kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / ata / libata-core.c
blob303fc0d2b978464dbf6d927a370f4cf743862b6b
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/jiffies.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
67 #include "libata.h"
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops = {
76 .prereset = ata_std_prereset,
77 .postreset = ata_std_postreset,
78 .error_handler = ata_std_error_handler,
81 const struct ata_port_operations sata_port_ops = {
82 .inherits = &ata_base_port_ops,
84 .qc_defer = ata_std_qc_defer,
85 .hardreset = sata_std_hardreset,
88 static unsigned int ata_dev_init_params(struct ata_device *dev,
89 u16 heads, u16 sectors);
90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
91 static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 u8 enable, u8 feature);
93 static void ata_dev_xfermask(struct ata_device *dev);
94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 unsigned int ata_print_id = 1;
97 static struct workqueue_struct *ata_wq;
99 struct workqueue_struct *ata_aux_wq;
101 struct ata_force_param {
102 const char *name;
103 unsigned int cbl;
104 int spd_limit;
105 unsigned long xfer_mask;
106 unsigned int horkage_on;
107 unsigned int horkage_off;
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
167 * ata_force_cbl - force cable type according to libata.force
168 * @ap: ATA port of interest
170 * Force cable type according to libata.force and whine about it.
171 * The last entry which has matching port number is used, so it
172 * can be specified as part of device force parameters. For
173 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
174 * same effect.
176 * LOCKING:
177 * EH context.
179 void ata_force_cbl(struct ata_port *ap)
181 int i;
183 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
184 const struct ata_force_ent *fe = &ata_force_tbl[i];
186 if (fe->port != -1 && fe->port != ap->print_id)
187 continue;
189 if (fe->param.cbl == ATA_CBL_NONE)
190 continue;
192 ap->cbl = fe->param.cbl;
193 ata_port_printk(ap, KERN_NOTICE,
194 "FORCE: cable set to %s\n", fe->param.name);
195 return;
200 * ata_force_spd_limit - force SATA spd limit according to libata.force
201 * @link: ATA link of interest
203 * Force SATA spd limit according to libata.force and whine about
204 * it. When only the port part is specified (e.g. 1:), the limit
205 * applies to all links connected to both the host link and all
206 * fan-out ports connected via PMP. If the device part is
207 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
208 * link not the host link. Device number 15 always points to the
209 * host link whether PMP is attached or not.
211 * LOCKING:
212 * EH context.
214 static void ata_force_spd_limit(struct ata_link *link)
216 int linkno, i;
218 if (ata_is_host_link(link))
219 linkno = 15;
220 else
221 linkno = link->pmp;
223 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
224 const struct ata_force_ent *fe = &ata_force_tbl[i];
226 if (fe->port != -1 && fe->port != link->ap->print_id)
227 continue;
229 if (fe->device != -1 && fe->device != linkno)
230 continue;
232 if (!fe->param.spd_limit)
233 continue;
235 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
236 ata_link_printk(link, KERN_NOTICE,
237 "FORCE: PHY spd limit set to %s\n", fe->param.name);
238 return;
243 * ata_force_xfermask - force xfermask according to libata.force
244 * @dev: ATA device of interest
246 * Force xfer_mask according to libata.force and whine about it.
247 * For consistency with link selection, device number 15 selects
248 * the first device connected to the host link.
250 * LOCKING:
251 * EH context.
253 static void ata_force_xfermask(struct ata_device *dev)
255 int devno = dev->link->pmp + dev->devno;
256 int alt_devno = devno;
257 int i;
259 /* allow n.15 for the first device attached to host port */
260 if (ata_is_host_link(dev->link) && devno == 0)
261 alt_devno = 15;
263 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
264 const struct ata_force_ent *fe = &ata_force_tbl[i];
265 unsigned long pio_mask, mwdma_mask, udma_mask;
267 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
268 continue;
270 if (fe->device != -1 && fe->device != devno &&
271 fe->device != alt_devno)
272 continue;
274 if (!fe->param.xfer_mask)
275 continue;
277 ata_unpack_xfermask(fe->param.xfer_mask,
278 &pio_mask, &mwdma_mask, &udma_mask);
279 if (udma_mask)
280 dev->udma_mask = udma_mask;
281 else if (mwdma_mask) {
282 dev->udma_mask = 0;
283 dev->mwdma_mask = mwdma_mask;
284 } else {
285 dev->udma_mask = 0;
286 dev->mwdma_mask = 0;
287 dev->pio_mask = pio_mask;
290 ata_dev_printk(dev, KERN_NOTICE,
291 "FORCE: xfer_mask set to %s\n", fe->param.name);
292 return;
297 * ata_force_horkage - force horkage according to libata.force
298 * @dev: ATA device of interest
300 * Force horkage according to libata.force and whine about it.
301 * For consistency with link selection, device number 15 selects
302 * the first device connected to the host link.
304 * LOCKING:
305 * EH context.
307 static void ata_force_horkage(struct ata_device *dev)
309 int devno = dev->link->pmp + dev->devno;
310 int alt_devno = devno;
311 int i;
313 /* allow n.15 for the first device attached to host port */
314 if (ata_is_host_link(dev->link) && devno == 0)
315 alt_devno = 15;
317 for (i = 0; i < ata_force_tbl_size; i++) {
318 const struct ata_force_ent *fe = &ata_force_tbl[i];
320 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
321 continue;
323 if (fe->device != -1 && fe->device != devno &&
324 fe->device != alt_devno)
325 continue;
327 if (!(~dev->horkage & fe->param.horkage_on) &&
328 !(dev->horkage & fe->param.horkage_off))
329 continue;
331 dev->horkage |= fe->param.horkage_on;
332 dev->horkage &= ~fe->param.horkage_off;
334 ata_dev_printk(dev, KERN_NOTICE,
335 "FORCE: horkage modified (%s)\n", fe->param.name);
340 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
341 * @opcode: SCSI opcode
343 * Determine ATAPI command type from @opcode.
