MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / mm / memory.c
blob0a7013a26019e9760894bb28b1a5c096cac90b7d
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
39 #include <linux/kernel_stat.h>
40 #include <linux/mm.h>
41 #include <linux/hugetlb.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/rmap.h>
47 #include <linux/module.h>
48 #include <linux/init.h>
50 #include <asm/pgalloc.h>
51 #include <asm/uaccess.h>
52 #include <asm/tlb.h>
53 #include <asm/tlbflush.h>
54 #include <asm/pgtable.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
59 #ifndef CONFIG_DISCONTIGMEM
60 /* use the per-pgdat data instead for discontigmem - mbligh */
61 unsigned long max_mapnr;
62 struct page *mem_map;
64 EXPORT_SYMBOL(max_mapnr);
65 EXPORT_SYMBOL(mem_map);
66 #endif
68 unsigned long num_physpages;
70 * A number of key systems in x86 including ioremap() rely on the assumption
71 * that high_memory defines the upper bound on direct map memory, then end
72 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
73 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
74 * and ZONE_HIGHMEM.
76 void * high_memory;
77 struct page *highmem_start_page;
78 unsigned long vmalloc_earlyreserve;
80 EXPORT_SYMBOL(num_physpages);
81 EXPORT_SYMBOL(highmem_start_page);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
86 * We special-case the C-O-W ZERO_PAGE, because it's such
87 * a common occurrence (no need to read the page to know
88 * that it's zero - better for the cache and memory subsystem).
90 static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address)
92 if (from == ZERO_PAGE(address)) {
93 clear_user_highpage(to, address);
94 return;
96 copy_user_highpage(to, from, address);
100 * Note: this doesn't free the actual pages themselves. That
101 * has been handled earlier when unmapping all the memory regions.
103 static inline void free_one_pmd(struct mmu_gather *tlb, pmd_t * dir)
105 struct page *page;
107 if (pmd_none(*dir))
108 return;
109 if (unlikely(pmd_bad(*dir))) {
110 pmd_ERROR(*dir);
111 pmd_clear(dir);
112 return;
114 page = pmd_page(*dir);
115 pmd_clear(dir);
116 dec_page_state(nr_page_table_pages);
117 pte_free_tlb(tlb, page);
120 static inline void free_one_pgd(struct mmu_gather *tlb, pgd_t * dir)
122 int j;
123 pmd_t * pmd;
125 if (pgd_none(*dir))
126 return;
127 if (unlikely(pgd_bad(*dir))) {
128 pgd_ERROR(*dir);
129 pgd_clear(dir);
130 return;
132 pmd = pmd_offset(dir, 0);
133 pgd_clear(dir);
134 for (j = 0; j < PTRS_PER_PMD ; j++)
135 free_one_pmd(tlb, pmd+j);
136 pmd_free_tlb(tlb, pmd);
140 * This function clears all user-level page tables of a process - this
141 * is needed by execve(), so that old pages aren't in the way.
143 * Must be called with pagetable lock held.
145 void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr)
147 pgd_t * page_dir = tlb->mm->pgd;
149 page_dir += first;
150 do {
151 free_one_pgd(tlb, page_dir);
152 page_dir++;
153 } while (--nr);
156 pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
158 if (!pmd_present(*pmd)) {
159 struct page *new;
161 spin_unlock(&mm->page_table_lock);
162 new = pte_alloc_one(mm, address);
163 spin_lock(&mm->page_table_lock);
164 if (!new)
165 return NULL;
168 * Because we dropped the lock, we should re-check the
169 * entry, as somebody else could have populated it..
171 if (pmd_present(*pmd)) {
172 pte_free(new);
173 goto out;
175 inc_page_state(nr_page_table_pages);
176 pmd_populate(mm, pmd, new);
178 out:
179 return pte_offset_map(pmd, address);
182 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
184 if (!pmd_present(*pmd)) {
185 pte_t *new;
187 spin_unlock(&mm->page_table_lock);
188 new = pte_alloc_one_kernel(mm, address);
189 spin_lock(&mm->page_table_lock);
190 if (!new)
191 return NULL;
194 * Because we dropped the lock, we should re-check the
195 * entry, as somebody else could have populated it..
197 if (pmd_present(*pmd)) {
198 pte_free_kernel(new);
199 goto out;
201 pmd_populate_kernel(mm, pmd, new);
203 out:
204 return pte_offset_kernel(pmd, address);
206 #define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t))
207 #define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t))
210 * copy one vm_area from one task to the other. Assumes the page tables
211 * already present in the new task to be cleared in the whole range
212 * covered by this vma.
214 * 08Jan98 Merged into one routine from several inline routines to reduce
215 * variable count and make things faster. -jj
217 * dst->page_table_lock is held on entry and exit,
218 * but may be dropped within pmd_alloc() and pte_alloc_map().
220 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
221 struct vm_area_struct *vma)
223 pgd_t * src_pgd, * dst_pgd;
224 unsigned long address = vma->vm_start;
225 unsigned long end = vma->vm_end;
226 unsigned long cow;
228 if (is_vm_hugetlb_page(vma))
229 return copy_hugetlb_page_range(dst, src, vma);
231 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
232 src_pgd = pgd_offset(src, address)-1;
233 dst_pgd = pgd_offset(dst, address)-1;
235 for (;;) {
236 pmd_t * src_pmd, * dst_pmd;
238 src_pgd++; dst_pgd++;
240 /* copy_pmd_range */
242 if (pgd_none(*src_pgd))
243 goto skip_copy_pmd_range;
244 if (unlikely(pgd_bad(*src_pgd))) {
245 pgd_ERROR(*src_pgd);
246 pgd_clear(src_pgd);
247 skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK;
248 if (!address || (address >= end))
249 goto out;
250 continue;
253 src_pmd = pmd_offset(src_pgd, address);
254 dst_pmd = pmd_alloc(dst, dst_pgd, address);
255 if (!dst_pmd)
256 goto nomem;
258 do {
259 pte_t * src_pte, * dst_pte;
261 /* copy_pte_range */
263 if (pmd_none(*src_pmd))
264 goto skip_copy_pte_range;
265 if (unlikely(pmd_bad(*src_pmd))) {
266 pmd_ERROR(*src_pmd);
267 pmd_clear(src_pmd);
268 skip_copy_pte_range:
269 address = (address + PMD_SIZE) & PMD_MASK;
270 if (address >= end)
271 goto out;
272 goto cont_copy_pmd_range;
275 dst_pte = pte_alloc_map(dst, dst_pmd, address);
276 if (!dst_pte)
277 goto nomem;
278 spin_lock(&src->page_table_lock);
279 src_pte = pte_offset_map_nested(src_pmd, address);
280 do {
281 pte_t pte = *src_pte;
282 struct page *page;
283 unsigned long pfn;
285 /* copy_one_pte */
287 if (pte_none(pte))
288 goto cont_copy_pte_range_noset;
289 /* pte contains position in swap, so copy. */
290 if (!pte_present(pte)) {
291 if (!pte_file(pte))
292 swap_duplicate(pte_to_swp_entry(pte));
293 set_pte(dst_pte, pte);
294 goto cont_copy_pte_range_noset;
296 pfn = pte_pfn(pte);
297 /* the pte points outside of valid memory, the
298 * mapping is assumed to be good, meaningful
299 * and not mapped via rmap - duplicate the
300 * mapping as is.
