2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
42 struct page
*dst_page
, int dst_offset
,
43 struct page
*src_page
, int src_offset
, int size
,
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
47 struct page
*dst_page
, int dst_offset
,
48 struct page
*src_page
, int src_offset
, int size
,
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
58 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
62 for (x
= 0; x
< src_size
; x
++)
63 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
68 * @dst: Buffer to take the bytes from src hex; must be at least of
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
73 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
78 for (x
= 0; x
< dst_size
; x
++) {
80 tmp
[1] = src
[x
* 2 + 1];
81 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
95 static int ecryptfs_calculate_md5(char *dst
,
96 struct ecryptfs_crypt_stat
*crypt_stat
,
99 struct scatterlist sg
;
100 struct hash_desc desc
= {
101 .tfm
= crypt_stat
->hash_tfm
,
102 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
106 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
107 sg_init_one(&sg
, (u8
*)src
, len
);
109 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
111 if (IS_ERR(desc
.tfm
)) {
112 rc
= PTR_ERR(desc
.tfm
);
113 ecryptfs_printk(KERN_ERR
, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
118 crypt_stat
->hash_tfm
= desc
.tfm
;
120 rc
= crypto_hash_init(&desc
);
123 "%s: Error initializing crypto hash; rc = [%d]\n",
127 rc
= crypto_hash_update(&desc
, &sg
, len
);
130 "%s: Error updating crypto hash; rc = [%d]\n",
134 rc
= crypto_hash_final(&desc
, dst
);
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
142 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
148 char *chaining_modifier
)
150 int cipher_name_len
= strlen(cipher_name
);
151 int chaining_modifier_len
= strlen(chaining_modifier
);
152 int algified_name_len
;
155 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
156 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
157 if (!(*algified_name
)) {
161 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
162 chaining_modifier
, cipher_name
);
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
174 * Generate the initialization vector from the given root IV and page
177 * Returns zero on success; non-zero on error.
179 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
183 char dst
[MD5_DIGEST_SIZE
];
184 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
186 if (unlikely(ecryptfs_verbosity
> 0)) {
187 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
195 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
196 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
197 if (unlikely(ecryptfs_verbosity
> 0)) {
198 ecryptfs_printk(KERN_DEBUG
, "source:\n");
199 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
201 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
202 (crypt_stat
->iv_bytes
+ 16));
204 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
208 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
209 if (unlikely(ecryptfs_verbosity
> 0)) {
210 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
211 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
221 * Initialize the crypt_stat structure.
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
226 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
227 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
228 mutex_init(&crypt_stat
->keysig_list_mutex
);
229 mutex_init(&crypt_stat
->cs_mutex
);
230 mutex_init(&crypt_stat
->cs_tfm_mutex
);
231 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
232 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
239 * Releases all memory associated with a crypt_stat struct.
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
243 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
246 crypto_free_blkcipher(crypt_stat
->tfm
);
247 if (crypt_stat
->hash_tfm
)
248 crypto_free_hash(crypt_stat
->hash_tfm
);
249 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
250 &crypt_stat
->keysig_list
, crypt_stat_list
) {
251 list_del(&key_sig
->crypt_stat_list
);
252 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
254 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
260 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
262 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
264 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
265 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
266 &mount_crypt_stat
->global_auth_tok_list
,
267 mount_crypt_stat_list
) {
268 list_del(&auth_tok
->mount_crypt_stat_list
);
269 if (auth_tok
->global_auth_tok_key
270 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
271 key_put(auth_tok
->global_auth_tok_key
);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
274 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
275 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
286 * Fills in a scatterlist array with page references for a passed
289 * Returns the number of scatterlist structs in array used
291 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
297 int remainder_of_page
;
299 sg_init_table(sg
, sg_size
);
301 while (size
> 0 && i
< sg_size
) {
302 pg
= virt_to_page(addr
);
303 offset
= offset_in_page(addr
);
304 sg_set_page(&sg
[i
], pg
, 0, offset
);
305 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
306 if (size
>= remainder_of_page
) {
307 sg
[i
].length
= remainder_of_page
;
308 addr
+= remainder_of_page
;
309 size
-= remainder_of_page
;
323 * encrypt_scatterlist
324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325 * @dest_sg: Destination of encrypted data
326 * @src_sg: Data to be encrypted
327 * @size: Length of data to be encrypted
328 * @iv: iv to use during encryption
330 * Returns the number of bytes encrypted; negative value on error
332 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
333 struct scatterlist
*dest_sg
,
334 struct scatterlist
*src_sg
, int size
,
337 struct blkcipher_desc desc
= {
338 .tfm
= crypt_stat
->tfm
,
340 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
344 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
345 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
346 if (unlikely(ecryptfs_verbosity
> 0)) {
347 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
348 crypt_stat
->key_size
);
349 ecryptfs_dump_hex(crypt_stat
->key
,
350 crypt_stat
->key_size
);
352 /* Consider doing this once, when the file is opened */
353 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
354 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
355 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
356 crypt_stat
->key_size
);
357 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
360 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
362 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
366 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
367 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
368 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
374 * ecryptfs_lower_offset_for_extent
376 * Convert an eCryptfs page index into a lower byte offset
378 static void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
379 struct ecryptfs_crypt_stat
*crypt_stat
)
381 (*offset
) = ecryptfs_lower_header_size(crypt_stat
)
382 + (crypt_stat
->extent_size
* extent_num
);
386 * ecryptfs_encrypt_extent
387 * @enc_extent_page: Allocated page into which to encrypt the data in
389 * @crypt_stat: crypt_stat containing cryptographic context for the
390 * encryption operation
391 * @page: Page containing plaintext data extent to encrypt
392 * @extent_offset: Page extent offset for use in generating IV
394 * Encrypts one extent of data.