345 * LOCKING:
346 * None.
348 * RETURNS:
349 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
351 int atapi_cmd_type(u8 opcode)
353 switch (opcode) {
354 case GPCMD_READ_10:
355 case GPCMD_READ_12:
356 return ATAPI_READ;
358 case GPCMD_WRITE_10:
359 case GPCMD_WRITE_12:
360 case GPCMD_WRITE_AND_VERIFY_10:
361 return ATAPI_WRITE;
363 case GPCMD_READ_CD:
364 case GPCMD_READ_CD_MSF:
365 return ATAPI_READ_CD;
367 case ATA_16:
368 case ATA_12:
369 if (atapi_passthru16)
370 return ATAPI_PASS_THRU;
371 /* fall thru */
372 default:
373 return ATAPI_MISC;
378 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
379 * @tf: Taskfile to convert
380 * @pmp: Port multiplier port
381 * @is_cmd: This FIS is for command
382 * @fis: Buffer into which data will output
384 * Converts a standard ATA taskfile to a Serial ATA
385 * FIS structure (Register - Host to Device).
387 * LOCKING:
388 * Inherited from caller.
390 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
392 fis[0] = 0x27; /* Register - Host to Device FIS */
393 fis[1] = pmp & 0xf; /* Port multiplier number*/
394 if (is_cmd)
395 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
397 fis[2] = tf->command;
398 fis[3] = tf->feature;
400 fis[4] = tf->lbal;
401 fis[5] = tf->lbam;
402 fis[6] = tf->lbah;
403 fis[7] = tf->device;
405 fis[8] = tf->hob_lbal;
406 fis[9] = tf->hob_lbam;
407 fis[10] = tf->hob_lbah;
408 fis[11] = tf->hob_feature;
410 fis[12] = tf->nsect;
411 fis[13] = tf->hob_nsect;
412 fis[14] = 0;
413 fis[15] = tf->ctl;
415 fis[16] = 0;
416 fis[17] = 0;
417 fis[18] = 0;
418 fis[19] = 0;
422 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
423 * @fis: Buffer from which data will be input
424 * @tf: Taskfile to output
426 * Converts a serial ATA FIS structure to a standard ATA taskfile.
428 * LOCKING:
429 * Inherited from caller.
432 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
434 tf->command = fis[2]; /* status */
435 tf->feature = fis[3]; /* error */
437 tf->lbal = fis[4];
438 tf->lbam = fis[5];
439 tf->lbah = fis[6];
440 tf->device = fis[7];
442 tf->hob_lbal = fis[8];
443 tf->hob_lbam = fis[9];
444 tf->hob_lbah = fis[10];
446 tf->nsect = fis[12];
447 tf->hob_nsect = fis[13];
450 static const u8 ata_rw_cmds[] = {
451 /* pio multi */
452 ATA_CMD_READ_MULTI,
453 ATA_CMD_WRITE_MULTI,
454 ATA_CMD_READ_MULTI_EXT,
455 ATA_CMD_WRITE_MULTI_EXT,
459 ATA_CMD_WRITE_MULTI_FUA_EXT,
460 /* pio */
461 ATA_CMD_PIO_READ,
462 ATA_CMD_PIO_WRITE,
463 ATA_CMD_PIO_READ_EXT,
464 ATA_CMD_PIO_WRITE_EXT,
469 /* dma */
470 ATA_CMD_READ,
471 ATA_CMD_WRITE,
472 ATA_CMD_READ_EXT,
473 ATA_CMD_WRITE_EXT,
477 ATA_CMD_WRITE_FUA_EXT
481 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
482 * @tf: command to examine and configure
483 * @dev: device tf belongs to
485 * Examine the device configuration and tf->flags to calculate
486 * the proper read/write commands and protocol to use.
488 * LOCKING:
489 * caller.
491 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
493 u8 cmd;
495 int index, fua, lba48, write;
497 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
498 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
499 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
501 if (dev->flags & ATA_DFLAG_PIO) {
502 tf->protocol = ATA_PROT_PIO;
503 index = dev->multi_count ? 0 : 8;
504 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
505 /* Unable to use DMA due to host limitation */
506 tf->protocol = ATA_PROT_PIO;
507 index = dev->multi_count ? 0 : 8;
508 } else {
509 tf->protocol = ATA_PROT_DMA;
510 index = 16;
513 cmd = ata_rw_cmds[index + fua + lba48 + write];
514 if (cmd) {
515 tf->command = cmd;
516 return 0;
518 return -1;
522 * ata_tf_read_block - Read block address from ATA taskfile
523 * @tf: ATA taskfile of interest
524 * @dev: ATA device @tf belongs to
526 * LOCKING:
527 * None.
529 * Read block address from @tf. This function can handle all
530 * three address formats - LBA, LBA48 and CHS. tf->protocol and
531 * flags select the address format to use.
533 * RETURNS:
534 * Block address read from @tf.
536 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
538 u64 block = 0;
540 if (tf->flags & ATA_TFLAG_LBA) {
541 if (tf->flags & ATA_TFLAG_LBA48) {
542 block |= (u64)tf->hob_lbah << 40;
543 block |= (u64)tf->hob_lbam << 32;
544 block |= tf->hob_lbal << 24;
545 } else
546 block |= (tf->device & 0xf) << 24;
548 block |= tf->lbah << 16;
549 block |= tf->lbam << 8;
550 block |= tf->lbal;
551 } else {
552 u32 cyl, head, sect;
554 cyl = tf->lbam | (tf->lbah << 8);
555 head = tf->device & 0xf;
556 sect = tf->lbal;
558 block = (cyl * dev->heads + head) * dev->sectors + sect;
561 return block;
565 * ata_build_rw_tf - Build ATA taskfile for given read/write request
566 * @tf: Target ATA taskfile
567 * @dev: ATA device @tf belongs to
568 * @block: Block address
569 * @n_block: Number of blocks
570 * @tf_flags: RW/FUA etc...