302 page = NULL;
303 if (pfn_valid(pfn))
304 page = pfn_to_page(pfn);
306 if (!page || PageReserved(page)) {
307 set_pte(dst_pte, pte);
308 goto cont_copy_pte_range_noset;
312 * If it's a COW mapping, write protect it both
313 * in the parent and the child
315 if (cow) {
316 ptep_set_wrprotect(src_pte);
317 pte = *src_pte;
321 * If it's a shared mapping, mark it clean in
322 * the child
324 if (vma->vm_flags & VM_SHARED)
325 pte = pte_mkclean(pte);
326 pte = pte_mkold(pte);
327 get_page(page);
328 dst->rss++;
329 set_pte(dst_pte, pte);
330 page_dup_rmap(page);
331 cont_copy_pte_range_noset:
332 address += PAGE_SIZE;
333 if (address >= end) {
334 pte_unmap_nested(src_pte);
335 pte_unmap(dst_pte);
336 goto out_unlock;
338 src_pte++;
339 dst_pte++;
340 } while ((unsigned long)src_pte & PTE_TABLE_MASK);
341 pte_unmap_nested(src_pte-1);
342 pte_unmap(dst_pte-1);
343 spin_unlock(&src->page_table_lock);
344 cond_resched_lock(&dst->page_table_lock);
345 cont_copy_pmd_range:
346 src_pmd++;
347 dst_pmd++;
348 } while ((unsigned long)src_pmd & PMD_TABLE_MASK);
350 out_unlock:
351 spin_unlock(&src->page_table_lock);
352 out:
353 return 0;
354 nomem:
355 return -ENOMEM;
358 static void zap_pte_range(struct mmu_gather *tlb,
359 pmd_t *pmd, unsigned long address,
360 unsigned long size, struct zap_details *details)
362 unsigned long offset;
363 pte_t *ptep;
365 if (pmd_none(*pmd))
366 return;
367 if (unlikely(pmd_bad(*pmd))) {
368 pmd_ERROR(*pmd);
369 pmd_clear(pmd);
370 return;
372 ptep = pte_offset_map(pmd, address);
373 offset = address & ~PMD_MASK;
374 if (offset + size > PMD_SIZE)
375 size = PMD_SIZE - offset;
376 size &= PAGE_MASK;
377 if (details && !details->check_mapping && !details->nonlinear_vma)
378 details = NULL;
379 for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {
380 pte_t pte = *ptep;
381 if (pte_none(pte))
382 continue;
383 if (pte_present(pte)) {
384 struct page *page = NULL;
385 unsigned long pfn = pte_pfn(pte);
386 if (pfn_valid(pfn)) {
387 page = pfn_to_page(pfn);
388 if (PageReserved(page))
389 page = NULL;
391 if (unlikely(details) && page) {
393 * unmap_shared_mapping_pages() wants to
394 * invalidate cache without truncating:
395 * unmap shared but keep private pages.
397 if (details->check_mapping &&
398 details->check_mapping != page->mapping)
399 continue;
401 * Each page->index must be checked when
402 * invalidating or truncating nonlinear.
404 if (details->nonlinear_vma &&
405 (page->index < details->first_index ||
406 page->index > details->last_index))
407 continue;
409 pte = ptep_get_and_clear(ptep);
410 tlb_remove_tlb_entry(tlb, ptep, address+offset);
411 if (unlikely(!page))
412 continue;
413 if (unlikely(details) && details->nonlinear_vma
414 && linear_page_index(details->nonlinear_vma,
415 address+offset) != page->index)
416 set_pte(ptep, pgoff_to_pte(page->index));
417 if (pte_dirty(pte))
418 set_page_dirty(page);
419 if (pte_young(pte) && !PageAnon(page))
420 mark_page_accessed(page);
421 tlb->freed++;
422 page_remove_rmap(page);
423 tlb_remove_page(tlb, page);
424 continue;
427 * If details->check_mapping, we leave swap entries;
428 * if details->nonlinear_vma, we leave file entries.
430 if (unlikely(details))
431 continue;
432 if (!pte_file(pte))
433 free_swap_and_cache(pte_to_swp_entry(pte));
434 pte_clear(ptep);
436 pte_unmap(ptep-1);
439 static void zap_pmd_range(struct mmu_gather *tlb,
440 pgd_t * dir, unsigned long address,
441 unsigned long size, struct zap_details *details)
443 pmd_t * pmd;
444 unsigned long end;
446 if (pgd_none(*dir))
447 return;
448 if (unlikely(pgd_bad(*dir))) {
449 pgd_ERROR(*dir);
450 pgd_clear(dir);
451 return;
453 pmd = pmd_offset(dir, address);
454 end = address + size;
455 if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))
456 end = ((address + PGDIR_SIZE) & PGDIR_MASK);
457 do {
458 zap_pte_range(tlb, pmd, address, end - address, details);
459 address = (address + PMD_SIZE) & PMD_MASK;
460 pmd++;
461 } while (address && (address < end));
464 static void unmap_page_range(struct mmu_gather *tlb,
465 struct vm_area_struct *vma, unsigned long address,
466 unsigned long end, struct zap_details *details)
468 pgd_t * dir;
470 BUG_ON(address >= end);
471 dir = pgd_offset(vma->vm_mm, address);
472 tlb_start_vma(tlb, vma);
473 do {
474 zap_pmd_range(tlb, dir, address, end - address, details);
475 address = (address + PGDIR_SIZE) & PGDIR_MASK;
476 dir++;
477 } while (address && (address < end));
478 tlb_end_vma(tlb, vma);
481 /* Dispose of an entire struct mmu_gather per rescheduling point */
482 #if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
483 #define ZAP_BLOCK_SIZE (FREE_PTE_NR * PAGE_SIZE)
484 #endif
486 /* For UP, 256 pages at a time gives nice low latency */
487 #if !defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
488 #define ZAP_BLOCK_SIZE (256 * PAGE_SIZE)
489 #endif
491 /* No preempt: go for improved straight-line efficiency */
492 #if !defined(CONFIG_PREEMPT)
493 #define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
494 #endif
497 * unmap_vmas - unmap a range of memory covered by a list of vma's
498 * @tlbp: address of the caller's struct mmu_gather
499 * @mm: the controlling mm_struct
500 * @vma: the starting vma
501 * @start_addr: virtual address at which to start unmapping
502 * @end_addr: virtual address at which to end unmapping
503 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
504 * @details: details of nonlinear truncation or shared cache invalidation
506 * Returns the number of vma's which were covered by the unmapping.
