3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
80 #include <linux/config.h>
81 #include <linux/slab.h>
83 #include <linux/swap.h>
84 #include <linux/cache.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compiler.h>
88 #include <linux/seq_file.h>
89 #include <linux/notifier.h>
90 #include <linux/kallsyms.h>
91 #include <linux/cpu.h>
92 #include <linux/sysctl.h>
93 #include <linux/module.h>
94 #include <linux/rcupdate.h>
96 #include <asm/uaccess.h>
97 #include <asm/cacheflush.h>
98 #include <asm/tlbflush.h>
102 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
103 * SLAB_RED_ZONE & SLAB_POISON.
104 * 0 for faster, smaller code (especially in the critical paths).
106 * STATS - 1 to collect stats for /proc/slabinfo.
107 * 0 for faster, smaller code (especially in the critical paths).
109 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
112 #ifdef CONFIG_DEBUG_SLAB
115 #define FORCED_DEBUG 1
119 #define FORCED_DEBUG 0
123 /* Shouldn't this be in a header file somewhere? */
124 #define BYTES_PER_WORD sizeof(void *)
126 #ifndef cache_line_size
127 #define cache_line_size() L1_CACHE_BYTES
130 #ifndef ARCH_KMALLOC_MINALIGN
132 * Enforce a minimum alignment for the kmalloc caches.
133 * Usually, the kmalloc caches are cache_line_size() aligned, except when
134 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
135 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
136 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
137 * Note that this flag disables some debug features.
139 #define ARCH_KMALLOC_MINALIGN 0
142 #ifndef ARCH_SLAB_MINALIGN
144 * Enforce a minimum alignment for all caches.
145 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
146 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
147 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
148 * some debug features.
150 #define ARCH_SLAB_MINALIGN 0
153 #ifndef ARCH_KMALLOC_FLAGS
154 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 /* Legal flag mask for kmem_cache_create(). */
159 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
160 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
161 SLAB_NO_REAP | SLAB_CACHE_DMA | \
162 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
163 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
166 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
167 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
168 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
175 * Bufctl's are used for linking objs within a slab
178 * This implementation relies on "struct page" for locating the cache &
179 * slab an object belongs to.
180 * This allows the bufctl structure to be small (one int), but limits
181 * the number of objects a slab (not a cache) can contain when off-slab
182 * bufctls are used. The limit is the size of the largest general cache
183 * that does not use off-slab slabs.
184 * For 32bit archs with 4 kB pages, is this 56.
185 * This is not serious, as it is only for large objects, when it is unwise
186 * to have too many per slab.
187 * Note: This limit can be raised by introducing a general cache whose size
188 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
191 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
192 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
193 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
195 /* Max number of objs-per-slab for caches which use off-slab slabs.
196 * Needed to avoid a possible looping condition in cache_grow().
198 static unsigned long offslab_limit
;
203 * Manages the objs in a slab. Placed either at the beginning of mem allocated
204 * for a slab, or allocated from an general cache.
205 * Slabs are chained into three list: fully used, partial, fully free slabs.
208 struct list_head list
;
209 unsigned long colouroff
;
210 void *s_mem
; /* including colour offset */
211 unsigned int inuse
; /* num of objs active in slab */
218 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
219 * arrange for kmem_freepages to be called via RCU. This is useful if
220 * we need to approach a kernel structure obliquely, from its address
221 * obtained without the usual locking. We can lock the structure to
222 * stabilize it and check it's still at the given address, only if we
223 * can be sure that the memory has not been meanwhile reused for some
224 * other kind of object (which our subsystem's lock might corrupt).
226 * rcu_read_lock before reading the address, then rcu_read_unlock after
227 * taking the spinlock within the structure expected at that address.
229 * We assume struct slab_rcu can overlay struct slab when destroying.
232 struct rcu_head head
;
233 kmem_cache_t
*cachep
;
242 * - LIFO ordering, to hand out cache-warm objects from _alloc
243 * - reduce the number of linked list operations
244 * - reduce spinlock operations
246 * The limit is stored in the per-cpu structure to reduce the data cache
253 unsigned int batchcount
;
254 unsigned int touched
;
257 /* bootstrap: The caches do not work without cpuarrays anymore,
258 * but the cpuarrays are allocated from the generic caches...
260 #define BOOT_CPUCACHE_ENTRIES 1
261 struct arraycache_init
{
262 struct array_cache cache
;
263 void * entries
[BOOT_CPUCACHE_ENTRIES
];
267 * The slab lists of all objects.
268 * Hopefully reduce the internal fragmentation
269 * NUMA: The spinlock could be moved from the kmem_cache_t
270 * into this structure, too. Figure out what causes
271 * fewer cross-node spinlock operations.
274 struct list_head slabs_partial
; /* partial list first, better asm code */
275 struct list_head slabs_full
;
276 struct list_head slabs_free
;
277 unsigned long free_objects
;
279 unsigned long next_reap
;
280 struct array_cache
*shared
;
283 #define LIST3_INIT(parent) \
285 .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
286 .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
287 .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
289 #define list3_data(cachep) \
293 #define list3_data_ptr(cachep, ptr) \
302 struct kmem_cache_s
{
303 /* 1) per-cpu data, touched during every alloc/free */
304 struct array_cache
*array
[NR_CPUS
];
305 unsigned int batchcount
;
307 /* 2) touched by every alloc & free from the backend */
308 struct kmem_list3 lists
;
309 /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */
310 unsigned int objsize
;
311 unsigned int flags
; /* constant flags */
312 unsigned int num
; /* # of objs per slab */
313 unsigned int free_limit
; /* upper limit of objects in the lists */
316 /* 3) cache_grow/shrink */
317 /* order of pgs per slab (2^n) */
318 unsigned int gfporder
;
320 /* force GFP flags, e.g. GFP_DMA */
321 unsigned int gfpflags
;
323 size_t colour
; /* cache colouring range */
324 unsigned int colour_off
; /* colour offset */
325 unsigned int colour_next
; /* cache colouring */
326 kmem_cache_t
*slabp_cache
;
327 unsigned int slab_size
;
328 unsigned int dflags
; /* dynamic flags */
330 /* constructor func */
331 void (*ctor
)(void *, kmem_cache_t
*, unsigned long);
333 /* de-constructor func */
334 void (*dtor
)(void *, kmem_cache_t
*, unsigned long);
336 /* 4) cache creation/removal */
338 struct list_head next
;
342 unsigned long num_active
;
343 unsigned long num_allocations
;
344 unsigned long high_mark
;
346 unsigned long reaped
;
347 unsigned long errors
;
348 unsigned long max_freeable
;
349 unsigned long node_allocs
;
361 #define CFLGS_OFF_SLAB (0x80000000UL)
362 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
364 #define BATCHREFILL_LIMIT 16
365 /* Optimization question: fewer reaps means less
366 * probability for unnessary cpucache drain/refill cycles.
368 * OTHO the cpuarrays can contain lots of objects,
369 * which could lock up otherwise freeable slabs.
371 #define REAPTIMEOUT_CPUC (2*HZ)
372 #define REAPTIMEOUT_LIST3 (4*HZ)
375 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
376 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378 #define STATS_INC_GROWN(x) ((x)->grown++)
379 #define STATS_INC_REAPED(x) ((x)->reaped++)
380 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
383 #define STATS_INC_ERR(x) ((x)->errors++)
384 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
385 #define STATS_SET_FREEABLE(x, i) \
386 do { if ((x)->max_freeable < i) \
387 (x)->max_freeable = i; \
390 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
391 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
392 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
393 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
395 #define STATS_INC_ACTIVE(x) do { } while (0)
396 #define STATS_DEC_ACTIVE(x) do { } while (0)
397 #define STATS_INC_ALLOCED(x) do { } while (0)
398 #define STATS_INC_GROWN(x) do { } while (0)
399 #define STATS_INC_REAPED(x) do { } while (0)
400 #define STATS_SET_HIGH(x) do { } while (0)
401 #define STATS_INC_ERR(x) do { } while (0)
402 #define STATS_INC_NODEALLOCS(x) do { } while (0)
403 #define STATS_SET_FREEABLE(x, i) \
406 #define STATS_INC_ALLOCHIT(x) do { } while (0)
407 #define STATS_INC_ALLOCMISS(x) do { } while (0)
408 #define STATS_INC_FREEHIT(x) do { } while (0)
409 #define STATS_INC_FREEMISS(x) do { } while (0)
413 /* Magic nums for obj red zoning.
414 * Placed in the first word before and the first word after an obj.
416 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
417 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
419 /* ...and for poisoning */
420 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
421 #define POISON_FREE 0x6b /* for use-after-free poisoning */
422 #define POISON_END 0xa5 /* end-byte of poisoning */
424 /* memory layout of objects:
426 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
427 * the end of an object is aligned with the end of the real
428 * allocation. Catches writes behind the end of the allocation.
429 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
431 * cachep->dbghead: The real object.
432 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
433 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
435 static int obj_dbghead(kmem_cache_t
*cachep
)
437 return cachep
->dbghead
;
440 static int obj_reallen(kmem_cache_t
*cachep
)
442 return cachep
->reallen
;
445 static unsigned long *dbg_redzone1(kmem_cache_t
*cachep
, void *objp
)
447 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
448 return (unsigned long*) (objp
+obj_dbghead(cachep
)-BYTES_PER_WORD
);
451 static unsigned long *dbg_redzone2(kmem_cache_t
*cachep
, void *objp
)
453 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
454 if (cachep
->flags
& SLAB_STORE_USER
)
455 return (unsigned long*) (objp
+cachep
->objsize
-2*BYTES_PER_WORD
);
456 return (unsigned long*) (objp
+cachep
->objsize
-BYTES_PER_WORD
);
459 static void **dbg_userword(kmem_cache_t
*cachep
, void *objp
)
461 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
462 return (void**)(objp
+cachep
->objsize
-BYTES_PER_WORD
);
467 #define obj_dbghead(x) 0
468 #define obj_reallen(cachep) (cachep->objsize)
469 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
470 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
471 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
476 * Maximum size of an obj (in 2^order pages)
477 * and absolute limit for the gfp order.
