kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / crypto / sha512_generic.c
blobbc3686138aebb2a5bd58a373e3aa7f24a71f6510
1 /* SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com>
3 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
4 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
5 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/init.h>
18 #include <linux/crypto.h>
19 #include <linux/types.h>
20 #include <crypto/sha.h>
22 #include <asm/byteorder.h>
24 struct sha512_ctx {
25 u64 state[8];
26 u32 count[4];
27 u8 buf[128];
28 u64 W[80];
31 static inline u64 Ch(u64 x, u64 y, u64 z)
33 return z ^ (x & (y ^ z));
36 static inline u64 Maj(u64 x, u64 y, u64 z)
38 return (x & y) | (z & (x | y));
41 static inline u64 RORu64(u64 x, u64 y)
43 return (x >> y) | (x << (64 - y));
46 static const u64 sha512_K[80] = {
47 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
48 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
49 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
50 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
51 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
52 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
53 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
54 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
55 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
56 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
57 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
58 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
59 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
60 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
61 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
62 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
63 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
64 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
65 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
66 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
67 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
68 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
69 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
70 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
71 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
72 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
73 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
76 #define e0(x) (RORu64(x,28) ^ RORu64(x,34) ^ RORu64(x,39))
77 #define e1(x) (RORu64(x,14) ^ RORu64(x,18) ^ RORu64(x,41))
78 #define s0(x) (RORu64(x, 1) ^ RORu64(x, 8) ^ (x >> 7))
79 #define s1(x) (RORu64(x,19) ^ RORu64(x,61) ^ (x >> 6))
81 static inline void LOAD_OP(int I, u64 *W, const u8 *input)
83 W[I] = __be64_to_cpu( ((__be64*)(input))[I] );
86 static inline void BLEND_OP(int I, u64 *W)
88 W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16];
91 static void
92 sha512_transform(u64 *state, u64 *W, const u8 *input)
94 u64 a, b, c, d, e, f, g, h, t1, t2;
96 int i;
98 /* load the input */
99 for (i = 0; i < 16; i++)
100 LOAD_OP(i, W, input);
102 for (i = 16; i < 80; i++) {
103 BLEND_OP(i, W);
106 /* load the state into our registers */
107 a=state[0]; b=state[1]; c=state[2]; d=state[3];
108 e=state[4]; f=state[5]; g=state[6]; h=state[7];
110 /* now iterate */
111 for (i=0; i<80; i+=8) {
112 t1 = h + e1(e) + Ch(e,f,g) + sha512_K[i ] + W[i ];
113 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
114 t1 = g + e1(d) + Ch(d,e,f) + sha512_K[i+1] + W[i+1];
115 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
116 t1 = f + e1(c) + Ch(c,d,e) + sha512_K[i+2] + W[i+2];
117 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
118 t1 = e + e1(b) + Ch(b,c,d) + sha512_K[i+3] + W[i+3];
119 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
120 t1 = d + e1(a) + Ch(a,b,c) + sha512_K[i+4] + W[i+4];
121 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
122 t1 = c + e1(h) + Ch(h,a,b) + sha512_K[i+5] + W[i+5];
123 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
124 t1 = b + e1(g) + Ch(g,h,a) + sha512_K[i+6] + W[i+6];
125 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
126 t1 = a + e1(f) + Ch(f,g,h) + sha512_K[i+7] + W[i+7];
127 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
130 state[0] += a; state[1] += b; state[2] += c; state[3] += d;
131 state[4] += e; state[5] += f; state[6] += g; state[7] += h;
133 /* erase our data */
134 a = b = c = d = e = f = g = h = t1 = t2 = 0;
137 static void
138 sha512_init(struct crypto_tfm *tfm)
