MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / include / asm-m32r / uaccess.h
blob58530a34cecbcb0ab1b9c96e1b0fffe4035e698b
1 #ifndef _ASM_M32R_UACCESS_H
2 #define _ASM_M32R_UACCESS_H
4 /*
5 * linux/include/asm-m32r/uaccess.h
7 * M32R version.
8 * Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org>
9 */
11 #undef UACCESS_DEBUG
13 #ifdef UACCESS_DEBUG
14 #define UAPRINTK(args...) printk(args)
15 #else
16 #define UAPRINTK(args...)
17 #endif /* UACCESS_DEBUG */
20 * User space memory access functions
22 #include <linux/config.h>
23 #include <linux/errno.h>
24 #include <linux/thread_info.h>
25 #include <asm/page.h>
27 #define VERIFY_READ 0
28 #define VERIFY_WRITE 1
31 * The fs value determines whether argument validity checking should be
32 * performed or not. If get_fs() == USER_DS, checking is performed, with
33 * get_fs() == KERNEL_DS, checking is bypassed.
35 * For historical reasons, these macros are grossly misnamed.
38 #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
40 #ifdef CONFIG_MMU
41 #define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFF)
42 #define USER_DS MAKE_MM_SEG(PAGE_OFFSET)
43 #else
44 #define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFF)
45 #define USER_DS MAKE_MM_SEG(0xFFFFFFFF)
46 #endif /* CONFIG_MMU */
48 #define get_ds() (KERNEL_DS)
49 #ifdef CONFIG_MMU
50 #define get_fs() (current_thread_info()->addr_limit)
51 #define set_fs(x) (current_thread_info()->addr_limit = (x))
52 #else
53 static inline mm_segment_t get_fs(void)
55 return USER_DS;
58 static inline void set_fs(mm_segment_t s)
61 #endif /* CONFIG_MMU */
63 #define segment_eq(a,b) ((a).seg == (b).seg)
65 #define __addr_ok(addr) \
66 ((unsigned long)(addr) < (current_thread_info()->addr_limit.seg))
69 * Test whether a block of memory is a valid user space address.
70 * Returns 0 if the range is valid, nonzero otherwise.
72 * This is equivalent to the following test:
73 * (u33)addr + (u33)size >= (u33)current->addr_limit.seg
75 * This needs 33-bit arithmetic. We have a carry...
77 #define __range_ok(addr,size) ({ \
78 unsigned long flag, sum; \
79 __chk_user_ptr(addr); \
80 asm ( \
81 " cmpu %1, %1 ; clear cbit\n" \
82 " addx %1, %3 ; set cbit if overflow\n" \
83 " subx %0, %0\n" \
84 " cmpu %4, %1\n" \
85 " subx %0, %5\n" \
86 : "=&r"(flag), "=r"(sum) \
87 : "1"(addr), "r"((int)(size)), \
88 "r"(current_thread_info()->addr_limit.seg), "r"(0) \
89 : "cbit" ); \
90 flag; })
92 /**
93 * access_ok: - Checks if a user space pointer is valid
94 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
95 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
96 * to write to a block, it is always safe to read from it.
97 * @addr: User space pointer to start of block to check
98 * @size: Size of block to check
100 * Context: User context only. This function may sleep.
102 * Checks if a pointer to a block of memory in user space is valid.
104 * Returns true (nonzero) if the memory block may be valid, false (zero)
105 * if it is definitely invalid.
107 * Note that, depending on architecture, this function probably just
108 * checks that the pointer is in the user space range - after calling
109 * this function, memory access functions may still return -EFAULT.
111 #ifdef CONFIG_MMU
112 #define access_ok(type,addr,size) (likely(__range_ok(addr,size) == 0))
113 #else
114 static inline int access_ok(int type, const void *addr, unsigned long size)
116 extern unsigned long memory_start, memory_end;
117 unsigned long val = (unsigned long)addr;
119 return ((val >= memory_start) && ((val + size) < memory_end));
121 #endif /* CONFIG_MMU */
124 * verify_area: - Obsolete, use access_ok()
125 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE
126 * @addr: User space pointer to start of block to check
127 * @size: Size of block to check
129 * Context: User context only. This function may sleep.
131 * This function has been replaced by access_ok().
133 * Checks if a pointer to a block of memory in user space is valid.