508 * Unmap all pages in the vma list. Called under page_table_lock.
510 * We aim to not hold page_table_lock for too long (for scheduling latency
511 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
512 * return the ending mmu_gather to the caller.
514 * Only addresses between `start' and `end' will be unmapped.
516 * The VMA list must be sorted in ascending virtual address order.
518 * unmap_vmas() assumes that the caller will flush the whole unmapped address
519 * range after unmap_vmas() returns. So the only responsibility here is to
520 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
521 * drops the lock and schedules.
523 int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
524 struct vm_area_struct *vma, unsigned long start_addr,
525 unsigned long end_addr, unsigned long *nr_accounted,
526 struct zap_details *details)
528 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
529 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
530 int tlb_start_valid = 0;
531 int ret = 0;
532 int atomic = details && details->atomic;
534 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
535 unsigned long start;
536 unsigned long end;
538 start = max(vma->vm_start, start_addr);
539 if (start >= vma->vm_end)
540 continue;
541 end = min(vma->vm_end, end_addr);
542 if (end <= vma->vm_start)
543 continue;
545 if (vma->vm_flags & VM_ACCOUNT)
546 *nr_accounted += (end - start) >> PAGE_SHIFT;
548 ret++;
549 while (start != end) {
550 unsigned long block;
552 if (!tlb_start_valid) {
553 tlb_start = start;
554 tlb_start_valid = 1;
557 if (is_vm_hugetlb_page(vma)) {
558 block = end - start;
559 unmap_hugepage_range(vma, start, end);
560 } else {
561 block = min(zap_bytes, end - start);
562 unmap_page_range(*tlbp, vma, start,
563 start + block, details);
566 start += block;
567 zap_bytes -= block;
568 if ((long)zap_bytes > 0)
569 continue;
570 if (!atomic && need_resched()) {
571 int fullmm = tlb_is_full_mm(*tlbp);
572 tlb_finish_mmu(*tlbp, tlb_start, start);
573 cond_resched_lock(&mm->page_table_lock);
574 *tlbp = tlb_gather_mmu(mm, fullmm);
575 tlb_start_valid = 0;
577 zap_bytes = ZAP_BLOCK_SIZE;
580 return ret;
584 * zap_page_range - remove user pages in a given range
585 * @vma: vm_area_struct holding the applicable pages
586 * @address: starting address of pages to zap
587 * @size: number of bytes to zap
588 * @details: details of nonlinear truncation or shared cache invalidation
590 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
591 unsigned long size, struct zap_details *details)
593 struct mm_struct *mm = vma->vm_mm;
594 struct mmu_gather *tlb;
595 unsigned long end = address + size;
596 unsigned long nr_accounted = 0;
598 if (is_vm_hugetlb_page(vma)) {
599 zap_hugepage_range(vma, address, size);
600 return;
603 lru_add_drain();
604 spin_lock(&mm->page_table_lock);
605 tlb = tlb_gather_mmu(mm, 0);
606 unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
607 tlb_finish_mmu(tlb, address, end);
608 spin_unlock(&mm->page_table_lock);
612 * Do a quick page-table lookup for a single page.
613 * mm->page_table_lock must be held.
615 struct page *
616 follow_page(struct mm_struct *mm, unsigned long address, int write)
618 pgd_t *pgd;
619 pmd_t *pmd;
620 pte_t *ptep, pte;
621 unsigned long pfn;
622 struct page *page;
624 page = follow_huge_addr(mm, address, write);
625 if (! IS_ERR(page))
626 return page;
628 pgd = pgd_offset(mm, address);
629 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
630 goto out;
632 pmd = pmd_offset(pgd, address);
633 if (pmd_none(*pmd))
634 goto out;
635 if (pmd_huge(*pmd))
636 return follow_huge_pmd(mm, address, pmd, write);
637 if (unlikely(pmd_bad(*pmd)))
638 goto out;
640 ptep = pte_offset_map(pmd, address);
641 if (!ptep)
642 goto out;
644 pte = *ptep;
645 pte_unmap(ptep);
646 if (pte_present(pte)) {
647 if (write && !pte_write(pte))
648 goto out;
649 pfn = pte_pfn(pte);
650 if (pfn_valid(pfn)) {
651 page = pfn_to_page(pfn);
652 if (write && !pte_dirty(pte) && !PageDirty(page))
653 set_page_dirty(page);
654 mark_page_accessed(page);
655 return page;
659 out:
660 return NULL;
664 * Given a physical address, is there a useful struct page pointing to
665 * it? This may become more complex in the future if we start dealing
666 * with IO-aperture pages for direct-IO.
669 static inline struct page *get_page_map(struct page *page)
671 if (!pfn_valid(page_to_pfn(page)))
672 return NULL;
673 return page;
677 static inline int
678 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
679 unsigned long address)
681 pgd_t *pgd;
682 pmd_t *pmd;
684 /* Check if the vma is for an anonymous mapping. */
685 if (vma->vm_ops && vma->vm_ops->nopage)
686 return 0;
688 /* Check if page directory entry exists. */
689 pgd = pgd_offset(mm, address);
690 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
691 return 1;
693 /* Check if page middle directory entry exists. */
694 pmd = pmd_offset(pgd, address);
695 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
696 return 1;
698 /* There is a pte slot for 'address' in 'mm'. */
699 return 0;
703 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
704 unsigned long start, int len, int write, int force,
705 struct page **pages, struct vm_area_struct **vmas)
707 int i;
708 unsigned int flags;
711 * Require read or write permissions.
712 * If 'force' is set, we only require the "MAY" flags.