571 * @tag: tag
573 * LOCKING:
574 * None.
576 * Build ATA taskfile @tf for read/write request described by
577 * @block, @n_block, @tf_flags and @tag on @dev.
579 * RETURNS:
581 * 0 on success, -ERANGE if the request is too large for @dev,
582 * -EINVAL if the request is invalid.
584 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
585 u64 block, u32 n_block, unsigned int tf_flags,
586 unsigned int tag)
588 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
589 tf->flags |= tf_flags;
591 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
592 /* yay, NCQ */
593 if (!lba_48_ok(block, n_block))
594 return -ERANGE;
596 tf->protocol = ATA_PROT_NCQ;
597 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
599 if (tf->flags & ATA_TFLAG_WRITE)
600 tf->command = ATA_CMD_FPDMA_WRITE;
601 else
602 tf->command = ATA_CMD_FPDMA_READ;
604 tf->nsect = tag << 3;
605 tf->hob_feature = (n_block >> 8) & 0xff;
606 tf->feature = n_block & 0xff;
608 tf->hob_lbah = (block >> 40) & 0xff;
609 tf->hob_lbam = (block >> 32) & 0xff;
610 tf->hob_lbal = (block >> 24) & 0xff;
611 tf->lbah = (block >> 16) & 0xff;
612 tf->lbam = (block >> 8) & 0xff;
613 tf->lbal = block & 0xff;
615 tf->device = 1 << 6;
616 if (tf->flags & ATA_TFLAG_FUA)
617 tf->device |= 1 << 7;
618 } else if (dev->flags & ATA_DFLAG_LBA) {
619 tf->flags |= ATA_TFLAG_LBA;
621 if (lba_28_ok(block, n_block)) {
622 /* use LBA28 */
623 tf->device |= (block >> 24) & 0xf;
624 } else if (lba_48_ok(block, n_block)) {
625 if (!(dev->flags & ATA_DFLAG_LBA48))
626 return -ERANGE;
628 /* use LBA48 */
629 tf->flags |= ATA_TFLAG_LBA48;
631 tf->hob_nsect = (n_block >> 8) & 0xff;
633 tf->hob_lbah = (block >> 40) & 0xff;
634 tf->hob_lbam = (block >> 32) & 0xff;
635 tf->hob_lbal = (block >> 24) & 0xff;
636 } else
637 /* request too large even for LBA48 */
638 return -ERANGE;
640 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
641 return -EINVAL;
643 tf->nsect = n_block & 0xff;
645 tf->lbah = (block >> 16) & 0xff;
646 tf->lbam = (block >> 8) & 0xff;
647 tf->lbal = block & 0xff;
649 tf->device |= ATA_LBA;
650 } else {
651 /* CHS */
652 u32 sect, head, cyl, track;
654 /* The request -may- be too large for CHS addressing. */
655 if (!lba_28_ok(block, n_block))
656 return -ERANGE;
658 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
659 return -EINVAL;
661 /* Convert LBA to CHS */
662 track = (u32)block / dev->sectors;
663 cyl = track / dev->heads;
664 head = track % dev->heads;
665 sect = (u32)block % dev->sectors + 1;
667 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
668 (u32)block, track, cyl, head, sect);
670 /* Check whether the converted CHS can fit.
671 Cylinder: 0-65535
672 Head: 0-15
673 Sector: 1-255*/
674 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
675 return -ERANGE;
677 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
678 tf->lbal = sect;
679 tf->lbam = cyl;
680 tf->lbah = cyl >> 8;
681 tf->device |= head;
684 return 0;
688 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
689 * @pio_mask: pio_mask
690 * @mwdma_mask: mwdma_mask
691 * @udma_mask: udma_mask
693 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
694 * unsigned int xfer_mask.
696 * LOCKING:
697 * None.
699 * RETURNS:
700 * Packed xfer_mask.
702 unsigned long ata_pack_xfermask(unsigned long pio_mask,
703 unsigned long mwdma_mask,
704 unsigned long udma_mask)
706 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
707 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
708 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
712 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
713 * @xfer_mask: xfer_mask to unpack
714 * @pio_mask: resulting pio_mask
715 * @mwdma_mask: resulting mwdma_mask
716 * @udma_mask: resulting udma_mask
718 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
719 * Any NULL distination masks will be ignored.
721 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
722 unsigned long *mwdma_mask, unsigned long *udma_mask)
724 if (pio_mask)
725 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
726 if (mwdma_mask)
727 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
728 if (udma_mask)
729 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
732 static const struct ata_xfer_ent {
733 int shift, bits;
734 u8 base;
735 } ata_xfer_tbl[] = {
736 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
737 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
738 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
739 { -1, },
743 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
744 * @xfer_mask: xfer_mask of interest
746 * Return matching XFER_* value for @xfer_mask. Only the highest
747 * bit of @xfer_mask is considered.
749 * LOCKING:
750 * None.
752 * RETURNS:
753 * Matching XFER_* value, 0xff if no match found.
755 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
757 int highbit = fls(xfer_mask) - 1;
758 const struct ata_xfer_ent *ent;
760 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
761 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
762 return ent->base + highbit - ent->shift;
763 return 0xff;
767 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
768 * @xfer_mode: XFER_* of interest
770 * Return matching xfer_mask for @xfer_mode.
772 * LOCKING:
773 * None.
775 * RETURNS:
776 * Matching xfer_mask, 0 if no match found.