396 * Return zero on success; non-zero otherwise
398 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
399 struct ecryptfs_crypt_stat
*crypt_stat
,
401 unsigned long extent_offset
)
404 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
407 extent_base
= (((loff_t
)page
->index
)
408 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
409 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
410 (extent_base
+ extent_offset
));
412 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
413 "extent [0x%.16llx]; rc = [%d]\n",
414 (unsigned long long)(extent_base
+ extent_offset
), rc
);
417 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
419 * crypt_stat
->extent_size
),
420 crypt_stat
->extent_size
, extent_iv
);
422 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
423 "page->index = [%ld], extent_offset = [%ld]; "
424 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
434 * ecryptfs_encrypt_page
435 * @page: Page mapped from the eCryptfs inode for the file; contains
436 * decrypted content that needs to be encrypted (to a temporary
437 * page; not in place) and written out to the lower file
439 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
440 * that eCryptfs pages may straddle the lower pages -- for instance,
441 * if the file was created on a machine with an 8K page size
442 * (resulting in an 8K header), and then the file is copied onto a
443 * host with a 32K page size, then when reading page 0 of the eCryptfs
444 * file, 24K of page 0 of the lower file will be read and decrypted,
445 * and then 8K of page 1 of the lower file will be read and decrypted.
447 * Returns zero on success; negative on error
449 int ecryptfs_encrypt_page(struct page
*page
)
451 struct inode
*ecryptfs_inode
;
452 struct ecryptfs_crypt_stat
*crypt_stat
;
453 char *enc_extent_virt
;
454 struct page
*enc_extent_page
= NULL
;
455 loff_t extent_offset
;
458 ecryptfs_inode
= page
->mapping
->host
;
460 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
461 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
462 enc_extent_page
= alloc_page(GFP_USER
);
463 if (!enc_extent_page
) {
465 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
466 "encrypted extent\n");
469 enc_extent_virt
= kmap(enc_extent_page
);
470 for (extent_offset
= 0;
471 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
475 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
478 printk(KERN_ERR
"%s: Error encrypting extent; "
479 "rc = [%d]\n", __func__
, rc
);
482 ecryptfs_lower_offset_for_extent(
483 &offset
, ((((loff_t
)page
->index
)
485 / crypt_stat
->extent_size
))
486 + extent_offset
), crypt_stat
);
487 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
488 offset
, crypt_stat
->extent_size
);
490 ecryptfs_printk(KERN_ERR
, "Error attempting "
491 "to write lower page; rc = [%d]"
498 if (enc_extent_page
) {
499 kunmap(enc_extent_page
);
500 __free_page(enc_extent_page
);
505 static int ecryptfs_decrypt_extent(struct page
*page
,
506 struct ecryptfs_crypt_stat
*crypt_stat
,
507 struct page
*enc_extent_page
,
508 unsigned long extent_offset
)
511 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
514 extent_base
= (((loff_t
)page
->index
)
515 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
516 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
517 (extent_base
+ extent_offset
));
519 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
520 "extent [0x%.16llx]; rc = [%d]\n",
521 (unsigned long long)(extent_base
+ extent_offset
), rc
);
524 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
526 * crypt_stat
->extent_size
),
528 crypt_stat
->extent_size
, extent_iv
);
530 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
531 "page->index = [%ld], extent_offset = [%ld]; "
532 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
542 * ecryptfs_decrypt_page
543 * @page: Page mapped from the eCryptfs inode for the file; data read
544 * and decrypted from the lower file will be written into this
547 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
548 * that eCryptfs pages may straddle the lower pages -- for instance,
549 * if the file was created on a machine with an 8K page size
550 * (resulting in an 8K header), and then the file is copied onto a
551 * host with a 32K page size, then when reading page 0 of the eCryptfs
552 * file, 24K of page 0 of the lower file will be read and decrypted,
553 * and then 8K of page 1 of the lower file will be read and decrypted.
555 * Returns zero on success; negative on error
557 int ecryptfs_decrypt_page(struct page
*page
)
559 struct inode
*ecryptfs_inode
;
560 struct ecryptfs_crypt_stat
*crypt_stat
;
561 char *enc_extent_virt
;
562 struct page
*enc_extent_page
= NULL
;
563 unsigned long extent_offset
;
566 ecryptfs_inode
= page
->mapping
->host
;
568 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
569 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
570 enc_extent_page
= alloc_page(GFP_USER
);
571 if (!enc_extent_page
) {
573 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
574 "encrypted extent\n");
577 enc_extent_virt
= kmap(enc_extent_page
);
578 for (extent_offset
= 0;
579 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
583 ecryptfs_lower_offset_for_extent(
584 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
585 / crypt_stat
->extent_size
))
586 + extent_offset
), crypt_stat
);
587 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
588 crypt_stat
->extent_size
,
591 ecryptfs_printk(KERN_ERR
, "Error attempting "
592 "to read lower page; rc = [%d]"
596 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
599 printk(KERN_ERR
"%s: Error encrypting extent; "
600 "rc = [%d]\n", __func__
, rc
);
605 if (enc_extent_page
) {
606 kunmap(enc_extent_page
);
607 __free_page(enc_extent_page
);
613 * decrypt_scatterlist
614 * @crypt_stat: Cryptographic context
615 * @dest_sg: The destination scatterlist to decrypt into
616 * @src_sg: The source scatterlist to decrypt from
617 * @size: The number of bytes to decrypt
618 * @iv: The initialization vector to use for the decryption
620 * Returns the number of bytes decrypted; negative value on error
622 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
623 struct scatterlist
*dest_sg
,
624 struct scatterlist
*src_sg
, int size
,
627 struct blkcipher_desc desc
= {
628 .tfm
= crypt_stat
->tfm
,
630 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
634 /* Consider doing this once, when the file is opened */
635 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
636 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
637 crypt_stat
->key_size
);
639 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
641 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
645 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
646 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
647 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
649 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
659 * ecryptfs_encrypt_page_offset
660 * @crypt_stat: The cryptographic context
