4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 static struct kmem_cache
*nat_entry_slab
;
24 static struct kmem_cache
*free_nid_slab
;
26 static void clear_node_page_dirty(struct page
*page
)
28 struct address_space
*mapping
= page
->mapping
;
29 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
30 unsigned int long flags
;
32 if (PageDirty(page
)) {
33 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
34 radix_tree_tag_clear(&mapping
->page_tree
,
37 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
39 clear_page_dirty_for_io(page
);
40 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
42 ClearPageUptodate(page
);
45 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
47 pgoff_t index
= current_nat_addr(sbi
, nid
);
48 return get_meta_page(sbi
, index
);
51 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
53 struct page
*src_page
;
54 struct page
*dst_page
;
59 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
61 src_off
= current_nat_addr(sbi
, nid
);
62 dst_off
= next_nat_addr(sbi
, src_off
);
64 /* get current nat block page with lock */
65 src_page
= get_meta_page(sbi
, src_off
);
67 /* Dirty src_page means that it is already the new target NAT page. */
68 if (PageDirty(src_page
))
71 dst_page
= grab_meta_page(sbi
, dst_off
);
73 src_addr
= page_address(src_page
);
74 dst_addr
= page_address(dst_page
);
75 memcpy(dst_addr
, src_addr
, PAGE_CACHE_SIZE
);
76 set_page_dirty(dst_page
);
77 f2fs_put_page(src_page
, 1);
79 set_to_next_nat(nm_i
, nid
);
87 static void ra_nat_pages(struct f2fs_sb_info
*sbi
, int nid
)
89 struct address_space
*mapping
= sbi
->meta_inode
->i_mapping
;
90 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
95 for (i
= 0; i
< FREE_NID_PAGES
; i
++, nid
+= NAT_ENTRY_PER_BLOCK
) {
96 if (nid
>= nm_i
->max_nid
)
98 index
= current_nat_addr(sbi
, nid
);
100 page
= grab_cache_page(mapping
, index
);
103 if (f2fs_readpage(sbi
, page
, index
, READ
)) {
104 f2fs_put_page(page
, 1);
107 f2fs_put_page(page
, 0);
111 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
113 return radix_tree_lookup(&nm_i
->nat_root
, n
);
116 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
117 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
119 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
122 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
125 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
127 kmem_cache_free(nat_entry_slab
, e
);
130 int is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
132 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
136 read_lock(&nm_i
->nat_tree_lock
);
137 e
= __lookup_nat_cache(nm_i
, nid
);
138 if (e
&& !e
->checkpointed
)
140 read_unlock(&nm_i
->nat_tree_lock
);
144 static struct nat_entry
*grab_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
)
146 struct nat_entry
*new;
148 new = kmem_cache_alloc(nat_entry_slab
, GFP_ATOMIC
);
151 if (radix_tree_insert(&nm_i
->nat_root
, nid
, new)) {
152 kmem_cache_free(nat_entry_slab
, new);
155 memset(new, 0, sizeof(struct nat_entry
));
156 nat_set_nid(new, nid
);
157 list_add_tail(&new->list
, &nm_i
->nat_entries
);
162 static void cache_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
,
163 struct f2fs_nat_entry
*ne
)
167 write_lock(&nm_i
->nat_tree_lock
);
168 e
= __lookup_nat_cache(nm_i
, nid
);
170 e
= grab_nat_entry(nm_i
, nid
);
172 write_unlock(&nm_i
->nat_tree_lock
);
175 nat_set_blkaddr(e
, le32_to_cpu(ne
->block_addr
));
176 nat_set_ino(e
, le32_to_cpu(ne
->ino
));
177 nat_set_version(e
, ne
->version
);
178 e
->checkpointed
= true;
180 write_unlock(&nm_i
->nat_tree_lock
);
183 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
186 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
189 write_lock(&nm_i
->nat_tree_lock
);
190 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
192 e
= grab_nat_entry(nm_i
, ni
->nid
);
194 write_unlock(&nm_i
->nat_tree_lock
);
198 e
->checkpointed
= true;
199 BUG_ON(ni
->blk_addr
== NEW_ADDR
);
200 } else if (new_blkaddr
== NEW_ADDR
) {
202 * when nid is reallocated,
203 * previous nat entry can be remained in nat cache.
204 * So, reinitialize it with new information.