778 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
780 const struct ata_xfer_ent *ent;
782 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
783 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
784 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
785 & ~((1 << ent->shift) - 1);
786 return 0;
790 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
791 * @xfer_mode: XFER_* of interest
793 * Return matching xfer_shift for @xfer_mode.
795 * LOCKING:
796 * None.
798 * RETURNS:
799 * Matching xfer_shift, -1 if no match found.
801 int ata_xfer_mode2shift(unsigned long xfer_mode)
803 const struct ata_xfer_ent *ent;
805 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
806 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
807 return ent->shift;
808 return -1;
812 * ata_mode_string - convert xfer_mask to string
813 * @xfer_mask: mask of bits supported; only highest bit counts.
815 * Determine string which represents the highest speed
816 * (highest bit in @modemask).
818 * LOCKING:
819 * None.
821 * RETURNS:
822 * Constant C string representing highest speed listed in
823 * @mode_mask, or the constant C string "<n/a>".
825 const char *ata_mode_string(unsigned long xfer_mask)
827 static const char * const xfer_mode_str[] = {
828 "PIO0",
829 "PIO1",
830 "PIO2",
831 "PIO3",
832 "PIO4",
833 "PIO5",
834 "PIO6",
835 "MWDMA0",
836 "MWDMA1",
837 "MWDMA2",
838 "MWDMA3",
839 "MWDMA4",
840 "UDMA/16",
841 "UDMA/25",
842 "UDMA/33",
843 "UDMA/44",
844 "UDMA/66",
845 "UDMA/100",
846 "UDMA/133",
847 "UDMA7",
849 int highbit;
851 highbit = fls(xfer_mask) - 1;
852 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
853 return xfer_mode_str[highbit];
854 return "<n/a>";
857 static const char *sata_spd_string(unsigned int spd)
859 static const char * const spd_str[] = {
860 "1.5 Gbps",
861 "3.0 Gbps",
864 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
865 return "<unknown>";
866 return spd_str[spd - 1];
869 void ata_dev_disable(struct ata_device *dev)
871 if (ata_dev_enabled(dev)) {
872 if (ata_msg_drv(dev->link->ap))
873 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
874 ata_acpi_on_disable(dev);
875 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
876 ATA_DNXFER_QUIET);
877 dev->class++;
881 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
883 struct ata_link *link = dev->link;
884 struct ata_port *ap = link->ap;
885 u32 scontrol;
886 unsigned int err_mask;
887 int rc;
890 * disallow DIPM for drivers which haven't set
891 * ATA_FLAG_IPM. This is because when DIPM is enabled,
892 * phy ready will be set in the interrupt status on
893 * state changes, which will cause some drivers to
894 * think there are errors - additionally drivers will
895 * need to disable hot plug.
897 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
898 ap->pm_policy = NOT_AVAILABLE;
899 return -EINVAL;
903 * For DIPM, we will only enable it for the
904 * min_power setting.
906 * Why? Because Disks are too stupid to know that
907 * If the host rejects a request to go to SLUMBER
908 * they should retry at PARTIAL, and instead it
909 * just would give up. So, for medium_power to
910 * work at all, we need to only allow HIPM.
912 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
913 if (rc)
914 return rc;
916 switch (policy) {
917 case MIN_POWER:
918 /* no restrictions on IPM transitions */
919 scontrol &= ~(0x3 << 8);
920 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
921 if (rc)
922 return rc;
924 /* enable DIPM */
925 if (dev->flags & ATA_DFLAG_DIPM)
926 err_mask = ata_dev_set_feature(dev,
927 SETFEATURES_SATA_ENABLE, SATA_DIPM);
928 break;
929 case MEDIUM_POWER:
930 /* allow IPM to PARTIAL */
931 scontrol &= ~(0x1 << 8);
932 scontrol |= (0x2 << 8);
933 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
934 if (rc)
935 return rc;
938 * we don't have to disable DIPM since IPM flags
939 * disallow transitions to SLUMBER, which effectively
940 * disable DIPM if it does not support PARTIAL
942 break;
943 case NOT_AVAILABLE:
944 case MAX_PERFORMANCE:
945 /* disable all IPM transitions */
946 scontrol |= (0x3 << 8);
947 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
948 if (rc)
949 return rc;
952 * we don't have to disable DIPM since IPM flags
953 * disallow all transitions which effectively
954 * disable DIPM anyway.
956 break;
959 /* FIXME: handle SET FEATURES failure */
960 (void) err_mask;
962 return 0;
966 * ata_dev_enable_pm - enable SATA interface power management
967 * @dev: device to enable power management
968 * @policy: the link power management policy
970 * Enable SATA Interface power management. This will enable
971 * Device Interface Power Management (DIPM) for min_power
972 * policy, and then call driver specific callbacks for
973 * enabling Host Initiated Power management.
975 * Locking: Caller.
976 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
978 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
980 int rc = 0;
981 struct ata_port *ap = dev->link->ap;
983 /* set HIPM first, then DIPM */
984 if (ap->ops->enable_pm)
985 rc = ap->ops->enable_pm(ap, policy);
986 if (rc)
987 goto enable_pm_out;
988 rc = ata_dev_set_dipm(dev, policy);
990 enable_pm_out:
991 if (rc)
992 ap->pm_policy = MAX_PERFORMANCE;
993 else
994 ap->pm_policy = policy;
995 return /* rc */; /* hopefully we can use 'rc' eventually */
998 #ifdef CONFIG_PM
1000 * ata_dev_disable_pm - disable SATA interface power management
1001 * @dev: device to disable power management
1003 * Disable SATA Interface power management. This will disable
1004 * Device Interface Power Management (DIPM) without changing
1005 * policy, call driver specific callbacks for disabling Host
1006 * Initiated Power management.