661 * @dst_page: The page to encrypt into
662 * @dst_offset: The offset in the page to encrypt into
663 * @src_page: The page to encrypt from
664 * @src_offset: The offset in the page to encrypt from
665 * @size: The number of bytes to encrypt
666 * @iv: The initialization vector to use for the encryption
668 * Returns the number of bytes encrypted
671 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
672 struct page
*dst_page
, int dst_offset
,
673 struct page
*src_page
, int src_offset
, int size
,
676 struct scatterlist src_sg
, dst_sg
;
678 sg_init_table(&src_sg
, 1);
679 sg_init_table(&dst_sg
, 1);
681 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
682 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
683 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
687 * ecryptfs_decrypt_page_offset
688 * @crypt_stat: The cryptographic context
689 * @dst_page: The page to decrypt into
690 * @dst_offset: The offset in the page to decrypt into
691 * @src_page: The page to decrypt from
692 * @src_offset: The offset in the page to decrypt from
693 * @size: The number of bytes to decrypt
694 * @iv: The initialization vector to use for the decryption
696 * Returns the number of bytes decrypted
699 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
700 struct page
*dst_page
, int dst_offset
,
701 struct page
*src_page
, int src_offset
, int size
,
704 struct scatterlist src_sg
, dst_sg
;
706 sg_init_table(&src_sg
, 1);
707 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
709 sg_init_table(&dst_sg
, 1);
710 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
712 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
715 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
718 * ecryptfs_init_crypt_ctx
719 * @crypt_stat: Uninitialized crypt stats structure
721 * Initialize the crypto context.
723 * TODO: Performance: Keep a cache of initialized cipher contexts;
724 * only init if needed
726 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
731 if (!crypt_stat
->cipher
) {
732 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
735 ecryptfs_printk(KERN_DEBUG
,
736 "Initializing cipher [%s]; strlen = [%d]; "
737 "key_size_bits = [%zd]\n",
738 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
739 crypt_stat
->key_size
<< 3);
740 if (crypt_stat
->tfm
) {
744 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
745 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
746 crypt_stat
->cipher
, "cbc");
749 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
751 kfree(full_alg_name
);
752 if (IS_ERR(crypt_stat
->tfm
)) {
753 rc
= PTR_ERR(crypt_stat
->tfm
);
754 crypt_stat
->tfm
= NULL
;
755 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
756 "Error initializing cipher [%s]\n",
760 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
763 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
768 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
772 crypt_stat
->extent_mask
= 0xFFFFFFFF;
773 crypt_stat
->extent_shift
= 0;
774 if (crypt_stat
->extent_size
== 0)
776 extent_size_tmp
= crypt_stat
->extent_size
;
777 while ((extent_size_tmp
& 0x01) == 0) {
778 extent_size_tmp
>>= 1;
779 crypt_stat
->extent_mask
<<= 1;
780 crypt_stat
->extent_shift
++;
784 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
786 /* Default values; may be overwritten as we are parsing the
788 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
789 set_extent_mask_and_shift(crypt_stat
);
790 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
791 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
792 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
794 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
795 crypt_stat
->metadata_size
=
796 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
798 crypt_stat
->metadata_size
= PAGE_CACHE_SIZE
;
803 * ecryptfs_compute_root_iv
806 * On error, sets the root IV to all 0's.
808 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
811 char dst
[MD5_DIGEST_SIZE
];
813 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
814 BUG_ON(crypt_stat
->iv_bytes
<= 0);
815 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
817 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
818 "cannot generate root IV\n");
821 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
822 crypt_stat
->key_size
);
824 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
825 "MD5 while generating root IV\n");
828 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
831 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
832 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
837 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
839 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
840 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
841 ecryptfs_compute_root_iv(crypt_stat
);
842 if (unlikely(ecryptfs_verbosity
> 0)) {
843 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
844 ecryptfs_dump_hex(crypt_stat
->key
,
845 crypt_stat
->key_size
);
850 * ecryptfs_copy_mount_wide_flags_to_inode_flags
851 * @crypt_stat: The inode's cryptographic context
852 * @mount_crypt_stat: The mount point's cryptographic context
854 * This function propagates the mount-wide flags to individual inode
857 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
858 struct ecryptfs_crypt_stat
*crypt_stat
,
859 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
861 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
862 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
863 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
864 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
865 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
866 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
867 if (mount_crypt_stat
->flags
868 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
869 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
870 else if (mount_crypt_stat
->flags
871 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
872 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
876 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
877 struct ecryptfs_crypt_stat
*crypt_stat
,
878 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
880 struct ecryptfs_global_auth_tok
*global_auth_tok
;
883 mutex_lock(&crypt_stat
->keysig_list_mutex
);
884 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
886 list_for_each_entry(global_auth_tok
,
887 &mount_crypt_stat
->global_auth_tok_list
,
888 mount_crypt_stat_list
) {
889 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
891 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
893 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
899 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
900 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
905 * ecryptfs_set_default_crypt_stat_vals
906 * @crypt_stat: The inode's cryptographic context
907 * @mount_crypt_stat: The mount point's cryptographic context
909 * Default values in the event that policy does not override them.