207 BUG_ON(ni
->blk_addr
!= NULL_ADDR
);
210 if (new_blkaddr
== NEW_ADDR
)
211 e
->checkpointed
= false;
214 BUG_ON(nat_get_blkaddr(e
) != ni
->blk_addr
);
215 BUG_ON(nat_get_blkaddr(e
) == NULL_ADDR
&&
216 new_blkaddr
== NULL_ADDR
);
217 BUG_ON(nat_get_blkaddr(e
) == NEW_ADDR
&&
218 new_blkaddr
== NEW_ADDR
);
219 BUG_ON(nat_get_blkaddr(e
) != NEW_ADDR
&&
220 nat_get_blkaddr(e
) != NULL_ADDR
&&
221 new_blkaddr
== NEW_ADDR
);
223 /* increament version no as node is removed */
224 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
225 unsigned char version
= nat_get_version(e
);
226 nat_set_version(e
, inc_node_version(version
));
230 nat_set_blkaddr(e
, new_blkaddr
);
231 __set_nat_cache_dirty(nm_i
, e
);
232 write_unlock(&nm_i
->nat_tree_lock
);
235 static int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
237 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
239 if (nm_i
->nat_cnt
< 2 * NM_WOUT_THRESHOLD
)
242 write_lock(&nm_i
->nat_tree_lock
);
243 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
244 struct nat_entry
*ne
;
245 ne
= list_first_entry(&nm_i
->nat_entries
,
246 struct nat_entry
, list
);
247 __del_from_nat_cache(nm_i
, ne
);
250 write_unlock(&nm_i
->nat_tree_lock
);
255 * This function returns always success
257 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
259 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
260 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
261 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
262 nid_t start_nid
= START_NID(nid
);
263 struct f2fs_nat_block
*nat_blk
;
264 struct page
*page
= NULL
;
265 struct f2fs_nat_entry ne
;
269 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
272 /* Check nat cache */
273 read_lock(&nm_i
->nat_tree_lock
);
274 e
= __lookup_nat_cache(nm_i
, nid
);
276 ni
->ino
= nat_get_ino(e
);
277 ni
->blk_addr
= nat_get_blkaddr(e
);
278 ni
->version
= nat_get_version(e
);
280 read_unlock(&nm_i
->nat_tree_lock
);
284 /* Check current segment summary */
285 mutex_lock(&curseg
->curseg_mutex
);
286 i
= lookup_journal_in_cursum(sum
, NAT_JOURNAL
, nid
, 0);
288 ne
= nat_in_journal(sum
, i
);
289 node_info_from_raw_nat(ni
, &ne
);
291 mutex_unlock(&curseg
->curseg_mutex
);
295 /* Fill node_info from nat page */
296 page
= get_current_nat_page(sbi
, start_nid
);
297 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
298 ne
= nat_blk
->entries
[nid
- start_nid
];
299 node_info_from_raw_nat(ni
, &ne
);
300 f2fs_put_page(page
, 1);
302 /* cache nat entry */
303 cache_nat_entry(NM_I(sbi
), nid
, &ne
);
307 * The maximum depth is four.
308 * Offset[0] will have raw inode offset.
310 static int get_node_path(long block
, int offset
[4], unsigned int noffset
[4])
312 const long direct_index
= ADDRS_PER_INODE
;
313 const long direct_blks
= ADDRS_PER_BLOCK
;
314 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
315 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
316 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
322 if (block
< direct_index
) {
327 block
-= direct_index
;
328 if (block
< direct_blks
) {
329 offset
[n
++] = NODE_DIR1_BLOCK
;
335 block
-= direct_blks
;
336 if (block
< direct_blks
) {
337 offset
[n
++] = NODE_DIR2_BLOCK
;
343 block
-= direct_blks
;
344 if (block
< indirect_blks
) {
345 offset
[n
++] = NODE_IND1_BLOCK
;
347 offset
[n
++] = block
/ direct_blks
;
348 noffset
[n
] = 4 + offset
[n
- 1];
349 offset
[n
++] = block
% direct_blks
;
353 block
-= indirect_blks
;
354 if (block
< indirect_blks
) {
355 offset
[n
++] = NODE_IND2_BLOCK
;
356 noffset
[n
] = 4 + dptrs_per_blk
;
357 offset
[n
++] = block
/ direct_blks
;
358 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
359 offset
[n
++] = block
% direct_blks
;
363 block
-= indirect_blks
;
364 if (block
< dindirect_blks
) {
365 offset
[n
++] = NODE_DIND_BLOCK
;
366 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
367 offset
[n
++] = block
/ indirect_blks
;
368 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
369 offset
[n
- 1] * (dptrs_per_blk
+ 1);
370 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
371 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
372 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
374 offset
[n
++] = block
% direct_blks
;
385 * Caller should call f2fs_put_dnode(dn).
387 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int ro
)
389 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
390 struct page
*npage
[4];
393 unsigned int noffset
[4];
398 level
= get_node_path(index
, offset
, noffset
);
400 nids
[0] = dn
->inode
->i_ino
;
401 npage
[0] = get_node_page(sbi
, nids
[0]);
402 if (IS_ERR(npage
[0]))
403 return PTR_ERR(npage
[0]);
406 nids
[1] = get_nid(parent
, offset
[0], true);
407 dn
->inode_page
= npage
[0];
408 dn
->inode_page_locked
= true;
410 /* get indirect or direct nodes */
411 for (i
= 1; i
<= level
; i
++) {
414 if (!nids
[i
] && !ro
) {
415 mutex_lock_op(sbi
, NODE_NEW
);
418 if (!alloc_nid(sbi
, &(nids
[i
]))) {
419 mutex_unlock_op(sbi
, NODE_NEW
);
425 npage
[i
] = new_node_page(dn
, noffset
[i
]);
426 if (IS_ERR(npage
[i
])) {
427 alloc_nid_failed(sbi
, nids
[i
]);
428 mutex_unlock_op(sbi
, NODE_NEW
);
429 err
= PTR_ERR(npage
[i
]);
433 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
434 alloc_nid_done(sbi
, nids
[i
]);
435 mutex_unlock_op(sbi
, NODE_NEW
);
437 } else if (ro
&& i
== level
&& level
> 1) {
438 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
439 if (IS_ERR(npage
[i
])) {
440 err
= PTR_ERR(npage
[i
]);