714 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
715 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
716 i = 0;
718 do {
719 struct vm_area_struct * vma;
721 vma = find_extend_vma(mm, start);
722 if (!vma && in_gate_area(tsk, start)) {
723 unsigned long pg = start & PAGE_MASK;
724 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
725 pgd_t *pgd;
726 pmd_t *pmd;
727 pte_t *pte;
728 if (write) /* user gate pages are read-only */
729 return i ? : -EFAULT;
730 pgd = pgd_offset_gate(mm, pg);
731 if (!pgd)
732 return i ? : -EFAULT;
733 pmd = pmd_offset(pgd, pg);
734 if (!pmd)
735 return i ? : -EFAULT;
736 pte = pte_offset_map(pmd, pg);
737 if (!pte)
738 return i ? : -EFAULT;
739 if (!pte_present(*pte)) {
740 pte_unmap(pte);
741 return i ? : -EFAULT;
743 if (pages) {
744 pages[i] = pte_page(*pte);
745 get_page(pages[i]);
747 pte_unmap(pte);
748 if (vmas)
749 vmas[i] = gate_vma;
750 i++;
751 start += PAGE_SIZE;
752 len--;
753 continue;
756 if (!vma || (pages && (vma->vm_flags & VM_IO))
757 || !(flags & vma->vm_flags))
758 return i ? : -EFAULT;
760 if (is_vm_hugetlb_page(vma)) {
761 i = follow_hugetlb_page(mm, vma, pages, vmas,
762 &start, &len, i);
763 continue;
765 spin_lock(&mm->page_table_lock);
766 do {
767 struct page *map;
768 int lookup_write = write;
769 while (!(map = follow_page(mm, start, lookup_write))) {
771 * Shortcut for anonymous pages. We don't want
772 * to force the creation of pages tables for
773 * insanly big anonymously mapped areas that
774 * nobody touched so far. This is important
775 * for doing a core dump for these mappings.
777 if (!lookup_write &&
778 untouched_anonymous_page(mm,vma,start)) {
779 map = ZERO_PAGE(start);
780 break;
782 spin_unlock(&mm->page_table_lock);
783 switch (handle_mm_fault(mm,vma,start,write)) {
784 case VM_FAULT_MINOR:
785 tsk->min_flt++;
786 break;
787 case VM_FAULT_MAJOR:
788 tsk->maj_flt++;
789 break;
790 case VM_FAULT_SIGBUS:
791 return i ? i : -EFAULT;
792 case VM_FAULT_OOM:
793 return i ? i : -ENOMEM;
794 default:
795 BUG();
798 * Now that we have performed a write fault
799 * and surely no longer have a shared page we
800 * shouldn't write, we shouldn't ignore an
801 * unwritable page in the page table if
802 * we are forcing write access.
804 lookup_write = write && !force;
805 spin_lock(&mm->page_table_lock);
807 if (pages) {
808 pages[i] = get_page_map(map);
809 if (!pages[i]) {
810 spin_unlock(&mm->page_table_lock);
811 while (i--)
812 page_cache_release(pages[i]);
813 i = -EFAULT;
814 goto out;
816 flush_dcache_page(pages[i]);
817 if (!PageReserved(pages[i]))
818 page_cache_get(pages[i]);
820 if (vmas)
821 vmas[i] = vma;
822 i++;
823 start += PAGE_SIZE;
824 len--;
825 } while(len && start < vma->vm_end);
826 spin_unlock(&mm->page_table_lock);
827 } while(len);
828 out:
829 return i;
832 EXPORT_SYMBOL(get_user_pages);
834 static void zeromap_pte_range(pte_t * pte, unsigned long address,
835 unsigned long size, pgprot_t prot)
837 unsigned long end;
839 address &= ~PMD_MASK;
840 end = address + size;
841 if (end > PMD_SIZE)
842 end = PMD_SIZE;
843 do {
844 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
845 BUG_ON(!pte_none(*pte));
846 set_pte(pte, zero_pte);
847 address += PAGE_SIZE;
848 pte++;
849 } while (address && (address < end));
852 static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address,
853 unsigned long size, pgprot_t prot)
855 unsigned long base, end;
857 base = address & PGDIR_MASK;
858 address &= ~PGDIR_MASK;
859 end = address + size;
860 if (end > PGDIR_SIZE)
861 end = PGDIR_SIZE;
862 do {
863 pte_t * pte = pte_alloc_map(mm, pmd, base + address);
864 if (!pte)
865 return -ENOMEM;
866 zeromap_pte_range(pte, base + address, end - address, prot);
867 pte_unmap(pte);
868 address = (address + PMD_SIZE) & PMD_MASK;
869 pmd++;
870 } while (address && (address < end));
871 return 0;
874 int zeromap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, pgprot_t prot)
876 int error = 0;
877 pgd_t * dir;
878 unsigned long beg = address;
879 unsigned long end = address + size;
880 struct mm_struct *mm = vma->vm_mm;
882 dir = pgd_offset(mm, address);
883 flush_cache_range(vma, beg, end);
884 if (address >= end)
885 BUG();
887 spin_lock(&mm->page_table_lock);
888 do {
889 pmd_t *pmd = pmd_alloc(mm, dir, address);
890 error = -ENOMEM;
891 if (!pmd)
892 break;
893 error = zeromap_pmd_range(mm, pmd, address, end - address, prot);
894 if (error)
895 break;
896 address = (address + PGDIR_SIZE) & PGDIR_MASK;
897 dir++;
898 } while (address && (address < end));
900 * Why flush? zeromap_pte_range has a BUG_ON for !pte_none()
902 flush_tlb_range(vma, beg, end);
903 spin_unlock(&mm->page_table_lock);
904 return error;
908 * maps a range of physical memory into the requested pages. the old
909 * mappings are removed. any references to nonexistent pages results
910 * in null mappings (currently treated as "copy-on-access")
912 static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
913 unsigned long phys_addr, pgprot_t prot)
915 unsigned long end;
916 unsigned long pfn;
918 address &= ~PMD_MASK;
919 end = address + size;
920 if (end > PMD_SIZE)
921 end = PMD_SIZE;
922 pfn = phys_addr >> PAGE_SHIFT;
923 do {
924 BUG_ON(!pte_none(*pte));
925 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
926 set_pte(pte, pfn_pte(pfn, prot));
927 address += PAGE_SIZE;
928 pfn++;
929 pte++;
930 } while (address && (address < end));
933 static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size,
934 unsigned long phys_addr, pgprot_t prot)
936 unsigned long base, end;
938 base = address & PGDIR_MASK;
939 address &= ~PGDIR_MASK;
940 end = address + size;
941 if (end > PGDIR_SIZE)
942 end = PGDIR_SIZE;
943 phys_addr -= address;
944 do {
945 pte_t * pte = pte_alloc_map(mm, pmd, base + address);
946 if (!pte)
947 return -ENOMEM;
948 remap_pte_range(pte, base + address, end - address, address + phys_addr, prot);
949 pte_unmap(pte);
950 address = (address + PMD_SIZE) & PMD_MASK;
951 pmd++;
952 } while (address && (address < end));
953 return 0;
956 /* Note: this is only safe if the mm semaphore is held when called. */
957 int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
959 int error = 0;
960 pgd_t * dir;
961 unsigned long beg = from;
962 unsigned long end = from + size;
963 struct mm_struct *mm = vma->vm_mm;
965 phys_addr -= from;
966 dir = pgd_offset(mm, from);
967 flush_cache_range(vma, beg, end);
968 if (from >= end)
969 BUG();
971 spin_lock(&mm->page_table_lock);
972 do {
973 pmd_t *pmd = pmd_alloc(mm, dir, from);
974 error = -ENOMEM;
975 if (!pmd)
976 break;
977 error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot);
978 if (error)
979 break;
980 from = (from + PGDIR_SIZE) & PGDIR_MASK;
981 dir++;
982 } while (from && (from < end));
984 * Why flush? remap_pte_range has a BUG_ON for !pte_none()
986 flush_tlb_range(vma, beg, end);
987 spin_unlock(&mm->page_table_lock);
988 return error;
991 EXPORT_SYMBOL(remap_page_range);
994 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
995 * servicing faults for write access. In the normal case, do always want
996 * pte_mkwrite. But get_user_pages can cause write faults for mappings
997 * that do not have writing enabled, when used by access_process_vm.