911 static void ecryptfs_set_default_crypt_stat_vals(
912 struct ecryptfs_crypt_stat
*crypt_stat
,
913 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
915 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
917 ecryptfs_set_default_sizes(crypt_stat
);
918 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
919 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
920 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
921 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
922 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
926 * ecryptfs_new_file_context
927 * @ecryptfs_inode: The eCryptfs inode
929 * If the crypto context for the file has not yet been established,
930 * this is where we do that. Establishing a new crypto context
931 * involves the following decisions:
932 * - What cipher to use?
933 * - What set of authentication tokens to use?
934 * Here we just worry about getting enough information into the
935 * authentication tokens so that we know that they are available.
936 * We associate the available authentication tokens with the new file
937 * via the set of signatures in the crypt_stat struct. Later, when
938 * the headers are actually written out, we may again defer to
939 * userspace to perform the encryption of the session key; for the
940 * foreseeable future, this will be the case with public key packets.
942 * Returns zero on success; non-zero otherwise
944 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
946 struct ecryptfs_crypt_stat
*crypt_stat
=
947 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
948 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
949 &ecryptfs_superblock_to_private(
950 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
954 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
955 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
956 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
958 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
961 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
962 "to the inode key sigs; rc = [%d]\n", rc
);
966 strlen(mount_crypt_stat
->global_default_cipher_name
);
967 memcpy(crypt_stat
->cipher
,
968 mount_crypt_stat
->global_default_cipher_name
,
970 crypt_stat
->cipher
[cipher_name_len
] = '\0';
971 crypt_stat
->key_size
=
972 mount_crypt_stat
->global_default_cipher_key_size
;
973 ecryptfs_generate_new_key(crypt_stat
);
974 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
976 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
977 "context for cipher [%s]: rc = [%d]\n",
978 crypt_stat
->cipher
, rc
);
984 * ecryptfs_validate_marker - check for the ecryptfs marker
985 * @data: The data block in which to check
987 * Returns zero if marker found; -EINVAL if not found
989 static int ecryptfs_validate_marker(char *data
)
993 m_1
= get_unaligned_be32(data
);
994 m_2
= get_unaligned_be32(data
+ 4);
995 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
997 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
998 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
999 MAGIC_ECRYPTFS_MARKER
);
1000 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1001 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1005 struct ecryptfs_flag_map_elem
{
1010 /* Add support for additional flags by adding elements here. */
1011 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1012 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1013 {0x00000002, ECRYPTFS_ENCRYPTED
},
1014 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
1015 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
1019 * ecryptfs_process_flags
1020 * @crypt_stat: The cryptographic context
1021 * @page_virt: Source data to be parsed
1022 * @bytes_read: Updated with the number of bytes read
1024 * Returns zero on success; non-zero if the flag set is invalid
1026 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1027 char *page_virt
, int *bytes_read
)
1033 flags
= get_unaligned_be32(page_virt
);
1034 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1035 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1036 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1037 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1039 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1040 /* Version is in top 8 bits of the 32-bit flag vector */
1041 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1047 * write_ecryptfs_marker
1048 * @page_virt: The pointer to in a page to begin writing the marker
1049 * @written: Number of bytes written
1051 * Marker = 0x3c81b7f5
1053 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1057 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1058 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1059 put_unaligned_be32(m_1
, page_virt
);
1060 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
1061 put_unaligned_be32(m_2
, page_virt
);
1062 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1065 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
1066 struct ecryptfs_crypt_stat
*crypt_stat
,
1072 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1073 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1074 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1075 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1076 /* Version is in top 8 bits of the 32-bit flag vector */
1077 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1078 put_unaligned_be32(flags
, page_virt
);
1082 struct ecryptfs_cipher_code_str_map_elem
{
1083 char cipher_str
[16];
1087 /* Add support for additional ciphers by adding elements here. The
1088 * cipher_code is whatever OpenPGP applicatoins use to identify the
1089 * ciphers. List in order of probability. */
1090 static struct ecryptfs_cipher_code_str_map_elem
1091 ecryptfs_cipher_code_str_map
[] = {
1092 {"aes",RFC2440_CIPHER_AES_128
},
1093 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1094 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1095 {"cast5", RFC2440_CIPHER_CAST_5
},
1096 {"twofish", RFC2440_CIPHER_TWOFISH
},
1097 {"cast6", RFC2440_CIPHER_CAST_6
},
1098 {"aes", RFC2440_CIPHER_AES_192
},
1099 {"aes", RFC2440_CIPHER_AES_256
}
1103 * ecryptfs_code_for_cipher_string
1104 * @cipher_name: The string alias for the cipher
1105 * @key_bytes: Length of key in bytes; used for AES code selection
1107 * Returns zero on no match, or the cipher code on match
1109 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
1113 struct ecryptfs_cipher_code_str_map_elem
*map
=
1114 ecryptfs_cipher_code_str_map
;
1116 if (strcmp(cipher_name
, "aes") == 0) {
1117 switch (key_bytes
) {
1119 code
= RFC2440_CIPHER_AES_128
;
1122 code
= RFC2440_CIPHER_AES_192
;
1125 code
= RFC2440_CIPHER_AES_256
;
1128 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1129 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1130 code
= map
[i
].cipher_code
;
1138 * ecryptfs_cipher_code_to_string
1139 * @str: Destination to write out the cipher name
1140 * @cipher_code: The code to convert to cipher name string
1142 * Returns zero on success
1144 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1150 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1151 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1152 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1153 if (str
[0] == '\0') {
1154 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1155 "[%d]\n", cipher_code
);
1161 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
1163 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1164 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1167 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1169 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1170 return rc
>= 0 ? -EINVAL
: rc
;
1171 rc
= ecryptfs_validate_marker(marker
);
1173 ecryptfs_i_size_init(file_size
, inode
);
1178 ecryptfs_write_header_metadata(char *virt
,
1179 struct ecryptfs_crypt_stat
*crypt_stat
,
1182 u32 header_extent_size
;
1183 u16 num_header_extents_at_front
;