479 #if defined(CONFIG_LARGE_ALLOCS)
480 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
481 #define MAX_GFP_ORDER 13 /* up to 32Mb */
482 #elif defined(CONFIG_MMU)
483 #define MAX_OBJ_ORDER 5 /* 32 pages */
484 #define MAX_GFP_ORDER 5 /* 32 pages */
486 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
487 #define MAX_GFP_ORDER 8 /* up to 1Mb */
491 * Do not go above this order unless 0 objects fit into the slab.
493 #define BREAK_GFP_ORDER_HI 1
494 #define BREAK_GFP_ORDER_LO 0
495 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
497 /* Macros for storing/retrieving the cachep and or slab from the
498 * global 'mem_map'. These are used to find the slab an obj belongs to.
499 * With kfree(), these are used to find the cache which an obj belongs to.
501 #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x))
502 #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next)
503 #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
504 #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
506 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
507 struct cache_sizes malloc_sizes
[] = {
508 #define CACHE(x) { .cs_size = (x) },
509 #include <linux/kmalloc_sizes.h>
513 EXPORT_SYMBOL(malloc_sizes
);
515 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
521 static struct cache_names __initdata cache_names
[] = {
522 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
523 #include <linux/kmalloc_sizes.h>
528 static struct arraycache_init initarray_cache __initdata
=
529 { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
530 static struct arraycache_init initarray_generic
=
531 { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
533 /* internal cache of cache description objs */
534 static kmem_cache_t cache_cache
= {
535 .lists
= LIST3_INIT(cache_cache
.lists
),
537 .limit
= BOOT_CPUCACHE_ENTRIES
,
538 .objsize
= sizeof(kmem_cache_t
),
539 .flags
= SLAB_NO_REAP
,
540 .spinlock
= SPIN_LOCK_UNLOCKED
,
541 .name
= "kmem_cache",
543 .reallen
= sizeof(kmem_cache_t
),
547 /* Guard access to the cache-chain. */
548 static struct semaphore cache_chain_sem
;
549 static struct list_head cache_chain
;
552 * vm_enough_memory() looks at this to determine how many
553 * slab-allocated pages are possibly freeable under pressure
555 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
557 atomic_t slab_reclaim_pages
;
558 EXPORT_SYMBOL(slab_reclaim_pages
);
561 * chicken and egg problem: delay the per-cpu array allocation
562 * until the general caches are up.
570 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
572 static void free_block(kmem_cache_t
* cachep
, void** objpp
, int len
);
573 static void enable_cpucache (kmem_cache_t
*cachep
);
574 static void cache_reap (void *unused
);
576 static inline void **ac_entry(struct array_cache
*ac
)
578 return (void**)(ac
+1);
581 static inline struct array_cache
*ac_data(kmem_cache_t
*cachep
)
583 return cachep
->array
[smp_processor_id()];
586 static inline kmem_cache_t
*kmem_find_general_cachep(size_t size
, int gfpflags
)
588 struct cache_sizes
*csizep
= malloc_sizes
;
591 /* This happens if someone tries to call
592 * kmem_cache_create(), or __kmalloc(), before
593 * the generic caches are initialized.
595 BUG_ON(csizep
->cs_cachep
== NULL
);
597 while (size
> csizep
->cs_size
)
601 * Really subtile: The last entry with cs->cs_size==ULONG_MAX
602 * has cs_{dma,}cachep==NULL. Thus no special case
603 * for large kmalloc calls required.
605 if (unlikely(gfpflags
& GFP_DMA
))
606 return csizep
->cs_dmacachep
;
607 return csizep
->cs_cachep
;
610 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
611 static void cache_estimate(unsigned long gfporder
, size_t size
, size_t align
,
612 int flags
, size_t *left_over
, unsigned int *num
)
615 size_t wastage
= PAGE_SIZE
<<gfporder
;
619 if (!(flags
& CFLGS_OFF_SLAB
)) {
620 base
= sizeof(struct slab
);
621 extra
= sizeof(kmem_bufctl_t
);
624 while (i
*size
+ ALIGN(base
+i
*extra
, align
) <= wastage
)
634 wastage
-= ALIGN(base
+i
*extra
, align
);
635 *left_over
= wastage
;
638 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
640 static void __slab_error(const char *function
, kmem_cache_t
*cachep
, char *msg
)
642 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
643 function
, cachep
->name
, msg
);
648 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
649 * via the workqueue/eventd.
650 * Add the CPU number into the expiration time to minimize the possibility of
651 * the CPUs getting into lockstep and contending for the global cache chain
654 static void __devinit
start_cpu_timer(int cpu
)
656 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
659 * When this gets called from do_initcalls via cpucache_init(),
660 * init_workqueues() has already run, so keventd will be setup
663 if (keventd_up() && reap_work
->func
== NULL
) {
664 INIT_WORK(reap_work
, cache_reap
, NULL
);
665 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
669 static struct array_cache
*alloc_arraycache(int cpu
, int entries
,
672 int memsize
= sizeof(void*)*entries
+sizeof(struct array_cache
);
673 struct array_cache
*nc
= NULL
;
676 kmem_cache_t
*cachep
;
677 cachep
= kmem_find_general_cachep(memsize
, GFP_KERNEL
);
679 nc
= kmem_cache_alloc_node(cachep
, cpu_to_node(cpu
));
682 nc
= kmalloc(memsize
, GFP_KERNEL
);
686 nc
->batchcount
= batchcount
;
692 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
693 unsigned long action
, void *hcpu
)
695 long cpu
= (long)hcpu
;
696 kmem_cache_t
* cachep
;
700 down(&cache_chain_sem
);
701 list_for_each_entry(cachep
, &cache_chain
, next
) {
702 struct array_cache
*nc
;
704 nc
= alloc_arraycache(cpu
, cachep
->limit
, cachep
->batchcount
);
708 spin_lock_irq(&cachep
->spinlock
);
709 cachep
->array
[cpu
] = nc
;
710 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
712 spin_unlock_irq(&cachep
->spinlock
);
715 up(&cache_chain_sem
);
718 start_cpu_timer(cpu
);
720 #ifdef CONFIG_HOTPLUG_CPU
723 case CPU_UP_CANCELED
:
724 down(&cache_chain_sem
);
726 list_for_each_entry(cachep
, &cache_chain
, next
) {
727 struct array_cache
*nc
;
729 spin_lock_irq(&cachep
->spinlock
);
730 /* cpu is dead; no one can alloc from it. */
731 nc
= cachep
->array
[cpu
];
732 cachep
->array
[cpu
] = NULL
;
733 cachep
->free_limit
-= cachep
->batchcount
;
734 free_block(cachep
, ac_entry(nc
), nc
->avail
);
735 spin_unlock_irq(&cachep
->spinlock
);
738 up(&cache_chain_sem
);
744 up(&cache_chain_sem
);
748 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
751 * Called after the gfp() functions have been enabled, and before smp_init().
753 void __init
kmem_cache_init(void)
756 struct cache_sizes
*sizes
;
757 struct cache_names
*names
;
760 * Fragmentation resistance on low memory - only use bigger
761 * page orders on machines with more than 32MB of memory.
763 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
764 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
767 /* Bootstrap is tricky, because several objects are allocated
768 * from caches that do not exist yet:
769 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
770 * structures of all caches, except cache_cache itself: cache_cache
771 * is statically allocated.
772 * Initially an __init data area is used for the head array, it's
773 * replaced with a kmalloc allocated array at the end of the bootstrap.
774 * 2) Create the first kmalloc cache.
775 * The kmem_cache_t for the new cache is allocated normally. An __init
776 * data area is used for the head array.
777 * 3) Create the remaining kmalloc caches, with minimally sized head arrays.
778 * 4) Replace the __init data head arrays for cache_cache and the first
779 * kmalloc cache with kmalloc allocated arrays.
780 * 5) Resize the head arrays of the kmalloc caches to their final sizes.
783 /* 1) create the cache_cache */
784 init_MUTEX(&cache_chain_sem
);
785 INIT_LIST_HEAD(&cache_chain
);
786 list_add(&cache_cache
.next
, &cache_chain
);
787 cache_cache
.colour_off
= cache_line_size();
788 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
790 cache_cache
.objsize
= ALIGN(cache_cache
.objsize
, cache_line_size());
792 cache_estimate(0, cache_cache
.objsize
, cache_line_size(), 0,
793 &left_over
, &cache_cache
.num
);
794 if (!cache_cache
.num
)
797 cache_cache
.colour
= left_over
/cache_cache
.colour_off
;
798 cache_cache
.colour_next
= 0;
799 cache_cache
.slab_size
= ALIGN(cache_cache
.num
*sizeof(kmem_bufctl_t
) +
800 sizeof(struct slab
), cache_line_size());
802 /* 2+3) create the kmalloc caches */
803 sizes
= malloc_sizes
;
806 while (sizes
->cs_size
!= ULONG_MAX
) {
807 /* For performance, all the general caches are L1 aligned.
808 * This should be particularly beneficial on SMP boxes, as it
809 * eliminates "false sharing".
810 * Note for systems short on memory removing the alignment will
811 * allow tighter packing of the smaller caches. */
812 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
813 sizes
->cs_size
, ARCH_KMALLOC_MINALIGN
,
814 (ARCH_KMALLOC_FLAGS
| SLAB_PANIC
), NULL
, NULL
);
816 /* Inc off-slab bufctl limit until the ceiling is hit. */
817 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
818 offslab_limit
= sizes
->cs_size
-sizeof(struct slab
);
819 offslab_limit
/= sizeof(kmem_bufctl_t
);
822 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
823 sizes
->cs_size
, ARCH_KMALLOC_MINALIGN
,
824 (ARCH_KMALLOC_FLAGS
| SLAB_CACHE_DMA
| SLAB_PANIC
),
830 /* 4) Replace the bootstrap head arrays */
834 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
836 BUG_ON(ac_data(&cache_cache
) != &initarray_cache
.cache
);
837 memcpy(ptr
, ac_data(&cache_cache
), sizeof(struct arraycache_init
));
838 cache_cache
.array
[smp_processor_id()] = ptr
;
841 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
843 BUG_ON(ac_data(malloc_sizes
[0].cs_cachep
) != &initarray_generic
.cache
);
844 memcpy(ptr
, ac_data(malloc_sizes
[0].cs_cachep
),
845 sizeof(struct arraycache_init
));
846 malloc_sizes
[0].cs_cachep
->array
[smp_processor_id()] = ptr
;
850 /* 5) resize the head arrays to their final sizes */
852 kmem_cache_t
*cachep
;
853 down(&cache_chain_sem
);
854 list_for_each_entry(cachep
, &cache_chain
, next
)
855 enable_cpucache(cachep
);
856 up(&cache_chain_sem
);
860 g_cpucache_up
= FULL
;
862 /* Register a cpu startup notifier callback
863 * that initializes ac_data for all new cpus
865 register_cpu_notifier(&cpucache_notifier
);
868 /* The reap timers are started later, with a module init call:
869 * That part of the kernel is not yet operational.
