MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / kernel / fork.c
blob70f604c3937b273456bbf743a7e5d4687a15999c
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/cpu.h>
31 #include <linux/security.h>
32 #include <linux/swap.h>
33 #include <linux/syscalls.h>
34 #include <linux/jiffies.h>
35 #include <linux/futex.h>
36 #include <linux/ptrace.h>
37 #include <linux/mount.h>
38 #include <linux/audit.h>
39 #include <linux/profile.h>
40 #include <linux/rmap.h>
42 #include <asm/pgtable.h>
43 #include <asm/pgalloc.h>
44 #include <asm/uaccess.h>
45 #include <asm/mmu_context.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlbflush.h>
49 /* The idle threads do not count..
50 * Protected by write_lock_irq(&tasklist_lock)
52 int nr_threads;
54 int max_threads;
55 unsigned long total_forks; /* Handle normal Linux uptimes. */
57 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
59 rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED; /* outer */
61 EXPORT_SYMBOL(tasklist_lock);
63 int nr_processes(void)
65 int cpu;
66 int total = 0;
68 for_each_online_cpu(cpu)
69 total += per_cpu(process_counts, cpu);
71 return total;
74 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
75 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
76 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
77 static kmem_cache_t *task_struct_cachep;
78 #endif
80 void free_task(struct task_struct *tsk)
82 free_thread_info(tsk->thread_info);
83 free_task_struct(tsk);
85 EXPORT_SYMBOL(free_task);
87 void __put_task_struct(struct task_struct *tsk)
89 WARN_ON(!(tsk->state & (TASK_DEAD | TASK_ZOMBIE)));
90 WARN_ON(atomic_read(&tsk->usage));
91 WARN_ON(tsk == current);
93 if (unlikely(tsk->audit_context))
94 audit_free(tsk);
95 security_task_free(tsk);
96 free_uid(tsk->user);
97 put_group_info(tsk->group_info);
99 if (!profile_handoff_task(tsk))
100 free_task(tsk);
103 void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
105 unsigned long flags;
107 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
108 spin_lock_irqsave(&q->lock, flags);
109 __add_wait_queue(q, wait);
110 spin_unlock_irqrestore(&q->lock, flags);
113 EXPORT_SYMBOL(add_wait_queue);
115 void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait)
117 unsigned long flags;
119 wait->flags |= WQ_FLAG_EXCLUSIVE;
120 spin_lock_irqsave(&q->lock, flags);
121 __add_wait_queue_tail(q, wait);
122 spin_unlock_irqrestore(&q->lock, flags);
125 EXPORT_SYMBOL(add_wait_queue_exclusive);
127 void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
129 unsigned long flags;
131 spin_lock_irqsave(&q->lock, flags);
132 __remove_wait_queue(q, wait);
133 spin_unlock_irqrestore(&q->lock, flags);
136 EXPORT_SYMBOL(remove_wait_queue);
140 * Note: we use "set_current_state()" _after_ the wait-queue add,
141 * because we need a memory barrier there on SMP, so that any
142 * wake-function that tests for the wait-queue being active
143 * will be guaranteed to see waitqueue addition _or_ subsequent
144 * tests in this thread will see the wakeup having taken place.
146 * The spin_unlock() itself is semi-permeable and only protects
147 * one way (it only protects stuff inside the critical region and
148 * stops them from bleeding out - it would still allow subsequent
149 * loads to move into the the critical region).
151 void fastcall prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
153 unsigned long flags;
155 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
156 spin_lock_irqsave(&q->lock, flags);
157 if (list_empty(&wait->task_list))
158 __add_wait_queue(q, wait);
160 * don't alter the task state if this is just going to
161 * queue an async wait queue callback
163 if (is_sync_wait(wait))
164 set_current_state(state);
165 spin_unlock_irqrestore(&q->lock, flags);
168 EXPORT_SYMBOL(prepare_to_wait);
170 void fastcall
171 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
173 unsigned long flags;
175 wait->flags |= WQ_FLAG_EXCLUSIVE;
176 spin_lock_irqsave(&q->lock, flags);
177 if (list_empty(&wait->task_list))
178 __add_wait_queue_tail(q, wait);
180 * don't alter the task state if this is just going to
181 * queue an async wait queue callback
183 if (is_sync_wait(wait))
184 set_current_state(state);
185 spin_unlock_irqrestore(&q->lock, flags);
188 EXPORT_SYMBOL(prepare_to_wait_exclusive);
190 void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
192 unsigned long flags;
194 __set_current_state(TASK_RUNNING);
196 * We can check for list emptiness outside the lock
197 * IFF:
198 * - we use the "careful" check that verifies both
199 * the next and prev pointers, so that there cannot
200 * be any half-pending updates in progress on other
201 * CPU's that we haven't seen yet (and that might
202 * still change the stack area.