999 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1001 if (likely(vma->vm_flags & VM_WRITE))
1002 pte = pte_mkwrite(pte);
1003 return pte;
1007 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1009 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1010 pte_t *page_table)
1012 pte_t entry;
1014 flush_cache_page(vma, address);
1015 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1016 vma);
1017 ptep_establish(vma, address, page_table, entry);
1018 update_mmu_cache(vma, address, entry);
1022 * This routine handles present pages, when users try to write
1023 * to a shared page. It is done by copying the page to a new address
1024 * and decrementing the shared-page counter for the old page.
1026 * Goto-purists beware: the only reason for goto's here is that it results
1027 * in better assembly code.. The "default" path will see no jumps at all.
1029 * Note that this routine assumes that the protection checks have been
1030 * done by the caller (the low-level page fault routine in most cases).
1031 * Thus we can safely just mark it writable once we've done any necessary
1032 * COW.
1034 * We also mark the page dirty at this point even though the page will
1035 * change only once the write actually happens. This avoids a few races,
1036 * and potentially makes it more efficient.
1038 * We hold the mm semaphore and the page_table_lock on entry and exit
1039 * with the page_table_lock released.
1041 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1042 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1044 struct page *old_page, *new_page;
1045 unsigned long pfn = pte_pfn(pte);
1046 pte_t entry;
1048 if (unlikely(!pfn_valid(pfn))) {
1050 * This should really halt the system so it can be debugged or
1051 * at least the kernel stops what it's doing before it corrupts
1052 * data, but for the moment just pretend this is OOM.
1054 pte_unmap(page_table);
1055 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1056 address);
1057 spin_unlock(&mm->page_table_lock);
1058 return VM_FAULT_OOM;
1060 old_page = pfn_to_page(pfn);
1062 if (!TestSetPageLocked(old_page)) {
1063 int reuse = can_share_swap_page(old_page);
1064 unlock_page(old_page);
1065 if (reuse) {
1066 flush_cache_page(vma, address);
1067 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1068 vma);
1069 ptep_set_access_flags(vma, address, page_table, entry, 1);
1070 update_mmu_cache(vma, address, entry);
1071 pte_unmap(page_table);
1072 spin_unlock(&mm->page_table_lock);
1073 return VM_FAULT_MINOR;
1076 pte_unmap(page_table);
1079 * Ok, we need to copy. Oh, well..
1081 if (!PageReserved(old_page))
1082 page_cache_get(old_page);
1083 spin_unlock(&mm->page_table_lock);
1085 if (unlikely(anon_vma_prepare(vma)))
1086 goto no_new_page;
1087 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1088 if (!new_page)
1089 goto no_new_page;
1090 copy_cow_page(old_page,new_page,address);
1093 * Re-check the pte - we dropped the lock
1095 spin_lock(&mm->page_table_lock);
1096 page_table = pte_offset_map(pmd, address);
1097 if (likely(pte_same(*page_table, pte))) {
1098 if (PageReserved(old_page))
1099 ++mm->rss;
1100 else
1101 page_remove_rmap(old_page);
1102 break_cow(vma, new_page, address, page_table);
1103 lru_cache_add_active(new_page);
1104 page_add_anon_rmap(new_page, vma, address);
1106 /* Free the old page.. */
1107 new_page = old_page;
1109 pte_unmap(page_table);
1110 page_cache_release(new_page);
1111 page_cache_release(old_page);
1112 spin_unlock(&mm->page_table_lock);
1113 return VM_FAULT_MINOR;
1115 no_new_page:
1116 page_cache_release(old_page);
1117 return VM_FAULT_OOM;
1121 * Helper function for unmap_mapping_range().
1123 static inline void unmap_mapping_range_list(struct prio_tree_root *root,
1124 struct zap_details *details)
1126 struct vm_area_struct *vma;
1127 struct prio_tree_iter iter;
1128 pgoff_t vba, vea, zba, zea;
1130 vma_prio_tree_foreach(vma, &iter, root,
1131 details->first_index, details->last_index) {
1132 vba = vma->vm_pgoff;
1133 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1134 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1135 zba = details->first_index;
1136 if (zba < vba)
1137 zba = vba;
1138 zea = details->last_index;
1139 if (zea > vea)
1140 zea = vea;
1141 zap_page_range(vma,
1142 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1143 (zea - zba + 1) << PAGE_SHIFT, details);
1148 * unmap_mapping_range - unmap the portion of all mmaps
1149 * in the specified address_space corresponding to the specified
1150 * page range in the underlying file.
1151 * @address_space: the address space containing mmaps to be unmapped.
1152 * @holebegin: byte in first page to unmap, relative to the start of
1153 * the underlying file. This will be rounded down to a PAGE_SIZE
1154 * boundary. Note that this is different from vmtruncate(), which
1155 * must keep the partial page. In contrast, we must get rid of
1156 * partial pages.
1157 * @holelen: size of prospective hole in bytes. This will be rounded
1158 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1159 * end of the file.
1160 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1161 * but 0 when invalidating pagecache, don't throw away private data.