873 static int __init
cpucache_init(void)
878 * Register the timers that return unneeded
881 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
883 start_cpu_timer(cpu
);
889 __initcall(cpucache_init
);
892 * Interface to system's page allocator. No need to hold the cache-lock.
894 * If we requested dmaable memory, we will get it. Even if we
895 * did not request dmaable memory, we might get it, but that
896 * would be relatively rare and ignorable.
898 static void *kmem_getpages(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
904 flags
|= cachep
->gfpflags
;
905 if (likely(nodeid
== -1)) {
906 page
= alloc_pages(flags
, cachep
->gfporder
);
908 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
912 addr
= page_address(page
);
914 i
= (1 << cachep
->gfporder
);
915 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
916 atomic_add(i
, &slab_reclaim_pages
);
917 add_page_state(nr_slab
, i
);
926 * Interface to system's page release.
928 static void kmem_freepages(kmem_cache_t
*cachep
, void *addr
)
930 unsigned long i
= (1<<cachep
->gfporder
);
931 struct page
*page
= virt_to_page(addr
);
932 const unsigned long nr_freed
= i
;
935 if (!TestClearPageSlab(page
))
939 sub_page_state(nr_slab
, nr_freed
);
940 if (current
->reclaim_state
)
941 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
942 free_pages((unsigned long)addr
, cachep
->gfporder
);
943 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
944 atomic_sub(1<<cachep
->gfporder
, &slab_reclaim_pages
);
947 static void kmem_rcu_free(struct rcu_head
*head
)
949 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*) head
;
950 kmem_cache_t
*cachep
= slab_rcu
->cachep
;
952 kmem_freepages(cachep
, slab_rcu
->addr
);
953 if (OFF_SLAB(cachep
))
954 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
959 #ifdef CONFIG_DEBUG_PAGEALLOC
960 static void store_stackinfo(kmem_cache_t
*cachep
, unsigned long *addr
,
961 unsigned long caller
)
963 int size
= obj_reallen(cachep
);
965 addr
= (unsigned long *)&((char*)addr
)[obj_dbghead(cachep
)];
967 if (size
< 5*sizeof(unsigned long))
972 *addr
++=smp_processor_id();
973 size
-= 3*sizeof(unsigned long);
975 unsigned long *sptr
= &caller
;
976 unsigned long svalue
;
978 while (!kstack_end(sptr
)) {
980 if (kernel_text_address(svalue
)) {
982 size
-= sizeof(unsigned long);
983 if (size
<= sizeof(unsigned long))
993 static void poison_obj(kmem_cache_t
*cachep
, void *addr
, unsigned char val
)
995 int size
= obj_reallen(cachep
);
996 addr
= &((char*)addr
)[obj_dbghead(cachep
)];
998 memset(addr
, val
, size
);
999 *(unsigned char *)(addr
+size
-1) = POISON_END
;
1002 static void dump_line(char *data
, int offset
, int limit
)
1005 printk(KERN_ERR
"%03x:", offset
);
1006 for (i
=0;i
<limit
;i
++) {
1007 printk(" %02x", (unsigned char)data
[offset
+i
]);
1015 static void print_objinfo(kmem_cache_t
*cachep
, void *objp
, int lines
)
1020 if (cachep
->flags
& SLAB_RED_ZONE
) {
1021 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1022 *dbg_redzone1(cachep
, objp
),
1023 *dbg_redzone2(cachep
, objp
));
1026 if (cachep
->flags
& SLAB_STORE_USER
) {
1027 printk(KERN_ERR
"Last user: [<%p>]",
1028 *dbg_userword(cachep
, objp
));
1029 print_symbol("(%s)",
1030 (unsigned long)*dbg_userword(cachep
, objp
));
1033 realobj
= (char*)objp
+obj_dbghead(cachep
);
1034 size
= obj_reallen(cachep
);
1035 for (i
=0; i
<size
&& lines
;i
+=16, lines
--) {
1040 dump_line(realobj
, i
, limit
);
1044 static void check_poison_obj(kmem_cache_t
*cachep
, void *objp
)
1050 realobj
= (char*)objp
+obj_dbghead(cachep
);
1051 size
= obj_reallen(cachep
);
1053 for (i
=0;i
<size
;i
++) {
1054 char exp
= POISON_FREE
;
1057 if (realobj
[i
] != exp
) {
1062 printk(KERN_ERR
"Slab corruption: start=%p, len=%d\n",
1064 print_objinfo(cachep
, objp
, 0);
1066 /* Hexdump the affected line */
1071 dump_line(realobj
, i
, limit
);
1074 /* Limit to 5 lines */
1080 /* Print some data about the neighboring objects, if they
1083 struct slab
*slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
1086 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
1088 objp
= slabp
->s_mem
+(objnr
-1)*cachep
->objsize
;
1089 realobj
= (char*)objp
+obj_dbghead(cachep
);
1090 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1092 print_objinfo(cachep
, objp
, 2);
1094 if (objnr
+1 < cachep
->num
) {
1095 objp
= slabp
->s_mem
+(objnr
+1)*cachep
->objsize
;
1096 realobj
= (char*)objp
+obj_dbghead(cachep
);
1097 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1099 print_objinfo(cachep
, objp
, 2);
1105 /* Destroy all the objs in a slab, and release the mem back to the system.
1106 * Before calling the slab must have been unlinked from the cache.
1107 * The cache-lock is not held/needed.
1109 static void slab_destroy (kmem_cache_t
*cachep
, struct slab
*slabp
)
1111 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1115 for (i
= 0; i
< cachep
->num
; i
++) {
1116 void *objp
= slabp
->s_mem
+ cachep
->objsize
* i
;
1118 if (cachep
->flags
& SLAB_POISON
) {
1119 #ifdef CONFIG_DEBUG_PAGEALLOC
1120 if ((cachep
->objsize
%PAGE_SIZE
)==0 && OFF_SLAB(cachep
))
1121 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
,1);
1123 check_poison_obj(cachep
, objp
);
1125 check_poison_obj(cachep
, objp
);
1128 if (cachep
->flags
& SLAB_RED_ZONE
) {
1129 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1130 slab_error(cachep
, "start of a freed object "
1132 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1133 slab_error(cachep
, "end of a freed object "
1136 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1137 (cachep
->dtor
)(objp
+obj_dbghead(cachep
), cachep
, 0);
1142 for (i
= 0; i
< cachep
->num
; i
++) {
1143 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
1144 (cachep
->dtor
)(objp
, cachep
, 0);
1149 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1150 struct slab_rcu
*slab_rcu
;
1152 slab_rcu
= (struct slab_rcu
*) slabp
;
1153 slab_rcu
->cachep
= cachep
;
1154 slab_rcu
->addr
= addr
;
1155 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1157 kmem_freepages(cachep
, addr
);
1158 if (OFF_SLAB(cachep
))
1159 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1164 * kmem_cache_create - Create a cache.
1165 * @name: A string which is used in /proc/slabinfo to identify this cache.
1166 * @size: The size of objects to be created in this cache.
1167 * @align: The required alignment for the objects.
1168 * @flags: SLAB flags
1169 * @ctor: A constructor for the objects.
1170 * @dtor: A destructor for the objects.
1172 * Returns a ptr to the cache on success, NULL on failure.
1173 * Cannot be called within a int, but can be interrupted.
1174 * The @ctor is run when new pages are allocated by the cache
1175 * and the @dtor is run before the pages are handed back.
1177 * @name must be valid until the cache is destroyed. This implies that
1178 * the module calling this has to destroy the cache before getting
1183 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1184 * to catch references to uninitialised memory.
1186 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1187 * for buffer overruns.
1189 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1192 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1193 * cacheline. This can be beneficial if you're counting cycles as closely
1197 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1198 unsigned long flags
, void (*ctor
)(void*, kmem_cache_t
*, unsigned long),
1199 void (*dtor
)(void*, kmem_cache_t
*, unsigned long))
1201 size_t left_over
, slab_size
, ralign
;
1202 kmem_cache_t
*cachep
= NULL
;
1205 * Sanity checks... these are all serious usage bugs.
1209 (size
< BYTES_PER_WORD
) ||
1210 (size
> (1<<MAX_OBJ_ORDER
)*PAGE_SIZE
) ||
1212 printk(KERN_ERR
"%s: Early error in slab %s\n",
1213 __FUNCTION__
, name
);
1218 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
1219 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1220 /* No constructor, but inital state check requested */
1221 printk(KERN_ERR
"%s: No con, but init state check "
1222 "requested - %s\n", __FUNCTION__
, name
);
1223 flags
&= ~SLAB_DEBUG_INITIAL
;
1228 * Enable redzoning and last user accounting, except for caches with
1229 * large objects, if the increased size would increase the object size
1230 * above the next power of two: caches with object sizes just above a
1231 * power of two have a significant amount of internal fragmentation.
1233 if ((size
< 4096 || fls(size
-1) == fls(size
-1+3*BYTES_PER_WORD
)))
1234 flags
|= SLAB_RED_ZONE
|SLAB_STORE_USER
;
1235 if (!(flags
& SLAB_DESTROY_BY_RCU
))
1236 flags
|= SLAB_POISON
;
1238 if (flags
& SLAB_DESTROY_BY_RCU
)
1239 BUG_ON(flags
& SLAB_POISON
);
1241 if (flags
& SLAB_DESTROY_BY_RCU
)
1245 * Always checks flags, a caller might be expecting debug
1246 * support which isn't available.
1248 if (flags
& ~CREATE_MASK
)
1251 /* Check that size is in terms of words. This is needed to avoid
1252 * unaligned accesses for some archs when redzoning is used, and makes
1253 * sure any on-slab bufctl's are also correctly aligned.