446 dn
->inode_page_locked
= false;
449 f2fs_put_page(parent
, 1);
453 npage
[i
] = get_node_page(sbi
, nids
[i
]);
454 if (IS_ERR(npage
[i
])) {
455 err
= PTR_ERR(npage
[i
]);
456 f2fs_put_page(npage
[0], 0);
462 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
465 dn
->nid
= nids
[level
];
466 dn
->ofs_in_node
= offset
[level
];
467 dn
->node_page
= npage
[level
];
468 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
472 f2fs_put_page(parent
, 1);
474 f2fs_put_page(npage
[0], 0);
476 dn
->inode_page
= NULL
;
477 dn
->node_page
= NULL
;
481 static void truncate_node(struct dnode_of_data
*dn
)
483 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
486 get_node_info(sbi
, dn
->nid
, &ni
);
487 if (dn
->inode
->i_blocks
== 0) {
488 BUG_ON(ni
.blk_addr
!= NULL_ADDR
);
491 BUG_ON(ni
.blk_addr
== NULL_ADDR
);
493 /* Deallocate node address */
494 invalidate_blocks(sbi
, ni
.blk_addr
);
495 dec_valid_node_count(sbi
, dn
->inode
, 1);
496 set_node_addr(sbi
, &ni
, NULL_ADDR
);
498 if (dn
->nid
== dn
->inode
->i_ino
) {
499 remove_orphan_inode(sbi
, dn
->nid
);
500 dec_valid_inode_count(sbi
);
505 clear_node_page_dirty(dn
->node_page
);
506 F2FS_SET_SB_DIRT(sbi
);
508 f2fs_put_page(dn
->node_page
, 1);
509 dn
->node_page
= NULL
;
512 static int truncate_dnode(struct dnode_of_data
*dn
)
514 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
520 /* get direct node */
521 page
= get_node_page(sbi
, dn
->nid
);
522 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
524 else if (IS_ERR(page
))
525 return PTR_ERR(page
);
527 /* Make dnode_of_data for parameter */
528 dn
->node_page
= page
;
530 truncate_data_blocks(dn
);
535 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
538 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
539 struct dnode_of_data rdn
= *dn
;
541 struct f2fs_node
*rn
;
543 unsigned int child_nofs
;
548 return NIDS_PER_BLOCK
+ 1;
550 page
= get_node_page(sbi
, dn
->nid
);
552 return PTR_ERR(page
);
554 rn
= (struct f2fs_node
*)page_address(page
);
556 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
557 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
561 ret
= truncate_dnode(&rdn
);
564 set_nid(page
, i
, 0, false);
567 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
568 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
569 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
570 if (child_nid
== 0) {
571 child_nofs
+= NIDS_PER_BLOCK
+ 1;
575 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
576 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
577 set_nid(page
, i
, 0, false);
579 } else if (ret
< 0 && ret
!= -ENOENT
) {
587 /* remove current indirect node */
588 dn
->node_page
= page
;
592 f2fs_put_page(page
, 1);
597 f2fs_put_page(page
, 1);
601 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
602 struct f2fs_inode
*ri
, int *offset
, int depth
)
604 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
605 struct page
*pages
[2];
612 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
616 /* get indirect nodes in the path */
617 for (i
= 0; i
< depth
- 1; i
++) {
618 /* refernece count'll be increased */
619 pages
[i
] = get_node_page(sbi
, nid
[i
]);
620 if (IS_ERR(pages
[i
])) {
622 err
= PTR_ERR(pages
[i
]);
625 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
628 /* free direct nodes linked to a partial indirect node */
629 for (i
= offset
[depth
- 1]; i
< NIDS_PER_BLOCK
; i
++) {
630 child_nid
= get_nid(pages
[idx
], i
, false);
634 err
= truncate_dnode(dn
);
637 set_nid(pages
[idx
], i
, 0, false);
640 if (offset
[depth
- 1] == 0) {
641 dn
->node_page
= pages
[idx
];
645 f2fs_put_page(pages
[idx
], 1);
648 offset
[depth
- 1] = 0;
650 for (i
= depth
- 3; i
>= 0; i
--)
651 f2fs_put_page(pages
[i
], 1);
656 * All the block addresses of data and nodes should be nullified.
658 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
660 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
661 int err
= 0, cont
= 1;
662 int level
, offset
[4], noffset
[4];
663 unsigned int nofs
= 0;
664 struct f2fs_node
*rn
;
665 struct dnode_of_data dn
;
668 level
= get_node_path(from
, offset
, noffset
);
670 page
= get_node_page(sbi
, inode
->i_ino
);
672 return PTR_ERR(page
);
674 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
677 rn
= page_address(page
);
685 if (!offset
[level
- 1])
687 err
= truncate_partial_nodes(&dn
, &rn
->i
, offset
, level
);
688 if (err
< 0 && err
!= -ENOENT
)
690 nofs
+= 1 + NIDS_PER_BLOCK
;
693 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
694 if (!offset
[level
- 1])
696 err
= truncate_partial_nodes(&dn
, &rn
->i
, offset
, level
);
697 if (err
< 0 && err
!= -ENOENT
)
706 dn
.nid
= le32_to_cpu(rn
->i
.i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
708 case NODE_DIR1_BLOCK
:
709 case NODE_DIR2_BLOCK
:
710 err
= truncate_dnode(&dn
);
713 case NODE_IND1_BLOCK
:
714 case NODE_IND2_BLOCK
:
715 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
718 case NODE_DIND_BLOCK
:
719 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
726 if (err
< 0 && err
!= -ENOENT
)
728 if (offset
[1] == 0 &&
729 rn
->i
.i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
731 wait_on_page_writeback(page
);
732 rn
->i
.i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
733 set_page_dirty(page
);
741 f2fs_put_page(page
, 0);
742 return err
> 0 ? 0 : err
;
745 int remove_inode_page(struct inode
*inode
)
747 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
749 nid_t ino
= inode