1185 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1186 num_header_extents_at_front
=
1187 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1188 put_unaligned_be32(header_extent_size
, virt
);
1190 put_unaligned_be16(num_header_extents_at_front
, virt
);
1194 struct kmem_cache
*ecryptfs_header_cache
;
1197 * ecryptfs_write_headers_virt
1198 * @page_virt: The virtual address to write the headers to
1199 * @max: The size of memory allocated at page_virt
1200 * @size: Set to the number of bytes written by this function
1201 * @crypt_stat: The cryptographic context
1202 * @ecryptfs_dentry: The eCryptfs dentry
1207 * Octets 0-7: Unencrypted file size (big-endian)
1208 * Octets 8-15: eCryptfs special marker
1209 * Octets 16-19: Flags
1210 * Octet 16: File format version number (between 0 and 255)
1211 * Octets 17-18: Reserved
1212 * Octet 19: Bit 1 (lsb): Reserved
1214 * Bits 3-8: Reserved
1215 * Octets 20-23: Header extent size (big-endian)
1216 * Octets 24-25: Number of header extents at front of file
1218 * Octet 26: Begin RFC 2440 authentication token packet set
1220 * Lower data (CBC encrypted)
1222 * Lower data (CBC encrypted)
1225 * Returns zero on success
1227 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1229 struct ecryptfs_crypt_stat
*crypt_stat
,
1230 struct dentry
*ecryptfs_dentry
)
1236 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1237 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1239 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1242 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1245 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1246 ecryptfs_dentry
, &written
,
1249 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1250 "set; rc = [%d]\n", rc
);
1259 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1260 char *virt
, size_t virt_len
)
1264 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1267 printk(KERN_ERR
"%s: Error attempting to write header "
1268 "information to lower file; rc = [%d]\n", __func__
, rc
);
1275 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1276 char *page_virt
, size_t size
)
1280 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1285 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1290 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1292 return (unsigned long) page_address(page
);
1297 * ecryptfs_write_metadata
1298 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1299 * @ecryptfs_inode: The newly created eCryptfs inode
1301 * Write the file headers out. This will likely involve a userspace
1302 * callout, in which the session key is encrypted with one or more
1303 * public keys and/or the passphrase necessary to do the encryption is
1304 * retrieved via a prompt. Exactly what happens at this point should
1305 * be policy-dependent.
1307 * Returns zero on success; non-zero on error
1309 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1310 struct inode
*ecryptfs_inode
)
1312 struct ecryptfs_crypt_stat
*crypt_stat
=
1313 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1320 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1321 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1322 printk(KERN_ERR
"Key is invalid; bailing out\n");
1327 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1332 virt_len
= crypt_stat
->metadata_size
;
1333 order
= get_order(virt_len
);
1334 /* Released in this function */
1335 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1337 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1341 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1342 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1345 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1349 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1350 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1353 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1356 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1357 "rc = [%d]\n", __func__
, rc
);
1361 free_pages((unsigned long)virt
, order
);
1366 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1367 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1368 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1369 char *virt
, int *bytes_read
,
1370 int validate_header_size
)
1373 u32 header_extent_size
;
1374 u16 num_header_extents_at_front
;
1376 header_extent_size
= get_unaligned_be32(virt
);
1377 virt
+= sizeof(__be32
);
1378 num_header_extents_at_front
= get_unaligned_be16(virt
);
1379 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1380 * (size_t)header_extent_size
));
1381 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1382 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1383 && (crypt_stat
->metadata_size
1384 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1386 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1387 crypt_stat
->metadata_size
);
1393 * set_default_header_data
1394 * @crypt_stat: The cryptographic context
1396 * For version 0 file format; this function is only for backwards
1397 * compatibility for files created with the prior versions of
1400 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1402 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1405 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1407 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1408 struct ecryptfs_crypt_stat
*crypt_stat
;
1411 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1413 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1414 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1415 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1416 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1417 file_size
+= crypt_stat
->metadata_size
;
1419 file_size
= get_unaligned_be64(page_virt
);
1420 i_size_write(inode
, (loff_t
)file_size
);
1421 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1425 * ecryptfs_read_headers_virt
1426 * @page_virt: The virtual address into which to read the headers
1427 * @crypt_stat: The cryptographic context
1428 * @ecryptfs_dentry: The eCryptfs dentry
1429 * @validate_header_size: Whether to validate the header size while reading
1431 * Read/parse the header data. The header format is detailed in the
1432 * comment block for the ecryptfs_write_headers_virt() function.
1434 * Returns zero on success
1436 static int ecryptfs_read_headers_virt(char *page_virt
,
1437 struct ecryptfs_crypt_stat
*crypt_stat
,
1438 struct dentry
*ecryptfs_dentry
,
1439 int validate_header_size
)
1445 ecryptfs_set_default_sizes(crypt_stat
);
1446 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1447 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1448 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1449 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1452 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1453 ecryptfs_i_size_init(page_virt
, ecryptfs_dentry
->d_inode
);
1454 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1455 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1458 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1461 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1462 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1463 "file version [%d] is supported by this "
1464 "version of eCryptfs\n",
1465 crypt_stat
->file_version
,
1466 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1470 offset
+= bytes_read
;
1471 if (crypt_stat
->file_version
>= 1) {
1472 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1473 &bytes_read
, validate_header_size
);
1475 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1476 "metadata; rc = [%d]\n", rc
);
1478 offset
+= bytes_read
;
1480 set_default_header_data(crypt_stat
);
1481 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1488 * ecryptfs_read_xattr_region
1489 * @page_virt: The vitual address into which to read the xattr data
1490 * @ecryptfs_inode: The eCryptfs inode
1492 * Attempts to read the crypto metadata from the extended attribute
1493 * region of the lower file.
