4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 static struct kmem_cache
*orphan_entry_slab
;
25 static struct kmem_cache
*inode_entry_slab
;
28 * We guarantee no failure on the returned page.
30 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
32 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
33 struct page
*page
= NULL
;
35 page
= grab_cache_page(mapping
, index
);
41 /* We wait writeback only inside grab_meta_page() */
42 wait_on_page_writeback(page
);
43 SetPageUptodate(page
);
48 * We guarantee no failure on the returned page.
50 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
52 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
55 page
= grab_cache_page(mapping
, index
);
60 if (f2fs_readpage(sbi
, page
, index
, READ_SYNC
)) {
61 f2fs_put_page(page
, 1);
64 mark_page_accessed(page
);
66 /* We do not allow returning an errorneous page */
70 static int f2fs_write_meta_page(struct page
*page
,
71 struct writeback_control
*wbc
)
73 struct inode
*inode
= page
->mapping
->host
;
74 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
76 /* Should not write any meta pages, if any IO error was occurred */
77 if (wbc
->for_reclaim
||
78 is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ERROR_FLAG
)) {
79 dec_page_count(sbi
, F2FS_DIRTY_META
);
82 return AOP_WRITEPAGE_ACTIVATE
;
85 wait_on_page_writeback(page
);
87 write_meta_page(sbi
, page
);
88 dec_page_count(sbi
, F2FS_DIRTY_META
);
93 static int f2fs_write_meta_pages(struct address_space
*mapping
,
94 struct writeback_control
*wbc
)
96 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
97 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
100 if (wbc
->for_kupdate
)
103 if (get_pages(sbi
, F2FS_DIRTY_META
) == 0)
106 /* if mounting is failed, skip writing node pages */
107 mutex_lock(&sbi
->cp_mutex
);
108 written
= sync_meta_pages(sbi
, META
, bio_get_nr_vecs(bdev
));
109 mutex_unlock(&sbi
->cp_mutex
);
110 wbc
->nr_to_write
-= written
;
114 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
117 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
118 pgoff_t index
= 0, end
= LONG_MAX
;
121 struct writeback_control wbc
= {
125 pagevec_init(&pvec
, 0);
127 while (index
<= end
) {
129 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
131 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
135 for (i
= 0; i
< nr_pages
; i
++) {
136 struct page
*page
= pvec
.pages
[i
];
138 BUG_ON(page
->mapping
!= mapping
);
139 BUG_ON(!PageDirty(page
));
140 clear_page_dirty_for_io(page
);
141 if (f2fs_write_meta_page(page
, &wbc
)) {
145 if (nwritten
++ >= nr_to_write
)
148 pagevec_release(&pvec
);
153 f2fs_submit_bio(sbi
, type
, nr_to_write
== LONG_MAX
);
158 static int f2fs_set_meta_page_dirty(struct page
*page
)
160 struct address_space
*mapping
= page
->mapping
;
161 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
163 SetPageUptodate(page
);
164 if (!PageDirty(page
)) {
165 __set_page_dirty_nobuffers(page
);
166 inc_page_count(sbi
, F2FS_DIRTY_META
);
172 const struct address_space_operations f2fs_meta_aops
= {
173 .writepage
= f2fs_write_meta_page
,
174 .writepages
= f2fs_write_meta_pages
,
175 .set_page_dirty
= f2fs_set_meta_page_dirty
,
178 int check_orphan_space(struct f2fs_sb_info
*sbi
)
180 unsigned int max_orphans
;
184 * considering 512 blocks in a segment 5 blocks are needed for cp
185 * and log segment summaries. Remaining blocks are used to keep
186 * orphan entries with the limitation one reserved segment
187 * for cp pack we can have max 1020*507 orphan entries
189 max_orphans
= (sbi
->blocks_per_seg
- 5) * F2FS_ORPHANS_PER_BLOCK
;
190 mutex_lock(&sbi
->orphan_inode_mutex
);
191 if (sbi
->n_orphans
>= max_orphans
)
193 mutex_unlock(&sbi
->orphan_inode_mutex
);
197 void add_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
199 struct list_head
*head
, *this;
200 struct orphan_inode_entry
*new = NULL
, *orphan
= NULL
;
202 mutex_lock(&sbi
->orphan_inode_mutex
);
203 head
= &sbi
