyond the inode eof (regardless of the link count)
1617 * and the eof value is permanent. Both of these cases occur
1618 * only on wsync-mounted filesystems. In those cases, we're
1619 * guaranteed that no user will ever see the data in the blocks
1620 * that are being truncated so the truncate can run async.
1621 * In the free beyond eof case, the file may wind up with
1622 * more blocks allocated to it than it needs if we crash
1623 * and that won't get fixed until the next time the file
1624 * is re-opened and closed but that's ok as that shouldn't
1625 * be too many blocks.
1627 * However, we can't just make all wsync xactions run async
1628 * because there's one call out of the create path that needs
1629 * to run sync where it's truncating an existing file to size
1630 * 0 whose size is > 0.
1632 * It's probably possible to come up with a test in this
1633 * routine that would correctly distinguish all the above
1634 * cases from the values of the function parameters and the
1635 * inode state but for sanity's sake, I've decided to let the
1636 * layers above just tell us. It's simpler to correctly figure
1637 * out in the layer above exactly under what conditions we
1638 * can run async and I think it's easier for others read and
1639 * follow the logic in case something has to be changed.
1640 * cscope is your friend -- rcc.
1642 * The attribute fork is much simpler.
1644 * For the attribute fork we allow the caller to tell us whether
1645 * the unlink of the inode that led to this call is yet permanent
1646 * in the on disk log. If it is not and we will be freeing extents
1647 * in this inode then we make the first transaction synchronous
1648 * to make sure that the unlink is permanent by the time we free
1649 * the blocks.
1651 if (fork == XFS_DATA_FORK) {
1652 if (ip->i_d.di_nextents > 0) {
1653 ip->i_d.di_size = new_size;
1654 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1656 } else if (sync) {
1657 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1658 if (ip->i_d.di_anextents > 0)
1659 xfs_trans_set_sync(ntp);
1661 ASSERT(fork == XFS_DATA_FORK ||
1662 (fork == XFS_ATTR_FORK &&
1663 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1664 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1667 * Since it is possible for space to become allocated beyond
1668 * the end of the file (in a crash where the space is allocated
1669 * but the inode size is not yet updated), simply remove any
1670 * blocks which show up between the new EOF and the maximum
1671 * possible file size. If the first block to be removed is
1672 * beyond the maximum file size (ie it is the same as last_block),
1673 * then there is nothing to do.
1675 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1676 ASSERT(first_unmap_block <= last_block);
1677 done = 0;
1678 if (last_block == first_unmap_block) {
1679 done = 1;
1680 } else {
1681 unmap_len = last_block - first_unmap_block + 1;
1683 while (!done) {
1685 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1686 * will tell us whether it freed the entire range or
1687 * not. If this is a synchronous mount (wsync),
1688 * then we can tell bunmapi to keep all the
1689 * transactions asynchronous since the unlink
1690 * transaction that made this inode inactive has
1691 * already hit the disk. There's no danger of
1692 * the freed blocks being reused, there being a
1693 * crash, and the reused blocks suddenly reappearing
1694 * in this file with garbage in them once recovery
1695 * runs.
1697 XFS_BMAP_INIT(&free_list, &first_block);
1698 error = xfs_bunmapi(ntp, ip, first_unmap_block,
1699 unmap_len,
1700 XFS_BMAPI_AFLAG(fork) |
1701 (sync ? 0 : XFS_BMAPI_ASYNC),
1702 XFS_ITRUNC_MAX_EXTENTS,
1703 &first_block, &free_list, &done);
1704 if (error) {
1706 * If the bunmapi call encounters an error,
1707 * return to the caller where the transaction
1708 * can be properly aborted. We just need to
1709 * make sure we're not holding any resources
1710 * that we were not when we came in.
1712 xfs_bmap_cancel(&free_list);
1713 return error;
1717 * Duplicate the transaction that has the permanent
1718 * reservation and commit the old transaction.
1720 error = xfs_bmap_finish(tp, &free_list, first_block,
1721 &committed);
1722 ntp = *tp;
1723 if (error) {
1725 * If the bmap finish call encounters an error,
1726 * return to the caller where the transaction
1727 * can be properly aborted. We just need to
1728 * make sure we're not holding any resources
1729 * that we were not when we came in.
1731 * Aborting from this point might lose some
1732 * blocks in the file system, but oh well.
1734 xfs_bmap_cancel(&free_list);
1735 if (committed) {
1737 * If the passed in transaction committed
1738 * in xfs_bmap_finish(), then we want to
1739 * add the inode to this one before returning.
1740 * This keeps things simple for the higher
1741 * level code, because it always knows that
1742 * the inode is locked and held in the
1743 * transaction that returns to it whether
1744 * errors occur or not. We don't mark the
1745 * inode dirty so that this transaction can
1746 * be easily aborted if possible.
1748 xfs_trans_ijoin(ntp, ip,
1749 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1750 xfs_trans_ihold(ntp, ip);
1752 return error;
1755 if (committed) {
1757 * The first xact was committed,
1758 * so add the inode to the new one.
1759 * Mark it dirty so it will be logged
1760 * and moved forward in the log as
1761 * part of every commit.
1763 xfs_trans_ijoin(ntp, ip,
1764 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1765 xfs_trans_ihold(ntp, ip);
1766 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1768 ntp = xfs_trans_dup(ntp);
1769 (void) xfs_trans_commit(*tp, 0, NULL);
1770 *tp = ntp;
1771 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1772 XFS_TRANS_PERM_LOG_RES,
1773 XFS_ITRUNCATE_LOG_COUNT);
1775 * Add the inode being truncated to the next chained
1776 * transaction.
1778 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1779 xfs_trans_ihold(ntp, ip);
1780 if (error)
1781 return (error);
1784 * Only update the size in the case of the data fork, but
1785 * always re-log the inode so that our permanent transaction
1786 * can keep on rolling it forward in the log.
1788 if (fork == XFS_DATA_FORK) {
1789 xfs_isize_check(mp, ip, new_size);
1790 ip->i_d.di_size = new_size;
1792 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1793 ASSERT((new_size != 0) ||
1794 (fork == XFS_ATTR_FORK) ||
1795 (ip->i_delayed_blks == 0));
1796 ASSERT((new_size != 0) ||
1797 (fork == XFS_ATTR_FORK) ||
1798 (ip->i_d.di_nextents == 0));
1799 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1800 return 0;
1805 * xfs_igrow_start
1807 * Do the first part of growing a file: zero any data in the last
1808 * block that is beyond the old EOF. We need to do this before
1809 * the inode is joined to the transaction to modify the i_size.
1810 * That way we can drop the inode lock and call into the buffer
1811 * cache to get the buffer mapping the EOF.
1814 xfs_igrow_start(
1815 xfs_inode_t *ip,
1816 xfs_fsize_t new_size,
1817 cred_t *credp)
1819 xfs_fsize_t isize;
1820 int error;
1822 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1823 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1824 ASSERT(new_size > ip->i_d.di_size);
1826 error = 0;
1827 isize = ip->i_d.di_size;
1829 * Zero any pages that may have been created by
1830 * xfs_write_file() beyond the end of the file
1831 * and any blocks between the old and new file sizes.
1833 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1834 new_size);
1835 return error;
1839 * xfs_igrow_finish
1841 * This routine is called to extend the size of a file.
1842 * The inode must have both the iolock and the ilock locked
1843 * for update and it must be a part of the current transaction.
1844 * The xfs_igrow_start() function must have been called previously.
1845 * If the change_flag is not zero, the inode change timestamp will
1846 * be updated.
1848 void
1849 xfs_igrow_finish(
1850 xfs_trans_t *tp,
1851 xfs_inode_t *ip,
1852 xfs_fsize_t new_size,
1853 int change_flag)
1855 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1856 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1857 ASSERT(ip->i_transp == tp);
1858 ASSERT(new_size > ip->i_d.di_size);
1861 * Update the file size. Update the inode change timestamp
1862 * if change_flag set.