203 * and
204 * - all other users take the lock (ie we can only
205 * have _one_ other CPU that looks at or modifies
206 * the list).
208 if (!list_empty_careful(&wait->task_list)) {
209 spin_lock_irqsave(&q->lock, flags);
210 list_del_init(&wait->task_list);
211 spin_unlock_irqrestore(&q->lock, flags);
215 EXPORT_SYMBOL(finish_wait);
217 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
219 int ret = default_wake_function(wait, mode, sync, key);
221 if (ret)
222 list_del_init(&wait->task_list);
223 return ret;
226 EXPORT_SYMBOL(autoremove_wake_function);
228 void __init fork_init(unsigned long mempages)
230 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
231 #ifndef ARCH_MIN_TASKALIGN
232 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
233 #endif
234 /* create a slab on which task_structs can be allocated */
235 task_struct_cachep =
236 kmem_cache_create("task_struct", sizeof(struct task_struct),
237 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
238 #endif
241 * The default maximum number of threads is set to a safe
242 * value: the thread structures can take up at most half
243 * of memory.
245 max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 8;
247 * we need to allow at least 20 threads to boot a system
249 if(max_threads < 20)
250 max_threads = 20;
252 init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
253 init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
256 static struct task_struct *dup_task_struct(struct task_struct *orig)
258 struct task_struct *tsk;
259 struct thread_info *ti;
261 prepare_to_copy(orig);
263 tsk = alloc_task_struct();
264 if (!tsk)
265 return NULL;
267 ti = alloc_thread_info(tsk);
268 if (!ti) {
269 free_task_struct(tsk);
270 return NULL;
273 *ti = *orig->thread_info;
274 *tsk = *orig;
275 tsk->thread_info = ti;
276 ti->task = tsk;
278 /* One for us, one for whoever does the "release_task()" (usually parent) */
279 atomic_set(&tsk->usage,2);
280 return tsk;
283 #ifdef CONFIG_MMU
284 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
286 struct vm_area_struct * mpnt, *tmp, **pprev;
287 struct rb_node **rb_link, *rb_parent;
288 int retval;
289 unsigned long charge;
290 struct mempolicy *pol;
292 down_write(&oldmm->mmap_sem);
293 flush_cache_mm(current->mm);
294 mm->locked_vm = 0;
295 mm->mmap = NULL;
296 mm->mmap_cache = NULL;
297 mm->free_area_cache = oldmm->mmap_base;
298 mm->map_count = 0;
299 mm->rss = 0;
300 cpus_clear(mm->cpu_vm_mask);
301 mm->mm_rb = RB_ROOT;
302 rb_link = &mm->mm_rb.rb_node;
303 rb_parent = NULL;
304 pprev = &mm->mmap;
307 * Add it to the mmlist after the parent.
308 * Doing it this way means that we can order the list,
309 * and fork() won't mess up the ordering significantly.
310 * Add it first so that swapoff can see any swap entries.
312 spin_lock(&mmlist_lock);
313 list_add(&mm->mmlist, &current->mm->mmlist);
314 mmlist_nr++;
315 spin_unlock(&mmlist_lock);
317 for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
318 struct file *file;
320 if (mpnt->vm_flags & VM_DONTCOPY) {
321 __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
322 -vma_pages(mpnt));
323 continue;
325 charge = 0;
326 if (mpnt->vm_flags & VM_ACCOUNT) {
327 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
328 if (security_vm_enough_memory(len))
329 goto fail_nomem;
330 charge = len;
332 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
333 if (!tmp)
334 goto fail_nomem;
335 *tmp = *mpnt;
336 pol = mpol_copy(vma_policy(mpnt));
337 retval = PTR_ERR(pol);
338 if (IS_ERR(pol))
339 goto fail_nomem_policy;
340 vma_set_policy(tmp, pol);
341 tmp->vm_flags &= ~VM_LOCKED;
342 tmp->vm_mm = mm;
343 tmp->vm_next = NULL;
344 anon_vma_link(tmp);
345 file = tmp->vm_file;
346 if (file) {
347 struct inode *inode = file->f_dentry->d_inode;
348 get_file(file);
349 if (tmp->vm_flags & VM_DENYWRITE)
350 atomic_dec(&inode->i_writecount);
352 /* insert tmp into the share list, just after mpnt */
353 spin_lock(&file->f_mapping->i_mmap_lock);
354 flush_dcache_mmap_lock(file->f_mapping);
355 vma_prio_tree_add(tmp, mpnt);
356 flush_dcache_mmap_unlock(file->f_mapping);
357 spin_unlock(&file->f_mapping->i_mmap_lock);
361 * Link in the new vma and copy the page table entries:
362 * link in first so that swapoff can see swap entries,
363 * and try_to_unmap_one's find_vma find the new vma.