->orphan_inode_list
;
204 list_for_each(this, head
) {
205 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
206 if (orphan
->ino
== ino
)
208 if (orphan
->ino
> ino
)
213 new = kmem_cache_alloc(orphan_entry_slab
, GFP_ATOMIC
);
220 /* add new_oentry into list which is sorted by inode number */
222 list_add(&new->list
, this->prev
);
224 list_add_tail(&new->list
, head
);
228 mutex_unlock(&sbi
->orphan_inode_mutex
);
231 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
233 struct list_head
*this, *next
, *head
;
234 struct orphan_inode_entry
*orphan
;
236 mutex_lock(&sbi
->orphan_inode_mutex
);
237 head
= &sbi
->orphan_inode_list
;
238 list_for_each_safe(this, next
, head
) {
239 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
240 if (orphan
->ino
== ino
) {
241 list_del(&orphan
->list
);
242 kmem_cache_free(orphan_entry_slab
, orphan
);
247 mutex_unlock(&sbi
->orphan_inode_mutex
);
250 static void recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
252 struct inode
*inode
= f2fs_iget(sbi
->sb
, ino
);
253 BUG_ON(IS_ERR(inode
));
256 /* truncate all the data during iput */
260 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
262 block_t start_blk
, orphan_blkaddr
, i
, j
;
264 if (!is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
))
268 start_blk
= __start_cp_addr(sbi
) + 1;
269 orphan_blkaddr
= __start_sum_addr(sbi
) - 1;
271 for (i
= 0; i
< orphan_blkaddr
; i
++) {
272 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
273 struct f2fs_orphan_block
*orphan_blk
;
275 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
276 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
277 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
278 recover_orphan_inode(sbi
, ino
);
280 f2fs_put_page(page
, 1);
282 /* clear Orphan Flag */
283 clear_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
);
288 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
290 struct list_head
*head
, *this, *next
;
291 struct f2fs_orphan_block
*orphan_blk
= NULL
;
292 struct page
*page
= NULL
;
293 unsigned int nentries
= 0;
294 unsigned short index
= 1;
295 unsigned short orphan_blocks
;
297 orphan_blocks
= (unsigned short)((sbi
->n_orphans
+
298 (F2FS_ORPHANS_PER_BLOCK
- 1)) / F2FS_ORPHANS_PER_BLOCK
);
300 mutex_lock(&sbi
->orphan_inode_mutex
);
301 head
= &sbi
->orphan_inode_list
;
303 /* loop for each orphan inode entry and write them in Jornal block */
304 list_for_each_safe(this, next
, head
) {
305 struct orphan_inode_entry
*orphan
;
307 orphan
= list_entry(this, struct orphan_inode_entry
, list
);
309 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
311 * an orphan block is full of 1020 entries,
312 * then we need to flush current orphan blocks
313 * and bring another one in memory
315 orphan_blk
->blk_addr
= cpu_to_le16(index
);
316 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
317 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
318 set_page_dirty(page
);
319 f2fs_put_page(page
, 1);
328 page
= grab_meta_page(sbi
, start_blk
);
329 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
330 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
332 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
337 orphan_blk
->blk_addr
= cpu_to_le16(index
);
338 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
339 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
340 set_page_dirty(page
);
341 f2fs_put_page(page
, 1);
343 mutex_unlock(&sbi
->orphan_inode_mutex
);
346 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
347 block_t cp_addr
, unsigned long long *version
)
349 struct page
*cp_page_1
, *cp_page_2
= NULL
;
350 unsigned long blk_size
= sbi
->blocksize
;
351 struct f2fs_checkpoint
*cp_block
;
352 unsigned long long cur_version
= 0, pre_version
= 0;
353 unsigned int crc
= 0;
356 /* Read the 1st cp block in this CP pack */
357 cp_page_1
= get_meta_page(sbi
, cp_addr
);
359 /* get the version number */
360 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_1