1255 if (size
& (BYTES_PER_WORD
-1)) {
1256 size
+= (BYTES_PER_WORD
-1);
1257 size
&= ~(BYTES_PER_WORD
-1);
1260 /* calculate out the final buffer alignment: */
1261 /* 1) arch recommendation: can be overridden for debug */
1262 if (flags
& SLAB_HWCACHE_ALIGN
) {
1263 /* Default alignment: as specified by the arch code.
1264 * Except if an object is really small, then squeeze multiple
1265 * objects into one cacheline.
1267 ralign
= cache_line_size();
1268 while (size
<= ralign
/2)
1271 ralign
= BYTES_PER_WORD
;
1273 /* 2) arch mandated alignment: disables debug if necessary */
1274 if (ralign
< ARCH_SLAB_MINALIGN
) {
1275 ralign
= ARCH_SLAB_MINALIGN
;
1276 if (ralign
> BYTES_PER_WORD
)
1277 flags
&= ~(SLAB_RED_ZONE
|SLAB_STORE_USER
);
1279 /* 3) caller mandated alignment: disables debug if necessary */
1280 if (ralign
< align
) {
1282 if (ralign
> BYTES_PER_WORD
)
1283 flags
&= ~(SLAB_RED_ZONE
|SLAB_STORE_USER
);
1285 /* 4) Store it. Note that the debug code below can reduce
1286 * the alignment to BYTES_PER_WORD.
1290 /* Get cache's description obj. */
1291 cachep
= (kmem_cache_t
*) kmem_cache_alloc(&cache_cache
, SLAB_KERNEL
);
1294 memset(cachep
, 0, sizeof(kmem_cache_t
));
1297 cachep
->reallen
= size
;
1299 if (flags
& SLAB_RED_ZONE
) {
1300 /* redzoning only works with word aligned caches */
1301 align
= BYTES_PER_WORD
;
1303 /* add space for red zone words */
1304 cachep
->dbghead
+= BYTES_PER_WORD
;
1305 size
+= 2*BYTES_PER_WORD
;
1307 if (flags
& SLAB_STORE_USER
) {
1308 /* user store requires word alignment and
1309 * one word storage behind the end of the real
1312 align
= BYTES_PER_WORD
;
1313 size
+= BYTES_PER_WORD
;
1315 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1316 if (size
> 128 && cachep
->reallen
> cache_line_size() && size
< PAGE_SIZE
) {
1317 cachep
->dbghead
+= PAGE_SIZE
- size
;
1323 /* Determine if the slab management is 'on' or 'off' slab. */
1324 if (size
>= (PAGE_SIZE
>>3))
1326 * Size is large, assume best to place the slab management obj
1327 * off-slab (should allow better packing of objs).
1329 flags
|= CFLGS_OFF_SLAB
;
1331 size
= ALIGN(size
, align
);
1333 if ((flags
& SLAB_RECLAIM_ACCOUNT
) && size
<= PAGE_SIZE
) {
1335 * A VFS-reclaimable slab tends to have most allocations
1336 * as GFP_NOFS and we really don't want to have to be allocating
1337 * higher-order pages when we are unable to shrink dcache.
1339 cachep
->gfporder
= 0;
1340 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1341 &left_over
, &cachep
->num
);
1344 * Calculate size (in pages) of slabs, and the num of objs per
1345 * slab. This could be made much more intelligent. For now,
1346 * try to avoid using high page-orders for slabs. When the
1347 * gfp() funcs are more friendly towards high-order requests,
1348 * this should be changed.
1351 unsigned int break_flag
= 0;
1353 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1354 &left_over
, &cachep
->num
);
1357 if (cachep
->gfporder
>= MAX_GFP_ORDER
)
1361 if (flags
& CFLGS_OFF_SLAB
&&
1362 cachep
->num
> offslab_limit
) {
1363 /* This num of objs will cause problems. */
1370 * Large num of objs is good, but v. large slabs are
1371 * currently bad for the gfp()s.
1373 if (cachep
->gfporder
>= slab_break_gfp_order
)
1376 if ((left_over
*8) <= (PAGE_SIZE
<<cachep
->gfporder
))
1377 break; /* Acceptable internal fragmentation. */
1384 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
1385 kmem_cache_free(&cache_cache
, cachep
);
1389 slab_size
= ALIGN(cachep
->num
*sizeof(kmem_bufctl_t
)
1390 + sizeof(struct slab
), align
);
1393 * If the slab has been placed off-slab, and we have enough space then
1394 * move it on-slab. This is at the expense of any extra colouring.
1396 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
1397 flags
&= ~CFLGS_OFF_SLAB
;
1398 left_over
-= slab_size
;
1401 if (flags
& CFLGS_OFF_SLAB
) {
1402 /* really off slab. No need for manual alignment */
1403 slab_size
= cachep
->num
*sizeof(kmem_bufctl_t
)+sizeof(struct slab
);
1406 cachep
->colour_off
= cache_line_size();
1407 /* Offset must be a multiple of the alignment. */
1408 if (cachep
->colour_off
< align
)
1409 cachep
->colour_off
= align
;
1410 cachep
->colour
= left_over
/cachep
->colour_off
;
1411 cachep
->slab_size
= slab_size
;
1412 cachep
->flags
= flags
;
1413 cachep
->gfpflags
= 0;
1414 if (flags
& SLAB_CACHE_DMA
)
1415 cachep
->gfpflags
|= GFP_DMA
;
1416 spin_lock_init(&cachep
->spinlock
);
1417 cachep
->objsize
= size
;
1419 INIT_LIST_HEAD(&cachep
->lists
.slabs_full
);
1420 INIT_LIST_HEAD(&cachep
->lists
.slabs_partial
);
1421 INIT_LIST_HEAD(&cachep
->lists
.slabs_free
);
1423 if (flags
& CFLGS_OFF_SLAB
)
1424 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
,0);
1425 cachep
->ctor
= ctor
;
1426 cachep
->dtor
= dtor
;
1427 cachep
->name
= name
;
1429 /* Don't let CPUs to come and go */
1432 if (g_cpucache_up
== FULL
) {
1433 enable_cpucache(cachep
);
1435 if (g_cpucache_up
== NONE
) {
1436 /* Note: the first kmem_cache_create must create
1437 * the cache that's used by kmalloc(24), otherwise
1438 * the creation of further caches will BUG().
1440 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1441 g_cpucache_up
= PARTIAL
;
1443 cachep
->array
[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init
),GFP_KERNEL
);
1445 BUG_ON(!ac_data(cachep
));
1446 ac_data(cachep
)->avail
= 0;
1447 ac_data(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1448 ac_data(cachep
)->batchcount
= 1;
1449 ac_data(cachep
)->touched
= 0;
1450 cachep
->batchcount
= 1;
1451 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1452 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
1456 cachep
->lists
.next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1457 ((unsigned long)cachep
)%REAPTIMEOUT_LIST3
;
1459 /* Need the semaphore to access the chain. */
1460 down(&cache_chain_sem
);
1462 struct list_head
*p
;
1463 mm_segment_t old_fs
;
1467 list_for_each(p
, &cache_chain
) {
1468 kmem_cache_t
*pc
= list_entry(p
, kmem_cache_t
, next
);
1470 /* This happens when the module gets unloaded and doesn't
1471 destroy its slab cache and noone else reuses the vmalloc
1472 area of the module. Print a warning. */
1473 if (__get_user(tmp
,pc
->name
)) {
1474 printk("SLAB: cache with size %d has lost its name\n",
1478 if (!strcmp(pc
->name
,name
)) {
1479 printk("kmem_cache_create: duplicate cache %s\n",name
);
1480 up(&cache_chain_sem
);
1481 unlock_cpu_hotplug();
1488 /* cache setup completed, link it into the list */
1489 list_add(&cachep
->next
, &cache_chain
);
1490 up(&cache_chain_sem
);
1491 unlock_cpu_hotplug();
1493 if (!cachep
&& (flags
& SLAB_PANIC
))
1494 panic("kmem_cache_create(): failed to create slab `%s'\n",
1498 EXPORT_SYMBOL(kmem_cache_create
);
1501 static void check_irq_off(void)
1503 BUG_ON(!irqs_disabled());
1506 static void check_irq_on(void)
1508 BUG_ON(irqs_disabled());
1511 static void check_spinlock_acquired(kmem_cache_t
*cachep
)
1515 BUG_ON(spin_trylock(&cachep
->spinlock
));
1519 #define check_irq_off() do { } while(0)
1520 #define check_irq_on() do { } while(0)
1521 #define check_spinlock_acquired(x) do { } while(0)
1525 * Waits for all CPUs to execute func().
1527 static void smp_call_function_all_cpus(void (*func
) (void *arg
), void *arg
)
1532 local_irq_disable();
1536 if (smp_call_function(func
, arg
, 1, 1))
1542 static void drain_array_locked(kmem_cache_t
* cachep
,
1543 struct array_cache
*ac
, int force
);
1545 static void do_drain(void *arg
)
1547 kmem_cache_t
*cachep
= (kmem_cache_t
*)arg
;
1548 struct array_cache
*ac
;
1551 ac
= ac_data(cachep
);
1552 spin_lock(&cachep
->spinlock
);
1553 free_block(cachep
, &ac_entry(ac
)[0], ac
->avail
);
1554 spin_unlock(&cachep
->spinlock
);
1558 static void drain_cpu_caches(kmem_cache_t
*cachep
)
1560 smp_call_function_all_cpus(do_drain
, cachep
);
1562 spin_lock_irq(&cachep
->spinlock
);
1563 if (cachep
->lists
.shared
)
1564 drain_array_locked(cachep
, cachep
->lists
.shared
, 1);
1565 spin_unlock_irq(&cachep
->spinlock
);
1569 /* NUMA shrink all list3s */
1570 static int __cache_shrink(kmem_cache_t
*cachep
)
1575 drain_cpu_caches(cachep
);
1578 spin_lock_irq(&cachep
->spinlock
);
1581 struct list_head
*p
;
1583 p
= cachep
->lists
.slabs_free
.prev
;
1584 if (p
== &cachep
->lists
.slabs_free
)
1587 slabp
= list_entry(cachep
->lists
.slabs_free
.prev
, struct slab
, list
);
1592 list_del(&slabp
->list
);
1594 cachep
->lists
.free_objects
-= cachep
->num
;
1595 spin_unlock_irq(&cachep
->spinlock
);
1596 slab_destroy(cachep
, slabp
);
1597 spin_lock_irq(&cachep
->spinlock
);
1599 ret
= !list_empty(&cachep
->lists
.slabs_full
) ||
1600 !list_empty(&cachep
->lists
.slabs_partial
);
1601 spin_unlock_irq(&cachep
->spinlock
);
1606 * kmem_cache_shrink - Shrink a cache.