->i_ino
;
750 struct dnode_of_data dn
;
752 mutex_lock_op(sbi
, NODE_TRUNC
);
753 page
= get_node_page(sbi
, ino
);
755 mutex_unlock_op(sbi
, NODE_TRUNC
);
756 return PTR_ERR(page
);
759 if (F2FS_I(inode
)->i_xattr_nid
) {
760 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
761 struct page
*npage
= get_node_page(sbi
, nid
);
764 mutex_unlock_op(sbi
, NODE_TRUNC
);
765 return PTR_ERR(npage
);
768 F2FS_I(inode
)->i_xattr_nid
= 0;
769 set_new_dnode(&dn
, inode
, page
, npage
, nid
);
770 dn
.inode_page_locked
= 1;
774 /* 0 is possible, after f2fs_new_inode() is failed */
775 BUG_ON(inode
->i_blocks
!= 0 && inode
->i_blocks
!= 1);
776 set_new_dnode(&dn
, inode
, page
, page
, ino
);
779 mutex_unlock_op(sbi
, NODE_TRUNC
);
783 int new_inode_page(struct inode
*inode
, const struct qstr
*name
)
785 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
787 struct dnode_of_data dn
;
789 /* allocate inode page for new inode */
790 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
791 mutex_lock_op(sbi
, NODE_NEW
);
792 page
= new_node_page(&dn
, 0);
793 init_dent_inode(name
, page
);
794 mutex_unlock_op(sbi
, NODE_NEW
);
796 return PTR_ERR(page
);
797 f2fs_put_page(page
, 1);
801 struct page
*new_node_page(struct dnode_of_data
*dn
, unsigned int ofs
)
803 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
804 struct address_space
*mapping
= sbi
->node_inode
->i_mapping
;
805 struct node_info old_ni
, new_ni
;
809 if (is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
))
810 return ERR_PTR(-EPERM
);
812 page
= grab_cache_page(mapping
, dn
->nid
);
814 return ERR_PTR(-ENOMEM
);
816 get_node_info(sbi
, dn
->nid
, &old_ni
);
818 SetPageUptodate(page
);
819 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
821 /* Reinitialize old_ni with new node page */
822 BUG_ON(old_ni
.blk_addr
!= NULL_ADDR
);
824 new_ni
.ino
= dn
->inode
->i_ino
;
826 if (!inc_valid_node_count(sbi
, dn
->inode
, 1)) {
830 set_node_addr(sbi
, &new_ni
, NEW_ADDR
);
831 set_cold_node(dn
->inode
, page
);
833 dn
->node_page
= page
;
835 set_page_dirty(page
);
837 inc_valid_inode_count(sbi
);
842 clear_node_page_dirty(page
);
843 f2fs_put_page(page
, 1);
847 static int read_node_page(struct page
*page
, int type
)
849 struct f2fs_sb_info
*sbi
= F2FS_SB(page
->mapping
->host
->i_sb
);
852 get_node_info(sbi
, page
->index
, &ni
);
854 if (ni
.blk_addr
== NULL_ADDR
)
856 return f2fs_readpage(sbi
, page
, ni
.blk_addr
, type
);
860 * Readahead a node page
862 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
864 struct address_space
*mapping
= sbi
->node_inode
->i_mapping
;
867 apage
= find_get_page(mapping
, nid
);
868 if (apage
&& PageUptodate(apage
))
870 f2fs_put_page(apage
, 0);
872 apage
= grab_cache_page(mapping
, nid
);
876 if (read_node_page(apage
, READA
))
880 f2fs_put_page(apage
, 0);
884 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
888 struct address_space
*mapping
= sbi
->node_inode
->i_mapping
;
890 page
= grab_cache_page(mapping
, nid
);
892 return ERR_PTR(-ENOMEM
);
894 err
= read_node_page(page
, READ_SYNC
);
896 f2fs_put_page(page
, 1);
900 BUG_ON(nid
!= nid_of_node(page
));
901 mark_page_accessed(page
);
906 * Return a locked page for the desired node page.
907 * And, readahead MAX_RA_NODE number of node pages.
909 struct page
*get_node_page_ra(struct page
*parent
, int start
)
911 struct f2fs_sb_info
*sbi
= F2FS_SB(parent
->mapping
->host
->i_sb
);
912 struct address_space
*mapping
= sbi
->node_inode
->i_mapping
;
918 /* First, try getting the desired direct node. */
919 nid
= get_nid(parent
, start
, false);
921 return ERR_PTR(-ENOENT
);
923 page
= find_get_page(mapping
, nid
);
924 if (page
&& PageUptodate(page
))
926 f2fs_put_page(page
, 0);
929 page
= grab_cache_page(mapping
, nid
);
931 return ERR_PTR(-ENOMEM
);
933 err
= read_node_page(page
, READA
);
935 f2fs_put_page(page
, 1);
939 /* Then, try readahead for siblings of the desired node */
940 end
= start
+ MAX_RA_NODE
;
941 end
= min(end
, NIDS_PER_BLOCK
);
942 for (i
= start
+ 1; i
< end
; i
++) {
943 nid
= get_nid(parent
, i
, false);
946 ra_node_page(sbi
, nid
);
951 if (PageError(page
)) {
952 f2fs_put_page(page
, 1);
953 return ERR_PTR(-EIO
);
956 /* Has the page been truncated? */
957 if (page
->mapping
!= mapping
) {
958 f2fs_put_page(page
, 1);
964 void sync_inode_page(struct dnode_of_data
*dn
)
966 if (IS_INODE(dn
->node_page
) || dn
->inode_page
== dn
->node_page
) {
967 update_inode(dn
->inode
, dn
->node_page
);
968 } else if (dn
->inode_page
) {
969 if (!dn
->inode_page_locked
)
970 lock_page(dn
->inode_page
);
971 update_inode(dn
->inode
, dn
->inode_page
);
972 if (!dn
->inode_page_locked
)
973 unlock_page(dn
->inode_page
);
975 f2fs_write_inode(dn
->inode
, NULL
);
979 int sync_node_pages(struct f2fs_sb_info
*sbi
, nid_t ino
,
980 struct writeback_control
*wbc
)
982 struct address_space
*mapping
= sbi
->node_inode
->i_mapping
;
985 int step
= ino
? 2 : 0;
986 int nwritten
= 0, wrote
= 0;
988 pagevec_init(&pvec
, 0);
994 while (index
<= end
) {
996 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
998 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1002 for (i
= 0; i
< nr_pages
; i
++) {
1003 struct page
*page
= pvec
.pages
[i
];
1006 * flushing sequence with step:
1011 if (step
== 0 && IS_DNODE(page
))
1013 if (step
== 1 && (!IS_DNODE(page
) ||
1014 is_cold_node(page
)))
1016 if (step
== 2 && (!IS_DNODE(page
) ||
1017 !is_cold_node(page
)))
1022 * we should not skip writing node pages.