1864 ip->i_d.di_size = new_size;
1865 if (change_flag)
1866 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1867 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1873 * This is called when the inode's link count goes to 0.
1874 * We place the on-disk inode on a list in the AGI. It
1875 * will be pulled from this list when the inode is freed.
1878 xfs_iunlink(
1879 xfs_trans_t *tp,
1880 xfs_inode_t *ip)
1882 xfs_mount_t *mp;
1883 xfs_agi_t *agi;
1884 xfs_dinode_t *dip;
1885 xfs_buf_t *agibp;
1886 xfs_buf_t *ibp;
1887 xfs_agnumber_t agno;
1888 xfs_daddr_t agdaddr;
1889 xfs_agino_t agino;
1890 short bucket_index;
1891 int offset;
1892 int error;
1893 int agi_ok;
1895 ASSERT(ip->i_d.di_nlink == 0);
1896 ASSERT(ip->i_d.di_mode != 0);
1897 ASSERT(ip->i_transp == tp);
1899 mp = tp->t_mountp;
1901 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1902 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1905 * Get the agi buffer first. It ensures lock ordering
1906 * on the list.
1908 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1909 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1910 if (error) {
1911 return error;
1914 * Validate the magic number of the agi block.
1916 agi = XFS_BUF_TO_AGI(agibp);
1917 agi_ok =
1918 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1919 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1920 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1921 XFS_RANDOM_IUNLINK))) {
1922 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1923 xfs_trans_brelse(tp, agibp);
1924 return XFS_ERROR(EFSCORRUPTED);
1927 * Get the index into the agi hash table for the
1928 * list this inode will go on.
1930 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1931 ASSERT(agino != 0);
1932 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1933 ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
1934 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
1936 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
1938 * There is already another inode in the bucket we need
1939 * to add ourselves to. Add us at the front of the list.
1940 * Here we put the head pointer into our next pointer,
1941 * and then we fall through to point the head at us.
1943 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1944 if (error) {
1945 return error;
1947 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1948 ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT));
1949 /* both on-disk, don't endian flip twice */
1950 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1951 offset = ip->i_boffset +
1952 offsetof(xfs_dinode_t, di_next_unlinked);
1953 xfs_trans_inode_buf(tp, ibp);
1954 xfs_trans_log_buf(tp, ibp, offset,
1955 (offset + sizeof(xfs_agino_t) - 1));
1956 xfs_inobp_check(mp, ibp);
1960 * Point the bucket head pointer at the inode being inserted.
1962 ASSERT(agino != 0);
1963 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
1964 offset = offsetof(xfs_agi_t, agi_unlinked) +
1965 (sizeof(xfs_agino_t) * bucket_index);
1966 xfs_trans_log_buf(tp, agibp, offset,
1967 (offset + sizeof(xfs_agino_t) - 1));
1968 return 0;
1972 * Pull the on-disk inode from the AGI unlinked list.
1974 STATIC int
1975 xfs_iunlink_remove(
1976 xfs_trans_t *tp,
1977 xfs_inode_t *ip)
1979 xfs_ino_t next_ino;
1980 xfs_mount_t *mp;
1981 xfs_agi_t *agi;
1982 xfs_dinode_t *dip;
1983 xfs_buf_t *agibp;
1984 xfs_buf_t *ibp;
1985 xfs_agnumber_t agno;
1986 xfs_daddr_t agdaddr;
1987 xfs_agino_t agino;
1988 xfs_agino_t next_agino;
1989 xfs_buf_t *last_ibp;
1990 xfs_dinode_t *last_dip;
1991 short bucket_index;
1992 int offset, last_offset;
1993 int error;
1994 int agi_ok;
1997 * First pull the on-disk inode from the AGI unlinked list.
1999 mp = tp->t_mountp;
2001 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2002 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2005 * Get the agi buffer first. It ensures lock ordering
2006 * on the list.
2008 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2009 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2010 if (error) {
2011 cmn_err(CE_WARN,
2012 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2013 error, mp->m_fsname);
2014 return error;
2017 * Validate the magic number of the agi block.
2019 agi = XFS_BUF_TO_AGI(agibp);
2020 agi_ok =
2021 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
2022 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
2023 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2024 XFS_RANDOM_IUNLINK_REMOVE))) {
2025 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2026 mp, agi);
2027 xfs_trans_brelse(tp, agibp);
2028 cmn_err(CE_WARN,
2029 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2030 mp->m_fsname);
2031 return XFS_ERROR(EFSCORRUPTED);
2034 * Get the index into the agi hash table for the
2035 * list this inode will go on.
2037 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2038 ASSERT(agino != 0);
2039 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2040 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
2041 ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT));
2043 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
2045 * We're at the head of the list. Get the inode's
2046 * on-disk buffer to see if there is anyone after us
2047 * on the list. Only modify our next pointer if it
2048 * is not already NULLAGINO. This saves us the overhead
2049 * of dealing with the buffer when there is no need to
2050 * change it.
2052 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2053 if (error) {
2054 cmn_err(CE_WARN,
2055 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2056 error, mp->m_fsname);
2057 return error;
2059 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2060 ASSERT(next_agino != 0);
2061 if (next_agino != NULLAGINO) {
2062 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2063 offset = ip->i_boffset +
2064 offsetof(xfs_dinode_t, di_next_unlinked);
2065 xfs_trans_inode_buf(tp, ibp);
2066 xfs_trans_log_buf(tp, ibp, offset,
2067 (offset + sizeof(xfs_agino_t) - 1));
2068 xfs_inobp_check(mp, ibp);
2069 } else {
2070 xfs_trans_brelse(tp, ibp);
2073 * Point the bucket head pointer at the next inode.
2075 ASSERT(next_agino != 0);
2076 ASSERT(next_agino != agino);
2077 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
2078 offset = offsetof(xfs_agi_t, agi_unlinked) +
2079 (sizeof(xfs_agino_t) * bucket_index);
2080 xfs_trans_log_buf(tp, agibp, offset,
2081 (offset + sizeof(xfs_agino_t) - 1));
2082 } else {
2084 * We need to search the list for the inode being freed.
2086 next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
2087 last_ibp = NULL;
2088 while (next_agino != agino) {
2090 * If the last inode wasn't the one pointing to
2091 * us, then release its buffer since we're not
2092 * going to do anything with it.
2094 if (last_ibp != NULL) {
2095 xfs_trans_brelse(tp, last_ibp);
2097 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2098 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2099 &last_ibp, &last_offset);
2100 if (error) {
2101 cmn_err(CE_WARN,
2102 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2103 error, mp->m_fsname);
2104 return error;
2106 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2107 ASSERT(next_agino != NULLAGINO);
2108 ASSERT(next_agino != 0);
2111 * Now last_ibp points to the buffer previous to us on
2112 * the unlinked list. Pull us from the list.
2114 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2115 if (error) {
2116 cmn_err(CE_WARN,
2117 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2118 error, mp->m_fsname);
2119 return error;
2121 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2122 ASSERT(next_agino != 0);
2123 ASSERT(next_agino != agino);
2124 if (next_agino != NULLAGINO) {
2125 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2126 offset = ip->i_boffset +
2127 offsetof(xfs_dinode_t, di_next_unlinked);
2128 xfs_trans_inode_buf(tp, ibp);
2129 xfs_trans_log_buf(tp, ibp, offset,
2130 (offset + sizeof(xfs_agino_t) - 1));
2131 xfs_inobp_check(mp, ibp);
2132 } else {
2133 xfs_trans_brelse(tp, ibp);
2136 * Point the previous inode on the list to the next inode.