365 spin_lock(&mm->page_table_lock);
366 *pprev = tmp;
367 pprev = &tmp->vm_next;
369 __vma_link_rb(mm, tmp, rb_link, rb_parent);
370 rb_link = &tmp->vm_rb.rb_right;
371 rb_parent = &tmp->vm_rb;
373 mm->map_count++;
374 retval = copy_page_range(mm, current->mm, tmp);
375 spin_unlock(&mm->page_table_lock);
377 if (tmp->vm_ops && tmp->vm_ops->open)
378 tmp->vm_ops->open(tmp);
380 if (retval)
381 goto out;
383 retval = 0;
385 out:
386 flush_tlb_mm(current->mm);
387 up_write(&oldmm->mmap_sem);
388 return retval;
389 fail_nomem_policy:
390 kmem_cache_free(vm_area_cachep, tmp);
391 fail_nomem:
392 retval = -ENOMEM;
393 vm_unacct_memory(charge);
394 goto out;
397 static inline int mm_alloc_pgd(struct mm_struct * mm)
399 mm->pgd = pgd_alloc(mm);
400 if (unlikely(!mm->pgd))
401 return -ENOMEM;
402 return 0;
405 static inline void mm_free_pgd(struct mm_struct * mm)
407 pgd_free(mm->pgd);
409 #else
410 #define dup_mmap(mm, oldmm) (0)
411 #define mm_alloc_pgd(mm) (0)
412 #define mm_free_pgd(mm)
413 #endif /* CONFIG_MMU */
415 spinlock_t mmlist_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
416 int mmlist_nr;
418 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
419 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
421 #include <linux/init_task.h>
423 static struct mm_struct * mm_init(struct mm_struct * mm)
425 atomic_set(&mm->mm_users, 1);
426 atomic_set(&mm->mm_count, 1);
427 init_rwsem(&mm->mmap_sem);
428 mm->core_waiters = 0;
429 mm->page_table_lock = SPIN_LOCK_UNLOCKED;
430 mm->ioctx_list_lock = RW_LOCK_UNLOCKED;
431 mm->ioctx_list = NULL;
432 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
433 mm->free_area_cache = TASK_UNMAPPED_BASE;
435 if (likely(!mm_alloc_pgd(mm))) {
436 mm->def_flags = 0;
437 return mm;
439 free_mm(mm);
440 return NULL;
444 * Allocate and initialize an mm_struct.
446 struct mm_struct * mm_alloc(void)
448 struct mm_struct * mm;
450 mm = allocate_mm();
451 if (mm) {
452 memset(mm, 0, sizeof(*mm));
453 mm = mm_init(mm);
455 return mm;
459 * Called when the last reference to the mm
460 * is dropped: either by a lazy thread or by
461 * mmput. Free the page directory and the mm.
463 void fastcall __mmdrop(struct mm_struct *mm)
465 BUG_ON(mm == &init_mm);
466 mm_free_pgd(mm);
467 destroy_context(mm);
468 free_mm(mm);
472 * Decrement the use count and release all resources for an mm.
474 void mmput(struct mm_struct *mm)
476 if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {
477 list_del(&mm->mmlist);
478 mmlist_nr--;
479 spin_unlock(&mmlist_lock);
480 exit_aio(mm);
481 exit_mmap(mm);
482 put_swap_token(mm);
483 mmdrop(mm);
486 EXPORT_SYMBOL_GPL(mmput);
489 * get_task_mm - acquire a reference to the task's mm
491 * Returns %NULL if the task has no mm. Checks if the use count
492 * of the mm is non-zero and if so returns a reference to it, after
493 * bumping up the use count. User must release the mm via mmput()
494 * after use. Typically used by /proc and ptrace.
496 * If the use count is zero, it means that this mm is going away,
497 * so return %NULL. This only happens in the case of an AIO daemon
498 * which has temporarily adopted an mm (see use_mm), in the course
499 * of its final mmput, before exit_aio has completed.
501 struct mm_struct *get_task_mm(struct task_struct *task)
503 struct mm_struct *mm;
505 task_lock(task);
506 mm = task->mm;
507 if (mm) {
508 spin_lock(&mmlist_lock);
509 if (!atomic_read(&mm->mm_users))
510 mm = NULL;
511 else
512 atomic_inc(&mm->mm_users);
513 spin_unlock(&mmlist_lock);
515 task_unlock(task);
516 return mm;
518 EXPORT_SYMBOL_GPL(get_task_mm);
520 /* Please note the differences between mmput and mm_release.
521 * mmput is called whenever we stop holding onto a mm_struct,
522 * error success whatever.
524 * mm_release is called after a mm_struct has been removed
525 * from the current process.