);
361 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
362 if (crc_offset
>= blk_size
)
365 crc
= *(unsigned int *)((unsigned char *)cp_block
+ crc_offset
);
366 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
369 pre_version
= le64_to_cpu(cp_block
->checkpoint_ver
);
371 /* Read the 2nd cp block in this CP pack */
372 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
373 cp_page_2
= get_meta_page(sbi
, cp_addr
);
375 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_2
);
376 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
377 if (crc_offset
>= blk_size
)
380 crc
= *(unsigned int *)((unsigned char *)cp_block
+ crc_offset
);
381 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
384 cur_version
= le64_to_cpu(cp_block
->checkpoint_ver
);
386 if (cur_version
== pre_version
) {
387 *version
= cur_version
;
388 f2fs_put_page(cp_page_2
, 1);
392 f2fs_put_page(cp_page_2
, 1);
394 f2fs_put_page(cp_page_1
, 1);
398 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
400 struct f2fs_checkpoint
*cp_block
;
401 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
402 struct page
*cp1
, *cp2
, *cur_page
;
403 unsigned long blk_size
= sbi
->blocksize
;
404 unsigned long long cp1_version
= 0, cp2_version
= 0;
405 unsigned long long cp_start_blk_no
;
407 sbi
->ckpt
= kzalloc(blk_size
, GFP_KERNEL
);
411 * Finding out valid cp block involves read both
412 * sets( cp pack1 and cp pack 2)
414 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
415 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
417 /* The second checkpoint pack should start at the next segment */
418 cp_start_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
419 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
422 if (ver_after(cp2_version
, cp1_version
))
434 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
435 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
437 f2fs_put_page(cp1
, 1);
438 f2fs_put_page(cp2
, 1);
446 void set_dirty_dir_page(struct inode
*inode
, struct page
*page
)
448 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
449 struct list_head
*head
= &sbi
->dir_inode_list
;
450 struct dir_inode_entry
*new;
451 struct list_head
*this;
453 if (!S_ISDIR(inode
->i_mode
))
456 new = kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
462 INIT_LIST_HEAD(&new->list
);
464 spin_lock(&sbi
->dir_inode_lock
);
465 list_for_each(this, head
) {
466 struct dir_inode_entry
*entry
;
467 entry
= list_entry(this, struct dir_inode_entry
, list
);
468 if (entry
->inode
== inode
) {
469 kmem_cache_free(inode_entry_slab
, new);
473 list_add_tail(&new->list
, head
);
476 BUG_ON(!S_ISDIR(inode
->i_mode
));
478 inc_page_count(sbi
, F2FS_DIRTY_DENTS
);
479 inode_inc_dirty_dents(inode
);
480 SetPagePrivate(page
);
482 spin_unlock(&sbi
->dir_inode_lock
);
485 void remove_dirty_dir_inode(struct inode
*inode
)
487 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
488 struct list_head
*head
= &sbi
->dir_inode_list
;
489 struct list_head
*this;
491 if (!S_ISDIR(inode
->i_mode
))
494 spin_lock(&sbi
->dir_inode_lock
);
495 if (atomic_read(&F2FS_I(inode
)->dirty_dents
))
498 list_for_each(this, head
) {
499 struct dir_inode_entry
*entry
;
500 entry
= list_entry(this, struct dir_inode_entry
, list
);
501 if (entry
->inode
== inode
) {
502 list_del(&entry
->list
);
503 kmem_cache_free(inode_entry_slab
, entry
);
509 spin_unlock(&sbi
->dir_inode_lock
);
512 void sync_dirty_dir_inodes(struct f2fs_sb_info
*sbi
)
514 struct list_head
*head
= &sbi
->dir_inode_list
;
515 struct dir_inode_entry
*entry
;
518 spin_lock(&sbi
->dir_inode_lock
);
519 if (list_empty(head
)) {
520 spin_unlock(&sbi
->dir_inode_lock
);
523 entry
= list_entry(head
->next
, struct dir_inode_entry
, list
);
524 inode
= igrab(entry
->inode
);
525 spin_unlock(&sbi
->dir_inode_lock
);
527 filemap_flush(inode
->i_mapping
);
531 * We should submit bio, since it exists several
532 * wribacking dentry pages in the freeing inode.