1607 * @cachep: The cache to shrink.
1609 * Releases as many slabs as possible for a cache.
1610 * To help debugging, a zero exit status indicates all slabs were released.
1612 int kmem_cache_shrink(kmem_cache_t
*cachep
)
1614 if (!cachep
|| in_interrupt())
1617 return __cache_shrink(cachep
);
1619 EXPORT_SYMBOL(kmem_cache_shrink
);
1622 * kmem_cache_destroy - delete a cache
1623 * @cachep: the cache to destroy
1625 * Remove a kmem_cache_t object from the slab cache.
1626 * Returns 0 on success.
1628 * It is expected this function will be called by a module when it is
1629 * unloaded. This will remove the cache completely, and avoid a duplicate
1630 * cache being allocated each time a module is loaded and unloaded, if the
1631 * module doesn't have persistent in-kernel storage across loads and unloads.
1633 * The cache must be empty before calling this function.
1635 * The caller must guarantee that noone will allocate memory from the cache
1636 * during the kmem_cache_destroy().
1638 int kmem_cache_destroy(kmem_cache_t
* cachep
)
1642 if (!cachep
|| in_interrupt())
1645 /* Don't let CPUs to come and go */
1648 /* Find the cache in the chain of caches. */
1649 down(&cache_chain_sem
);
1651 * the chain is never empty, cache_cache is never destroyed
1653 list_del(&cachep
->next
);
1654 up(&cache_chain_sem
);
1656 if (__cache_shrink(cachep
)) {
1657 slab_error(cachep
, "Can't free all objects");
1658 down(&cache_chain_sem
);
1659 list_add(&cachep
->next
,&cache_chain
);
1660 up(&cache_chain_sem
);
1661 unlock_cpu_hotplug();
1665 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1666 synchronize_kernel();
1668 /* no cpu_online check required here since we clear the percpu
1669 * array on cpu offline and set this to NULL.
1671 for (i
= 0; i
< NR_CPUS
; i
++)
1672 kfree(cachep
->array
[i
]);
1674 /* NUMA: free the list3 structures */
1675 kfree(cachep
->lists
.shared
);
1676 cachep
->lists
.shared
= NULL
;
1677 kmem_cache_free(&cache_cache
, cachep
);
1679 unlock_cpu_hotplug();
1683 EXPORT_SYMBOL(kmem_cache_destroy
);
1685 /* Get the memory for a slab management obj. */
1686 static struct slab
* alloc_slabmgmt(kmem_cache_t
*cachep
,
1687 void *objp
, int colour_off
, unsigned int __nocast local_flags
)
1691 if (OFF_SLAB(cachep
)) {
1692 /* Slab management obj is off-slab. */
1693 slabp
= kmem_cache_alloc(cachep
->slabp_cache
, local_flags
);
1697 slabp
= objp
+colour_off
;
1698 colour_off
+= cachep
->slab_size
;
1701 slabp
->colouroff
= colour_off
;
1702 slabp
->s_mem
= objp
+colour_off
;
1707 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
1709 return (kmem_bufctl_t
*)(slabp
+1);
1712 static void cache_init_objs(kmem_cache_t
*cachep
,
1713 struct slab
*slabp
, unsigned long ctor_flags
)
1717 for (i
= 0; i
< cachep
->num
; i
++) {
1718 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
1720 /* need to poison the objs? */
1721 if (cachep
->flags
& SLAB_POISON
)
1722 poison_obj(cachep
, objp
, POISON_FREE
);
1723 if (cachep
->flags
& SLAB_STORE_USER
)
1724 *dbg_userword(cachep
, objp
) = NULL
;
1726 if (cachep
->flags
& SLAB_RED_ZONE
) {
1727 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
1728 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
1731 * Constructors are not allowed to allocate memory from
1732 * the same cache which they are a constructor for.
1733 * Otherwise, deadlock. They must also be threaded.
1735 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
1736 cachep
->ctor(objp
+obj_dbghead(cachep
), cachep
, ctor_flags
);
1738 if (cachep
->flags
& SLAB_RED_ZONE
) {
1739 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1740 slab_error(cachep
, "constructor overwrote the"
1741 " end of an object");
1742 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1743 slab_error(cachep
, "constructor overwrote the"
1744 " start of an object");
1746 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
1747 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
1750 cachep
->ctor(objp
, cachep
, ctor_flags
);
1752 slab_bufctl(slabp
)[i
] = i
+1;
1754 slab_bufctl(slabp
)[i
-1] = BUFCTL_END
;
1758 static void kmem_flagcheck(kmem_cache_t
*cachep
, unsigned int flags
)
1760 if (flags
& SLAB_DMA
) {
1761 if (!(cachep
->gfpflags
& GFP_DMA
))
1764 if (cachep
->gfpflags
& GFP_DMA
)
1769 static void set_slab_attr(kmem_cache_t
*cachep
, struct slab
*slabp
, void *objp
)
1774 /* Nasty!!!!!! I hope this is OK. */
1775 i
= 1 << cachep
->gfporder
;
1776 page
= virt_to_page(objp
);
1778 SET_PAGE_CACHE(page
, cachep
);
1779 SET_PAGE_SLAB(page
, slabp
);
1785 * Grow (by 1) the number of slabs within a cache. This is called by
1786 * kmem_cache_alloc() when there are no active objs left in a cache.
1788 static int cache_grow(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
1793 unsigned int local_flags
;
1794 unsigned long ctor_flags
;
1796 /* Be lazy and only check for valid flags here,
1797 * keeping it out of the critical path in kmem_cache_alloc().
1799 if (flags
& ~(SLAB_DMA
|SLAB_LEVEL_MASK
|SLAB_NO_GROW
))
1801 if (flags
& SLAB_NO_GROW
)
1804 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
1805 local_flags
= (flags
& SLAB_LEVEL_MASK
);
1806 if (!(local_flags
& __GFP_WAIT
))
1808 * Not allowed to sleep. Need to tell a constructor about
1809 * this - it might need to know...
1811 ctor_flags
|= SLAB_CTOR_ATOMIC
;
1813 /* About to mess with non-constant members - lock. */
1815 spin_lock(&cachep
->spinlock
);
1817 /* Get colour for the slab, and cal the next value. */
1818 offset
= cachep
->colour_next
;
1819 cachep
->colour_next
++;
1820 if (cachep
->colour_next
>= cachep
->colour
)
1821 cachep
->colour_next
= 0;
1822 offset
*= cachep
->colour_off
;
1824 spin_unlock(&cachep
->spinlock
);
1826 if (local_flags
& __GFP_WAIT
)
1830 * The test for missing atomic flag is performed here, rather than
1831 * the more obvious place, simply to reduce the critical path length
1832 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
1833 * will eventually be caught here (where it matters).
1835 kmem_flagcheck(cachep
, flags
);
1838 /* Get mem for the objs. */
1839 if (!(objp
= kmem_getpages(cachep
, flags
, nodeid
)))
1842 /* Get slab management. */
1843 if (!(slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
)))
1846 set_slab_attr(cachep
, slabp
, objp
);
1848 cache_init_objs(cachep
, slabp
, ctor_flags
);
1850 if (local_flags
& __GFP_WAIT
)
1851 local_irq_disable();
1853 spin_lock(&cachep
->spinlock
);
1855 /* Make slab active. */
1856 list_add_tail(&slabp
->list
, &(list3_data(cachep
)->slabs_free
));
1857 STATS_INC_GROWN(cachep
);
1858 list3_data(cachep
)->free_objects
+= cachep
->num
;
1859 spin_unlock(&cachep
->spinlock
);
1862 kmem_freepages(cachep
, objp
);
1864 if (local_flags
& __GFP_WAIT
)
1865 local_irq_disable();
1872 * Perform extra freeing checks:
1873 * - detect bad pointers.
1874 * - POISON/RED_ZONE checking
1875 * - destructor calls, for caches with POISON+dtor
1877 static void kfree_debugcheck(const void *objp
)
1881 if (!virt_addr_valid(objp
)) {
1882 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
1883 (unsigned long)objp
);
1886 page
= virt_to_page(objp
);
1887 if (!PageSlab(page
)) {
1888 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp
);
1893 static void *cache_free_debugcheck(kmem_cache_t
*cachep
, void *objp
,
1900 objp
-= obj_dbghead(cachep
);
1901 kfree_debugcheck(objp
);
1902 page
= virt_to_page(objp
);
1904 if (GET_PAGE_CACHE(page
) != cachep
) {
1905 printk(KERN_ERR
"mismatch in kmem_cache_free: expected cache %p, got %p\n",
1906 GET_PAGE_CACHE(page
),cachep
);
1907 printk(KERN_ERR
"%p is %s.\n", cachep
, cachep
->name
);
1908 printk(KERN_ERR
"%p is %s.\n", GET_PAGE_CACHE(page
), GET_PAGE_CACHE(page
)->name
);
1911 slabp
= GET_PAGE_SLAB(page
);
1913 if (cachep
->flags
& SLAB_RED_ZONE
) {
1914 if (*dbg_redzone1(cachep
, objp
) != RED_ACTIVE
|| *dbg_redzone2(cachep
, objp
) != RED_ACTIVE
) {
1915 slab_error(cachep
, "double free, or memory outside"
1916 " object was overwritten");
1917 printk(KERN_ERR
"%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
1918 objp
, *dbg_redzone1(cachep
, objp
), *dbg_redzone2(cachep
, objp
));
1920 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
1921 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
1923 if (cachep
->flags
& SLAB_STORE_USER
)
1924 *dbg_userword(cachep
, objp
) = caller
;
1926 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
1928 BUG_ON(objnr
>= cachep
->num
);
1929 BUG_ON(objp
!= slabp
->s_mem
+ objnr
*cachep
->objsize
);
1931 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
1932 /* Need to call the slab's constructor so the
1933 * caller can perform a verify of its state (debugging).