1495 * Returns zero on success; non-zero on error
1497 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1499 struct dentry
*lower_dentry
=
1500 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1504 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1505 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1507 if (unlikely(ecryptfs_verbosity
> 0))
1508 printk(KERN_INFO
"Error attempting to read the [%s] "
1509 "xattr from the lower file; return value = "
1510 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1518 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1519 struct inode
*inode
)
1521 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1522 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1525 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1526 ECRYPTFS_XATTR_NAME
, file_size
,
1527 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1528 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1529 return rc
>= 0 ? -EINVAL
: rc
;
1530 rc
= ecryptfs_validate_marker(marker
);
1532 ecryptfs_i_size_init(file_size
, inode
);
1537 * ecryptfs_read_metadata
1539 * Common entry point for reading file metadata. From here, we could
1540 * retrieve the header information from the header region of the file,
1541 * the xattr region of the file, or some other repostory that is
1542 * stored separately from the file itself. The current implementation
1543 * supports retrieving the metadata information from the file contents
1544 * and from the xattr region.
1546 * Returns zero if valid headers found and parsed; non-zero otherwise
1548 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1552 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1553 struct ecryptfs_crypt_stat
*crypt_stat
=
1554 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1555 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1556 &ecryptfs_superblock_to_private(
1557 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1559 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1561 /* Read the first page from the underlying file */
1562 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1565 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1569 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1572 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1574 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1576 /* metadata is not in the file header, so try xattrs */
1577 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1578 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1580 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1581 "file header region or xattr region, inode %lu\n",
1582 ecryptfs_inode
->i_ino
);
1586 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1588 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1590 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1591 "file xattr region either, inode %lu\n",
1592 ecryptfs_inode
->i_ino
);
1595 if (crypt_stat
->mount_crypt_stat
->flags
1596 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1597 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1599 printk(KERN_WARNING
"Attempt to access file with "
1600 "crypto metadata only in the extended attribute "
1601 "region, but eCryptfs was mounted without "
1602 "xattr support enabled. eCryptfs will not treat "
1603 "this like an encrypted file, inode %lu\n",
1604 ecryptfs_inode
->i_ino
);
1610 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1611 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1617 * ecryptfs_encrypt_filename - encrypt filename
1619 * CBC-encrypts the filename. We do not want to encrypt the same
1620 * filename with the same key and IV, which may happen with hard
1621 * links, so we prepend random bits to each filename.
1623 * Returns zero on success; non-zero otherwise
1626 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1627 struct ecryptfs_crypt_stat
*crypt_stat
,
1628 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1632 filename
->encrypted_filename
= NULL
;
1633 filename
->encrypted_filename_size
= 0;
1634 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1635 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1636 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1638 size_t remaining_bytes
;
1640 rc
= ecryptfs_write_tag_70_packet(
1642 &filename
->encrypted_filename_size
,
1643 mount_crypt_stat
, NULL
,
1644 filename
->filename_size
);
1646 printk(KERN_ERR
"%s: Error attempting to get packet "
1647 "size for tag 72; rc = [%d]\n", __func__
,
1649 filename
->encrypted_filename_size
= 0;
1652 filename
->encrypted_filename
=
1653 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1654 if (!filename
->encrypted_filename
) {
1655 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1656 "to kmalloc [%zd] bytes\n", __func__
,
1657 filename
->encrypted_filename_size
);
1661 remaining_bytes
= filename
->encrypted_filename_size
;
1662 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1667 filename
->filename_size
);
1669 printk(KERN_ERR
"%s: Error attempting to generate "
1670 "tag 70 packet; rc = [%d]\n", __func__
,
1672 kfree(filename
->encrypted_filename
);
1673 filename
->encrypted_filename
= NULL
;
1674 filename
->encrypted_filename_size
= 0;
1677 filename
->encrypted_filename_size
= packet_size
;
1679 printk(KERN_ERR
"%s: No support for requested filename "
1680 "encryption method in this release\n", __func__
);
1688 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1689 const char *name
, size_t name_size
)
1693 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1694 if (!(*copied_name
)) {
1698 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1699 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1700 * in printing out the
1703 (*copied_name_size
) = name_size
;
1709 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1710 * @key_tfm: Crypto context for key material, set by this function
1711 * @cipher_name: Name of the cipher
1712 * @key_size: Size of the key in bytes
1714 * Returns zero on success. Any crypto_tfm structs allocated here
1715 * should be released by other functions, such as on a superblock put
1716 * event, regardless of whether this function succeeds for fails.