1163 void unmap_mapping_range(struct address_space *mapping,
1164 loff_t const holebegin, loff_t const holelen, int even_cows)
1166 struct zap_details details;
1167 pgoff_t hba = holebegin >> PAGE_SHIFT;
1168 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1170 /* Check for overflow. */
1171 if (sizeof(holelen) > sizeof(hlen)) {
1172 long long holeend =
1173 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1174 if (holeend & ~(long long)ULONG_MAX)
1175 hlen = ULONG_MAX - hba + 1;
1178 details.check_mapping = even_cows? NULL: mapping;
1179 details.nonlinear_vma = NULL;
1180 details.first_index = hba;
1181 details.last_index = hba + hlen - 1;
1182 details.atomic = 1; /* A spinlock is held */
1183 if (details.last_index < details.first_index)
1184 details.last_index = ULONG_MAX;
1186 spin_lock(&mapping->i_mmap_lock);
1187 /* Protect against page fault */
1188 atomic_inc(&mapping->truncate_count);
1190 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1191 unmap_mapping_range_list(&mapping->i_mmap, &details);
1194 * In nonlinear VMAs there is no correspondence between virtual address
1195 * offset and file offset. So we must perform an exhaustive search
1196 * across *all* the pages in each nonlinear VMA, not just the pages
1197 * whose virtual address lies outside the file truncation point.
1199 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) {
1200 struct vm_area_struct *vma;
1201 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1202 shared.vm_set.list) {
1203 details.nonlinear_vma = vma;
1204 zap_page_range(vma, vma->vm_start,
1205 vma->vm_end - vma->vm_start, &details);
1208 spin_unlock(&mapping->i_mmap_lock);
1210 EXPORT_SYMBOL(unmap_mapping_range);
1213 * Handle all mappings that got truncated by a "truncate()"
1214 * system call.
1216 * NOTE! We have to be ready to update the memory sharing
1217 * between the file and the memory map for a potential last
1218 * incomplete page. Ugly, but necessary.
1220 int vmtruncate(struct inode * inode, loff_t offset)
1222 struct address_space *mapping = inode->i_mapping;
1223 unsigned long limit;
1225 if (inode->i_size < offset)
1226 goto do_expand;
1228 * truncation of in-use swapfiles is disallowed - it would cause
1229 * subsequent swapout to scribble on the now-freed blocks.
1231 if (IS_SWAPFILE(inode))
1232 goto out_busy;
1233 i_size_write(inode, offset);
1234 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1235 truncate_inode_pages(mapping, offset);
1236 goto out_truncate;
1238 do_expand:
1239 limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
1240 if (limit != RLIM_INFINITY && offset > limit)
1241 goto out_sig;
1242 if (offset > inode->i_sb->s_maxbytes)
1243 goto out_big;
1244 i_size_write(inode, offset);
1246 out_truncate:
1247 if (inode->i_op && inode->i_op->truncate)
1248 inode->i_op->truncate(inode);
1249 return 0;
1250 out_sig:
1251 send_sig(SIGXFSZ, current, 0);
1252 out_big:
1253 return -EFBIG;
1254 out_busy:
1255 return -ETXTBSY;
1258 EXPORT_SYMBOL(vmtruncate);
1261 * Primitive swap readahead code. We simply read an aligned block of
1262 * (1 << page_cluster) entries in the swap area. This method is chosen
1263 * because it doesn't cost us any seek time. We also make sure to queue
1264 * the 'original' request together with the readahead ones...
1266 * This has been extended to use the NUMA policies from the mm triggering
1267 * the readahead.
1269 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1271 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1273 #ifdef CONFIG_NUMA
1274 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1275 #endif
1276 int i, num;
1277 struct page *new_page;
1278 unsigned long offset;
1281 * Get the number of handles we should do readahead io to.
1283 num = valid_swaphandles(entry, &offset);
1284 for (i = 0; i < num; offset++, i++) {
1285 /* Ok, do the async read-ahead now */
1286 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1287 offset), vma, addr);
1288 if (!new_page)
1289 break;
1290 page_cache_release(new_page);
1291 #ifdef CONFIG_NUMA
1293 * Find the next applicable VMA for the NUMA policy.
1295 addr += PAGE_SIZE;
1296 if (addr == 0)
1297 vma = NULL;
1298 if (vma) {
1299 if (addr >= vma->vm_end) {
1300 vma = next_vma;
1301 next_vma = vma ? vma->vm_next : NULL;
1303 if (vma && addr < vma->vm_start)
1304 vma = NULL;
1305 } else {
1306 if (next_vma && addr >= next_vma->vm_start) {
1307 vma = next_vma;
1308 next_vma = vma->vm_next;
1311 #endif
1313 lru_add_drain(); /* Push any new pages onto the LRU now */
1317 * We hold the mm semaphore and the page_table_lock on entry and
1318 * should release the pagetable lock on exit..
1320 static int do_swap_page(struct mm_struct * mm,
1321 struct vm_area_struct * vma, unsigned long address,
1322 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1324 struct page *page;
1325 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1326 pte_t pte;
1327 int ret = VM_FAULT_MINOR;
1329 pte_unmap(page_table);
1330 spin_unlock(&mm->page_table_lock);
1331 page = lookup_swap_cache(entry);
1332 if (!page) {
1333 swapin_readahead(entry, address, vma);
1334 page = read_swap_cache_async(entry, vma, address);
1335 if (!page) {
1337 * Back out if somebody else faulted in this pte while
1338 * we released the page table lock.
1340 spin_lock(&mm->page_table_lock);
1341 page_table = pte_offset_map(pmd, address);
1342 if (likely(pte_same(*page_table, orig_pte)))
1343 ret = VM_FAULT_OOM;
1344 else
1345 ret = VM_FAULT_MINOR;
1346 pte_unmap(page_table);
1347 spin_unlock(&mm->page_table_lock);
1348 goto out;
1351 /* Had to read the page from swap area: Major fault */
1352 ret = VM_FAULT_MAJOR;
1353 inc_page_state(pgmajfault);
1354 grab_swap_token();
1357 mark_page_accessed(page);
1358 lock_page(page);
1361 * Back out if somebody else faulted in this pte while we
1362 * released the page table lock.
1364 spin_lock(&mm->page_table_lock);
1365 page_table = pte_offset_map(pmd, address);
1366 if (unlikely(!pte_same(*page_table, orig_pte))) {
1367 pte_unmap(page_table);
1368 spin_unlock(&mm->page_table_lock);
1369 unlock_page(page);
1370 page_cache_release(page);
1371 ret = VM_FAULT_MINOR;
1372 goto out;
1375 /* The page isn't present yet, go ahead with the fault. */
1377 swap_free(entry);
1378 if (vm_swap_full())
1379 remove_exclusive_swap_page(page);
1381 mm->rss++;
1382 pte = mk_pte(page, vma->vm_page_prot);
1383 if (write_access && can_share_swap_page(page)) {
1384 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1385 write_access = 0;
1387 unlock_page(page);
1389 flush_icache_page(vma, page);
1390 set_pte(page_table, pte);
1391 page_add_anon_rmap(page, vma, address);
1393 if (write_access) {
1394 if (do_wp_page(mm, vma, address,
1395 page_table, pmd, pte) == VM_FAULT_OOM)
1396 ret = VM_FAULT_OOM;
1397 goto out;
1400 /* No need to invalidate - it was non-present before */
1401 update_mmu_cache(vma, address, pte);
1402 pte_unmap(page_table);
1403 spin_unlock(&mm->page_table_lock);
1404 out:
1405 return ret;
1409 * We are called with the MM semaphore and page_table_lock
1410 * spinlock held to protect against concurrent faults in
1411 * multithreaded programs.