135 * Returns zero if the memory block may be valid, -EFAULT
136 * if it is definitely invalid.
138 * See access_ok() for more details.
140 static inline int verify_area(int type, const void __user *addr,
141 unsigned long size)
143 return access_ok(type, addr, size) ? 0 : -EFAULT;
148 * The exception table consists of pairs of addresses: the first is the
149 * address of an instruction that is allowed to fault, and the second is
150 * the address at which the program should continue. No registers are
151 * modified, so it is entirely up to the continuation code to figure out
152 * what to do.
154 * All the routines below use bits of fixup code that are out of line
155 * with the main instruction path. This means when everything is well,
156 * we don't even have to jump over them. Further, they do not intrude
157 * on our cache or tlb entries.
160 struct exception_table_entry
162 unsigned long insn, fixup;
165 extern int fixup_exception(struct pt_regs *regs);
168 * These are the main single-value transfer routines. They automatically
169 * use the right size if we just have the right pointer type.
171 * This gets kind of ugly. We want to return _two_ values in "get_user()"
172 * and yet we don't want to do any pointers, because that is too much
173 * of a performance impact. Thus we have a few rather ugly macros here,
174 * and hide all the uglyness from the user.
176 * The "__xxx" versions of the user access functions are versions that
177 * do not verify the address space, that must have been done previously
178 * with a separate "access_ok()" call (this is used when we do multiple
179 * accesses to the same area of user memory).
182 extern void __get_user_1(void);
183 extern void __get_user_2(void);
184 extern void __get_user_4(void);
186 #ifndef MODULE
187 #define __get_user_x(size,ret,x,ptr) \
188 __asm__ __volatile__( \
189 " mv r0, %0\n" \
190 " mv r1, %1\n" \
191 " bl __get_user_" #size "\n" \
192 " mv %0, r0\n" \
193 " mv %1, r1\n" \
194 : "=r"(ret), "=r"(x) \
195 : "0"(ptr) \
196 : "r0", "r1", "r14" )
197 #else /* MODULE */
199 * Use "jl" instead of "bl" for MODULE
201 #define __get_user_x(size,ret,x,ptr) \
202 __asm__ __volatile__( \
203 " mv r0, %0\n" \
204 " mv r1, %1\n" \
205 " seth lr, #high(__get_user_" #size ")\n" \
206 " or3 lr, lr, #low(__get_user_" #size ")\n" \
207 " jl lr\n" \
208 " mv %0, r0\n" \
209 " mv %1, r1\n" \
210 : "=r"(ret), "=r"(x) \
211 : "0"(ptr) \
212 : "r0", "r1", "r14" )
213 #endif
215 /* Careful: we have to cast the result to the type of the pointer for sign
216 reasons */
218 * get_user: - Get a simple variable from user space.
219 * @x: Variable to store result.
220 * @ptr: Source address, in user space.
222 * Context: User context only. This function may sleep.
224 * This macro copies a single simple variable from user space to kernel
225 * space. It supports simple types like char and int, but not larger
226 * data types like structures or arrays.
228 * @ptr must have pointer-to-simple-variable type, and the result of
229 * dereferencing @ptr must be assignable to @x without a cast.
231 * Returns zero on success, or -EFAULT on error.
232 * On error, the variable @x is set to zero.
234 #define get_user(x,ptr) \
235 ({ int __ret_gu,__val_gu; \
236 __chk_user_ptr(ptr); \
237 switch(sizeof (*(ptr))) { \
238 case 1: __get_user_x(1,__ret_gu,__val_gu,ptr); break; \
239 case 2: __get_user_x(2,__ret_gu,__val_gu,ptr); break; \
240 case 4: __get_user_x(4,__ret_gu,__val_gu,ptr); break; \
241 default: __get_user_x(X,__ret_gu,__val_gu,ptr); break; \
243 (x) = (__typeof__(*(ptr)))__val_gu; \
244 __ret_gu; \
247 extern void __put_user_bad(void);
250 * put_user: - Write a simple value into user space.
251 * @x: Value to copy to user space.
252 * @ptr: Destination address, in user space.
254 * Context: User context only. This function may sleep.
256 * This macro copies a single simple value from kernel space to user
257 * space. It supports simple types like char and int, but not larger
258 * data types like structures or arrays.
260 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
261 * to the result of dereferencing @ptr.