534 f2fs_submit_bio(sbi
, DATA
, true);
540 * Freeze all the FS-operations for checkpoint.
542 static void block_operations(struct f2fs_sb_info
*sbi
)
545 struct writeback_control wbc
= {
546 .sync_mode
= WB_SYNC_ALL
,
547 .nr_to_write
= LONG_MAX
,
551 /* Stop renaming operation */
552 mutex_lock_op(sbi
, RENAME
);
553 mutex_lock_op(sbi
, DENTRY_OPS
);
556 /* write all the dirty dentry pages */
557 sync_dirty_dir_inodes(sbi
);
559 mutex_lock_op(sbi
, DATA_WRITE
);
560 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
561 mutex_unlock_op(sbi
, DATA_WRITE
);
565 /* block all the operations */
566 for (t
= DATA_NEW
; t
<= NODE_TRUNC
; t
++)
567 mutex_lock_op(sbi
, t
);
569 mutex_lock(&sbi
->write_inode
);
572 * POR: we should ensure that there is no dirty node pages
573 * until finishing nat/sit flush.
576 sync_node_pages(sbi
, 0, &wbc
);
578 mutex_lock_op(sbi
, NODE_WRITE
);
580 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
581 mutex_unlock_op(sbi
, NODE_WRITE
);
584 mutex_unlock(&sbi
->write_inode
);
587 static void unblock_operations(struct f2fs_sb_info
*sbi
)
590 for (t
= NODE_WRITE
; t
>= RENAME
; t
--)
591 mutex_unlock_op(sbi
, t
);
594 static void do_checkpoint(struct f2fs_sb_info
*sbi
, bool is_umount
)
596 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
599 struct page
*cp_page
;
600 unsigned int data_sum_blocks
, orphan_blocks
;
601 unsigned int crc32
= 0;
605 /* Flush all the NAT/SIT pages */
606 while (get_pages(sbi
, F2FS_DIRTY_META
))
607 sync_meta_pages(sbi
, META
, LONG_MAX
);
609 next_free_nid(sbi
, &last_nid
);
613 * version number is already updated
615 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
616 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
617 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
618 for (i
= 0; i
< 3; i
++) {
619 ckpt
->cur_node_segno
[i
] =
620 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
621 ckpt
->cur_node_blkoff
[i
] =
622 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
623 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
624 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
626 for (i
= 0; i
< 3; i
++) {
627 ckpt
->cur_data_segno
[i
] =
628 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
629 ckpt
->cur_data_blkoff
[i
] =
630 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
631 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
632 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
635 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
636 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
637 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
639 /* 2 cp + n data seg summary + orphan inode blocks */
640 data_sum_blocks
= npages_for_summary_flush(sbi
);
641 if (data_sum_blocks
< 3)
642 set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
644 clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
646 orphan_blocks
= (sbi
->n_orphans
+ F2FS_ORPHANS_PER_BLOCK
- 1)
647 / F2FS_ORPHANS_PER_BLOCK
;
648 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + orphan_blocks
);
651 set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
652 ckpt
->cp_pack_total_block_count
= cpu_to_le32(2 +
653 data_sum_blocks
+ orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
655 clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
656 ckpt
->cp_pack_total_block_count
= cpu_to_le32(2 +
657 data_sum_blocks
+ orphan_blocks
);
661 set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