1024 if (ino
&& ino_of_node(page
) == ino
)
1026 else if (!trylock_page(page
))
1029 if (unlikely(page
->mapping
!= mapping
)) {
1034 if (ino
&& ino_of_node(page
) != ino
)
1035 goto continue_unlock
;
1037 if (!PageDirty(page
)) {
1038 /* someone wrote it for us */
1039 goto continue_unlock
;
1042 if (!clear_page_dirty_for_io(page
))
1043 goto continue_unlock
;
1045 /* called by fsync() */
1046 if (ino
&& IS_DNODE(page
)) {
1047 int mark
= !is_checkpointed_node(sbi
, ino
);
1048 set_fsync_mark(page
, 1);
1050 set_dentry_mark(page
, mark
);
1053 set_fsync_mark(page
, 0);
1054 set_dentry_mark(page
, 0);
1056 mapping
->a_ops
->writepage(page
, wbc
);
1059 if (--wbc
->nr_to_write
== 0)
1062 pagevec_release(&pvec
);
1065 if (wbc
->nr_to_write
== 0) {
1077 f2fs_submit_bio(sbi
, NODE
, wbc
->sync_mode
== WB_SYNC_ALL
);
1082 static int f2fs_write_node_page(struct page
*page
,
1083 struct writeback_control
*wbc
)
1085 struct f2fs_sb_info
*sbi
= F2FS_SB(page
->mapping
->host
->i_sb
);
1088 struct node_info ni
;
1090 if (wbc
->for_reclaim
) {
1091 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1092 wbc
->pages_skipped
++;
1093 set_page_dirty(page
);
1094 return AOP_WRITEPAGE_ACTIVATE
;
1097 wait_on_page_writeback(page
);
1099 mutex_lock_op(sbi
, NODE_WRITE
);
1101 /* get old block addr of this node page */
1102 nid
= nid_of_node(page
);
1103 BUG_ON(page
->index
!= nid
);
1105 get_node_info(sbi
, nid
, &ni
);
1107 /* This page is already truncated */
1108 if (ni
.blk_addr
== NULL_ADDR
)
1111 set_page_writeback(page
);
1113 /* insert node offset */
1114 write_node_page(sbi
, page
, nid
, ni
.blk_addr
, &new_addr
);
1115 set_node_addr(sbi
, &ni
, new_addr
);
1116 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1118 mutex_unlock_op(sbi
, NODE_WRITE
);
1124 * It is very important to gather dirty pages and write at once, so that we can
1125 * submit a big bio without interfering other data writes.
1126 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1128 #define COLLECT_DIRTY_NODES 512
1129 static int f2fs_write_node_pages(struct address_space
*mapping
,
1130 struct writeback_control
*wbc
)
1132 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
1133 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
1134 long nr_to_write
= wbc
->nr_to_write
;
1136 /* First check balancing cached NAT entries */
1137 if (try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
)) {
1138 write_checkpoint(sbi
, false);
1142 /* collect a number of dirty node pages and write together */
1143 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < COLLECT_DIRTY_NODES
)
1146 /* if mounting is failed, skip writing node pages */
1147 wbc
->nr_to_write
= bio_get_nr_vecs(bdev
);
1148 sync_node_pages(sbi
, 0, wbc
);
1149 wbc
->nr_to_write
= nr_to_write
-
1150 (bio_get_nr_vecs(bdev
) - wbc
->nr_to_write
);
1154 static int f2fs_set_node_page_dirty(struct page
*page
)
1156 struct address_space
*mapping
= page
->mapping
;
1157 struct f2fs_sb_info
*sbi
= F2FS_SB(mapping
->host
->i_sb
);
1159 SetPageUptodate(page
);
1160 if (!PageDirty(page
)) {
1161 __set_page_dirty_nobuffers(page
);
1162 inc_page_count(sbi
, F2FS_DIRTY_NODES
);
1163 SetPagePrivate(page
);
1169 static void f2fs_invalidate_node_page(struct page
*page
, unsigned long offset
)
1171 struct inode
*inode
= page
->mapping
->host
;
1172 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
1173 if (PageDirty(page
))
1174 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1175 ClearPagePrivate(page
);
1178 static int f2fs_release_node_page(struct page
*page
, gfp_t wait
)
1180 ClearPagePrivate(page
);
1185 * Structure of the f2fs node operations
1187 const struct address_space_operations f2fs_node_aops
= {
1188 .writepage
= f2fs_write_node_page
,
1189 .writepages
= f2fs_write_node_pages
,
1190 .set_page_dirty
= f2fs_set_node_page_dirty
,
1191 .invalidatepage
= f2fs_invalidate_node_page
,
1192 .releasepage
= f2fs_release_node_page
,
1195 static struct free_nid
*__lookup_free_nid_list(nid_t n
, struct list_head
*head
)
1197 struct list_head
*this;
1198 struct free_nid
*i
= NULL
;
1199 list_for_each(this, head
) {
1200 i