527 * This difference is important for error handling, when we
528 * only half set up a mm_struct for a new process and need to restore
529 * the old one. Because we mmput the new mm_struct before
530 * restoring the old one. . .
531 * Eric Biederman 10 January 1998
533 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
535 struct completion *vfork_done = tsk->vfork_done;
537 /* Get rid of any cached register state */
538 deactivate_mm(tsk, mm);
540 /* notify parent sleeping on vfork() */
541 if (vfork_done) {
542 tsk->vfork_done = NULL;
543 complete(vfork_done);
545 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
546 u32 __user * tidptr = tsk->clear_child_tid;
547 tsk->clear_child_tid = NULL;
550 * We don't check the error code - if userspace has
551 * not set up a proper pointer then tough luck.
553 put_user(0, tidptr);
554 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
558 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
560 struct mm_struct * mm, *oldmm;
561 int retval;
563 tsk->min_flt = tsk->maj_flt = 0;
564 tsk->nvcsw = tsk->nivcsw = 0;
566 tsk->mm = NULL;
567 tsk->active_mm = NULL;
570 * Are we cloning a kernel thread?
572 * We need to steal a active VM for that..
574 oldmm = current->mm;
575 if (!oldmm)
576 return 0;
578 if (clone_flags & CLONE_VM) {
579 atomic_inc(&oldmm->mm_users);
580 mm = oldmm;
582 * There are cases where the PTL is held to ensure no
583 * new threads start up in user mode using an mm, which
584 * allows optimizing out ipis; the tlb_gather_mmu code
585 * is an example.
587 spin_unlock_wait(&oldmm->page_table_lock);
588 goto good_mm;
591 retval = -ENOMEM;
592 mm = allocate_mm();
593 if (!mm)
594 goto fail_nomem;
596 /* Copy the current MM stuff.. */
597 memcpy(mm, oldmm, sizeof(*mm));
598 if (!mm_init(mm))
599 goto fail_nomem;
601 if (init_new_context(tsk,mm))
602 goto fail_nocontext;
604 retval = dup_mmap(mm, oldmm);
605 if (retval)
606 goto free_pt;
608 good_mm:
609 tsk->mm = mm;
610 tsk->active_mm = mm;
611 return 0;
613 free_pt:
614 mmput(mm);
615 fail_nomem:
616 return retval;
618 fail_nocontext:
620 * If init_new_context() failed, we cannot use mmput() to free the mm
621 * because it calls destroy_context()
623 mm_free_pgd(mm);
624 free_mm(mm);
625 return retval;
628 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
630 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
631 /* We don't need to lock fs - think why ;-) */
632 if (fs) {
633 atomic_set(&fs->count, 1);
634 fs->lock = RW_LOCK_UNLOCKED;
635 fs->umask = old->umask;
636 read_lock(&old->lock);
637 fs->rootmnt = mntget(old->rootmnt);
638 fs->root = dget(old->root);
639 fs->pwdmnt = mntget(old->pwdmnt);
640 fs->pwd = dget(old->pwd);
641 if (old->altroot) {
642 fs->altrootmnt = mntget(old->altrootmnt);
643 fs->altroot = dget(old->altroot);
644 } else {
645 fs->altrootmnt = NULL;
646 fs->altroot = NULL;
648 read_unlock(&old->lock);
650 return fs;
653 struct fs_struct *copy_fs_struct(struct fs_struct *old)
655 return __copy_fs_struct(old);
658 EXPORT_SYMBOL_GPL(copy_fs_struct);
660 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
662 if (clone_flags & CLONE_FS) {
663 atomic_inc(&current->fs->count);
664 return 0;
666 tsk->fs = __copy_fs_struct(current->fs);
667 if (!tsk->fs)
668 return -ENOMEM;
669 return 0;
672 static int count_open_files(struct files_struct *files, int size)
674 int i;
676 /* Find the last open fd */
677 for (i = size/(8*sizeof(long)); i > 0; ) {
678 if (files->open_fds->fds_bits[--i])
679 break;
681 i = (i+1) * 8 * sizeof(long);
682 return i;
685 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
687 struct files_struct *oldf, *newf;
688 struct file **old_fds, **new_fds;
689 int open_files, nfds, size, i, error = 0;
692 * A background process may not have any files ...
694 oldf = current->files;
695 if (!oldf)
696 goto out;
698 if (clone_flags & CLONE_FILES) {
699 atomic_inc(&oldf->count);
700 goto out;
704 * Note: we may be using current for both targets (See exec.c)
705 * This works because we cache current->files (old) as oldf. Don't
706 * break this.