2138 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2139 ASSERT(next_agino != 0);
2140 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2141 xfs_trans_inode_buf(tp, last_ibp);
2142 xfs_trans_log_buf(tp, last_ibp, offset,
2143 (offset + sizeof(xfs_agino_t) - 1));
2144 xfs_inobp_check(mp, last_ibp);
2146 return 0;
2149 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2151 return (((ip->i_itemp == NULL) ||
2152 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2153 (ip->i_update_core == 0));
2156 void
2157 xfs_ifree_cluster(
2158 xfs_inode_t *free_ip,
2159 xfs_trans_t *tp,
2160 xfs_ino_t inum)
2162 xfs_mount_t *mp = free_ip->i_mount;
2163 int blks_per_cluster;
2164 int nbufs;
2165 int ninodes;
2166 int i, j, found, pre_flushed;
2167 xfs_daddr_t blkno;
2168 xfs_buf_t *bp;
2169 xfs_ihash_t *ih;
2170 xfs_inode_t *ip, **ip_found;
2171 xfs_inode_log_item_t *iip;
2172 xfs_log_item_t *lip;
2173 SPLDECL(s);
2175 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2176 blks_per_cluster = 1;
2177 ninodes = mp->m_sb.sb_inopblock;
2178 nbufs = XFS_IALLOC_BLOCKS(mp);
2179 } else {
2180 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2181 mp->m_sb.sb_blocksize;
2182 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2183 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2186 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2188 for (j = 0; j < nbufs; j++, inum += ninodes) {
2189 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2190 XFS_INO_TO_AGBNO(mp, inum));
2194 * Look for each inode in memory and attempt to lock it,
2195 * we can be racing with flush and tail pushing here.
2196 * any inode we get the locks on, add to an array of
2197 * inode items to process later.
2199 * The get the buffer lock, we could beat a flush
2200 * or tail pushing thread to the lock here, in which
2201 * case they will go looking for the inode buffer
2202 * and fail, we need some other form of interlock
2203 * here.
2205 found = 0;
2206 for (i = 0; i < ninodes; i++) {
2207 ih = XFS_IHASH(mp, inum + i);
2208 read_lock(&ih->ih_lock);
2209 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2210 if (ip->i_ino == inum + i)
2211 break;
2214 /* Inode not in memory or we found it already,
2215 * nothing to do
2217 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2218 read_unlock(&ih->ih_lock);
2219 continue;
2222 if (xfs_inode_clean(ip)) {
2223 read_unlock(&ih->ih_lock);
2224 continue;
2227 /* If we can get the locks then add it to the
2228 * list, otherwise by the time we get the bp lock
2229 * below it will already be attached to the
2230 * inode buffer.
2233 /* This inode will already be locked - by us, lets
2234 * keep it that way.
2237 if (ip == free_ip) {
2238 if (xfs_iflock_nowait(ip)) {
2239 ip->i_flags |= XFS_ISTALE;
2241 if (xfs_inode_clean(ip)) {
2242 xfs_ifunlock(ip);
2243 } else {
2244 ip_found[found++] = ip;
2247 read_unlock(&ih->ih_lock);
2248 continue;
2251 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2252 if (xfs_iflock_nowait(ip)) {
2253 ip->i_flags |= XFS_ISTALE;
2255 if (xfs_inode_clean(ip)) {
2256 xfs_ifunlock(ip);
2257 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2258 } else {
2259 ip_found[found++] = ip;
2261 } else {
2262 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2266 read_unlock(&ih->ih_lock);
2269 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2270 mp->m_bsize * blks_per_cluster,
2271 XFS_BUF_LOCK);
2273 pre_flushed = 0;
2274 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2275 while (lip) {
2276 if (lip->li_type == XFS_LI_INODE) {
2277 iip = (xfs_inode_log_item_t *)lip;
2278 ASSERT(iip->ili_logged == 1);
2279 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2280 AIL_LOCK(mp,s);
2281 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2282 AIL_UNLOCK(mp, s);
2283 iip->ili_inode->i_flags |= XFS_ISTALE;
2284 pre_flushed++;
2286 lip = lip->li_bio_list;
2289 for (i = 0; i < found; i++) {
2290 ip = ip_found[i];
2291 iip = ip->i_itemp;
2293 if (!iip) {
2294 ip->i_update_core = 0;
2295 xfs_ifunlock(ip);
2296 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2297 continue;
2300 iip->ili_last_fields = iip->ili_format.ilf_fields;
2301 iip->ili_format.ilf_fields = 0;
2302 iip->ili_logged = 1;
2303 AIL_LOCK(mp,s);
2304 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2305 AIL_UNLOCK(mp, s);
2307 xfs_buf_attach_iodone(bp,
2308 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2309 xfs_istale_done, (xfs_log_item_t *)iip);
2310 if (ip != free_ip) {
2311 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2315 if (found || pre_flushed)
2316 xfs_trans_stale_inode_buf(tp, bp);
2317 xfs_trans_binval(tp, bp);
2320 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2324 * This is called to return an inode to the inode free list.
2325 * The inode should already be truncated to 0 length and have
2326 * no pages associated with it. This routine also assumes that
2327 * the inode is already a part of the transaction.
2329 * The on-disk copy of the inode will have been added to the list
2330 * of unlinked inodes in the AGI. We need to remove the inode from
2331 * that list atomically with respect to freeing it here.
2334 xfs_ifree(
2335 xfs_trans_t *tp,
2336 xfs_inode_t *ip,
2337 xfs_bmap_free_t *flist)
2339 int error;
2340 int delete;
2341 xfs_ino_t first_ino;
2343 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2344 ASSERT(ip->i_transp == tp);
2345 ASSERT(ip->i_d.di_nlink == 0);
2346 ASSERT(ip->i_d.di_nextents == 0);
2347 ASSERT(ip->i_d.di_anextents == 0);
2348 ASSERT((ip->i_d.di_size == 0) ||
2349 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2350 ASSERT(ip->i_d.di_nblocks == 0);
2353 * Pull the on-disk inode from the AGI unlinked list.
2355 error = xfs_iunlink_remove(tp, ip);
2356 if (error != 0) {
2357 return error;
2360 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2361 if (error != 0) {
2362 return error;
2364 ip->i_d.di_mode = 0; /* mark incore inode as free */
2365 ip->i_d.di_flags = 0;
2366 ip->i_d.di_dmevmask = 0;
2367 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2368 ip->i_df.if_ext_max =
2369 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2370 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2371 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2373 * Bump the generation count so no one will be confused
2374 * by reincarnations of this inode.
2376 ip->i_d.di_gen++;
2377 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2379 if (delete) {
2380 xfs_ifree_cluster(ip, tp, first_ino);
2383 return 0;
2387 * Reallocate the space for if_broot based on the number of records
2388 * being added or deleted as indicated in rec_diff. Move the records
2389 * and pointers in if_broot to fit the new size. When shrinking this
2390 * will eliminate holes between the records and pointers created by
2391 * the caller. When growing this will create holes to be filled in
2392 * by the caller.
2394 * The caller must not request to add more records than would fit in
2395 * the on-disk inode root. If the if_broot is currently NULL, then
2396 * if we adding records one will be allocated. The caller must also
2397 * not request that the number of records go below zero, although
2398 * it can go to zero.
2400 * ip -- the inode whose if_broot area is changing
2401 * ext_diff -- the change in the number of records, positive or negative,
2402 * requested for the if_broot array.
2404 void
2405 xfs_iroot_realloc(
2406 xfs_inode_t *ip,
2407 int rec_diff,
2408 int whichfork)
2410 int cur_max;
2411 xfs_ifork_t *ifp;
2412 xfs_bmbt_block_t *new_broot;
2413 int new_max;
2414 size_t new_size;
2415 char *np;
2416 char *op;
2419 * Handle the degenerate case quietly.
2421 if (rec_diff == 0) {
2422 return;
2425 ifp = XFS_IFORK_PTR(ip, whichfork);
2426 if (rec_diff > 0) {
2428 * If there wasn't any memory allocated before, just
2429 * allocate it now and get out.