1934 * Called without the cache-lock held.
1936 cachep
->ctor(objp
+obj_dbghead(cachep
),
1937 cachep
, SLAB_CTOR_CONSTRUCTOR
|SLAB_CTOR_VERIFY
);
1939 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
1940 /* we want to cache poison the object,
1941 * call the destruction callback
1943 cachep
->dtor(objp
+obj_dbghead(cachep
), cachep
, 0);
1945 if (cachep
->flags
& SLAB_POISON
) {
1946 #ifdef CONFIG_DEBUG_PAGEALLOC
1947 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
)) {
1948 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
1949 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
1951 poison_obj(cachep
, objp
, POISON_FREE
);
1954 poison_obj(cachep
, objp
, POISON_FREE
);
1960 static void check_slabp(kmem_cache_t
*cachep
, struct slab
*slabp
)
1965 check_spinlock_acquired(cachep
);
1966 /* Check slab's freelist to see if this obj is there. */
1967 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
1969 if (entries
> cachep
->num
|| i
>= cachep
->num
)
1972 if (entries
!= cachep
->num
- slabp
->inuse
) {
1974 printk(KERN_ERR
"slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
1975 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
1976 for (i
=0;i
<sizeof(slabp
)+cachep
->num
*sizeof(kmem_bufctl_t
);i
++) {
1978 printk("\n%03x:", i
);
1979 printk(" %02x", ((unsigned char*)slabp
)[i
]);
1986 #define kfree_debugcheck(x) do { } while(0)
1987 #define cache_free_debugcheck(x,objp,z) (objp)
1988 #define check_slabp(x,y) do { } while(0)
1991 static void *cache_alloc_refill(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
1994 struct kmem_list3
*l3
;
1995 struct array_cache
*ac
;
1998 ac
= ac_data(cachep
);
2000 batchcount
= ac
->batchcount
;
2001 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2002 /* if there was little recent activity on this
2003 * cache, then perform only a partial refill.
2004 * Otherwise we could generate refill bouncing.
2006 batchcount
= BATCHREFILL_LIMIT
;
2008 l3
= list3_data(cachep
);
2010 BUG_ON(ac
->avail
> 0);
2011 spin_lock(&cachep
->spinlock
);
2013 struct array_cache
*shared_array
= l3
->shared
;
2014 if (shared_array
->avail
) {
2015 if (batchcount
> shared_array
->avail
)
2016 batchcount
= shared_array
->avail
;
2017 shared_array
->avail
-= batchcount
;
2018 ac
->avail
= batchcount
;
2019 memcpy(ac_entry(ac
), &ac_entry(shared_array
)[shared_array
->avail
],
2020 sizeof(void*)*batchcount
);
2021 shared_array
->touched
= 1;
2025 while (batchcount
> 0) {
2026 struct list_head
*entry
;
2028 /* Get slab alloc is to come from. */
2029 entry
= l3
->slabs_partial
.next
;
2030 if (entry
== &l3
->slabs_partial
) {
2031 l3
->free_touched
= 1;
2032 entry
= l3
->slabs_free
.next
;
2033 if (entry
== &l3
->slabs_free
)
2037 slabp
= list_entry(entry
, struct slab
, list
);
2038 check_slabp(cachep
, slabp
);
2039 check_spinlock_acquired(cachep
);
2040 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2042 STATS_INC_ALLOCED(cachep
);
2043 STATS_INC_ACTIVE(cachep
);
2044 STATS_SET_HIGH(cachep
);
2046 /* get obj pointer */
2047 ac_entry(ac
)[ac
->avail
++] = slabp
->s_mem
+ slabp
->free
*cachep
->objsize
;
2050 next
= slab_bufctl(slabp
)[slabp
->free
];
2052 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2056 check_slabp(cachep
, slabp
);
2058 /* move slabp to correct slabp list: */
2059 list_del(&slabp
->list
);
2060 if (slabp
->free
== BUFCTL_END
)
2061 list_add(&slabp
->list
, &l3
->slabs_full
);
2063 list_add(&slabp
->list
, &l3
->slabs_partial
);
2067 l3
->free_objects
-= ac
->avail
;
2069 spin_unlock(&cachep
->spinlock
);
2071 if (unlikely(!ac
->avail
)) {
2073 x
= cache_grow(cachep
, flags
, -1);
2075 // cache_grow can reenable interrupts, then ac could change.
2076 ac
= ac_data(cachep
);
2077 if (!x
&& ac
->avail
== 0) // no objects in sight? abort
2080 if (!ac
->avail
) // objects refilled by interrupt?
2084 return ac_entry(ac
)[--ac
->avail
];
2088 cache_alloc_debugcheck_before(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2090 might_sleep_if(flags
& __GFP_WAIT
);
2092 kmem_flagcheck(cachep
, flags
);
2098 cache_alloc_debugcheck_after(kmem_cache_t
*cachep
,
2099 unsigned long flags
, void *objp
, void *caller
)
2103 if (cachep
->flags
& SLAB_POISON
) {
2104 #ifdef CONFIG_DEBUG_PAGEALLOC
2105 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2106 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 1);
2108 check_poison_obj(cachep
, objp
);
2110 check_poison_obj(cachep
, objp
);
2112 poison_obj(cachep
, objp
, POISON_INUSE
);
2114 if (cachep
->flags
& SLAB_STORE_USER
)
2115 *dbg_userword(cachep
, objp
) = caller
;
2117 if (cachep
->flags
& SLAB_RED_ZONE
) {
2118 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
|| *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2119 slab_error(cachep
, "double free, or memory outside"
2120 " object was overwritten");
2121 printk(KERN_ERR
"%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2122 objp
, *dbg_redzone1(cachep
, objp
), *dbg_redzone2(cachep
, objp
));
2124 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2125 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2127 objp
+= obj_dbghead(cachep
);
2128 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2129 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2131 if (!(flags
& __GFP_WAIT
))
2132 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2134 cachep
->ctor(objp
, cachep
, ctor_flags
);
2139 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2143 static inline void *__cache_alloc(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2145 unsigned long save_flags
;
2147 struct array_cache
*ac
;
2149 cache_alloc_debugcheck_before(cachep
, flags
);
2151 local_irq_save(save_flags
);
2152 ac
= ac_data(cachep
);
2153 if (likely(ac
->avail
)) {
2154 STATS_INC_ALLOCHIT(cachep
);
2156 objp
= ac_entry(ac
)[--ac
->avail
];
2158 STATS_INC_ALLOCMISS(cachep
);
2159 objp
= cache_alloc_refill(cachep
, flags
);
2161 local_irq_restore(save_flags
);
2162 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, __builtin_return_address(0));
2167 * NUMA: different approach needed if the spinlock is moved into
2171 static void free_block(kmem_cache_t
*cachep
, void **objpp
, int nr_objects
)
2175 check_spinlock_acquired(cachep
);
2177 /* NUMA: move add into loop */
2178 cachep
->lists
.free_objects
+= nr_objects
;
2180 for (i
= 0; i
< nr_objects
; i
++) {
2181 void *objp
= objpp
[i
];
2185 slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
2186 list_del(&slabp
->list
);
2187 objnr
= (objp
- slabp
->s_mem
) / cachep
->objsize
;
2188 check_slabp(cachep
, slabp
);
2190 if (slab_bufctl(slabp
)[objnr
] != BUFCTL_FREE
) {
2191 printk(KERN_ERR
"slab: double free detected in cache '%s', objp %p.\n",
2192 cachep
->name
, objp
);
2196 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2197 slabp
->free
= objnr
;
2198 STATS_DEC_ACTIVE(cachep
);
2200 check_slabp(cachep
, slabp
);
2202 /* fixup slab chains */
2203 if (slabp
->inuse
== 0) {
2204 if (cachep
->lists
.free_objects
> cachep
->free_limit
) {
2205 cachep
->lists
.free_objects
-= cachep
->num
;
2206 slab_destroy(cachep
, slabp
);
2208 list_add(&slabp
->list
,
2209 &list3_data_ptr(cachep
, objp
)->slabs_free
);
2212 /* Unconditionally move a slab to the end of the
2213 * partial list on free - maximum time for the
2214 * other objects to be freed, too.
2216 list_add_tail(&slabp
->list
,
2217 &list3_data_ptr(cachep
, objp
)->slabs_partial
);
2222 static void cache_flusharray(kmem_cache_t
*cachep
, struct array_cache
*ac
)
2226 batchcount
= ac
->batchcount
;
2228 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
2231 spin_lock(&cachep
->spinlock
);
2232 if (cachep
->lists
.shared
) {
2233 struct array_cache
*shared_array
= cachep
->lists
.shared
;
2234 int max
= shared_array
->limit
-shared_array
->avail
;
2236 if (batchcount
> max
)
2238 memcpy(&ac_entry(shared_array
)[shared_array
->avail
],
2240 sizeof(void*)*batchcount
);
2241 shared_array
->avail
+= batchcount
;
2246 free_block(cachep
, &ac_entry(ac
)[0], batchcount
);
2251 struct list_head
*p
;
2253 p
= list3_data(cachep
)->slabs_free
.next
;
2254 while (p
!= &(list3_data(cachep
)->slabs_free
)) {
2257 slabp
= list_entry(p
, struct slab
, list
);
2258 BUG_ON(slabp
->inuse
);
2263 STATS_SET_FREEABLE(cachep
, i
);
2266 spin_unlock(&cachep
->spinlock
);
2267 ac
->avail
-= batchcount
;
2268 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[batchcount
],
2269 sizeof(void*)*ac
->avail
);
2274 * Release an obj back to its cache. If the obj has a constructed
2275 * state, it must be in this state _before_ it is released.
2277 * Called with disabled ints.
2279 static inline void __cache_free(kmem_cache_t
*cachep
, void *objp
)
2281 struct array_cache
*ac
= ac_data(cachep
);
2284 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
2286 if (likely(ac
->avail
< ac
->limit
)) {
2287 STATS_INC_FREEHIT(cachep
);
2288 ac_entry(ac
)[ac
->avail
++] = objp
;
2291 STATS_INC_FREEMISS(cachep
);
2292 cache_flusharray(cachep
, ac
);
2293 ac_entry(ac
)[ac
->avail
++] = objp
;
2298 * kmem_cache_alloc - Allocate an object
2299 * @cachep: The cache to allocate from.