1719 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1720 char *cipher_name
, size_t *key_size
)
1722 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1723 char *full_alg_name
= NULL
;
1727 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1729 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1730 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1733 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1737 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1738 if (IS_ERR(*key_tfm
)) {
1739 rc
= PTR_ERR(*key_tfm
);
1740 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1741 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1744 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1745 if (*key_size
== 0) {
1746 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1748 *key_size
= alg
->max_keysize
;
1750 get_random_bytes(dummy_key
, *key_size
);
1751 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1753 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1754 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1760 kfree(full_alg_name
);
1764 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1765 static struct list_head key_tfm_list
;
1766 struct mutex key_tfm_list_mutex
;
1768 int __init
ecryptfs_init_crypto(void)
1770 mutex_init(&key_tfm_list_mutex
);
1771 INIT_LIST_HEAD(&key_tfm_list
);
1776 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1778 * Called only at module unload time
1780 int ecryptfs_destroy_crypto(void)
1782 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1784 mutex_lock(&key_tfm_list_mutex
);
1785 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1787 list_del(&key_tfm
->key_tfm_list
);
1788 if (key_tfm
->key_tfm
)
1789 crypto_free_blkcipher(key_tfm
->key_tfm
);
1790 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1792 mutex_unlock(&key_tfm_list_mutex
);
1797 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1800 struct ecryptfs_key_tfm
*tmp_tfm
;
1803 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1805 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1806 if (key_tfm
!= NULL
)
1807 (*key_tfm
) = tmp_tfm
;
1810 printk(KERN_ERR
"Error attempting to allocate from "
1811 "ecryptfs_key_tfm_cache\n");
1814 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1815 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1816 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1817 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1818 tmp_tfm
->key_size
= key_size
;
1819 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1820 tmp_tfm
->cipher_name
,
1821 &tmp_tfm
->key_size
);
1823 printk(KERN_ERR
"Error attempting to initialize key TFM "
1824 "cipher with name = [%s]; rc = [%d]\n",
1825 tmp_tfm
->cipher_name
, rc
);
1826 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1827 if (key_tfm
!= NULL
)
1831 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1837 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1838 * @cipher_name: the name of the cipher to search for
1839 * @key_tfm: set to corresponding tfm if found
1841 * Searches for cached key_tfm matching @cipher_name
1842 * Must be called with &key_tfm_list_mutex held
1843 * Returns 1 if found, with @key_tfm set
1844 * Returns 0 if not found, with @key_tfm set to NULL
1846 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1848 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1850 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1852 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1853 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1855 (*key_tfm
) = tmp_key_tfm
;
1865 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1867 * @tfm: set to cached tfm found, or new tfm created
1868 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1869 * @cipher_name: the name of the cipher to search for and/or add
1871 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1872 * Searches for cached item first, and creates new if not found.
1873 * Returns 0 on success, non-zero if adding new cipher failed
1875 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1876 struct mutex
**tfm_mutex
,
1879 struct ecryptfs_key_tfm
*key_tfm
;
1883 (*tfm_mutex
) = NULL
;
1885 mutex_lock(&key_tfm_list_mutex
);
1886 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1887 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1889 printk(KERN_ERR
"Error adding new key_tfm to list; "
1894 (*tfm
) = key_tfm
->key_tfm
;
1895 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1897 mutex_unlock(&key_tfm_list_mutex
);
1901 /* 64 characters forming a 6-bit target field */
1902 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1905 "klmnopqrstuvwxyz");
1907 /* We could either offset on every reverse map or just pad some 0x00's
1908 * at the front here */
1909 static const unsigned char filename_rev_map
[256] = {
1910 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1911 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1912 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1916 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1917 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1918 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1919 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1920 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1921 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1922 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1923 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1924 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1925 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1929 * ecryptfs_encode_for_filename
1930 * @dst: Destination location for encoded filename
1931 * @dst_size: Size of the encoded filename in bytes
1932 * @src: Source location for the filename to encode
1933 * @src_size: Size of the source in bytes
1935 static void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1936 unsigned char *src
, size_t src_size
)
1939 size_t block_num
= 0;
1940 size_t dst_offset
= 0;
1941 unsigned char last_block
[3];
1943 if (src_size
== 0) {
1947 num_blocks
= (src_size
/ 3);
1948 if ((src_size
% 3) == 0) {
1949 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1952 last_block
[2] = 0x00;
1953 switch (src_size
% 3) {
1955 last_block
[0] = src
[src_size
- 1];
1956 last_block
[1] = 0x00;
1959 last_block
[0] = src
[src_size
- 2];
1960 last_block
[1] = src
[src_size
- 1];
1963 (*dst_size
) = (num_blocks
* 4);
1966 while (block_num
< num_blocks
) {
1967 unsigned char *src_block
;
1968 unsigned char dst_block
[4];
1970 if (block_num
== (num_blocks
- 1))
1971 src_block
= last_block
;
1973 src_block
= &src
[block_num
* 3];
1974 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1975 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1976 | ((src_block
[1] >> 4) & 0x0F));
1977 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1978 | ((src_block
[2] >> 6) & 0x03));
1979 dst_block
[3] = (src_block
[2] & 0x3F);
1980 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1981 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1982 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1983 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1990 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1992 /* Not exact; conservatively long. Every block of 4
1993 * encoded characters decodes into a block of 3
1994 * decoded characters. This segment of code provides
1995 * the caller with the maximum amount of allocated
1996 * space that @dst will need to point to in a
1997 * subsequent call. */
1998 return ((encoded_size
+ 1) * 3) / 4;
2002 * ecryptfs_decode_from_filename
2003 * @dst: If NULL, this function only sets @dst_size and returns. If
2004 * non-NULL, this function decodes the encoded octets in @src
2005 * into the memory that @dst points to.
2006 * @dst_size: Set to the size of the decoded string.
2007 * @src: The encoded set of octets to decode.
2008 * @src_size: The size of the encoded set of octets to decode.
2011 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
2012 const unsigned char *src
, size_t src_size
)
2014 u8 current_bit_offset
= 0;
2015 size_t src_byte_offset
= 0;
2016 size_t dst_byte_offset
= 0;
2019 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
2022 while (src_byte_offset
< src_size
) {
2023 unsigned char src_byte
=
2024 filename_rev_map
[(int)src
[src_byte_offset
]];
2026 switch (current_bit_offset
) {
2028 dst
[dst_byte_offset
] = (src_byte
<< 2);
2029 current_bit_offset
= 6;
2032 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
2033 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
2035 current_bit_offset
= 4;
2038 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
2039 dst
[dst_byte_offset
] = (src_byte
<< 6);
2040 current_bit_offset
= 2;
2043 dst
[dst_byte_offset
++] |= (src_byte
);
2044 dst
[dst_byte_offset
] = 0;
2045 current_bit_offset
= 0;
2050 (*dst_size
) = dst_byte_offset
;
2056 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2057 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2058 * @name: The plaintext name
2059 * @length: The length of the plaintext
2060 * @encoded_name: The encypted name
2062 * Encrypts and encodes a filename into something that constitutes a
2063 * valid filename for a filesystem, with printable characters.