2431 if (ifp->if_broot_bytes == 0) {
2432 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2433 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2434 KM_SLEEP);
2435 ifp->if_broot_bytes = (int)new_size;
2436 return;
2440 * If there is already an existing if_broot, then we need
2441 * to realloc() it and shift the pointers to their new
2442 * location. The records don't change location because
2443 * they are kept butted up against the btree block header.
2445 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2446 new_max = cur_max + rec_diff;
2447 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2448 ifp->if_broot = (xfs_bmbt_block_t *)
2449 kmem_realloc(ifp->if_broot,
2450 new_size,
2451 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2452 KM_SLEEP);
2453 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2454 ifp->if_broot_bytes);
2455 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2456 (int)new_size);
2457 ifp->if_broot_bytes = (int)new_size;
2458 ASSERT(ifp->if_broot_bytes <=
2459 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2460 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2461 return;
2465 * rec_diff is less than 0. In this case, we are shrinking the
2466 * if_broot buffer. It must already exist. If we go to zero
2467 * records, just get rid of the root and clear the status bit.
2469 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2470 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2471 new_max = cur_max + rec_diff;
2472 ASSERT(new_max >= 0);
2473 if (new_max > 0)
2474 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2475 else
2476 new_size = 0;
2477 if (new_size > 0) {
2478 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2480 * First copy over the btree block header.
2482 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2483 } else {
2484 new_broot = NULL;
2485 ifp->if_flags &= ~XFS_IFBROOT;
2489 * Only copy the records and pointers if there are any.
2491 if (new_max > 0) {
2493 * First copy the records.
2495 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2496 ifp->if_broot_bytes);
2497 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2498 (int)new_size);
2499 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2502 * Then copy the pointers.
2504 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2505 ifp->if_broot_bytes);
2506 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2507 (int)new_size);
2508 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2510 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2511 ifp->if_broot = new_broot;
2512 ifp->if_broot_bytes = (int)new_size;
2513 ASSERT(ifp->if_broot_bytes <=
2514 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2515 return;
2520 * This is called when the amount of space needed for if_extents
2521 * is increased or decreased. The change in size is indicated by
2522 * the number of extents that need to be added or deleted in the
2523 * ext_diff parameter.
2525 * If the amount of space needed has decreased below the size of the
2526 * inline buffer, then switch to using the inline buffer. Otherwise,
2527 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2528 * to what is needed.
2530 * ip -- the inode whose if_extents area is changing
2531 * ext_diff -- the change in the number of extents, positive or negative,
2532 * requested for the if_extents array.
2534 void
2535 xfs_iext_realloc(
2536 xfs_inode_t *ip,
2537 int ext_diff,
2538 int whichfork)
2540 int byte_diff;
2541 xfs_ifork_t *ifp;
2542 int new_size;
2543 uint rnew_size;
2545 if (ext_diff == 0) {
2546 return;
2549 ifp = XFS_IFORK_PTR(ip, whichfork);
2550 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2551 new_size = (int)ifp->if_bytes + byte_diff;
2552 ASSERT(new_size >= 0);
2554 if (new_size == 0) {
2555 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2556 ASSERT(ifp->if_real_bytes != 0);
2557 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2559 ifp->if_u1.if_extents = NULL;
2560 rnew_size = 0;
2561 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2563 * If the valid extents can fit in if_inline_ext,
2564 * copy them from the malloc'd vector and free it.
2566 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2568 * For now, empty files are format EXTENTS,
2569 * so the if_extents pointer is null.
2571 if (ifp->if_u1.if_extents) {
2572 memcpy(ifp->if_u2.if_inline_ext,
2573 ifp->if_u1.if_extents, new_size);
2574 kmem_free(ifp->if_u1.if_extents,
2575 ifp->if_real_bytes);
2577 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2579 rnew_size = 0;
2580 } else {
2581 rnew_size = new_size;
2582 if ((rnew_size & (rnew_size - 1)) != 0)
2583 rnew_size = xfs_iroundup(rnew_size);
2585 * Stuck with malloc/realloc.
2587 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2588 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2589 kmem_alloc(rnew_size, KM_SLEEP);
2590 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2591 sizeof(ifp->if_u2.if_inline_ext));
2592 } else if (rnew_size != ifp->if_real_bytes) {
2593 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2594 kmem_realloc(ifp->if_u1.if_extents,
2595 rnew_size,
2596 ifp->if_real_bytes,
2597 KM_NOFS);
2600 ifp->if_real_bytes = rnew_size;
2601 ifp->if_bytes = new_size;
2606 * This is called when the amount of space needed for if_data
2607 * is increased or decreased. The change in size is indicated by
2608 * the number of bytes that need to be added or deleted in the
2609 * byte_diff parameter.
2611 * If the amount of space needed has decreased below the size of the
2612 * inline buffer, then switch to using the inline buffer. Otherwise,
2613 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2614 * to what is needed.
2616 * ip -- the inode whose if_data area is changing
2617 * byte_diff -- the change in the number of bytes, positive or negative,
2618 * requested for the if_data array.
2620 void
2621 xfs_idata_realloc(
2622 xfs_inode_t *ip,
2623 int byte_diff,
2624 int whichfork)
2626 xfs_ifork_t *ifp;
2627 int new_size;
2628 int real_size;
2630 if (byte_diff == 0) {
2631 return;
2634 ifp = XFS_IFORK_PTR(ip, whichfork);
2635 new_size = (int)ifp->if_bytes + byte_diff;
2636 ASSERT(new_size >= 0);
2638 if (new_size == 0) {
2639 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2640 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2642 ifp->if_u1.if_data = NULL;
2643 real_size = 0;
2644 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2646 * If the valid extents/data can fit in if_inline_ext/data,
2647 * copy them from the malloc'd vector and free it.
2649 if (ifp->if_u1.if_data == NULL) {
2650 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2651 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2652 ASSERT(ifp->if_real_bytes != 0);
2653 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2654 new_size);
2655 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2656 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2658 real_size = 0;
2659 } else {
2661 * Stuck with malloc/realloc.
2662 * For inline data, the underlying buffer must be
2663 * a multiple of 4 bytes in size so that it can be
2664 * logged and stay on word boundaries. We enforce
2665 * that here.
2667 real_size = roundup(new_size, 4);
2668 if (ifp->if_u1.if_data == NULL) {
2669 ASSERT(ifp->if_real_bytes == 0);
2670 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2671 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2673 * Only do the realloc if the underlying size
2674 * is really changing.
2676 if (ifp->if_real_bytes != real_size) {
2677 ifp->if_u1.if_data =
2678 kmem_realloc(ifp->if_u1.if_data,
2679 real_size,
2680 ifp->if_real_bytes,
2681 KM_SLEEP);
2683 } else {
2684 ASSERT(ifp->if_real_bytes == 0);
2685 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2686 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2687 ifp->if_bytes);
2690 ifp->if_real_bytes = real_size;
2691 ifp->if_bytes = new_size;
2692 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2699 * Map inode to disk block and offset.
2701 * mp -- the mount point structure for the current file system
2702 * tp -- the current transaction
2703 * ino -- the inode number of the inode to be located
2704 * imap -- this structure is filled in with the information necessary
2705 * to retrieve the given inode from disk
2706 * flags -- flags to pass to xfs_dilocate indicating whether or not
2707 * lookups in the inode btree were OK or not
2710 xfs_imap(
2711 xfs_mount_t *mp,
2712 xfs_trans_t *tp,
2713 xfs_ino_t ino,
2714 xfs_imap_t *imap,
2715 uint flags)
2717 xfs_fsblock_t fsbno;
2718 int len;
2719 int off;
2720 int error;
2722 fsbno = imap->im_blkno ?