1008 * Locking: Caller.
1009 * Returns: void
1011 static void ata_dev_disable_pm(struct ata_device *dev)
1013 struct ata_port *ap = dev->link->ap;
1015 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1016 if (ap->ops->disable_pm)
1017 ap->ops->disable_pm(ap);
1019 #endif /* CONFIG_PM */
1021 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1023 ap->pm_policy = policy;
1024 ap->link.eh_info.action |= ATA_EH_LPM;
1025 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1026 ata_port_schedule_eh(ap);
1029 #ifdef CONFIG_PM
1030 static void ata_lpm_enable(struct ata_host *host)
1032 struct ata_link *link;
1033 struct ata_port *ap;
1034 struct ata_device *dev;
1035 int i;
1037 for (i = 0; i < host->n_ports; i++) {
1038 ap = host->ports[i];
1039 ata_port_for_each_link(link, ap) {
1040 ata_link_for_each_dev(dev, link)
1041 ata_dev_disable_pm(dev);
1046 static void ata_lpm_disable(struct ata_host *host)
1048 int i;
1050 for (i = 0; i < host->n_ports; i++) {
1051 struct ata_port *ap = host->ports[i];
1052 ata_lpm_schedule(ap, ap->pm_policy);
1055 #endif /* CONFIG_PM */
1058 * ata_dev_classify - determine device type based on ATA-spec signature
1059 * @tf: ATA taskfile register set for device to be identified
1061 * Determine from taskfile register contents whether a device is
1062 * ATA or ATAPI, as per "Signature and persistence" section
1063 * of ATA/PI spec (volume 1, sect 5.14).
1065 * LOCKING:
1066 * None.
1068 * RETURNS:
1069 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1070 * %ATA_DEV_UNKNOWN the event of failure.
1072 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1074 /* Apple's open source Darwin code hints that some devices only
1075 * put a proper signature into the LBA mid/high registers,
1076 * So, we only check those. It's sufficient for uniqueness.
1078 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1079 * signatures for ATA and ATAPI devices attached on SerialATA,
1080 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1081 * spec has never mentioned about using different signatures
1082 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1083 * Multiplier specification began to use 0x69/0x96 to identify
1084 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1085 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1086 * 0x69/0x96 shortly and described them as reserved for
1087 * SerialATA.
1089 * We follow the current spec and consider that 0x69/0x96
1090 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1092 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1093 DPRINTK("found ATA device by sig\n");
1094 return ATA_DEV_ATA;
1097 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1098 DPRINTK("found ATAPI device by sig\n");
1099 return ATA_DEV_ATAPI;
1102 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1103 DPRINTK("found PMP device by sig\n");
1104 return ATA_DEV_PMP;
1107 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1108 printk(KERN_INFO "ata: SEMB device ignored\n");
1109 return ATA_DEV_SEMB_UNSUP; /* not yet */
1112 DPRINTK("unknown device\n");
1113 return ATA_DEV_UNKNOWN;
1117 * ata_id_string - Convert IDENTIFY DEVICE page into string
1118 * @id: IDENTIFY DEVICE results we will examine
1119 * @s: string into which data is output
1120 * @ofs: offset into identify device page
1121 * @len: length of string to return. must be an even number.
1123 * The strings in the IDENTIFY DEVICE page are broken up into
1124 * 16-bit chunks. Run through the string, and output each
1125 * 8-bit chunk linearly, regardless of platform.
1127 * LOCKING:
1128 * caller.
1131 void ata_id_string(const u16 *id, unsigned char *s,
1132 unsigned int ofs, unsigned int len)
1134 unsigned int c;
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1145 ofs++;
1146 len -= 2;
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1161 * LOCKING:
1162 * caller.
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1167 unsigned char *p;
1169 WARN_ON(!(len & 1));
1171 ata_id_string(id, s, ofs, len - 1);
1173 p = s + strnlen(s, len - 1);
1174 while (p > s && p[-1] == ' ')
1175 p--;
1176 *p = '\0';
1179 static u64 ata_id_n_sectors(const u16 *id)
1181 if (ata_id_has_lba(id)) {
1182 if (ata_id_has_lba48(id))
1183 return ata_id_u64(id, 100);
1184 else
1185 return ata_id_u32(id, 60);
1186 } else {
1187 if (ata_id_current_chs_valid(id))
1188 return ata_id_u32(id, 57);
1189 else
1190 return id[1] * id[3] * id[6];
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1196 u64 sectors = 0;
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= (tf->hob_lbal & 0xff) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1205 return sectors;
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1210 u64 sectors = 0;
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1217 return sectors;
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1238 ata_tf_init(dev, &tf);
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1249 tf.protocol |= ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1255 "max address (err_mask=0x%x)\n", err_mask);
1256 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1257 return -EACCES;
1258 return -EIO;
1261 if (lba48)
1262 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1263 else
1264 *max_sectors = ata_tf_to_lba(&tf) + 1;
1265 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1266 (*max_sectors)--;
1267 return 0;
1271 * ata_set_max_sectors - Set max sectors
1272 * @dev: target device
1273 * @new_sectors: new max sectors value to set for the device
1275 * Set max sectors of @dev to @new_sectors.
1277 * RETURNS:
1278 * 0 on success, -EACCES if command is aborted or denied (due to
1279 * previous non-volatile SET_MAX) by the drive. -EIO on other
1280 * errors.