663 clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
665 /* update SIT/NAT bitmap */
666 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
667 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
669 crc32
= f2fs_crc32(ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
670 *(__le32
*)((unsigned char *)ckpt
+
671 le32_to_cpu(ckpt
->checksum_offset
))
672 = cpu_to_le32(crc32
);
674 start_blk
= __start_cp_addr(sbi
);
676 /* write out checkpoint buffer at block 0 */
677 cp_page
= grab_meta_page(sbi
, start_blk
++);
678 kaddr
= page_address(cp_page
);
679 memcpy(kaddr
, ckpt
, (1 << sbi
->log_blocksize
));
680 set_page_dirty(cp_page
);
681 f2fs_put_page(cp_page
, 1);
683 if (sbi
->n_orphans
) {
684 write_orphan_inodes(sbi
, start_blk
);
685 start_blk
+= orphan_blocks
;
688 write_data_summaries(sbi
, start_blk
);
689 start_blk
+= data_sum_blocks
;
691 write_node_summaries(sbi
, start_blk
);
692 start_blk
+= NR_CURSEG_NODE_TYPE
;
695 /* writeout checkpoint block */
696 cp_page
= grab_meta_page(sbi
, start_blk
);
697 kaddr
= page_address(cp_page
);
698 memcpy(kaddr
, ckpt
, (1 << sbi
->log_blocksize
));
699 set_page_dirty(cp_page
);
700 f2fs_put_page(cp_page
, 1);
702 /* wait for previous submitted node/meta pages writeback */
703 while (get_pages(sbi
, F2FS_WRITEBACK
))
704 congestion_wait(BLK_RW_ASYNC
, HZ
/ 50);
706 filemap_fdatawait_range(sbi
->node_inode
->i_mapping
, 0, LONG_MAX
);
707 filemap_fdatawait_range(sbi
->meta_inode
->i_mapping
, 0, LONG_MAX
);
709 /* update user_block_counts */
710 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
711 sbi
->alloc_valid_block_count
= 0;
713 /* Here, we only have one bio having CP pack */
714 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
716 if (!is_set_ckpt_flags(ckpt
, CP_ERROR_FLAG
)) {
717 clear_prefree_segments(sbi
);
718 F2FS_RESET_SB_DIRT(sbi
);
723 * We guarantee that this checkpoint procedure should not fail.
725 void write_checkpoint(struct f2fs_sb_info
*sbi
, bool is_umount
)
727 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
728 unsigned long long ckpt_ver
;
730 mutex_lock(&sbi
->cp_mutex
);
731 block_operations(sbi
);
733 f2fs_submit_bio(sbi
, DATA
, true);
734 f2fs_submit_bio(sbi
, NODE
, true);
735 f2fs_submit_bio(sbi
, META
, true);
738 * update checkpoint pack index
739 * Increase the version number so that
740 * SIT entries and seg summaries are written at correct place
742 ckpt_ver
= le64_to_cpu(ckpt
->checkpoint_ver
);
743 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
745 /* write cached NAT/SIT entries to NAT/SIT area */
746 flush_nat_entries(sbi
);
747 flush_sit_entries(sbi
);
749 reset_victim_segmap(sbi
);
751 /* unlock all the fs_lock[] in do_checkpoint() */
752 do_checkpoint(sbi
, is_umount
);
754 unblock_operations(sbi
);
755 mutex_unlock(&sbi
->cp_mutex
);
758 void init_orphan_info(struct f2fs_sb_info
*sbi
)
760 mutex_init(&sbi
->orphan_inode_mutex
);
761 INIT_LIST_HEAD(&sbi
->orphan_inode_list
);
765 int __init
create_checkpoint_caches(void)
767 orphan_entry_slab
= f2fs_kmem_cache_create("f2fs_orphan_entry",
768 sizeof(struct orphan_inode_entry
), NULL
);
769 if (unlikely(!orphan_entry_slab
))
771 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
772 sizeof(struct dir_inode_entry
), NULL
);
773 if (unlikely(!inode_entry_slab
)) {
774 kmem_cache_destroy(orphan_entry_slab
);
780 void destroy_checkpoint_caches(void)
782 kmem_cache_destroy(orphan_entry_slab
);
783 kmem_cache_destroy(inode_entry_slab
);