1413 static int
1414 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1415 pte_t *page_table, pmd_t *pmd, int write_access,
1416 unsigned long addr)
1418 pte_t entry;
1419 struct page * page = ZERO_PAGE(addr);
1421 /* Read-only mapping of ZERO_PAGE. */
1422 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1424 /* ..except if it's a write access */
1425 if (write_access) {
1426 /* Allocate our own private page. */
1427 pte_unmap(page_table);
1428 spin_unlock(&mm->page_table_lock);
1430 if (unlikely(anon_vma_prepare(vma)))
1431 goto no_mem;
1432 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1433 if (!page)
1434 goto no_mem;
1435 clear_user_highpage(page, addr);
1437 spin_lock(&mm->page_table_lock);
1438 page_table = pte_offset_map(pmd, addr);
1440 if (!pte_none(*page_table)) {
1441 pte_unmap(page_table);
1442 page_cache_release(page);
1443 spin_unlock(&mm->page_table_lock);
1444 goto out;
1446 mm->rss++;
1447 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1448 vma->vm_page_prot)),
1449 vma);
1450 lru_cache_add_active(page);
1451 mark_page_accessed(page);
1452 page_add_anon_rmap(page, vma, addr);
1455 set_pte(page_table, entry);
1456 pte_unmap(page_table);
1458 /* No need to invalidate - it was non-present before */
1459 update_mmu_cache(vma, addr, entry);
1460 spin_unlock(&mm->page_table_lock);
1461 out:
1462 return VM_FAULT_MINOR;
1463 no_mem:
1464 return VM_FAULT_OOM;
1468 * do_no_page() tries to create a new page mapping. It aggressively
1469 * tries to share with existing pages, but makes a separate copy if
1470 * the "write_access" parameter is true in order to avoid the next
1471 * page fault.
1473 * As this is called only for pages that do not currently exist, we
1474 * do not need to flush old virtual caches or the TLB.
1476 * This is called with the MM semaphore held and the page table
1477 * spinlock held. Exit with the spinlock released.
1479 static int
1480 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1481 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1483 struct page * new_page;
1484 struct address_space *mapping = NULL;
1485 pte_t entry;
1486 int sequence = 0;
1487 int ret = VM_FAULT_MINOR;
1488 int anon = 0;
1490 if (!vma->vm_ops || !vma->vm_ops->nopage)
1491 return do_anonymous_page(mm, vma, page_table,
1492 pmd, write_access, address);
1493 pte_unmap(page_table);
1494 spin_unlock(&mm->page_table_lock);
1496 if (vma->vm_file) {
1497 mapping = vma->vm_file->f_mapping;
1498 sequence = atomic_read(&mapping->truncate_count);
1500 smp_rmb(); /* Prevent CPU from reordering lock-free ->nopage() */
1501 retry:
1502 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1504 /* no page was available -- either SIGBUS or OOM */
1505 if (new_page == NOPAGE_SIGBUS)
1506 return VM_FAULT_SIGBUS;
1507 if (new_page == NOPAGE_OOM)
1508 return VM_FAULT_OOM;
1511 * Should we do an early C-O-W break?
1513 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1514 struct page *page;
1516 if (unlikely(anon_vma_prepare(vma)))
1517 goto oom;
1518 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1519 if (!page)
1520 goto oom;
1521 copy_user_highpage(page, new_page, address);
1522 page_cache_release(new_page);
1523 new_page = page;
1524 anon = 1;
1527 spin_lock(&mm->page_table_lock);
1529 * For a file-backed vma, someone could have truncated or otherwise
1530 * invalidated this page. If unmap_mapping_range got called,
1531 * retry getting the page.
1533 if (mapping &&
1534 (unlikely(sequence != atomic_read(&mapping->truncate_count)))) {
1535 sequence = atomic_read(&mapping->truncate_count);
1536 spin_unlock(&mm->page_table_lock);
1537 page_cache_release(new_page);
1538 goto retry;
1540 page_table = pte_offset_map(pmd, address);
1543 * This silly early PAGE_DIRTY setting removes a race
1544 * due to the bad i386 page protection. But it's valid
1545 * for other architectures too.
1547 * Note that if write_access is true, we either now have
1548 * an exclusive copy of the page, or this is a shared mapping,
1549 * so we can make it writable and dirty to avoid having to
1550 * handle that later.
1552 /* Only go through if we didn't race with anybody else... */
1553 if (pte_none(*page_table)) {
1554 if (!PageReserved(new_page))
1555 ++mm->rss;
1556 flush_icache_page(vma, new_page);
1557 entry = mk_pte(new_page, vma->vm_page_prot);
1558 if (write_access)
1559 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1560 set_pte(page_table, entry);
1561 if (anon) {
1562 lru_cache_add_active(new_page);
1563 page_add_anon_rmap(new_page, vma, address);
1564 } else
1565 page_add_file_rmap(new_page);
1566 pte_unmap(page_table);
1567 } else {
1568 /* One of our sibling threads was faster, back out. */
1569 pte_unmap(page_table);
1570 page_cache_release(new_page);
1571 spin_unlock(&mm->page_table_lock);
1572 goto out;
1575 /* no need to invalidate: a not-present page shouldn't be cached */
1576 update_mmu_cache(vma, address, entry);
1577 spin_unlock(&mm->page_table_lock);
1578 out:
1579 return ret;
1580 oom:
1581 page_cache_release(new_page);
1582 ret = VM_FAULT_OOM;
1583 goto out;
1587 * Fault of a previously existing named mapping. Repopulate the pte
1588 * from the encoded file_pte if possible. This enables swappable
1589 * nonlinear vmas.