263 * Returns zero on success, or -EFAULT on error.
265 #define put_user(x,ptr) \
266 __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
270 * __get_user: - Get a simple variable from user space, with less checking.
271 * @x: Variable to store result.
272 * @ptr: Source address, in user space.
274 * Context: User context only. This function may sleep.
276 * This macro copies a single simple variable from user space to kernel
277 * space. It supports simple types like char and int, but not larger
278 * data types like structures or arrays.
280 * @ptr must have pointer-to-simple-variable type, and the result of
281 * dereferencing @ptr must be assignable to @x without a cast.
283 * Caller must check the pointer with access_ok() before calling this
284 * function.
286 * Returns zero on success, or -EFAULT on error.
287 * On error, the variable @x is set to zero.
289 #define __get_user(x,ptr) \
290 __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
294 * __put_user: - Write a simple value into user space, with less checking.
295 * @x: Value to copy to user space.
296 * @ptr: Destination address, in user space.
298 * Context: User context only. This function may sleep.
300 * This macro copies a single simple value from kernel space to user
301 * space. It supports simple types like char and int, but not larger
302 * data types like structures or arrays.
304 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
305 * to the result of dereferencing @ptr.
307 * Caller must check the pointer with access_ok() before calling this
308 * function.
310 * Returns zero on success, or -EFAULT on error.
312 #define __put_user(x,ptr) \
313 __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
315 #define __put_user_nocheck(x,ptr,size) \
316 ({ \
317 long __pu_err; \
318 __put_user_size((x),(ptr),(size),__pu_err); \
319 __pu_err; \
323 #define __put_user_check(x,ptr,size) \
324 ({ \
325 long __pu_err = -EFAULT; \
326 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
327 might_sleep(); \
328 if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
329 __put_user_size((x),__pu_addr,(size),__pu_err); \
330 __pu_err; \
333 #if defined(__LITTLE_ENDIAN__)
334 #define __put_user_u64(x, addr, err) \
335 __asm__ __volatile__( \
336 " .fillinsn\n" \
337 "1: st %L1,@%2\n" \
338 " .fillinsn\n" \
339 "2: st %H1,@(4,%2)\n" \
340 " .fillinsn\n" \
341 "3:\n" \
342 ".section .fixup,\"ax\"\n" \
343 " .balign 4\n" \
344 "4: ldi %0,%3\n" \
345 " seth r14,#high(3b)\n" \
346 " or3 r14,r14,#low(3b)\n" \
347 " jmp r14\n" \
348 ".previous\n" \
349 ".section __ex_table,\"a\"\n" \
350 " .balign 4\n" \
351 " .long 1b,4b\n" \
352 " .long 2b,4b\n" \
353 ".previous" \
354 : "=r"(err) \
355 : "r"(x), "r"(addr), "i"(-EFAULT), "0"(err) \
356 : "r14", "memory")
358 #elif defined(__BIG_ENDIAN__)
359 #define __put_user_u64(x, addr, err) \
360 __asm__ __volatile__( \
361 " .fillinsn\n" \
362 "1: st %H1,@%2\n" \
363 " .fillinsn\n" \
364 "2: st %L1,@(4,%2)\n" \
365 " .fillinsn\n" \
366 "3:\n" \
367 ".section .fixup,\"ax\"\n" \
368 " .balign 4\n" \
369 "4: ldi %0,%3\n" \
370 " seth r14,#high(3b)\n" \
371 " or3 r14,r14,#low(3b)\n" \
372 " jmp r14\n" \
373 ".previous\n" \
374 ".section __ex_table,\"a\"\n" \
375 " .balign 4\n" \
376 " .long 1b,4b\n" \
377 " .long 2b,4b\n" \
378 ".previous" \
379 : "=r"(err) \
380 : "r"(x), "r"(addr), "i"(-EFAULT), "0"(err) \
381 : "r14", "memory")
382 #else
383 #error no endian defined
384 #endif
386 #define __put_user_size(x,ptr,size,retval) \
387 do { \
388 retval = 0; \
389 __chk_user_ptr(ptr); \
390 switch (size) { \
391 case 1: __put_user_asm(x,ptr,retval,"b"); break; \
392 case 2: __put_user_asm(x,ptr,retval,"h"); break; \
393 case 4: __put_user_asm(x,ptr,retval,""); break; \
394 case 8: __put_user_u64((__typeof__(*ptr))(x),ptr,retval); break;\
395 default: __put_user_bad(); \
397 } while (0)
399 struct __large_struct { unsigned long buf[100]; };
400 #define __m(x) (*(struct __large_struct *)(x))
403 * Tell gcc we read from memory instead of writing: this is because
404 * we do not write to any memory gcc knows about, so there are no
405 * aliasing issues.