2300 * @flags: See kmalloc().
2302 * Allocate an object from this cache. The flags are only relevant
2303 * if the cache has no available objects.
2305 void *kmem_cache_alloc(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2307 return __cache_alloc(cachep
, flags
);
2309 EXPORT_SYMBOL(kmem_cache_alloc
);
2312 * kmem_ptr_validate - check if an untrusted pointer might
2314 * @cachep: the cache we're checking against
2315 * @ptr: pointer to validate
2317 * This verifies that the untrusted pointer looks sane:
2318 * it is _not_ a guarantee that the pointer is actually
2319 * part of the slab cache in question, but it at least
2320 * validates that the pointer can be dereferenced and
2321 * looks half-way sane.
2323 * Currently only used for dentry validation.
2325 int fastcall
kmem_ptr_validate(kmem_cache_t
*cachep
, void *ptr
)
2327 unsigned long addr
= (unsigned long) ptr
;
2328 unsigned long min_addr
= PAGE_OFFSET
;
2329 unsigned long align_mask
= BYTES_PER_WORD
-1;
2330 unsigned long size
= cachep
->objsize
;
2333 if (unlikely(addr
< min_addr
))
2335 if (unlikely(addr
> (unsigned long)high_memory
- size
))
2337 if (unlikely(addr
& align_mask
))
2339 if (unlikely(!kern_addr_valid(addr
)))
2341 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
2343 page
= virt_to_page(ptr
);
2344 if (unlikely(!PageSlab(page
)))
2346 if (unlikely(GET_PAGE_CACHE(page
) != cachep
))
2355 * kmem_cache_alloc_node - Allocate an object on the specified node
2356 * @cachep: The cache to allocate from.
2357 * @flags: See kmalloc().
2358 * @nodeid: node number of the target node.
2360 * Identical to kmem_cache_alloc, except that this function is slow
2361 * and can sleep. And it will allocate memory on the given node, which
2362 * can improve the performance for cpu bound structures.
2364 void *kmem_cache_alloc_node(kmem_cache_t
*cachep
, int nodeid
)
2371 for (loop
= 0;;loop
++) {
2372 struct list_head
*q
;
2376 spin_lock_irq(&cachep
->spinlock
);
2377 /* walk through all partial and empty slab and find one
2378 * from the right node */
2379 list_for_each(q
,&cachep
->lists
.slabs_partial
) {
2380 slabp
= list_entry(q
, struct slab
, list
);
2382 if (page_to_nid(virt_to_page(slabp
->s_mem
)) == nodeid
||
2386 list_for_each(q
, &cachep
->lists
.slabs_free
) {
2387 slabp
= list_entry(q
, struct slab
, list
);
2389 if (page_to_nid(virt_to_page(slabp
->s_mem
)) == nodeid
||
2393 spin_unlock_irq(&cachep
->spinlock
);
2395 local_irq_disable();
2396 if (!cache_grow(cachep
, GFP_KERNEL
, nodeid
)) {
2403 /* found one: allocate object */
2404 check_slabp(cachep
, slabp
);
2405 check_spinlock_acquired(cachep
);
2407 STATS_INC_ALLOCED(cachep
);
2408 STATS_INC_ACTIVE(cachep
);
2409 STATS_SET_HIGH(cachep
);
2410 STATS_INC_NODEALLOCS(cachep
);
2412 objp
= slabp
->s_mem
+ slabp
->free
*cachep
->objsize
;
2415 next
= slab_bufctl(slabp
)[slabp
->free
];
2417 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2420 check_slabp(cachep
, slabp
);
2422 /* move slabp to correct slabp list: */
2423 list_del(&slabp
->list
);
2424 if (slabp
->free
== BUFCTL_END
)
2425 list_add(&slabp
->list
, &cachep
->lists
.slabs_full
);
2427 list_add(&slabp
->list
, &cachep
->lists
.slabs_partial
);
2429 list3_data(cachep
)->free_objects
--;
2430 spin_unlock_irq(&cachep
->spinlock
);
2432 objp
= cache_alloc_debugcheck_after(cachep
, GFP_KERNEL
, objp
,
2433 __builtin_return_address(0));
2436 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2441 * kmalloc - allocate memory
2442 * @size: how many bytes of memory are required.
2443 * @flags: the type of memory to allocate.
2445 * kmalloc is the normal method of allocating memory
2448 * The @flags argument may be one of:
2450 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2452 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2454 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2456 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2457 * must be suitable for DMA. This can mean different things on different
2458 * platforms. For example, on i386, it means that the memory must come
2459 * from the first 16MB.
2461 void *__kmalloc(size_t size
, unsigned int __nocast flags
)
2463 kmem_cache_t
*cachep
;
2465 cachep
= kmem_find_general_cachep(size
, flags
);
2466 if (unlikely(cachep
== NULL
))
2468 return __cache_alloc(cachep
, flags
);
2470 EXPORT_SYMBOL(__kmalloc
);
2474 * __alloc_percpu - allocate one copy of the object for every present
2475 * cpu in the system, zeroing them.
2476 * Objects should be dereferenced using the per_cpu_ptr macro only.
2478 * @size: how many bytes of memory are required.
2479 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2481 void *__alloc_percpu(size_t size
, size_t align
)
2484 struct percpu_data
*pdata
= kmalloc(sizeof (*pdata
), GFP_KERNEL
);
2489 for (i
= 0; i
< NR_CPUS
; i
++) {
2490 if (!cpu_possible(i
))
2492 pdata
->ptrs
[i
] = kmem_cache_alloc_node(
2493 kmem_find_general_cachep(size
, GFP_KERNEL
),
2496 if (!pdata
->ptrs
[i
])
2498 memset(pdata
->ptrs
[i
], 0, size
);
2501 /* Catch derefs w/o wrappers */
2502 return (void *) (~(unsigned long) pdata
);
2506 if (!cpu_possible(i
))
2508 kfree(pdata
->ptrs
[i
]);
2513 EXPORT_SYMBOL(__alloc_percpu
);
2517 * kmem_cache_free - Deallocate an object
2518 * @cachep: The cache the allocation was from.
2519 * @objp: The previously allocated object.
2521 * Free an object which was previously allocated from this
2524 void kmem_cache_free(kmem_cache_t
*cachep
, void *objp
)
2526 unsigned long flags
;
2528 local_irq_save(flags
);
2529 __cache_free(cachep
, objp
);
2530 local_irq_restore(flags
);
2532 EXPORT_SYMBOL(kmem_cache_free
);
2535 * kcalloc - allocate memory for an array. The memory is set to zero.
2536 * @n: number of elements.
2537 * @size: element size.
2538 * @flags: the type of memory to allocate.
2540 void *kcalloc(size_t n
, size_t size
, unsigned int __nocast flags
)
2544 if (n
!= 0 && size
> INT_MAX
/ n
)
2547 ret
= kmalloc(n
* size
, flags
);
2549 memset(ret
, 0, n
* size
);
2552 EXPORT_SYMBOL(kcalloc
);
2555 * kfree - free previously allocated memory
2556 * @objp: pointer returned by kmalloc.
2558 * Don't free memory not originally allocated by kmalloc()
2559 * or you will run into trouble.
2561 void kfree(const void *objp
)
2564 unsigned long flags
;
2566 if (unlikely(!objp
))
2568 local_irq_save(flags
);
2569 kfree_debugcheck(objp
);
2570 c
= GET_PAGE_CACHE(virt_to_page(objp
));
2571 __cache_free(c
, (void*)objp
);
2572 local_irq_restore(flags
);
2574 EXPORT_SYMBOL(kfree
);
2578 * free_percpu - free previously allocated percpu memory
2579 * @objp: pointer returned by alloc_percpu.
2581 * Don't free memory not originally allocated by alloc_percpu()
2582 * The complemented objp is to check for that.
2585 free_percpu(const void *objp
)
2588 struct percpu_data
*p
= (struct percpu_data
*) (~(unsigned long) objp
);
2590 for (i
= 0; i
< NR_CPUS
; i
++) {
2591 if (!cpu_possible(i
))
2597 EXPORT_SYMBOL(free_percpu
);
2600 unsigned int kmem_cache_size(kmem_cache_t
*cachep
)
2602 return obj_reallen(cachep
);
2604 EXPORT_SYMBOL(kmem_cache_size
);
2606 struct ccupdate_struct
{
2607 kmem_cache_t
*cachep
;
2608 struct array_cache
*new[NR_CPUS
];
2611 static void do_ccupdate_local(void *info
)
2613 struct ccupdate_struct
*new = (struct ccupdate_struct
*)info
;
2614 struct array_cache
*old
;
2617 old
= ac_data(new->cachep
);
2619 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
2620 new->new[smp_processor_id()] = old
;
2624 static int do_tune_cpucache(kmem_cache_t
*cachep
, int limit
, int batchcount
,
2627 struct ccupdate_struct
new;
2628 struct array_cache
*new_shared
;
2631 memset(&new.new,0,sizeof(new.new));
2632 for (i
= 0; i
< NR_CPUS
; i
++) {
2633 if (cpu_online(i
)) {
2634 new.new[i
] = alloc_arraycache(i
, limit
, batchcount
);
2636 for (i
--; i
>= 0; i
--) kfree(new.new[i
]);
2643 new.cachep
= cachep
;
2645 smp_call_function_all_cpus(do_ccupdate_local
, (void *)&new);
2648 spin_lock_irq(&cachep
->spinlock
);
2649 cachep
->batchcount
= batchcount
;
2650 cachep
->limit
= limit
;
2651 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
+ cachep
->num
;
2652 spin_unlock_irq(&cachep
->spinlock
);
2654 for (i
= 0; i
< NR_CPUS
; i
++) {
2655 struct array_cache
*ccold
= new.new[i
];
2658 spin_lock_irq(&cachep
->spinlock
);
2659 free_block(cachep
, ac_entry(ccold
), ccold
->avail
);
2660 spin_unlock_irq(&cachep
->spinlock
);
2663 new_shared
= alloc_arraycache(-1, batchcount
*shared
, 0xbaadf00d);
2665 struct array_cache
*old
;
2667 spin_lock_irq(&cachep
->spinlock
);
2668 old
= cachep
->lists
.shared
;
2669 cachep
->lists
.shared
= new_shared
;
2671 free_block(cachep
, ac_entry(old
), old
->avail
);
2672 spin_unlock_irq(&cachep
->spinlock
);
2680 static void enable_cpucache(kmem_cache_t
*cachep
)
2685 /* The head array serves three purposes:
2686 * - create a LIFO ordering, i.e. return objects that are cache-warm
2687 * - reduce the number of spinlock operations.