708 tsk->files = NULL;
709 error = -ENOMEM;
710 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
711 if (!newf)
712 goto out;
714 atomic_set(&newf->count, 1);
716 newf->file_lock = SPIN_LOCK_UNLOCKED;
717 newf->next_fd = 0;
718 newf->max_fds = NR_OPEN_DEFAULT;
719 newf->max_fdset = __FD_SETSIZE;
720 newf->close_on_exec = &newf->close_on_exec_init;
721 newf->open_fds = &newf->open_fds_init;
722 newf->fd = &newf->fd_array[0];
724 /* We don't yet have the oldf readlock, but even if the old
725 fdset gets grown now, we'll only copy up to "size" fds */
726 size = oldf->max_fdset;
727 if (size > __FD_SETSIZE) {
728 newf->max_fdset = 0;
729 spin_lock(&newf->file_lock);
730 error = expand_fdset(newf, size-1);
731 spin_unlock(&newf->file_lock);
732 if (error)
733 goto out_release;
735 spin_lock(&oldf->file_lock);
737 open_files = count_open_files(oldf, size);
740 * Check whether we need to allocate a larger fd array.
741 * Note: we're not a clone task, so the open count won't
742 * change.
744 nfds = NR_OPEN_DEFAULT;
745 if (open_files > nfds) {
746 spin_unlock(&oldf->file_lock);
747 newf->max_fds = 0;
748 spin_lock(&newf->file_lock);
749 error = expand_fd_array(newf, open_files-1);
750 spin_unlock(&newf->file_lock);
751 if (error)
752 goto out_release;
753 nfds = newf->max_fds;
754 spin_lock(&oldf->file_lock);
757 old_fds = oldf->fd;
758 new_fds = newf->fd;
760 memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
761 memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
763 for (i = open_files; i != 0; i--) {
764 struct file *f = *old_fds++;
765 if (f)
766 get_file(f);
767 *new_fds++ = f;
769 spin_unlock(&oldf->file_lock);
771 /* compute the remainder to be cleared */
772 size = (newf->max_fds - open_files) * sizeof(struct file *);
774 /* This is long word aligned thus could use a optimized version */
775 memset(new_fds, 0, size);
777 if (newf->max_fdset > open_files) {
778 int left = (newf->max_fdset-open_files)/8;
779 int start = open_files / (8 * sizeof(unsigned long));
781 memset(&newf->open_fds->fds_bits[start], 0, left);
782 memset(&newf->close_on_exec->fds_bits[start], 0, left);
785 tsk->files = newf;
786 error = 0;
787 out:
788 return error;
790 out_release:
791 free_fdset (newf->close_on_exec, newf->max_fdset);
792 free_fdset (newf->open_fds, newf->max_fdset);
793 kmem_cache_free(files_cachep, newf);
794 goto out;
798 * Helper to unshare the files of the current task.
799 * We don't want to expose copy_files internals to
800 * the exec layer of the kernel.
803 int unshare_files(void)
805 struct files_struct *files = current->files;
806 int rc;
808 if(!files)
809 BUG();
811 /* This can race but the race causes us to copy when we don't
812 need to and drop the copy */
813 if(atomic_read(&files->count) == 1)
815 atomic_inc(&files->count);
816 return 0;
818 rc = copy_files(0, current);
819 if(rc)
820 current->files = files;
821 return rc;
824 EXPORT_SYMBOL(unshare_files);
826 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
828 struct sighand_struct *sig;
830 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
831 atomic_inc(&current->sighand->count);
832 return 0;
834 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
835 tsk->sighand = sig;
836 if (!sig)
837 return -ENOMEM;
838 spin_lock_init(&sig->siglock);
839 atomic_set(&sig->count, 1);
840 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
841 return 0;
844 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
846 struct signal_struct *sig;
848 if (clone_flags & CLONE_THREAD) {
849 atomic_inc(&current->signal->count);
850 return 0;
852 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
853 tsk->signal = sig;
854 if (!sig)
855 return -ENOMEM;
856 atomic_set(&sig->count, 1);
857 sig->group_exit = 0;
858 sig->group_exit_code = 0;
859 sig->group_exit_task = NULL;
860 sig->group_stop_count = 0;
861 sig->curr_target = NULL;
862 init_sigpending(&sig->shared_pending);
863 INIT_LIST_HEAD(&sig->posix_timers);
865 sig->tty = current->signal->tty;
866 sig->pgrp = process_group(current);
867 sig->session = current->signal->session;
868 sig->leader = 0; /* session leadership doesn't inherit */
869 sig->tty_old_pgrp = 0;
871 sig->utime = sig->stime = sig->cutime = sig->cstime = 0;
872 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
873 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
875 return 0;
878 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
880 unsigned long new_flags = p->flags;
882 new_flags &= ~PF_SUPERPRIV;
883 new_flags |= PF_FORKNOEXEC;
884 if (!(clone_flags & CLONE_PTRACE))
885 p->ptrace = 0;
886 p->flags = new_flags;
889 asmlinkage long sys_set_tid_address(int __user *tidptr)
891 current->clear_child_tid = tidptr;
893 return current->pid;
897 * This creates a new process as a copy of the old one,
898 * but does not actually start it yet.