407 #define __put_user_asm(x, addr, err, itype) \
408 __asm__ __volatile__( \
409 " .fillinsn\n" \
410 "1: st"itype" %1,@%2\n" \
411 " .fillinsn\n" \
412 "2:\n" \
413 ".section .fixup,\"ax\"\n" \
414 " .balign 4\n" \
415 "3: ldi %0,%3\n" \
416 " seth r14,#high(2b)\n" \
417 " or3 r14,r14,#low(2b)\n" \
418 " jmp r14\n" \
419 ".previous\n" \
420 ".section __ex_table,\"a\"\n" \
421 " .balign 4\n" \
422 " .long 1b,3b\n" \
423 ".previous" \
424 : "=r"(err) \
425 : "r"(x), "r"(addr), "i"(-EFAULT), "0"(err) \
426 : "r14", "memory")
428 #define __get_user_nocheck(x,ptr,size) \
429 ({ \
430 long __gu_err, __gu_val; \
431 __get_user_size(__gu_val,(ptr),(size),__gu_err); \
432 (x) = (__typeof__(*(ptr)))__gu_val; \
433 __gu_err; \
436 extern long __get_user_bad(void);
438 #define __get_user_size(x,ptr,size,retval) \
439 do { \
440 retval = 0; \
441 __chk_user_ptr(ptr); \
442 switch (size) { \
443 case 1: __get_user_asm(x,ptr,retval,"ub"); break; \
444 case 2: __get_user_asm(x,ptr,retval,"uh"); break; \
445 case 4: __get_user_asm(x,ptr,retval,""); break; \
446 default: (x) = __get_user_bad(); \
448 } while (0)
450 #define __get_user_asm(x, addr, err, itype) \
451 __asm__ __volatile__( \
452 " .fillinsn\n" \
453 "1: ld"itype" %1,@%2\n" \
454 " .fillinsn\n" \
455 "2:\n" \
456 ".section .fixup,\"ax\"\n" \
457 " .balign 4\n" \
458 "3: ldi %0,%3\n" \
459 " seth r14,#high(2b)\n" \
460 " or3 r14,r14,#low(2b)\n" \
461 " jmp r14\n" \
462 ".previous\n" \
463 ".section __ex_table,\"a\"\n" \
464 " .balign 4\n" \
465 " .long 1b,3b\n" \
466 ".previous" \
467 : "=r"(err), "=&r"(x) \
468 : "r"(addr), "i"(-EFAULT), "0"(err) \
469 : "r14", "memory")
472 * Here we special-case 1, 2 and 4-byte copy_*_user invocations. On a fault
473 * we return the initial request size (1, 2 or 4), as copy_*_user should do.
474 * If a store crosses a page boundary and gets a fault, the m32r will not write
475 * anything, so this is accurate.