= list_entry(this, struct free_nid
, list
);
1208 static void __del_from_free_nid_list(struct free_nid
*i
)
1211 kmem_cache_free(free_nid_slab
, i
);
1214 static int add_free_nid(struct f2fs_nm_info
*nm_i
, nid_t nid
)
1218 if (nm_i
->fcnt
> 2 * MAX_FREE_NIDS
)
1221 i
= kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1229 spin_lock(&nm_i
->free_nid_list_lock
);
1230 if (__lookup_free_nid_list(nid
, &nm_i
->free_nid_list
)) {
1231 spin_unlock(&nm_i
->free_nid_list_lock
);
1232 kmem_cache_free(free_nid_slab
, i
);
1235 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1237 spin_unlock(&nm_i
->free_nid_list_lock
);
1241 static void remove_free_nid(struct f2fs_nm_info
*nm_i
, nid_t nid
)
1244 spin_lock(&nm_i
->free_nid_list_lock
);
1245 i
= __lookup_free_nid_list(nid
, &nm_i
->free_nid_list
);
1246 if (i
&& i
->state
== NID_NEW
) {
1247 __del_from_free_nid_list(i
);
1250 spin_unlock(&nm_i
->free_nid_list_lock
);
1253 static int scan_nat_page(struct f2fs_nm_info
*nm_i
,
1254 struct page
*nat_page
, nid_t start_nid
)
1256 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1261 /* 0 nid should not be used */
1265 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1267 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1268 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1269 BUG_ON(blk_addr
== NEW_ADDR
);
1270 if (blk_addr
== NULL_ADDR
)
1271 fcnt
+= add_free_nid(nm_i
, start_nid
);
1276 static void build_free_nids(struct f2fs_sb_info
*sbi
)
1278 struct free_nid
*fnid
, *next_fnid
;
1279 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1280 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1281 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1283 bool is_cycled
= false;
1287 nid
= nm_i
->next_scan_nid
;
1288 nm_i
->init_scan_nid
= nid
;
1290 ra_nat_pages(sbi
, nid
);
1293 struct page
*page
= get_current_nat_page(sbi
, nid
);
1295 fcnt
+= scan_nat_page(nm_i
, page
, nid
);
1296 f2fs_put_page(page
, 1);
1298 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
1300 if (nid
>= nm_i
->max_nid
) {
1304 if (fcnt
> MAX_FREE_NIDS
)
1306 if (is_cycled
&& nm_i
->init_scan_nid
<= nid
)
1310 nm_i
->next_scan_nid
= nid
;
1312 /* find free nids from current sum_pages */
1313 mutex_lock(&curseg
->curseg_mutex
);
1314 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1315 block_t addr
= le32_to_cpu(nat_in_journal(sum
, i
).block_addr
);
1316 nid
= le32_to_cpu(nid_in_journal(sum
, i
));
1317 if (addr
== NULL_ADDR
)
1318 add_free_nid(nm_i
, nid
);
1320 remove_free_nid(nm_i
, nid
);
1322 mutex_unlock(&curseg
->curseg_mutex
);
1324 /* remove the free nids from current allocated nids */
1325 list_for_each_entry_safe(fnid
, next_fnid
, &nm_i
->free_nid_list
, list
) {
1326 struct nat_entry
*ne
;
1328 read_lock(&nm_i
->nat_tree_lock
);
1329 ne
= __lookup_nat_cache(nm_i
, fnid
->nid
);
1330 if (ne
&& nat_get_blkaddr(ne
) != NULL_ADDR
)
1331 remove_free_nid(nm_i
, fnid
->nid
);
1332 read_unlock(&nm_i
->nat_tree_lock
);
1337 * If this function returns success, caller can obtain a new nid
1338 * from second parameter of this function.
1339 * The returned nid could be used ino as well as nid when inode is created.
1341 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
1343 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1344 struct free_nid
*i
= NULL
;
1345 struct list_head
*this;
1347 mutex_lock(&nm_i
->build_lock
);
1349 /* scan NAT in order to build free nid list */
1350 build_free_nids(sbi
);
1352 mutex_unlock(&nm_i
->build_lock
);
1356 mutex_unlock(&nm_i
->build_lock
);
1359 * We check fcnt again since previous check is racy as
1360 * we didn't hold free_nid_list_lock. So other thread
1361 * could consume all of free nids.
1363 spin_lock(&nm_i
->free_nid_list_lock
);
1365 spin_unlock(&nm_i
->free_nid_list_lock
);
1369 BUG_ON(list_empty(&nm_i
->free_nid_list
));
1370 list_for_each(this, &nm_i
->free_nid_list
) {
1371 i
= list_entry(this, struct free_nid
, list
);
1372 if (i
->state
== NID_NEW
)
1376 BUG_ON(i
->state
!= NID_NEW
);
1378 i
->state
= NID_ALLOC
;
1380 spin_unlock(&nm_i
->free_nid_list_lock
);
1385 * alloc_nid() should be called prior to this function.