2723 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2724 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2725 if (error != 0) {
2726 return error;
2728 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2729 imap->im_len = XFS_FSB_TO_BB(mp, len);
2730 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2731 imap->im_ioffset = (ushort)off;
2732 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2733 return 0;
2736 void
2737 xfs_idestroy_fork(
2738 xfs_inode_t *ip,
2739 int whichfork)
2741 xfs_ifork_t *ifp;
2743 ifp = XFS_IFORK_PTR(ip, whichfork);
2744 if (ifp->if_broot != NULL) {
2745 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2746 ifp->if_broot = NULL;
2750 * If the format is local, then we can't have an extents
2751 * array so just look for an inline data array. If we're
2752 * not local then we may or may not have an extents list,
2753 * so check and free it up if we do.
2755 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2756 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2757 (ifp->if_u1.if_data != NULL)) {
2758 ASSERT(ifp->if_real_bytes != 0);
2759 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2760 ifp->if_u1.if_data = NULL;
2761 ifp->if_real_bytes = 0;
2763 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2764 (ifp->if_u1.if_extents != NULL) &&
2765 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2766 ASSERT(ifp->if_real_bytes != 0);
2767 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2768 ifp->if_u1.if_extents = NULL;
2769 ifp->if_real_bytes = 0;
2771 ASSERT(ifp->if_u1.if_extents == NULL ||
2772 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2773 ASSERT(ifp->if_real_bytes == 0);
2774 if (whichfork == XFS_ATTR_FORK) {
2775 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2776 ip->i_afp = NULL;
2781 * This is called free all the memory associated with an inode.
2782 * It must free the inode itself and any buffers allocated for
2783 * if_extents/if_data and if_broot. It must also free the lock
2784 * associated with the inode.
2786 void
2787 xfs_idestroy(
2788 xfs_inode_t *ip)
2791 switch (ip->i_d.di_mode & S_IFMT) {
2792 case S_IFREG:
2793 case S_IFDIR:
2794 case S_IFLNK:
2795 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2796 break;
2798 if (ip->i_afp)
2799 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2800 mrfree(&ip->i_lock);
2801 mrfree(&ip->i_iolock);
2802 freesema(&ip->i_flock);
2803 #ifdef XFS_BMAP_TRACE
2804 ktrace_free(ip->i_xtrace);
2805 #endif
2806 #ifdef XFS_BMBT_TRACE
2807 ktrace_free(ip->i_btrace);
2808 #endif
2809 #ifdef XFS_RW_TRACE
2810 ktrace_free(ip->i_rwtrace);
2811 #endif
2812 #ifdef XFS_ILOCK_TRACE
2813 ktrace_free(ip->i_lock_trace);
2814 #endif
2815 #ifdef XFS_DIR2_TRACE
2816 ktrace_free(ip->i_dir_trace);
2817 #endif
2818 if (ip->i_itemp) {
2819 /* XXXdpd should be able to assert this but shutdown
2820 * is leaving the AIL behind. */
2821 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2822 XFS_FORCED_SHUTDOWN(ip->i_mount));
2823 xfs_inode_item_destroy(ip);
2825 kmem_zone_free(xfs_inode_zone, ip);
2830 * Increment the pin count of the given buffer.
2831 * This value is protected by ipinlock spinlock in the mount structure.
2833 void
2834 xfs_ipin(
2835 xfs_inode_t *ip)
2837 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2839 atomic_inc(&ip->i_pincount);
2843 * Decrement the pin count of the given inode, and wake up
2844 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2845 * inode must have been previoulsy pinned with a call to xfs_ipin().
2847 void
2848 xfs_iunpin(
2849 xfs_inode_t *ip)
2851 ASSERT(atomic_read(&ip->i_pincount) > 0);
2853 if (atomic_dec_and_test(&ip->i_pincount)) {
2854 vnode_t *vp = XFS_ITOV_NULL(ip);
2856 /* make sync come back and flush this inode */
2857 if (vp) {
2858 struct inode *inode = LINVFS_GET_IP(vp);
2860 if (!(inode->i_state & I_NEW))
2861 mark_inode_dirty_sync(inode);
2864 wake_up(&ip->i_ipin_wait);
2869 * This is called to wait for the given inode to be unpinned.
2870 * It will sleep until this happens. The caller must have the
2871 * inode locked in at least shared mode so that the buffer cannot
2872 * be subsequently pinned once someone is waiting for it to be
2873 * unpinned.
2875 void
2876 xfs_iunpin_wait(
2877 xfs_inode_t *ip)
2879 xfs_inode_log_item_t *iip;
2880 xfs_lsn_t lsn;
2882 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2884 if (atomic_read(&ip->i_pincount) == 0) {
2885 return;
2888 iip = ip->i_itemp;
2889 if (iip && iip->ili_last_lsn) {
2890 lsn = iip->ili_last_lsn;
2891 } else {
2892 lsn = (xfs_lsn_t)0;
2896 * Give the log a push so we don't wait here too long.
2898 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2900 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2905 * xfs_iextents_copy()
2907 * This is called to copy the REAL extents (as opposed to the delayed
2908 * allocation extents) from the inode into the given buffer. It
2909 * returns the number of bytes copied into the buffer.
2911 * If there are no delayed allocation extents, then we can just
2912 * memcpy() the extents into the buffer. Otherwise, we need to
2913 * examine each extent in turn and skip those which are delayed.
2916 xfs_iextents_copy(
2917 xfs_inode_t *ip,
2918 xfs_bmbt_rec_t *buffer,
2919 int whichfork)
2921 int copied;
2922 xfs_bmbt_rec_t *dest_ep;
2923 xfs_bmbt_rec_t *ep;
2924 #ifdef XFS_BMAP_TRACE
2925 static char fname[] = "xfs_iextents_copy";
2926 #endif
2927 int i;
2928 xfs_ifork_t *ifp;
2929 int nrecs;
2930 xfs_fsblock_t start_block;
2932 ifp = XFS_IFORK_PTR(ip, whichfork);
2933 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2934 ASSERT(ifp->if_bytes > 0);
2936 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2937 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2938 ASSERT(nrecs > 0);
2941 * There are some delayed allocation extents in the
2942 * inode, so copy the extents one at a time and skip
2943 * the delayed ones. There must be at least one
2944 * non-delayed extent.
2946 ep = ifp->if_u1.if_extents;
2947 dest_ep = buffer;
2948 copied = 0;
2949 for (i = 0; i < nrecs; i++) {
2950 start_block = xfs_bmbt_get_startblock(ep);
2951 if (ISNULLSTARTBLOCK(start_block)) {
2953 * It's a delayed allocation extent, so skip it.
2955 ep++;
2956 continue;
2959 /* Translate to on disk format */
2960 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2961 (__uint64_t*)&dest_ep->l0);
2962 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2963 (__uint64_t*)&dest_ep->l1);
2964 dest_ep++;
2965 ep++;
2966 copied++;
2968 ASSERT(copied != 0);
2969 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2971 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2975 * Each of the following cases stores data into the same region
2976 * of the on-disk inode, so only one of them can be valid at
2977 * any given time. While it is possible to have conflicting formats
2978 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2979 * in EXTENTS format, this can only happen when the fork has
2980 * changed formats after being modified but before being flushed.
2981 * In these cases, the format always takes precedence, because the
2982 * format indicates the current state of the fork.
2984 /*ARGSUSED*/
2985 STATIC int
2986 xfs_iflush_fork(
2987 xfs_inode_t *ip,
2988 xfs_dinode_t *dip,
2989 xfs_inode_log_item_t *iip,
2990 int whichfork,
2991 xfs_buf_t *bp)
2993 char *cp;
2994 xfs_ifork_t *ifp;
2995 xfs_mount_t *mp;
2996 #ifdef XFS_TRANS_DEBUG
2997 int first;
2998 #endif
2999 static const short brootflag[2] =
3000 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
3001 static const short dataflag[2] =
3002 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
3003 static const short extflag[2] =
3004 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
3006 if (iip == NULL)
3007 return 0;
3008 ifp = XFS_IFORK_PTR(ip, whichfork);
3010 * This can happen if we gave up in iformat in an error path,
3011 * for the attribute fork.