900 * It copies the registers, and all the appropriate
901 * parts of the process environment (as per the clone
902 * flags). The actual kick-off is left to the caller.
904 static task_t *copy_process(unsigned long clone_flags,
905 unsigned long stack_start,
906 struct pt_regs *regs,
907 unsigned long stack_size,
908 int __user *parent_tidptr,
909 int __user *child_tidptr,
910 int pid)
912 int retval;
913 struct task_struct *p = NULL;
915 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
916 return ERR_PTR(-EINVAL);
919 * Thread groups must share signals as well, and detached threads
920 * can only be started up within the thread group.
922 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
923 return ERR_PTR(-EINVAL);
926 * Shared signal handlers imply shared VM. By way of the above,
927 * thread groups also imply shared VM. Blocking this case allows
928 * for various simplifications in other code.
930 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
931 return ERR_PTR(-EINVAL);
933 retval = security_task_create(clone_flags);
934 if (retval)
935 goto fork_out;
937 retval = -ENOMEM;
938 p = dup_task_struct(current);
939 if (!p)
940 goto fork_out;
942 retval = -EAGAIN;
943 if (atomic_read(&p->user->processes) >=
944 p->rlim[RLIMIT_NPROC].rlim_cur) {
945 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
946 p->user != &root_user)
947 goto bad_fork_free;
950 atomic_inc(&p->user->__count);
951 atomic_inc(&p->user->processes);
952 get_group_info(p->group_info);
955 * If multiple threads are within copy_process(), then this check
956 * triggers too late. This doesn't hurt, the check is only there
957 * to stop root fork bombs.
959 if (nr_threads >= max_threads)
960 goto bad_fork_cleanup_count;
962 if (!try_module_get(p->thread_info->exec_domain->module))
963 goto bad_fork_cleanup_count;
965 if (p->binfmt && !try_module_get(p->binfmt->module))
966 goto bad_fork_cleanup_put_domain;
968 p->did_exec = 0;
969 copy_flags(clone_flags, p);
970 p->pid = pid;
971 retval = -EFAULT;
972 if (clone_flags & CLONE_PARENT_SETTID)
973 if (put_user(p->pid, parent_tidptr))
974 goto bad_fork_cleanup;
976 p->proc_dentry = NULL;
978 INIT_LIST_HEAD(&p->children);
979 INIT_LIST_HEAD(&p->sibling);
980 init_waitqueue_head(&p->wait_chldexit);
981 p->vfork_done = NULL;
982 spin_lock_init(&p->alloc_lock);
983 spin_lock_init(&p->proc_lock);
985 clear_tsk_thread_flag(p, TIF_SIGPENDING);
986 init_sigpending(&p->pending);
988 p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
989 p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
990 init_timer(&p->real_timer);
991 p->real_timer.data = (unsigned long) p;
993 p->utime = p->stime = 0;
994 p->lock_depth = -1; /* -1 = no lock */
995 do_posix_clock_monotonic_gettime(&p->start_time);
996 p->security = NULL;
997 p->io_context = NULL;
998 p->io_wait = NULL;
999 p->audit_context = NULL;
1000 #ifdef CONFIG_NUMA
1001 p->mempolicy = mpol_copy(p->mempolicy);
1002 if (IS_ERR(p->mempolicy)) {
1003 retval = PTR_ERR(p->mempolicy);
1004 p->mempolicy = NULL;
1005 goto bad_fork_cleanup;
1007 #endif
1009 if ((retval = security_task_alloc(p)))
1010 goto bad_fork_cleanup_policy;
1011 if ((retval = audit_alloc(p)))
1012 goto bad_fork_cleanup_security;
1013 /* copy all the process information */
1014 if ((retval = copy_semundo(clone_flags, p)))
1015 goto bad_fork_cleanup_audit;
1016 if ((retval = copy_files(clone_flags, p)))
1017 goto bad_fork_cleanup_semundo;
1018 if ((retval = copy_fs(clone_flags, p)))
1019 goto bad_fork_cleanup_files;
1020 if ((retval = copy_sighand(clone_flags, p)))
1021 goto bad_fork_cleanup_fs;
1022 if ((retval = copy_signal(clone_flags, p)))
1023 goto bad_fork_cleanup_sighand;
1024 if ((retval = copy_mm(clone_flags, p)))
1025 goto bad_fork_cleanup_signal;
1026 if ((retval = copy_namespace(clone_flags, p)))
1027 goto bad_fork_cleanup_mm;
1028 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1029 if (retval)
1030 goto bad_fork_cleanup_namespace;
1032 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1034 * Clear TID on mm_release()?