2065 * We assume that we have a properly initialized crypto context,
2066 * pointed to by crypt_stat->tfm.
2068 * Returns zero on success; non-zero on otherwise
2070 int ecryptfs_encrypt_and_encode_filename(
2071 char **encoded_name
,
2072 size_t *encoded_name_size
,
2073 struct ecryptfs_crypt_stat
*crypt_stat
,
2074 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2075 const char *name
, size_t name_size
)
2077 size_t encoded_name_no_prefix_size
;
2080 (*encoded_name
) = NULL
;
2081 (*encoded_name_size
) = 0;
2082 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
2083 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
2084 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
2085 struct ecryptfs_filename
*filename
;
2087 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
2089 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2090 "to kzalloc [%zd] bytes\n", __func__
,
2095 filename
->filename
= (char *)name
;
2096 filename
->filename_size
= name_size
;
2097 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
2100 printk(KERN_ERR
"%s: Error attempting to encrypt "
2101 "filename; rc = [%d]\n", __func__
, rc
);
2105 ecryptfs_encode_for_filename(
2106 NULL
, &encoded_name_no_prefix_size
,
2107 filename
->encrypted_filename
,
2108 filename
->encrypted_filename_size
);
2109 if ((crypt_stat
&& (crypt_stat
->flags
2110 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2111 || (mount_crypt_stat
2112 && (mount_crypt_stat
->flags
2113 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
2114 (*encoded_name_size
) =
2115 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2116 + encoded_name_no_prefix_size
);
2118 (*encoded_name_size
) =
2119 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2120 + encoded_name_no_prefix_size
);
2121 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
2122 if (!(*encoded_name
)) {
2123 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2124 "to kzalloc [%zd] bytes\n", __func__
,
2125 (*encoded_name_size
));
2127 kfree(filename
->encrypted_filename
);
2131 if ((crypt_stat
&& (crypt_stat
->flags
2132 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2133 || (mount_crypt_stat
2134 && (mount_crypt_stat
->flags
2135 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2136 memcpy((*encoded_name
),
2137 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2138 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2139 ecryptfs_encode_for_filename(
2141 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2142 &encoded_name_no_prefix_size
,
2143 filename
->encrypted_filename
,
2144 filename
->encrypted_filename_size
);
2145 (*encoded_name_size
) =
2146 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2147 + encoded_name_no_prefix_size
);
2148 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2153 printk(KERN_ERR
"%s: Error attempting to encode "
2154 "encrypted filename; rc = [%d]\n", __func__
,
2156 kfree((*encoded_name
));
2157 (*encoded_name
) = NULL
;
2158 (*encoded_name_size
) = 0;
2160 kfree(filename
->encrypted_filename
);
2163 rc
= ecryptfs_copy_filename(encoded_name
,
2172 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2173 * @plaintext_name: The plaintext name
2174 * @plaintext_name_size: The plaintext name size
2175 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2176 * @name: The filename in cipher text
2177 * @name_size: The cipher text name size
2179 * Decrypts and decodes the filename.
2181 * Returns zero on error; non-zero otherwise
2183 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2184 size_t *plaintext_name_size
,
2185 struct dentry
*ecryptfs_dir_dentry
,
2186 const char *name
, size_t name_size
)
2188 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2189 &ecryptfs_superblock_to_private(
2190 ecryptfs_dir_dentry
->d_sb
)->mount_crypt_stat
;
2192 size_t decoded_name_size
;
2196 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2197 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2198 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2199 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2200 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2201 const char *orig_name
= name
;
2202 size_t orig_name_size
= name_size
;
2204 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2205 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2206 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2208 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2209 if (!decoded_name
) {
2210 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2211 "to kmalloc [%zd] bytes\n", __func__
,
2216 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2218 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2219 plaintext_name_size
,
2225 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2226 "from filename; copying through filename "
2227 "as-is\n", __func__
);
2228 rc
= ecryptfs_copy_filename(plaintext_name
,
2229 plaintext_name_size
,
2230 orig_name
, orig_name_size
);
2234 rc
= ecryptfs_copy_filename(plaintext_name
,
2235 plaintext_name_size
,
2240 kfree(decoded_name
);
2245 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2247 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2248 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2250 struct blkcipher_desc desc
;
2251 struct mutex
*tfm_mutex
;
2252 size_t cipher_blocksize
;
2255 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2256 (*namelen
) = lower_namelen
;
2260 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc
.tfm
, &tfm_mutex
,
2261 mount_crypt_stat
->global_default_fn_cipher_name
);
2267 mutex_lock(tfm_mutex
);
2268 cipher_blocksize
= crypto_blkcipher_blocksize(desc
.tfm
);
2269 mutex_unlock(tfm_mutex
);
2271 /* Return an exact amount for the common cases */
2272 if (lower_namelen
== NAME_MAX
2273 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2274 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2278 /* Return a safe estimate for the uncommon cases */
2279 (*namelen
) = lower_namelen
;
2280 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2281 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2282 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2283 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2284 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2285 /* Worst case is that the filename is padded nearly a full block size */
2286 (*namelen
) -= cipher_blocksize
- 1;