1282 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 unsigned int err_mask;
1285 struct ata_taskfile tf;
1286 int lba48 = ata_id_has_lba48(dev->id);
1288 new_sectors--;
1290 ata_tf_init(dev, &tf);
1292 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294 if (lba48) {
1295 tf.command = ATA_CMD_SET_MAX_EXT;
1296 tf.flags |= ATA_TFLAG_LBA48;
1298 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1299 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1300 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1301 } else {
1302 tf.command = ATA_CMD_SET_MAX;
1304 tf.device |= (new_sectors >> 24) & 0xf;
1307 tf.protocol |= ATA_PROT_NODATA;
1308 tf.device |= ATA_LBA;
1310 tf.lbal = (new_sectors >> 0) & 0xff;
1311 tf.lbam = (new_sectors >> 8) & 0xff;
1312 tf.lbah = (new_sectors >> 16) & 0xff;
1314 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1315 if (err_mask) {
1316 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1317 "max address (err_mask=0x%x)\n", err_mask);
1318 if (err_mask == AC_ERR_DEV &&
1319 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1320 return -EACCES;
1321 return -EIO;
1324 return 0;
1328 * ata_hpa_resize - Resize a device with an HPA set
1329 * @dev: Device to resize
1331 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1332 * it if required to the full size of the media. The caller must check
1333 * the drive has the HPA feature set enabled.
1335 * RETURNS:
1336 * 0 on success, -errno on failure.
1338 static int ata_hpa_resize(struct ata_device *dev)
1340 struct ata_eh_context *ehc = &dev->link->eh_context;
1341 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1342 u64 sectors = ata_id_n_sectors(dev->id);
1343 u64 native_sectors;
1344 int rc;
1346 /* do we need to do it? */
1347 if (dev->class != ATA_DEV_ATA ||
1348 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1349 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1350 return 0;
1352 /* read native max address */
1353 rc = ata_read_native_max_address(dev, &native_sectors);
1354 if (rc) {
1355 /* If device aborted the command or HPA isn't going to
1356 * be unlocked, skip HPA resizing.
1358 if (rc == -EACCES || !ata_ignore_hpa) {
1359 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1360 "broken, skipping HPA handling\n");
1361 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1363 /* we can continue if device aborted the command */
1364 if (rc == -EACCES)
1365 rc = 0;
1368 return rc;
1371 /* nothing to do? */
1372 if (native_sectors <= sectors || !ata_ignore_hpa) {
1373 if (!print_info || native_sectors == sectors)
1374 return 0;
1376 if (native_sectors > sectors)
1377 ata_dev_printk(dev, KERN_INFO,
1378 "HPA detected: current %llu, native %llu\n",
1379 (unsigned long long)sectors,
1380 (unsigned long long)native_sectors);
1381 else if (native_sectors < sectors)
1382 ata_dev_printk(dev, KERN_WARNING,
1383 "native sectors (%llu) is smaller than "
1384 "sectors (%llu)\n",
1385 (unsigned long long)native_sectors,
1386 (unsigned long long)sectors);
1387 return 0;
1390 /* let's unlock HPA */
1391 rc = ata_set_max_sectors(dev, native_sectors);
1392 if (rc == -EACCES) {
1393 /* if device aborted the command, skip HPA resizing */
1394 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1395 "(%llu -> %llu), skipping HPA handling\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)native_sectors);
1398 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1399 return 0;
1400 } else if (rc)
1401 return rc;
1403 /* re-read IDENTIFY data */
1404 rc = ata_dev_reread_id(dev, 0);
1405 if (rc) {
1406 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1407 "data after HPA resizing\n");
1408 return rc;
1411 if (print_info) {
1412 u64 new_sectors = ata_id_n_sectors(dev->id);
1413 ata_dev_printk(dev, KERN_INFO,
1414 "HPA unlocked: %llu -> %llu, native %llu\n",
1415 (unsigned long long)sectors,
1416 (unsigned long long)new_sectors,
1417 (unsigned long long)native_sectors);
1420 return 0;
1424 * ata_dump_id - IDENTIFY DEVICE info debugging output
1425 * @id: IDENTIFY DEVICE page to dump
1427 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1428 * page.
1430 * LOCKING:
1431 * caller.
1434 static inline void ata_dump_id(const u16 *id)
1436 DPRINTK("49==0x%04x "
1437 "53==0x%04x "
1438 "63==0x%04x "
1439 "64==0x%04x "
1440 "75==0x%04x \n",
1441 id[49],
1442 id[53],
1443 id[63],
1444 id[64],
1445 id[75]);
1446 DPRINTK("80==0x%04x "
1447 "81==0x%04x "
1448 "82==0x%04x "
1449 "83==0x%04x "
1450 "84==0x%04x \n",
1451 id[80],
1452 id[81],
1453 id[82],
1454 id[83],
1455 id[84]);
1456 DPRINTK("88==0x%04x "
1457 "93==0x%04x\n",
1458 id[88],
1459 id[93]);
1463 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1464 * @id: IDENTIFY data to compute xfer mask from
1466 * Compute the xfermask for this device. This is not as trivial
1467 * as it seems if we must consider early devices correctly.
1469 * FIXME: pre IDE drive timing (do we care ?).
1471 * LOCKING:
1472 * None.
1474 * RETURNS:
1475 * Computed xfermask
1477 unsigned long ata_id_xfermask(const u16 *id)
1479 unsigned long pio_mask, mwdma_mask, udma_mask;
1481 /* Usual case. Word 53 indicates word 64 is valid */
1482 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1483 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1484 pio_mask <<= 3;
1485 pio_mask |= 0x7;
1486 } else {
1487 /* If word 64 isn't valid then Word 51 high byte holds
1488 * the PIO timing number for the maximum. Turn it into
1489 * a mask.