480 * Copy To/From Userspace
483 /* Generic arbitrary sized copy. */
484 /* Return the number of bytes NOT copied. */
485 #define __copy_user(to,from,size) \
486 do { \
487 unsigned long __dst, __src, __c; \
488 __asm__ __volatile__ ( \
489 " mv r14, %0\n" \
490 " or r14, %1\n" \
491 " beq %0, %1, 9f\n" \
492 " beqz %2, 9f\n" \
493 " and3 r14, r14, #3\n" \
494 " bnez r14, 2f\n" \
495 " and3 %2, %2, #3\n" \
496 " beqz %3, 2f\n" \
497 " addi %0, #-4 ; word_copy \n" \
498 " .fillinsn\n" \
499 "0: ld r14, @%1+\n" \
500 " addi %3, #-1\n" \
501 " .fillinsn\n" \
502 "1: st r14, @+%0\n" \
503 " bnez %3, 0b\n" \
504 " beqz %2, 9f\n" \
505 " addi %0, #4\n" \
506 " .fillinsn\n" \
507 "2: ldb r14, @%1 ; byte_copy \n" \
508 " .fillinsn\n" \
509 "3: stb r14, @%0\n" \
510 " addi %1, #1\n" \
511 " addi %2, #-1\n" \
512 " addi %0, #1\n" \
513 " bnez %2, 2b\n" \
514 " .fillinsn\n" \
515 "9:\n" \
516 ".section .fixup,\"ax\"\n" \
517 " .balign 4\n" \
518 "5: addi %3, #1\n" \
519 " addi %1, #-4\n" \
520 " .fillinsn\n" \
521 "6: slli %3, #2\n" \
522 " add %2, %3\n" \
523 " addi %0, #4\n" \
524 " .fillinsn\n" \
525 "7: seth r14, #high(9b)\n" \
526 " or3 r14, r14, #low(9b)\n" \
527 " jmp r14\n" \
528 ".previous\n" \
529 ".section __ex_table,\"a\"\n" \
530 " .balign 4\n" \
531 " .long 0b,6b\n" \
532 " .long 1b,5b\n" \
533 " .long 2b,9b\n" \
534 " .long 3b,9b\n" \
535 ".previous\n" \
536 : "=&r"(__dst), "=&r"(__src), "=&r"(size), "=&r"(__c) \
537 : "0"(to), "1"(from), "2"(size), "3"(size / 4) \
538 : "r14", "memory"); \
539 } while (0)
541 #define __copy_user_zeroing(to,from,size) \
542 do { \
543 unsigned long __dst, __src, __c; \
544 __asm__ __volatile__ ( \
545 " mv r14, %0\n" \
546 " or r14, %1\n" \
547 " beq %0, %1, 9f\n" \
548 " beqz %2, 9f\n" \
549 " and3 r14, r14, #3\n" \
550 " bnez r14, 2f\n" \
551 " and3 %2, %2, #3\n" \
552 " beqz %3, 2f\n" \
553 " addi %0, #-4 ; word_copy \n" \
554 " .fillinsn\n" \
555 "0: ld r14, @%1+\n" \
556 " addi %3, #-1\n" \
557 " .fillinsn\n" \
558 "1: st r14, @+%0\n" \
559 " bnez %3, 0b\n" \
560 " beqz %2, 9f\n" \
561 " addi %0, #4\n" \
562 " .fillinsn\n" \
563 "2: ldb r14, @%1 ; byte_copy \n" \
564 " .fillinsn\n" \
565 "3: stb r14, @%0\n" \
566 " addi %1, #1\n" \
567 " addi %2, #-1\n" \
568 " addi %0, #1\n" \
569 " bnez %2, 2b\n" \
570 " .fillinsn\n" \
571 "9:\n" \
572 ".section .fixup,\"ax\"\n" \
573 " .balign 4\n" \
574 "5: addi %3, #1\n" \
575 " addi %1, #-4\n" \
576 " .fillinsn\n" \
577 "6: slli %3, #2\n" \
578 " add %2, %3\n" \
579 " addi %0, #4\n" \
580 " .fillinsn\n" \
581 "7: ldi r14, #0 ; store zero \n" \
582 " .fillinsn\n" \
583 "8: addi %2, #-1\n" \
584 " stb r14, @%0 ; ACE? \n" \
585 " addi %0, #1\n" \
586 " bnez %2, 8b\n" \
587 " seth r14, #high(9b)\n" \
588 " or3 r14, r14, #low(9b)\n" \
589 " jmp r14\n" \
590 ".previous\n" \
591 ".section __ex_table,\"a\"\n" \
592 " .balign 4\n" \
593 " .long 0b,6b\n" \
594 " .long 1b,5b\n" \
595 " .long 2b,7b\n" \
596 " .long 3b,7b\n" \
597 ".previous\n" \
598 : "=&r"(__dst), "=&r"(__src), "=&r"(size), "=&r"(__c) \
599 : "0"(to), "1"(from), "2"(size), "3"(size / 4) \
600 : "r14", "memory"); \
601 } while (0)
604 /* We let the __ versions of copy_from/to_user inline, because they're often
605 * used in fast paths and have only a small space overhead.