140 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
141 sctx->state[0] = SHA512_H0;
142 sctx->state[1] = SHA512_H1;
143 sctx->state[2] = SHA512_H2;
144 sctx->state[3] = SHA512_H3;
145 sctx->state[4] = SHA512_H4;
146 sctx->state[5] = SHA512_H5;
147 sctx->state[6] = SHA512_H6;
148 sctx->state[7] = SHA512_H7;
149 sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0;
152 static void
153 sha384_init(struct crypto_tfm *tfm)
155 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
156 sctx->state[0] = SHA384_H0;
157 sctx->state[1] = SHA384_H1;
158 sctx->state[2] = SHA384_H2;
159 sctx->state[3] = SHA384_H3;
160 sctx->state[4] = SHA384_H4;
161 sctx->state[5] = SHA384_H5;
162 sctx->state[6] = SHA384_H6;
163 sctx->state[7] = SHA384_H7;
164 sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0;
167 static void
168 sha512_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len)
170 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
172 unsigned int i, index, part_len;
174 /* Compute number of bytes mod 128 */
175 index = (unsigned int)((sctx->count[0] >> 3) & 0x7F);
177 /* Update number of bits */
178 if ((sctx->count[0] += (len << 3)) < (len << 3)) {
179 if ((sctx->count[1] += 1) < 1)
180 if ((sctx->count[2] += 1) < 1)
181 sctx->count[3]++;
182 sctx->count[1] += (len >> 29);
185 part_len = 128 - index;
187 /* Transform as many times as possible. */
188 if (len >= part_len) {
189 memcpy(&sctx->buf[index], data, part_len);
190 sha512_transform(sctx->state, sctx->W, sctx->buf);
192 for (i = part_len; i + 127 < len; i+=128)
193 sha512_transform(sctx->state, sctx->W, &data[i]);
195 index = 0;
196 } else {
197 i = 0;
200 /* Buffer remaining input */
201 memcpy(&sctx->buf[index], &data[i], len - i);
203 /* erase our data */
204 memset(sctx->W, 0, sizeof(sctx->W));
207 static void
208 sha512_final(struct crypto_tfm *tfm, u8 *hash)
210 struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
211 static u8 padding[128] = { 0x80, };
212 __be64 *dst = (__be64 *)hash;
213 __be32 bits[4];
214 unsigned int index, pad_len;
215 int i;
217 /* Save number of bits */
218 bits[3] = cpu_to_be32(sctx->count[0]);
219 bits[2] = cpu_to_be32(sctx->count[1]);
220 bits[1] = cpu_to_be32(sctx->count[2]);
221 bits[0] = cpu_to_be32(sctx->count[3]);
223 /* Pad out to 112 mod 128. */
224 index = (sctx->count[0] >> 3) & 0x7f;
225 pad_len = (index < 112) ? (112 - index) : ((128+112) - index);
226 sha512_update(tfm, padding, pad_len);
228 /* Append length (before padding) */
229 sha512_update(tfm, (const u8 *)bits, sizeof(bits));
231 /* Store state in digest */
232 for (i = 0; i < 8; i++)
233 dst[i] = cpu_to_be64(sctx->state[i]);
235 /* Zeroize sensitive information. */
236 memset(sctx, 0, sizeof(struct sha512_ctx));
239 static void sha384_final(struct crypto_tfm *tfm, u8 *hash)
241 u8 D[64];
243 sha512_final(tfm, D);
245 memcpy(hash, D, 48);
246 memset(D, 0, 64);
249 static struct crypto_alg sha512 = {
250 .cra_name = "sha512",
251 .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
252 .cra_blocksize = SHA512_BLOCK_SIZE,
253 .cra_ctxsize = sizeof(struct sha512_ctx),
254 .cra_module = THIS_MODULE,
255 .cra_alignmask = 3,
256 .cra_list = LIST_HEAD_INIT(sha512.cra_list),
257 .cra_u = { .digest = {
258 .dia_digestsize = SHA512_DIGEST_SIZE,
259 .dia_init = sha512_init,
260 .dia_update = sha512_update,
261 .dia_final = sha512_final }
265 static struct crypto_alg sha384 = {
266 .cra_name = "sha384",
267 .cra_flags = CRYPTO_ALG_TYPE_DIGEST,
268 .cra_blocksize = SHA384_BLOCK_SIZE,
269 .cra_ctxsize = sizeof(struct sha512_ctx),
270 .cra_alignmask = 3,
271 .cra_module = THIS_MODULE,
272 .cra_list = LIST_HEAD_INIT(sha384.cra_list),
273 .cra_u = { .digest = {
274 .dia_digestsize = SHA384_DIGEST_SIZE,
275 .dia_init = sha384_init,
276 .dia_update = sha512_update,
277 .dia_final = sha384_final }
281 static int __init sha512_generic_mod_init(void)
283 int ret = 0;
285 if ((ret = crypto_register_alg(&sha384)) < 0)
286 goto out;
287 if ((ret = crypto_register_alg(&sha512)) < 0)
288 crypto_unregister_alg(&sha384);
289 out:
290 return ret;
293 static void __exit sha512_generic_mod_fini(void)
295 crypto_unregister_alg(&sha384);
296 crypto_unregister_alg(&sha512);
299 module_init(sha512_generic_mod_init);
300 module_exit(sha512_generic_mod_fini);
302 MODULE_LICENSE("GPL");
303 MODULE_DESCRIPTION("SHA-512 and SHA-384 Secure Hash Algorithms");
305 MODULE_ALIAS("sha384");
306 MODULE_ALIAS("sha512");