1491 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1492 if (mode < 5) /* Valid PIO range */
1493 pio_mask = (2 << mode) - 1;
1494 else
1495 pio_mask = 1;
1497 /* But wait.. there's more. Design your standards by
1498 * committee and you too can get a free iordy field to
1499 * process. However its the speeds not the modes that
1500 * are supported... Note drivers using the timing API
1501 * will get this right anyway
1505 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1507 if (ata_id_is_cfa(id)) {
1509 * Process compact flash extended modes
1511 int pio = id[163] & 0x7;
1512 int dma = (id[163] >> 3) & 7;
1514 if (pio)
1515 pio_mask |= (1 << 5);
1516 if (pio > 1)
1517 pio_mask |= (1 << 6);
1518 if (dma)
1519 mwdma_mask |= (1 << 3);
1520 if (dma > 1)
1521 mwdma_mask |= (1 << 4);
1524 udma_mask = 0;
1525 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1526 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1528 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 * ata_pio_queue_task - Queue port_task
1533 * @ap: The ata_port to queue port_task for
1534 * @fn: workqueue function to be scheduled
1535 * @data: data for @fn to use
1536 * @delay: delay time for workqueue function
1538 * Schedule @fn(@data) for execution after @delay jiffies using
1539 * port_task. There is one port_task per port and it's the
1540 * user(low level driver)'s responsibility to make sure that only
1541 * one task is active at any given time.
1543 * libata core layer takes care of synchronization between
1544 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1545 * synchronization.
1547 * LOCKING:
1548 * Inherited from caller.
1550 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1552 ap->port_task_data = data;
1554 /* may fail if ata_port_flush_task() in progress */
1555 queue_delayed_work(ata_wq, &ap->port_task, delay);
1559 * ata_port_flush_task - Flush port_task
1560 * @ap: The ata_port to flush port_task for
1562 * After this function completes, port_task is guranteed not to
1563 * be running or scheduled.
1565 * LOCKING:
1566 * Kernel thread context (may sleep)
1568 void ata_port_flush_task(struct ata_port *ap)
1570 DPRINTK("ENTER\n");
1572 cancel_rearming_delayed_work(&ap->port_task);
1574 if (ata_msg_ctl(ap))
1575 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1578 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1580 struct completion *waiting = qc->private_data;
1582 complete(waiting);
1586 * ata_exec_internal_sg - execute libata internal command
1587 * @dev: Device to which the command is sent
1588 * @tf: Taskfile registers for the command and the result
1589 * @cdb: CDB for packet command
1590 * @dma_dir: Data tranfer direction of the command
1591 * @sgl: sg list for the data buffer of the command
1592 * @n_elem: Number of sg entries
1593 * @timeout: Timeout in msecs (0 for default)
1595 * Executes libata internal command with timeout. @tf contains
1596 * command on entry and result on return. Timeout and error
1597 * conditions are reported via return value. No recovery action
1598 * is taken after a command times out. It's caller's duty to
1599 * clean up after timeout.
1601 * LOCKING:
1602 * None. Should be called with kernel context, might sleep.
1604 * RETURNS:
1605 * Zero on success, AC_ERR_* mask on failure
1607 unsigned ata_exec_internal_sg(struct ata_device *dev,
1608 struct ata_taskfile *tf, const u8 *cdb,
1609 int dma_dir, struct scatterlist *sgl,
1610 unsigned int n_elem, unsigned long timeout)
1612 struct ata_link *link = dev->link;
1613 struct ata_port *ap = link->ap;
1614 u8 command = tf->command;
1615 struct ata_queued_cmd *qc;
1616 unsigned int tag, preempted_tag;
1617 u32 preempted_sactive, preempted_qc_active;
1618 int preempted_nr_active_links;
1619 DECLARE_COMPLETION_ONSTACK(wait);
1620 unsigned long flags;
1621 unsigned int err_mask;
1622 int rc;
1624 spin_lock_irqsave(ap->lock, flags);
1626 /* no internal command while frozen */
1627 if (ap->pflags & ATA_PFLAG_FROZEN) {
1628 spin_unlock_irqrestore(ap->lock, flags);
1629 return AC_ERR_SYSTEM;
1632 /* initialize internal qc */
1634 /* XXX: Tag 0 is used for drivers with legacy EH as some
1635 * drivers choke if any other tag is given. This breaks
1636 * ata_tag_internal() test for those drivers. Don't use new
1637 * EH stuff without converting to it.
1639 if (ap->ops->error_handler)
1640 tag = ATA_TAG_INTERNAL;
1641 else
1642 tag = 0;
1644 if (test_and_set_bit(tag, &ap->qc_allocated))
1645 BUG();
1646 qc = __ata_qc_from_tag(ap, tag);
1648 qc->tag = tag;
1649 qc->scsicmd = NULL;
1650 qc->ap = ap;
1651 qc->dev = dev;
1652 ata_qc_reinit(qc);
1654 preempted_tag = link->active_tag;
1655 preempted_sactive = link->sactive;
1656 preempted_qc_active = ap->qc_active;
1657 preempted_nr_active_links = ap->nr_active_links;
1658 link->active_tag = ATA_TAG_POISON;
1659 link->sactive = 0;
1660 ap->qc_active = 0;
1661 ap->nr_active_links = 0;
1663 /* prepare & issue qc */
1664 qc->tf = *tf;
1665 if (cdb)
1666 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1667 qc->flags |= ATA_QCFLAG_RESULT_TF;
1668 qc->dma_dir = dma_dir;
1669 if (dma_dir != DMA_NONE) {
1670 unsigned int i, buflen = 0;
1671 struct scatterlist *sg;
1673 for_each_sg(sgl, sg, n_elem, i)
1674 buflen += sg->length;
1676 ata_sg_init(qc, sgl, n_elem);
1677 qc->nbytes = buflen;
1680 qc->private_data = &wait;
1681 qc->complete_fn = ata_qc_complete_internal;
1683 ata_qc_issue(qc);
1685 spin_unlock_irqrestore(ap->lock, flags);
1687 if (!timeout)
1688 timeout = ata_probe_timeout * 1000 / HZ;
1690 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1692 ata_port_flush_task(ap);
1694 if (!rc) {
1695 spin_lock_irqsave(ap->lock, flags);
1697 /* We're racing with irq here. If we lose, the
1698 * following test prevents us from completing the qc
1699 * twice. If we win, the port is frozen and will be
1700 * cleaned up by ->post_internal_cmd().