1591 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1592 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1594 unsigned long pgoff;
1595 int err;
1597 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1599 * Fall back to the linear mapping if the fs does not support
1600 * ->populate:
1602 if (!vma->vm_ops || !vma->vm_ops->populate ||
1603 (write_access && !(vma->vm_flags & VM_SHARED))) {
1604 pte_clear(pte);
1605 return do_no_page(mm, vma, address, write_access, pte, pmd);
1608 pgoff = pte_to_pgoff(*pte);
1610 pte_unmap(pte);
1611 spin_unlock(&mm->page_table_lock);
1613 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1614 if (err == -ENOMEM)
1615 return VM_FAULT_OOM;
1616 if (err)
1617 return VM_FAULT_SIGBUS;
1618 return VM_FAULT_MAJOR;
1622 * These routines also need to handle stuff like marking pages dirty
1623 * and/or accessed for architectures that don't do it in hardware (most
1624 * RISC architectures). The early dirtying is also good on the i386.
1626 * There is also a hook called "update_mmu_cache()" that architectures
1627 * with external mmu caches can use to update those (ie the Sparc or
1628 * PowerPC hashed page tables that act as extended TLBs).
1630 * Note the "page_table_lock". It is to protect against kswapd removing
1631 * pages from under us. Note that kswapd only ever _removes_ pages, never
1632 * adds them. As such, once we have noticed that the page is not present,
1633 * we can drop the lock early.
1635 * The adding of pages is protected by the MM semaphore (which we hold),
1636 * so we don't need to worry about a page being suddenly been added into
1637 * our VM.
1639 * We enter with the pagetable spinlock held, we are supposed to
1640 * release it when done.
1642 static inline int handle_pte_fault(struct mm_struct *mm,
1643 struct vm_area_struct * vma, unsigned long address,
1644 int write_access, pte_t *pte, pmd_t *pmd)
1646 pte_t entry;
1648 entry = *pte;
1649 if (!pte_present(entry)) {
1651 * If it truly wasn't present, we know that kswapd
1652 * and the PTE updates will not touch it later. So
1653 * drop the lock.
1655 if (pte_none(entry))
1656 return do_no_page(mm, vma, address, write_access, pte, pmd);
1657 if (pte_file(entry))
1658 return do_file_page(mm, vma, address, write_access, pte, pmd);
1659 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1662 if (write_access) {
1663 if (!pte_write(entry))
1664 return do_wp_page(mm, vma, address, pte, pmd, entry);
1666 entry = pte_mkdirty(entry);
1668 entry = pte_mkyoung(entry);
1669 ptep_set_access_flags(vma, address, pte, entry, write_access);
1670 update_mmu_cache(vma, address, entry);
1671 pte_unmap(pte);
1672 spin_unlock(&mm->page_table_lock);
1673 return VM_FAULT_MINOR;
1677 * By the time we get here, we already hold the mm semaphore
1679 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
1680 unsigned long address, int write_access)
1682 pgd_t *pgd;
1683 pmd_t *pmd;
1685 __set_current_state(TASK_RUNNING);
1686 pgd = pgd_offset(mm, address);
1688 inc_page_state(pgfault);
1690 if (is_vm_hugetlb_page(vma))
1691 return VM_FAULT_SIGBUS; /* mapping truncation does this. */
1694 * We need the page table lock to synchronize with kswapd
1695 * and the SMP-safe atomic PTE updates.
1697 spin_lock(&mm->page_table_lock);
1698 pmd = pmd_alloc(mm, pgd, address);
1700 if (pmd) {
1701 pte_t * pte = pte_alloc_map(mm, pmd, address);
1702 if (pte)
1703 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
1705 spin_unlock(&mm->page_table_lock);
1706 return VM_FAULT_OOM;
1710 * Allocate page middle directory.
1712 * We've already handled the fast-path in-line, and we own the
1713 * page table lock.
1715 * On a two-level page table, this ends up actually being entirely
1716 * optimized away.
1718 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1720 pmd_t *new;
1722 spin_unlock(&mm->page_table_lock);
1723 new = pmd_alloc_one(mm, address);
1724 spin_lock(&mm->page_table_lock);
1725 if (!new)
1726 return NULL;
1729 * Because we dropped the lock, we should re-check the
1730 * entry, as somebody else could have populated it..
1732 if (pgd_present(*pgd)) {
1733 pmd_free(new);
1734 goto out;
1736 pgd_populate(mm, pgd, new);
1737 out:
1738 return pmd_offset(pgd, address);
1741 int make_pages_present(unsigned long addr, unsigned long end)
1743 int ret, len, write;
1744 struct vm_area_struct * vma;
1746 vma = find_vma(current->mm, addr);
1747 if (!vma)
1748 return -1;
1749 write = (vma->vm_flags & VM_WRITE) != 0;
1750 if (addr >= end)
1751 BUG();
1752 if (end > vma->vm_end)
1753 BUG();
1754 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
1755 ret = get_user_pages(current, current->mm, addr,
1756 len, write, 0, NULL, NULL);
1757 if (ret < 0)
1758 return ret;
1759 return ret == len ? 0 : -1;
1763 * Map a vmalloc()-space virtual address to the physical page.
1765 struct page * vmalloc_to_page(void * vmalloc_addr)
1767 unsigned long addr = (unsigned long) vmalloc_addr;
1768 struct page *page = NULL;
1769 pgd_t *pgd = pgd_offset_k(addr);
1770 pmd_t *pmd;
1771 pte_t *ptep, pte;
1773 if (!pgd_none(*pgd)) {
1774 pmd = pmd_offset(pgd, addr);
1775 if (!pmd_none(*pmd)) {
1776 preempt_disable();
1777 ptep = pte_offset_map(pmd, addr);
1778 pte = *ptep;
1779 if (pte_present(pte))
1780 page = pte_page(pte);
1781 pte_unmap(ptep);
1782 preempt_enable();
1785 return page;
1788 EXPORT_SYMBOL(vmalloc_to_page);
1790 #if !defined(CONFIG_ARCH_GATE_AREA)
1792 #if defined(AT_SYSINFO_EHDR)
1793 struct vm_area_struct gate_vma;
1795 static int __init gate_vma_init(void)
1797 gate_vma.vm_mm = NULL;
1798 gate_vma.vm_start = FIXADDR_USER_START;
1799 gate_vma.vm_end = FIXADDR_USER_END;
1800 gate_vma.vm_page_prot = PAGE_READONLY;
1801 gate_vma.vm_flags = 0;
1802 return 0;
1804 __initcall(gate_vma_init);
1805 #endif
1807 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1809 #ifdef AT_SYSINFO_EHDR
1810 return &gate_vma;
1811 #else
1812 return NULL;
1813 #endif
1816 int in_gate_area(struct task_struct *task, unsigned long addr)
1818 #ifdef AT_SYSINFO_EHDR
1819 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
1820 return 1;
1821 #endif
1822 return 0;
1825 #endif