1387 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
1389 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1392 spin_lock(&nm_i
->free_nid_list_lock
);
1393 i
= __lookup_free_nid_list(nid
, &nm_i
->free_nid_list
);
1395 BUG_ON(i
->state
!= NID_ALLOC
);
1396 __del_from_free_nid_list(i
);
1398 spin_unlock(&nm_i
->free_nid_list_lock
);
1402 * alloc_nid() should be called prior to this function.
1404 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
1406 alloc_nid_done(sbi
, nid
);
1407 add_free_nid(NM_I(sbi
), nid
);
1410 void recover_node_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
1411 struct f2fs_summary
*sum
, struct node_info
*ni
,
1412 block_t new_blkaddr
)
1414 rewrite_node_page(sbi
, page
, sum
, ni
->blk_addr
, new_blkaddr
);
1415 set_node_addr(sbi
, ni
, new_blkaddr
);
1416 clear_node_page_dirty(page
);
1419 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1421 struct address_space
*mapping
= sbi
->node_inode
->i_mapping
;
1422 struct f2fs_node
*src
, *dst
;
1423 nid_t ino
= ino_of_node(page
);
1424 struct node_info old_ni
, new_ni
;
1427 ipage
= grab_cache_page(mapping
, ino
);
1431 /* Should not use this inode from free nid list */
1432 remove_free_nid(NM_I(sbi
), ino
);
1434 get_node_info(sbi
, ino
, &old_ni
);
1435 SetPageUptodate(ipage
);
1436 fill_node_footer(ipage
, ino
, ino
, 0, true);
1438 src
= (struct f2fs_node
*)page_address(page
);
1439 dst
= (struct f2fs_node
*)page_address(ipage
);
1441 memcpy(dst
, src
, (unsigned long)&src
->i
.i_ext
- (unsigned long)&src
->i
);
1443 dst
->i
.i_blocks
= cpu_to_le64(1);
1444 dst
->i
.i_links
= cpu_to_le32(1);
1445 dst
->i
.i_xattr_nid
= 0;
1450 set_node_addr(sbi
, &new_ni
, NEW_ADDR
);
1451 inc_valid_inode_count(sbi
);
1453 f2fs_put_page(ipage
, 1);
1457 int restore_node_summary(struct f2fs_sb_info
*sbi
,
1458 unsigned int segno
, struct f2fs_summary_block
*sum
)
1460 struct f2fs_node
*rn
;
1461 struct f2fs_summary
*sum_entry
;
1466 /* alloc temporal page for read node */
1467 page
= alloc_page(GFP_NOFS
| __GFP_ZERO
);
1469 return PTR_ERR(page
);
1472 /* scan the node segment */
1473 last_offset
= sbi
->blocks_per_seg
;
1474 addr
= START_BLOCK(sbi
, segno
);
1475 sum_entry
= &sum
->entries
[0];
1477 for (i
= 0; i
< last_offset
; i
++, sum_entry
++) {
1478 if (f2fs_readpage(sbi
, page
, addr
, READ_SYNC
))
1481 rn
= (struct f2fs_node
*)page_address(page
);
1482 sum_entry
->nid
= rn
->footer
.nid
;
1483 sum_entry
->version
= 0;
1484 sum_entry
->ofs_in_node
= 0;
1488 * In order to read next node page,
1489 * we must clear PageUptodate flag.
1491 ClearPageUptodate(page
);
1495 __free_pages(page
, 0);
1499 static bool flush_nats_in_journal(struct f2fs_sb_info
*sbi
)
1501 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1502 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1503 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1506 mutex_lock(&curseg
->curseg_mutex
);
1508 if (nats_in_cursum(sum
) < NAT_JOURNAL_ENTRIES
) {
1509 mutex_unlock(&curseg
->curseg_mutex
);
1513 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1514 struct nat_entry
*ne
;
1515 struct f2fs_nat_entry raw_ne
;
1516 nid_t nid
= le32_to_cpu(nid_in_journal(sum
, i
));
1518 raw_ne
= nat_in_journal(sum
, i
);
1520 write_lock(&nm_i
->nat_tree_lock
);
1521 ne
= __lookup_nat_cache(nm_i
, nid
);
1523 __set_nat_cache_dirty(nm_i
, ne
);
1524 write_unlock(&nm_i
->nat_tree_lock
);
1527 ne
= grab_nat_entry(nm_i
, nid
);
1529 write_unlock(&nm_i
->nat_tree_lock
);
1532 nat_set_blkaddr(ne
, le32_to_cpu(raw_ne
.block_addr
));
1533 nat_set_ino(ne
, le32_to_cpu(raw_ne
.ino
));
1534 nat_set_version(ne
, raw_ne
.version
);
1535 __set_nat_cache_dirty(nm_i
, ne
);
1536 write_unlock(&nm_i
->nat_tree_lock
);
1538 update_nats_in_cursum(sum
, -i
);
1539 mutex_unlock(&curseg
->curseg_mutex
);
1544 * This function is called during the checkpointing process.