1036 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1039 * Syscall tracing should be turned off in the child regardless
1040 * of CLONE_PTRACE.
1042 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1044 /* Our parent execution domain becomes current domain
1045 These must match for thread signalling to apply */
1047 p->parent_exec_id = p->self_exec_id;
1049 /* ok, now we should be set up.. */
1050 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1051 p->pdeath_signal = 0;
1053 /* Perform scheduler related setup */
1054 sched_fork(p);
1057 * Ok, make it visible to the rest of the system.
1058 * We dont wake it up yet.
1060 p->tgid = p->pid;
1061 p->group_leader = p;
1062 INIT_LIST_HEAD(&p->ptrace_children);
1063 INIT_LIST_HEAD(&p->ptrace_list);
1065 /* Need tasklist lock for parent etc handling! */
1066 write_lock_irq(&tasklist_lock);
1069 * The task hasn't been attached yet, so cpus_allowed mask cannot
1070 * have changed. The cpus_allowed mask of the parent may have
1071 * changed after it was copied first time, and it may then move to
1072 * another CPU - so we re-copy it here and set the child's CPU to
1073 * the parent's CPU. This avoids alot of nasty races.
1075 p->cpus_allowed = current->cpus_allowed;
1076 set_task_cpu(p, smp_processor_id());
1079 * Check for pending SIGKILL! The new thread should not be allowed
1080 * to slip out of an OOM kill. (or normal SIGKILL.)
1082 if (sigismember(&current->pending.signal, SIGKILL)) {
1083 write_unlock_irq(&tasklist_lock);
1084 retval = -EINTR;
1085 goto bad_fork_cleanup_namespace;
1088 /* CLONE_PARENT re-uses the old parent */
1089 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1090 p->real_parent = current->real_parent;
1091 else
1092 p->real_parent = current;
1093 p->parent = p->real_parent;
1095 if (clone_flags & CLONE_THREAD) {
1096 spin_lock(&current->sighand->siglock);
1098 * Important: if an exit-all has been started then
1099 * do not create this new thread - the whole thread
1100 * group is supposed to exit anyway.
1102 if (current->signal->group_exit) {
1103 spin_unlock(&current->sighand->siglock);
1104 write_unlock_irq(&tasklist_lock);
1105 retval = -EAGAIN;
1106 goto bad_fork_cleanup_namespace;
1108 p->tgid = current->tgid;
1109 p->group_leader = current->group_leader;
1111 if (current->signal->group_stop_count > 0) {
1113 * There is an all-stop in progress for the group.
1114 * We ourselves will stop as soon as we check signals.
1115 * Make the new thread part of that group stop too.
1117 current->signal->group_stop_count++;
1118 set_tsk_thread_flag(p, TIF_SIGPENDING);
1121 spin_unlock(&current->sighand->siglock);
1124 SET_LINKS(p);
1125 if (unlikely(p->ptrace & PT_PTRACED))
1126 __ptrace_link(p, current->parent);
1128 attach_pid(p, PIDTYPE_PID, p->pid);
1129 attach_pid(p, PIDTYPE_TGID, p->tgid);
1130 if (thread_group_leader(p)) {
1131 attach_pid(p, PIDTYPE_PGID, process_group(p));
1132 attach_pid(p, PIDTYPE_SID, p->signal->session);
1133 if (p->pid)
1134 __get_cpu_var(process_counts)++;
1137 nr_threads++;
1138 write_unlock_irq(&tasklist_lock);
1139 retval = 0;
1141 fork_out:
1142 if (retval)
1143 return ERR_PTR(retval);
1144 return p;
1146 bad_fork_cleanup_namespace:
1147 exit_namespace(p);
1148 bad_fork_cleanup_mm:
1149 if (p->mm)
1150 mmput(p->mm);
1151 bad_fork_cleanup_signal:
1152 exit_signal(p);
1153 bad_fork_cleanup_sighand:
1154 exit_sighand(p);
1155 bad_fork_cleanup_fs:
1156 exit_fs(p); /* blocking */
1157 bad_fork_cleanup_files:
1158 exit_files(p); /* blocking */
1159 bad_fork_cleanup_semundo:
1160 exit_sem(p);
1161 bad_fork_cleanup_audit:
1162 audit_free(p);
1163 bad_fork_cleanup_security:
1164 security_task_free(p);
1165 bad_fork_cleanup_policy:
1166 #ifdef CONFIG_NUMA
1167 mpol_free(p->mempolicy);
1168 #endif
1169 bad_fork_cleanup:
1170 if (p->binfmt)
1171 module_put(p->binfmt->module);
1172 bad_fork_cleanup_put_domain:
1173 module_put(p->thread_info->exec_domain->module);
1174 bad_fork_cleanup_count:
1175 put_group_info(p->group_info);
1176 atomic_dec(&p->user->processes);
1177 free_uid(p->user);
1178 bad_fork_free:
1179 free_task(p);
1180 goto fork_out;
1183 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1185 memset(regs, 0, sizeof(struct pt_regs));
1186 return regs;
1189 task_t * __devinit fork_idle(int cpu)
1191 task_t *task;
1192 struct pt_regs regs;
1194 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1195 if (!task)
1196 return ERR_PTR(-ENOMEM);
1197 init_idle(task, cpu);
1198 unhash_process(task);
1199 return task;
1202 static inline int fork_traceflag (unsigned clone_flags)
1204 if (clone_flags & CLONE_UNTRACED)
1205 return 0;
1206 else if (clone_flags & CLONE_VFORK) {
1207 if (current->ptrace & PT_TRACE_VFORK)
1208 return PTRACE_EVENT_VFORK;
1209 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1210 if (current->ptrace & PT_TRACE_CLONE)
1211 return PTRACE_EVENT_CLONE;
1212 } else if (current->ptrace & PT_TRACE_FORK)
1213 return PTRACE_EVENT_FORK;
1215 return 0;
1219 * Ok, this is the main fork-routine.