3013 if (ifp == NULL) {
3014 ASSERT(whichfork == XFS_ATTR_FORK);
3015 return 0;
3017 cp = XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT);
3018 mp = ip->i_mount;
3019 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
3020 case XFS_DINODE_FMT_LOCAL:
3021 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
3022 (ifp->if_bytes > 0)) {
3023 ASSERT(ifp->if_u1.if_data != NULL);
3024 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
3025 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
3027 if (whichfork == XFS_DATA_FORK) {
3028 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
3029 XFS_ERROR_REPORT("xfs_iflush_fork",
3030 XFS_ERRLEVEL_LOW, mp);
3031 return XFS_ERROR(EFSCORRUPTED);
3034 break;
3036 case XFS_DINODE_FMT_EXTENTS:
3037 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3038 !(iip->ili_format.ilf_fields & extflag[whichfork]));
3039 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
3040 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3041 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3042 (ifp->if_bytes > 0)) {
3043 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3044 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3045 whichfork);
3047 break;
3049 case XFS_DINODE_FMT_BTREE:
3050 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3051 (ifp->if_broot_bytes > 0)) {
3052 ASSERT(ifp->if_broot != NULL);
3053 ASSERT(ifp->if_broot_bytes <=
3054 (XFS_IFORK_SIZE(ip, whichfork) +
3055 XFS_BROOT_SIZE_ADJ));
3056 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3057 (xfs_bmdr_block_t *)cp,
3058 XFS_DFORK_SIZE_ARCH(dip, mp, whichfork, ARCH_CONVERT));
3060 break;
3062 case XFS_DINODE_FMT_DEV:
3063 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3064 ASSERT(whichfork == XFS_DATA_FORK);
3065 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3067 break;
3069 case XFS_DINODE_FMT_UUID:
3070 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3071 ASSERT(whichfork == XFS_DATA_FORK);
3072 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3073 sizeof(uuid_t));
3075 break;
3077 default:
3078 ASSERT(0);
3079 break;
3082 return 0;
3086 * xfs_iflush() will write a modified inode's changes out to the
3087 * inode's on disk home. The caller must have the inode lock held
3088 * in at least shared mode and the inode flush semaphore must be
3089 * held as well. The inode lock will still be held upon return from
3090 * the call and the caller is free to unlock it.
3091 * The inode flush lock will be unlocked when the inode reaches the disk.
3092 * The flags indicate how the inode's buffer should be written out.
3095 xfs_iflush(
3096 xfs_inode_t *ip,
3097 uint flags)
3099 xfs_inode_log_item_t *iip;
3100 xfs_buf_t *bp;
3101 xfs_dinode_t *dip;
3102 xfs_mount_t *mp;
3103 int error;
3104 /* REFERENCED */
3105 xfs_chash_t *ch;
3106 xfs_inode_t *iq;
3107 int clcount; /* count of inodes clustered */
3108 int bufwasdelwri;
3109 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3110 SPLDECL(s);
3112 XFS_STATS_INC(xs_iflush_count);
3114 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3115 ASSERT(valusema(&ip->i_flock) <= 0);
3116 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3117 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3119 iip = ip->i_itemp;
3120 mp = ip->i_mount;
3123 * If the inode isn't dirty, then just release the inode
3124 * flush lock and do nothing.
3126 if ((ip->i_update_core == 0) &&
3127 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3128 ASSERT((iip != NULL) ?
3129 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3130 xfs_ifunlock(ip);
3131 return 0;
3135 * We can't flush the inode until it is unpinned, so
3136 * wait for it. We know noone new can pin it, because
3137 * we are holding the inode lock shared and you need
3138 * to hold it exclusively to pin the inode.
3140 xfs_iunpin_wait(ip);
3143 * This may have been unpinned because the filesystem is shutting
3144 * down forcibly. If that's the case we must not write this inode
3145 * to disk, because the log record didn't make it to disk!
3147 if (XFS_FORCED_SHUTDOWN(mp)) {
3148 ip->i_update_core = 0;
3149 if (iip)
3150 iip->ili_format.ilf_fields = 0;
3151 xfs_ifunlock(ip);
3152 return XFS_ERROR(EIO);
3156 * Get the buffer containing the on-disk inode.
3158 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3159 if (error != 0) {
3160 xfs_ifunlock(ip);
3161 return error;
3165 * Decide how buffer will be flushed out. This is done before
3166 * the call to xfs_iflush_int because this field is zeroed by it.
3168 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3170 * Flush out the inode buffer according to the directions
3171 * of the caller. In the cases where the caller has given
3172 * us a choice choose the non-delwri case. This is because
3173 * the inode is in the AIL and we need to get it out soon.
3175 switch (flags) {
3176 case XFS_IFLUSH_SYNC:
3177 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3178 flags = 0;
3179 break;
3180 case XFS_IFLUSH_ASYNC:
3181 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3182 flags = INT_ASYNC;
3183 break;
3184 case XFS_IFLUSH_DELWRI:
3185 flags = INT_DELWRI;
3186 break;
3187 default:
3188 ASSERT(0);
3189 flags = 0;
3190 break;
3192 } else {
3193 switch (flags) {
3194 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3195 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3196 case XFS_IFLUSH_DELWRI:
3197 flags = INT_DELWRI;
3198 break;
3199 case XFS_IFLUSH_ASYNC:
3200 flags = INT_ASYNC;
3201 break;
3202 case XFS_IFLUSH_SYNC:
3203 flags = 0;
3204 break;
3205 default:
3206 ASSERT(0);
3207 flags = 0;
3208 break;
3213 * First flush out the inode that xfs_iflush was called with.
3215 error = xfs_iflush_int(ip, bp);
3216 if (error) {
3217 goto corrupt_out;
3221 * inode clustering:
3222 * see if other inodes can be gathered into this write
3225 ip->i_chash->chl_buf = bp;
3227 ch = XFS_CHASH(mp, ip->i_blkno);
3228 s = mutex_spinlock(&ch->ch_lock);
3230 clcount = 0;
3231 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3233 * Do an un-protected check to see if the inode is dirty and
3234 * is a candidate for flushing. These checks will be repeated
3235 * later after the appropriate locks are acquired.
3237 iip = iq->i_itemp;
3238 if ((iq->i_update_core == 0) &&
3239 ((iip == NULL) ||
3240 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3241 xfs_ipincount(iq) == 0) {
3242 continue;
3246 * Try to get locks. If any are unavailable,
3247 * then this inode cannot be flushed and is skipped.
3250 /* get inode locks (just i_lock) */
3251 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3252 /* get inode flush lock */
3253 if (xfs_iflock_nowait(iq)) {
3254 /* check if pinned */
3255 if (xfs_ipincount(iq) == 0) {
3256 /* arriving here means that
3257 * this inode can be flushed.
3258 * first re-check that it's
3259 * dirty
3261 iip = iq->i_itemp;
3262 if ((iq->i_update_core != 0)||
3263 ((iip != NULL) &&
3264 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3265 clcount++;
3266 error = xfs_iflush_int(iq, bp);
3267 if (error) {
3268 xfs_iunlock(iq,
3269 XFS_ILOCK_SHARED);
3270 goto cluster_corrupt_out;
3272 } else {
3273 xfs_ifunlock(iq);
3275 } else {
3276 xfs_ifunlock(iq);
3279 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3282 mutex_spinunlock(&ch->ch_lock, s);
3284 if (clcount) {
3285 XFS_STATS_INC(xs_icluster_flushcnt);
3286 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3290 * If the buffer is pinned then push on the log so we won't
3291 * get stuck waiting in the write for too long.