1546 void flush_nat_entries(struct f2fs_sb_info
*sbi
)
1548 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1549 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1550 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1551 struct list_head
*cur
, *n
;
1552 struct page
*page
= NULL
;
1553 struct f2fs_nat_block
*nat_blk
= NULL
;
1554 nid_t start_nid
= 0, end_nid
= 0;
1557 flushed
= flush_nats_in_journal(sbi
);
1560 mutex_lock(&curseg
->curseg_mutex
);
1562 /* 1) flush dirty nat caches */
1563 list_for_each_safe(cur
, n
, &nm_i
->dirty_nat_entries
) {
1564 struct nat_entry
*ne
;
1566 struct f2fs_nat_entry raw_ne
;
1568 block_t new_blkaddr
;
1570 ne
= list_entry(cur
, struct nat_entry
, list
);
1571 nid
= nat_get_nid(ne
);
1573 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
1578 /* if there is room for nat enries in curseg->sumpage */
1579 offset
= lookup_journal_in_cursum(sum
, NAT_JOURNAL
, nid
, 1);
1581 raw_ne
= nat_in_journal(sum
, offset
);
1585 if (!page
|| (start_nid
> nid
|| nid
> end_nid
)) {
1587 f2fs_put_page(page
, 1);
1590 start_nid
= START_NID(nid
);
1591 end_nid
= start_nid
+ NAT_ENTRY_PER_BLOCK
- 1;
1594 * get nat block with dirty flag, increased reference
1595 * count, mapped and lock
1597 page
= get_next_nat_page(sbi
, start_nid
);
1598 nat_blk
= page_address(page
);
1602 raw_ne
= nat_blk
->entries
[nid
- start_nid
];
1604 new_blkaddr
= nat_get_blkaddr(ne
);
1606 raw_ne
.ino
= cpu_to_le32(nat_get_ino(ne
));
1607 raw_ne
.block_addr
= cpu_to_le32(new_blkaddr
);
1608 raw_ne
.version
= nat_get_version(ne
);
1611 nat_blk
->entries
[nid
- start_nid
] = raw_ne
;
1613 nat_in_journal(sum
, offset
) = raw_ne
;
1614 nid_in_journal(sum
, offset
) = cpu_to_le32(nid
);
1617 if (nat_get_blkaddr(ne
) == NULL_ADDR
) {
1618 write_lock(&nm_i
->nat_tree_lock
);
1619 __del_from_nat_cache(nm_i
, ne
);
1620 write_unlock(&nm_i
->nat_tree_lock
);
1622 /* We can reuse this freed nid at this point */
1623 add_free_nid(NM_I(sbi
), nid
);
1625 write_lock(&nm_i
->nat_tree_lock
);
1626 __clear_nat_cache_dirty(nm_i
, ne
);
1627 ne
->checkpointed
= true;
1628 write_unlock(&nm_i
->nat_tree_lock
);
1632 mutex_unlock(&curseg
->curseg_mutex
);
1633 f2fs_put_page(page
, 1);
1635 /* 2) shrink nat caches if necessary */
1636 try_to_free_nats(sbi
, nm_i
->nat_cnt
- NM_WOUT_THRESHOLD
);
1639 static int init_node_manager(struct f2fs_sb_info
*sbi
)
1641 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
1642 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1643 unsigned char *version_bitmap
;
1644 unsigned int nat_segs
, nat_blocks
;
1646 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
1648 /* segment_count_nat includes pair segment so divide to 2. */
1649 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
1650 nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
1651 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nat_blocks
;
1655 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
1656 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_ATOMIC
);
1657 INIT_LIST_HEAD(&nm_i
->nat_entries
);
1658 INIT_LIST_HEAD(&nm_i
->dirty_nat_entries
);
1660 mutex_init(&nm_i
->build_lock
);
1661 spin_lock_init(&nm_i
->free_nid_list_lock
);
1662 rwlock_init(&nm_i
->nat_tree_lock
);
1664 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
1665 nm_i
->init_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
1666 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
1668 nm_i
->nat_bitmap
= kzalloc(nm_i
->bitmap_size
, GFP_KERNEL
);
1669 if (!nm_i
->nat_bitmap
)
1671 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
1672 if (!version_bitmap
)
1675 /* copy version bitmap */
1676 memcpy(nm_i
->nat_bitmap
, version_bitmap
, nm_i
->bitmap_size
);
1680 int build_node_manager(struct f2fs_sb_info
*sbi
)
1684 sbi
->nm_info
= kzalloc(sizeof(struct f2fs_nm_info
), GFP_KERNEL
);
1688 err
= init_node_manager(sbi
);
1692 build_free_nids(sbi
);
1696 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
1698 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1699 struct free_nid
*i
, *next_i
;
1700 struct nat_entry
*natvec
[NATVEC_SIZE
];
1707 /* destroy free nid list */
1708 spin_lock(&nm_i
->free_nid_list_lock
);
1709 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
1710 BUG_ON(i
->state
== NID_ALLOC
);
1711 __del_from_free_nid_list(i
);
1715 spin_unlock(&nm_i
->free_nid_list_lock
);
1717 /* destroy nat cache */
1718 write_lock(&nm_i
->nat_tree_lock
);
1719 while ((found
= __gang_lookup_nat_cache(nm_i
,
1720 nid
, NATVEC_SIZE
, natvec
))) {
1722 for (idx
= 0; idx
< found
; idx
++) {
1723 struct nat_entry
*e
= natvec
[idx
];
1724 nid
= nat_get_nid(e
) + 1;
1725 __del_from_nat_cache(nm_i
, e
);
1728 BUG_ON(nm_i
->nat_cnt
);
1729 write_unlock(&nm_i
->nat_tree_lock
);
1731 kfree(nm_i
->nat_bitmap
);
1732 sbi
->nm_info
= NULL
;
1736 int __init
create_node_manager_caches(void)
1738 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
1739 sizeof(struct nat_entry
), NULL
);
1740 if (!nat_entry_slab
)
1743 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
1744 sizeof(struct free_nid
), NULL
);
1745 if (!free_nid_slab
) {
1746 kmem_cache_destroy(nat_entry_slab
);
1752 void destroy_node_manager_caches(void)
1754 kmem_cache_destroy(free_nid_slab
);
1755 kmem_cache_destroy(nat_entry_slab
);