1221 * It copies the process, and if successful kick-starts
1222 * it and waits for it to finish using the VM if required.
1224 long do_fork(unsigned long clone_flags,
1225 unsigned long stack_start,
1226 struct pt_regs *regs,
1227 unsigned long stack_size,
1228 int __user *parent_tidptr,
1229 int __user *child_tidptr)
1231 struct task_struct *p;
1232 int trace = 0;
1233 long pid = alloc_pidmap();
1235 if (pid < 0)
1236 return -EAGAIN;
1237 if (unlikely(current->ptrace)) {
1238 trace = fork_traceflag (clone_flags);
1239 if (trace)
1240 clone_flags |= CLONE_PTRACE;
1243 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1245 * Do this prior waking up the new thread - the thread pointer
1246 * might get invalid after that point, if the thread exits quickly.
1248 if (!IS_ERR(p)) {
1249 struct completion vfork;
1251 if (clone_flags & CLONE_VFORK) {
1252 p->vfork_done = &vfork;
1253 init_completion(&vfork);
1256 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1258 * We'll start up with an immediate SIGSTOP.
1260 sigaddset(&p->pending.signal, SIGSTOP);
1261 set_tsk_thread_flag(p, TIF_SIGPENDING);
1264 if (!(clone_flags & CLONE_STOPPED))
1265 wake_up_new_task(p, clone_flags);
1266 else
1267 p->state = TASK_STOPPED;
1268 ++total_forks;
1270 if (unlikely (trace)) {
1271 current->ptrace_message = pid;
1272 ptrace_notify ((trace << 8) | SIGTRAP);
1275 if (clone_flags & CLONE_VFORK) {
1276 wait_for_completion(&vfork);
1277 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1278 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1280 } else {
1281 free_pidmap(pid);
1282 pid = PTR_ERR(p);
1284 return pid;
1287 /* SLAB cache for signal_struct structures (tsk->signal) */
1288 kmem_cache_t *signal_cachep;
1290 /* SLAB cache for sighand_struct structures (tsk->sighand) */
1291 kmem_cache_t *sighand_cachep;
1293 /* SLAB cache for files_struct structures (tsk->files) */
1294 kmem_cache_t *files_cachep;
1296 /* SLAB cache for fs_struct structures (tsk->fs) */
1297 kmem_cache_t *fs_cachep;
1299 /* SLAB cache for vm_area_struct structures */
1300 kmem_cache_t *vm_area_cachep;
1302 /* SLAB cache for mm_struct structures (tsk->mm) */
1303 kmem_cache_t *mm_cachep;
1305 void __init proc_caches_init(void)
1307 sighand_cachep = kmem_cache_create("sighand_cache",
1308 sizeof(struct sighand_struct), 0,
1309 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1310 signal_cachep = kmem_cache_create("signal_cache",
1311 sizeof(struct signal_struct), 0,
1312 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1313 files_cachep = kmem_cache_create("files_cache",
1314 sizeof(struct files_struct), 0,
1315 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1316 fs_cachep = kmem_cache_create("fs_cache",
1317 sizeof(struct fs_struct), 0,
1318 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1319 vm_area_cachep = kmem_cache_create("vm_area_struct",
1320 sizeof(struct vm_area_struct), 0,
1321 SLAB_PANIC, NULL, NULL);
1322 mm_cachep = kmem_cache_create("mm_struct",
1323 sizeof(struct mm_struct), 0,
1324 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);