3293 if (XFS_BUF_ISPINNED(bp)){
3294 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3297 if (flags & INT_DELWRI) {
3298 xfs_bdwrite(mp, bp);
3299 } else if (flags & INT_ASYNC) {
3300 xfs_bawrite(mp, bp);
3301 } else {
3302 error = xfs_bwrite(mp, bp);
3304 return error;
3306 corrupt_out:
3307 xfs_buf_relse(bp);
3308 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3309 xfs_iflush_abort(ip);
3311 * Unlocks the flush lock
3313 return XFS_ERROR(EFSCORRUPTED);
3315 cluster_corrupt_out:
3316 /* Corruption detected in the clustering loop. Invalidate the
3317 * inode buffer and shut down the filesystem.
3319 mutex_spinunlock(&ch->ch_lock, s);
3322 * Clean up the buffer. If it was B_DELWRI, just release it --
3323 * brelse can handle it with no problems. If not, shut down the
3324 * filesystem before releasing the buffer.
3326 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3327 xfs_buf_relse(bp);
3330 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3332 if(!bufwasdelwri) {
3334 * Just like incore_relse: if we have b_iodone functions,
3335 * mark the buffer as an error and call them. Otherwise
3336 * mark it as stale and brelse.
3338 if (XFS_BUF_IODONE_FUNC(bp)) {
3339 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3340 XFS_BUF_UNDONE(bp);
3341 XFS_BUF_STALE(bp);
3342 XFS_BUF_SHUT(bp);
3343 XFS_BUF_ERROR(bp,EIO);
3344 xfs_biodone(bp);
3345 } else {
3346 XFS_BUF_STALE(bp);
3347 xfs_buf_relse(bp);
3351 xfs_iflush_abort(iq);
3353 * Unlocks the flush lock
3355 return XFS_ERROR(EFSCORRUPTED);
3359 STATIC int
3360 xfs_iflush_int(
3361 xfs_inode_t *ip,
3362 xfs_buf_t *bp)
3364 xfs_inode_log_item_t *iip;
3365 xfs_dinode_t *dip;
3366 xfs_mount_t *mp;
3367 #ifdef XFS_TRANS_DEBUG
3368 int first;
3369 #endif
3370 SPLDECL(s);
3372 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3373 ASSERT(valusema(&ip->i_flock) <= 0);
3374 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3375 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3377 iip = ip->i_itemp;
3378 mp = ip->i_mount;
3382 * If the inode isn't dirty, then just release the inode
3383 * flush lock and do nothing.
3385 if ((ip->i_update_core == 0) &&
3386 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3387 xfs_ifunlock(ip);
3388 return 0;
3391 /* set *dip = inode's place in the buffer */
3392 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3395 * Clear i_update_core before copying out the data.
3396 * This is for coordination with our timestamp updates
3397 * that don't hold the inode lock. They will always
3398 * update the timestamps BEFORE setting i_update_core,
3399 * so if we clear i_update_core after they set it we
3400 * are guaranteed to see their updates to the timestamps.
3401 * I believe that this depends on strongly ordered memory
3402 * semantics, but we have that. We use the SYNCHRONIZE
3403 * macro to make sure that the compiler does not reorder
3404 * the i_update_core access below the data copy below.
3406 ip->i_update_core = 0;
3407 SYNCHRONIZE();
3409 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3410 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3411 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3412 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3413 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3414 goto corrupt_out;
3416 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3417 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3418 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3419 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3420 ip->i_ino, ip, ip->i_d.di_magic);
3421 goto corrupt_out;
3423 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3424 if (XFS_TEST_ERROR(
3425 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3426 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3427 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3428 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3429 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3430 ip->i_ino, ip);
3431 goto corrupt_out;
3433 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3434 if (XFS_TEST_ERROR(
3435 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3436 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3437 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3438 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3439 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3440 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3441 ip->i_ino, ip);
3442 goto corrupt_out;
3445 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3446 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3447 XFS_RANDOM_IFLUSH_5)) {
3448 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3449 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3450 ip->i_ino,
3451 ip->i_d.di_nextents + ip->i_d.di_anextents,
3452 ip->i_d.di_nblocks,
3453 ip);
3454 goto corrupt_out;
3456 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3457 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3458 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3459 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3460 ip->i_ino, ip->i_d.di_forkoff, ip);
3461 goto corrupt_out;
3464 * bump the flush iteration count, used to detect flushes which
3465 * postdate a log record during recovery.
3468 ip->i_d.di_flushiter++;
3471 * Copy the dirty parts of the inode into the on-disk
3472 * inode. We always copy out the core of the inode,
3473 * because if the inode is dirty at all the core must
3474 * be.
3476 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d),
3477 -1, ARCH_CONVERT);
3479 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3480 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3481 ip->i_d.di_flushiter = 0;
3484 * If this is really an old format inode and the superblock version
3485 * has not been updated to support only new format inodes, then
3486 * convert back to the old inode format. If the superblock version
3487 * has been updated, then make the conversion permanent.
3489 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3490 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3491 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3492 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3494 * Convert it back.
3496 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3497 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3498 } else {
3500 * The superblock version has already been bumped,
3501 * so just make the conversion to the new inode
3502 * format permanent.
3504 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3505 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3506 ip->i_d.di_onlink = 0;
3507 INT_ZERO(dip->di_core.di_onlink, ARCH_CONVERT);
3508 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3509 memset(&(dip->di_core.di_pad[0]), 0,
3510 sizeof(dip->di_core.di_pad));
3511 ASSERT(ip->i_d.di_projid == 0);
3515 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3516 goto corrupt_out;
3519 if (XFS_IFORK_Q(ip)) {
3521 * The only error from xfs_iflush_fork is on the data fork.
3523 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3525 xfs_inobp_check(mp, bp);
3528 * We've recorded everything logged in the inode, so we'd
3529 * like to clear the ilf_fields bits so we don't log and
3530 * flush things unnecessarily. However, we can't stop
3531 * logging all this information until the data we've copied
3532 * into the disk buffer is written to disk. If we did we might
3533 * overwrite the copy of the inode in the log with all the
3534 * data after re-logging only part of it, and in the face of
3535 * a crash we wouldn't have all the data we need to recover.
3537 * What we do is move the bits to the ili_last_fields field.
3538 * When logging the inode, these bits are moved back to the
3539 * ilf_fields field. In the xfs_iflush_done() routine we
3540 * clear ili_last_fields, since we know that the information
3541 * those bits represent is permanently on disk. As long as
3542 * the flush completes before the inode is logged again, then
3543 * both ilf_fields and ili_last_fields will be cleared.
3545 * We can play with the ilf_fields bits here, because the inode
3546 * lock must be held exclusively in order to set bits there
3547 * and the flush lock protects the ili_last_fields bits.
3548 * Set ili_logged so the flush done
3549 * routine can tell whether or not to look in the AIL.
3550 * Also, store the current LSN of the inode so that we can tell
3551 * whether the item has moved in the AIL from xfs_iflush_done().
3552 * In order to read the lsn we need the AIL lock, because
3553 * it is a 64 bit value that cannot be read atomically.
3555 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3556 iip->ili_last_fields = iip->ili_format.ilf_fields;
3557 iip->ili_format.ilf_fields = 0;
3558 iip->ili_logged = 1;
3560 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3561 AIL_LOCK(mp,s);
3562 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3563 AIL_UNLOCK(mp, s);
3566 * Attach the function xfs_iflush_done to the inode's
3567 * buffer. This will remove the inode from the AIL
3568 * and unlock the inode's flush lock when the inode is
3569 * completely written to disk.
3571 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3572 xfs_iflush_done, (xfs_log_item_t *)iip);
3574 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3575 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3576 } else {
3578 * We're flushing an inode which is not in the AIL and has
3579 * not been logged but has i_update_core set. For this
3580 * case we can use a B_DELWRI flush and immediately drop
3581 * the inode flush lock because we can avoid the whole
3582 * AIL state thing. It's OK to drop the flush lock now,
3583 * because we've already locked the buffer and to do anything
3584 * you really need both.