607 static inline unsigned long __generic_copy_from_user_nocheck(void *to,
608 const void __user *from, unsigned long n)
610 __copy_user_zeroing(to,from,n);
611 return n;
614 static inline unsigned long __generic_copy_to_user_nocheck(void __user *to,
615 const void *from, unsigned long n)
617 __copy_user(to,from,n);
618 return n;
621 unsigned long __generic_copy_to_user(void *, const void *, unsigned long);
622 unsigned long __generic_copy_from_user(void *, const void *, unsigned long);
625 * __copy_to_user: - Copy a block of data into user space, with less checking.
626 * @to: Destination address, in user space.
627 * @from: Source address, in kernel space.
628 * @n: Number of bytes to copy.
630 * Context: User context only. This function may sleep.
632 * Copy data from kernel space to user space. Caller must check
633 * the specified block with access_ok() before calling this function.
635 * Returns number of bytes that could not be copied.
636 * On success, this will be zero.
638 #define __copy_to_user(to,from,n) \
639 __generic_copy_to_user_nocheck((to),(from),(n))
641 #define __copy_to_user_inatomic __copy_to_user
642 #define __copy_from_user_inatomic __copy_from_user
645 * copy_to_user: - Copy a block of data into user space.
646 * @to: Destination address, in user space.
647 * @from: Source address, in kernel space.
648 * @n: Number of bytes to copy.
650 * Context: User context only. This function may sleep.
652 * Copy data from kernel space to user space.
654 * Returns number of bytes that could not be copied.
655 * On success, this will be zero.
657 #define copy_to_user(to,from,n) \
658 ({ \
659 might_sleep(); \
660 __generic_copy_to_user((to),(from),(n)); \
664 * __copy_from_user: - Copy a block of data from user space, with less checking. * @to: Destination address, in kernel space.
665 * @from: Source address, in user space.
666 * @n: Number of bytes to copy.
668 * Context: User context only. This function may sleep.
670 * Copy data from user space to kernel space. Caller must check
671 * the specified block with access_ok() before calling this function.
673 * Returns number of bytes that could not be copied.
674 * On success, this will be zero.
676 * If some data could not be copied, this function will pad the copied
677 * data to the requested size using zero bytes.
679 #define __copy_from_user(to,from,n) \
680 __generic_copy_from_user_nocheck((to),(from),(n))
683 * copy_from_user: - Copy a block of data from user space.
684 * @to: Destination address, in kernel space.
685 * @from: Source address, in user space.
686 * @n: Number of bytes to copy.
688 * Context: User context only. This function may sleep.
690 * Copy data from user space to kernel space.
692 * Returns number of bytes that could not be copied.
693 * On success, this will be zero.
695 * If some data could not be copied, this function will pad the copied
696 * data to the requested size using zero bytes.
698 #define copy_from_user(to,from,n) \
699 ({ \
700 might_sleep(); \
701 __generic_copy_from_user((to),(from),(n)); \
704 long __must_check strncpy_from_user(char *dst, const char __user *src,
705 long count);
706 long __must_check __strncpy_from_user(char *dst,
707 const char __user *src, long count);
710 * __clear_user: - Zero a block of memory in user space, with less checking.
711 * @to: Destination address, in user space.
712 * @n: Number of bytes to zero.
714 * Zero a block of memory in user space. Caller must check
715 * the specified block with access_ok() before calling this function.
717 * Returns number of bytes that could not be cleared.
718 * On success, this will be zero.
720 unsigned long __clear_user(void __user *mem, unsigned long len);
723 * clear_user: - Zero a block of memory in user space.
724 * @to: Destination address, in user space.
725 * @n: Number of bytes to zero.
727 * Zero a block of memory in user space. Caller must check
728 * the specified block with access_ok() before calling this function.
730 * Returns number of bytes that could not be cleared.
731 * On success, this will be zero.
733 unsigned long clear_user(void __user *mem, unsigned long len);
736 * strlen_user: - Get the size of a string in user space.
737 * @str: The string to measure.
739 * Context: User context only. This function may sleep.
741 * Get the size of a NUL-terminated string in user space.
743 * Returns the size of the string INCLUDING the terminating NUL.
744 * On exception, returns 0.
746 * If there is a limit on the length of a valid string, you may wish to
747 * consider using strnlen_user() instead.
749 #define strlen_user(str) strnlen_user(str, ~0UL >> 1)
750 long strnlen_user(const char __user *str, long n);
752 #endif /* _ASM_M32R_UACCESS_H */