2688 * - reduce the number of linked list operations on the slab and
2689 * bufctl chains: array operations are cheaper.
2690 * The numbers are guessed, we should auto-tune as described by
2693 if (cachep
->objsize
> 131072)
2695 else if (cachep
->objsize
> PAGE_SIZE
)
2697 else if (cachep
->objsize
> 1024)
2699 else if (cachep
->objsize
> 256)
2704 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
2705 * allocation behaviour: Most allocs on one cpu, most free operations
2706 * on another cpu. For these cases, an efficient object passing between
2707 * cpus is necessary. This is provided by a shared array. The array
2708 * replaces Bonwick's magazine layer.
2709 * On uniprocessor, it's functionally equivalent (but less efficient)
2710 * to a larger limit. Thus disabled by default.
2714 if (cachep
->objsize
<= PAGE_SIZE
)
2719 /* With debugging enabled, large batchcount lead to excessively
2720 * long periods with disabled local interrupts. Limit the
2726 err
= do_tune_cpucache(cachep
, limit
, (limit
+1)/2, shared
);
2728 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
2729 cachep
->name
, -err
);
2732 static void drain_array_locked(kmem_cache_t
*cachep
,
2733 struct array_cache
*ac
, int force
)
2737 check_spinlock_acquired(cachep
);
2738 if (ac
->touched
&& !force
) {
2740 } else if (ac
->avail
) {
2741 tofree
= force
? ac
->avail
: (ac
->limit
+4)/5;
2742 if (tofree
> ac
->avail
) {
2743 tofree
= (ac
->avail
+1)/2;
2745 free_block(cachep
, ac_entry(ac
), tofree
);
2746 ac
->avail
-= tofree
;
2747 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[tofree
],
2748 sizeof(void*)*ac
->avail
);
2753 * cache_reap - Reclaim memory from caches.
2755 * Called from workqueue/eventd every few seconds.
2757 * - clear the per-cpu caches for this CPU.
2758 * - return freeable pages to the main free memory pool.
2760 * If we cannot acquire the cache chain semaphore then just give up - we'll
2761 * try again on the next iteration.
2763 static void cache_reap(void *unused
)
2765 struct list_head
*walk
;
2767 if (down_trylock(&cache_chain_sem
)) {
2768 /* Give up. Setup the next iteration. */
2769 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
+ smp_processor_id());
2773 list_for_each(walk
, &cache_chain
) {
2774 kmem_cache_t
*searchp
;
2775 struct list_head
* p
;
2779 searchp
= list_entry(walk
, kmem_cache_t
, next
);
2781 if (searchp
->flags
& SLAB_NO_REAP
)
2786 spin_lock_irq(&searchp
->spinlock
);
2788 drain_array_locked(searchp
, ac_data(searchp
), 0);
2790 if(time_after(searchp
->lists
.next_reap
, jiffies
))
2793 searchp
->lists
.next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
2795 if (searchp
->lists
.shared
)
2796 drain_array_locked(searchp
, searchp
->lists
.shared
, 0);
2798 if (searchp
->lists
.free_touched
) {
2799 searchp
->lists
.free_touched
= 0;
2803 tofree
= (searchp
->free_limit
+5*searchp
->num
-1)/(5*searchp
->num
);
2805 p
= list3_data(searchp
)->slabs_free
.next
;
2806 if (p
== &(list3_data(searchp
)->slabs_free
))
2809 slabp
= list_entry(p
, struct slab
, list
);
2810 BUG_ON(slabp
->inuse
);
2811 list_del(&slabp
->list
);
2812 STATS_INC_REAPED(searchp
);
2814 /* Safe to drop the lock. The slab is no longer
2815 * linked to the cache.
2816 * searchp cannot disappear, we hold
2819 searchp
->lists
.free_objects
-= searchp
->num
;
2820 spin_unlock_irq(&searchp
->spinlock
);
2821 slab_destroy(searchp
, slabp
);
2822 spin_lock_irq(&searchp
->spinlock
);
2823 } while(--tofree
> 0);
2825 spin_unlock_irq(&searchp
->spinlock
);
2830 up(&cache_chain_sem
);
2831 /* Setup the next iteration */
2832 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
+ smp_processor_id());
2835 #ifdef CONFIG_PROC_FS
2837 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2840 struct list_head
*p
;
2842 down(&cache_chain_sem
);
2845 * Output format version, so at least we can change it
2846 * without _too_ many complaints.
2849 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
2851 seq_puts(m
, "slabinfo - version: 2.1\n");
2853 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
2854 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
2855 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
2857 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
2858 " <error> <maxfreeable> <freelimit> <nodeallocs>");
2859 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
2863 p
= cache_chain
.next
;
2866 if (p
== &cache_chain
)
2869 return list_entry(p
, kmem_cache_t
, next
);
2872 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2874 kmem_cache_t
*cachep
= p
;
2876 return cachep
->next
.next
== &cache_chain
? NULL
2877 : list_entry(cachep
->next
.next
, kmem_cache_t
, next
);
2880 static void s_stop(struct seq_file
*m
, void *p
)
2882 up(&cache_chain_sem
);
2885 static int s_show(struct seq_file
*m
, void *p
)
2887 kmem_cache_t
*cachep
= p
;
2888 struct list_head
*q
;
2890 unsigned long active_objs
;
2891 unsigned long num_objs
;
2892 unsigned long active_slabs
= 0;
2893 unsigned long num_slabs
;
2898 spin_lock_irq(&cachep
->spinlock
);
2901 list_for_each(q
,&cachep
->lists
.slabs_full
) {
2902 slabp
= list_entry(q
, struct slab
, list
);
2903 if (slabp
->inuse
!= cachep
->num
&& !error
)
2904 error
= "slabs_full accounting error";
2905 active_objs
+= cachep
->num
;
2908 list_for_each(q
,&cachep
->lists
.slabs_partial
) {
2909 slabp
= list_entry(q
, struct slab
, list
);
2910 if (slabp
->inuse
== cachep
->num
&& !error
)
2911 error
= "slabs_partial inuse accounting error";
2912 if (!slabp
->inuse
&& !error
)
2913 error
= "slabs_partial/inuse accounting error";
2914 active_objs
+= slabp
->inuse
;
2917 list_for_each(q
,&cachep
->lists
.slabs_free
) {
2918 slabp
= list_entry(q
, struct slab
, list
);
2919 if (slabp
->inuse
&& !error
)
2920 error
= "slabs_free/inuse accounting error";
2923 num_slabs
+=active_slabs
;
2924 num_objs
= num_slabs
*cachep
->num
;
2925 if (num_objs
- active_objs
!= cachep
->lists
.free_objects
&& !error
)
2926 error
= "free_objects accounting error";
2928 name
= cachep
->name
;
2930 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
2932 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
2933 name
, active_objs
, num_objs
, cachep
->objsize
,
2934 cachep
->num
, (1<<cachep
->gfporder
));
2935 seq_printf(m
, " : tunables %4u %4u %4u",
2936 cachep
->limit
, cachep
->batchcount
,
2937 cachep
->lists
.shared
->limit
/cachep
->batchcount
);
2938 seq_printf(m
, " : slabdata %6lu %6lu %6u",
2939 active_slabs
, num_slabs
, cachep
->lists
.shared
->avail
);
2942 unsigned long high
= cachep
->high_mark
;
2943 unsigned long allocs
= cachep
->num_allocations
;
2944 unsigned long grown
= cachep
->grown
;
2945 unsigned long reaped
= cachep
->reaped
;
2946 unsigned long errors
= cachep
->errors
;
2947 unsigned long max_freeable
= cachep
->max_freeable
;
2948 unsigned long free_limit
= cachep
->free_limit
;
2949 unsigned long node_allocs
= cachep
->node_allocs
;
2951 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu",
2952 allocs
, high
, grown
, reaped
, errors
,
2953 max_freeable
, free_limit
, node_allocs
);
2957 unsigned long allochit
= atomic_read(&cachep
->allochit
);
2958 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
2959 unsigned long freehit
= atomic_read(&cachep
->freehit
);
2960 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
2962 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
2963 allochit
, allocmiss
, freehit
, freemiss
);
2967 spin_unlock_irq(&cachep
->spinlock
);
2972 * slabinfo_op - iterator that generates /proc/slabinfo
2981 * num-pages-per-slab
2982 * + further values on SMP and with statistics enabled
2985 struct seq_operations slabinfo_op
= {
2992 #define MAX_SLABINFO_WRITE 128
2994 * slabinfo_write - Tuning for the slab allocator
2996 * @buffer: user buffer
2997 * @count: data length
3000 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
3001 size_t count
, loff_t
*ppos
)
3003 char kbuf
[MAX_SLABINFO_WRITE
+1], *tmp
;
3004 int limit
, batchcount
, shared
, res
;
3005 struct list_head
*p
;
3007 if (count
> MAX_SLABINFO_WRITE
)
3009 if (copy_from_user(&kbuf
, buffer
, count
))
3011 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3013 tmp
= strchr(kbuf
, ' ');
3018 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3021 /* Find the cache in the chain of caches. */
3022 down(&cache_chain_sem
);
3024 list_for_each(p
,&cache_chain
) {
3025 kmem_cache_t
*cachep
= list_entry(p
, kmem_cache_t
, next
);
3027 if (!strcmp(cachep
->name
, kbuf
)) {
3030 batchcount
> limit
||
3034 res
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
);
3039 up(&cache_chain_sem
);
3046 unsigned int ksize(const void *objp
)
3049 unsigned long flags
;
3050 unsigned int size
= 0;
3052 if (likely(objp
!= NULL
)) {
3053 local_irq_save(flags
);
3054 c
= GET_PAGE_CACHE(virt_to_page(objp
));
3055 size
= kmem_cache_size(c
);
3056 local_irq_restore(flags
);