3586 if (iip != NULL) {
3587 ASSERT(iip->ili_logged == 0);
3588 ASSERT(iip->ili_last_fields == 0);
3589 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3591 xfs_ifunlock(ip);
3594 return 0;
3596 corrupt_out:
3597 return XFS_ERROR(EFSCORRUPTED);
3602 * Flush all inactive inodes in mp. Return true if no user references
3603 * were found, false otherwise.
3606 xfs_iflush_all(
3607 xfs_mount_t *mp,
3608 int flag)
3610 int busy;
3611 int done;
3612 int purged;
3613 xfs_inode_t *ip;
3614 vmap_t vmap;
3615 vnode_t *vp;
3617 busy = done = 0;
3618 while (!done) {
3619 purged = 0;
3620 XFS_MOUNT_ILOCK(mp);
3621 ip = mp->m_inodes;
3622 if (ip == NULL) {
3623 break;
3625 do {
3626 /* Make sure we skip markers inserted by sync */
3627 if (ip->i_mount == NULL) {
3628 ip = ip->i_mnext;
3629 continue;
3633 * It's up to our caller to purge the root
3634 * and quota vnodes later.
3636 vp = XFS_ITOV_NULL(ip);
3638 if (!vp) {
3639 XFS_MOUNT_IUNLOCK(mp);
3640 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3641 purged = 1;
3642 break;
3645 if (vn_count(vp) != 0) {
3646 if (vn_count(vp) == 1 &&
3647 (ip == mp->m_rootip ||
3648 (mp->m_quotainfo &&
3649 (ip->i_ino == mp->m_sb.sb_uquotino ||
3650 ip->i_ino == mp->m_sb.sb_gquotino)))) {
3652 ip = ip->i_mnext;
3653 continue;
3655 if (!(flag & XFS_FLUSH_ALL)) {
3656 busy = 1;
3657 done = 1;
3658 break;
3661 * Ignore busy inodes but continue flushing
3662 * others.
3664 ip = ip->i_mnext;
3665 continue;
3668 * Sample vp mapping while holding mp locked on MP
3669 * systems, so we don't purge a reclaimed or
3670 * nonexistent vnode. We break from the loop
3671 * since we know that we modify
3672 * it by pulling ourselves from it in xfs_reclaim()
3673 * called via vn_purge() below. Set ip to the next
3674 * entry in the list anyway so we'll know below
3675 * whether we reached the end or not.
3677 VMAP(vp, vmap);
3678 XFS_MOUNT_IUNLOCK(mp);
3680 vn_purge(vp, &vmap);
3682 purged = 1;
3683 break;
3684 } while (ip != mp->m_inodes);
3686 * We need to distinguish between when we exit the loop
3687 * after a purge and when we simply hit the end of the
3688 * list. We can't use the (ip == mp->m_inodes) test,
3689 * because when we purge an inode at the start of the list
3690 * the next inode on the list becomes mp->m_inodes. That
3691 * would cause such a test to bail out early. The purged
3692 * variable tells us how we got out of the loop.
3694 if (!purged) {
3695 done = 1;
3698 XFS_MOUNT_IUNLOCK(mp);
3699 return !busy;
3704 * xfs_iaccess: check accessibility of inode for mode.
3707 xfs_iaccess(
3708 xfs_inode_t *ip,
3709 mode_t mode,
3710 cred_t *cr)
3712 int error;
3713 mode_t orgmode = mode;
3714 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
3716 if (mode & S_IWUSR) {
3717 umode_t imode = inode->i_mode;
3719 if (IS_RDONLY(inode) &&
3720 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3721 return XFS_ERROR(EROFS);
3723 if (IS_IMMUTABLE(inode))
3724 return XFS_ERROR(EACCES);
3728 * If there's an Access Control List it's used instead of
3729 * the mode bits.
3731 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3732 return error ? XFS_ERROR(error) : 0;
3734 if (current_fsuid(cr) != ip->i_d.di_uid) {
3735 mode >>= 3;
3736 if (!in_group_p((gid_t)ip->i_d.di_gid))
3737 mode >>= 3;
3741 * If the DACs are ok we don't need any capability check.
3743 if ((ip->i_d.di_mode & mode) == mode)
3744 return 0;
3746 * Read/write DACs are always overridable.
3747 * Executable DACs are overridable if at least one exec bit is set.
3749 if (!(orgmode & S_IXUSR) ||
3750 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3751 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3752 return 0;
3754 if ((orgmode == S_IRUSR) ||
3755 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3756 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3757 return 0;
3758 #ifdef NOISE
3759 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3760 #endif /* NOISE */
3761 return XFS_ERROR(EACCES);
3763 return XFS_ERROR(EACCES);
3767 * xfs_iroundup: round up argument to next power of two
3769 uint
3770 xfs_iroundup(
3771 uint v)
3773 int i;
3774 uint m;
3776 if ((v & (v - 1)) == 0)
3777 return v;
3778 ASSERT((v & 0x80000000) == 0);
3779 if ((v & (v + 1)) == 0)
3780 return v + 1;
3781 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3782 if (v & m)
3783 continue;
3784 v |= m;
3785 if ((v & (v + 1)) == 0)
3786 return v + 1;
3788 ASSERT(0);
3789 return( 0 );
3793 * Change the requested timestamp in the given inode.
3794 * We don't lock across timestamp updates, and we don't log them but
3795 * we do record the fact that there is dirty information in core.
3797 * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3798 * with XFS_ICHGTIME_ACC to be sure that access time
3799 * update will take. Calling first with XFS_ICHGTIME_ACC
3800 * and then XFS_ICHGTIME_MOD may fail to modify the access
3801 * timestamp if the filesystem is mounted noacctm.
3803 void
3804 xfs_ichgtime(xfs_inode_t *ip,
3805 int flags)
3807 timespec_t tv;
3808 vnode_t *vp = XFS_ITOV(ip);
3809 struct inode *inode = LINVFS_GET_IP(vp);
3812 * We're not supposed to change timestamps in readonly-mounted
3813 * filesystems. Throw it away if anyone asks us.
3815 if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
3816 return;
3819 * Don't update access timestamps on reads if mounted "noatime"
3820 * Throw it away if anyone asks us.
3822 if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
3823 ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
3824 == XFS_ICHGTIME_ACC))
3825 return;
3827 nanotime(&tv);
3828 if (flags & XFS_ICHGTIME_MOD) {
3829 VN_MTIMESET(vp, &tv);
3830 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
3831 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
3833 if (flags & XFS_ICHGTIME_ACC) {
3834 VN_ATIMESET(vp, &tv);
3835 ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
3836 ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
3838 if (flags & XFS_ICHGTIME_CHG) {
3839 VN_CTIMESET(vp, &tv);
3840 ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
3841 ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
3845 * We update the i_update_core field _after_ changing
3846 * the timestamps in order to coordinate properly with
3847 * xfs_iflush() so that we don't lose timestamp updates.
3848 * This keeps us from having to hold the inode lock
3849 * while doing this. We use the SYNCHRONIZE macro to
3850 * ensure that the compiler does not reorder the update
3851 * of i_update_core above the timestamp updates above.
3853 SYNCHRONIZE();
3854 ip->i_update_core = 1;
3855 if (!(inode->i_state & I_LOCK))
3856 mark_inode_dirty_sync(inode);
3859 #ifdef XFS_ILOCK_TRACE
3860 ktrace_t *xfs_ilock_trace_buf;
3862 void
3863 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3865 ktrace_enter(ip->i_lock_trace,
3866 (void *)ip,
3867 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3868 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3869 (void *)ra, /* caller of ilock */
3870 (void *)(unsigned long)current_cpu(),
3871 (void *)(unsigned long)current_pid(),
3872 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3874 #endif