1702 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1703 qc->err_mask |= AC_ERR_TIMEOUT;
1705 if (ap->ops->error_handler)
1706 ata_port_freeze(ap);
1707 else
1708 ata_qc_complete(qc);
1710 if (ata_msg_warn(ap))
1711 ata_dev_printk(dev, KERN_WARNING,
1712 "qc timeout (cmd 0x%x)\n", command);
1715 spin_unlock_irqrestore(ap->lock, flags);
1718 /* do post_internal_cmd */
1719 if (ap->ops->post_internal_cmd)
1720 ap->ops->post_internal_cmd(qc);
1722 /* perform minimal error analysis */
1723 if (qc->flags & ATA_QCFLAG_FAILED) {
1724 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1725 qc->err_mask |= AC_ERR_DEV;
1727 if (!qc->err_mask)
1728 qc->err_mask |= AC_ERR_OTHER;
1730 if (qc->err_mask & ~AC_ERR_OTHER)
1731 qc->err_mask &= ~AC_ERR_OTHER;
1734 /* finish up */
1735 spin_lock_irqsave(ap->lock, flags);
1737 *tf = qc->result_tf;
1738 err_mask = qc->err_mask;
1740 ata_qc_free(qc);
1741 link->active_tag = preempted_tag;
1742 link->sactive = preempted_sactive;
1743 ap->qc_active = preempted_qc_active;
1744 ap->nr_active_links = preempted_nr_active_links;
1746 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1747 * Until those drivers are fixed, we detect the condition
1748 * here, fail the command with AC_ERR_SYSTEM and reenable the
1749 * port.
1751 * Note that this doesn't change any behavior as internal
1752 * command failure results in disabling the device in the
1753 * higher layer for LLDDs without new reset/EH callbacks.
1755 * Kill the following code as soon as those drivers are fixed.
1757 if (ap->flags & ATA_FLAG_DISABLED) {
1758 err_mask |= AC_ERR_SYSTEM;
1759 ata_port_probe(ap);
1762 spin_unlock_irqrestore(ap->lock, flags);
1764 return err_mask;
1768 * ata_exec_internal - execute libata internal command
1769 * @dev: Device to which the command is sent
1770 * @tf: Taskfile registers for the command and the result
1771 * @cdb: CDB for packet command
1772 * @dma_dir: Data tranfer direction of the command
1773 * @buf: Data buffer of the command
1774 * @buflen: Length of data buffer
1775 * @timeout: Timeout in msecs (0 for default)
1777 * Wrapper around ata_exec_internal_sg() which takes simple
1778 * buffer instead of sg list.
1780 * LOCKING:
1781 * None. Should be called with kernel context, might sleep.
1783 * RETURNS:
1784 * Zero on success, AC_ERR_* mask on failure
1786 unsigned ata_exec_internal(struct ata_device *dev,
1787 struct ata_taskfile *tf, const u8 *cdb,
1788 int dma_dir, void *buf, unsigned int buflen,
1789 unsigned long timeout)
1791 struct scatterlist *psg = NULL, sg;
1792 unsigned int n_elem = 0;
1794 if (dma_dir != DMA_NONE) {
1795 WARN_ON(!buf);
1796 sg_init_one(&sg, buf, buflen);
1797 psg = &sg;
1798 n_elem++;
1801 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1802 timeout);
1806 * ata_do_simple_cmd - execute simple internal command
1807 * @dev: Device to which the command is sent
1808 * @cmd: Opcode to execute
1810 * Execute a 'simple' command, that only consists of the opcode
1811 * 'cmd' itself, without filling any other registers
1813 * LOCKING:
1814 * Kernel thread context (may sleep).
1816 * RETURNS:
1817 * Zero on success, AC_ERR_* mask on failure
1819 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1821 struct ata_taskfile tf;
1823 ata_tf_init(dev, &tf);
1825 tf.command = cmd;
1826 tf.flags |= ATA_TFLAG_DEVICE;
1827 tf.protocol = ATA_PROT_NODATA;
1829 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1833 * ata_pio_need_iordy - check if iordy needed
1834 * @adev: ATA device
1836 * Check if the current speed of the device requires IORDY. Used
1837 * by various controllers for chip configuration.
1840 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1842 /* Controller doesn't support IORDY. Probably a pointless check
1843 as the caller should know this */
1844 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1845 return 0;
1846 /* PIO3 and higher it is mandatory */
1847 if (adev->pio_mode > XFER_PIO_2)
1848 return 1;
1849 /* We turn it on when possible */
1850 if (ata_id_has_iordy(adev->id))
1851 return 1;
1852 return 0;
1856 * ata_pio_mask_no_iordy - Return the non IORDY mask
1857 * @adev: ATA device
1859 * Compute the highest mode possible if we are not using iordy. Return
1860 * -1 if no iordy mode is available.
1863 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1865 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1866 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1867 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1868 /* Is the speed faster than the drive allows non IORDY ? */
1869 if (pio) {
1870 /* This is cycle times not frequency - watch the logic! */
1871 if (pio > 240) /* PIO2 is 240nS per cycle */
1872 return 3 << ATA_SHIFT_PIO;
1873 return 7 << ATA_SHIFT_PIO;
1876 return 3 << ATA_SHIFT_PIO;
1880 * ata_dev_read_id - Read ID data from the specified device
1881 * @dev: target device
1882 * @p_class: pointer to class of the target device (may be changed)
1883 * @flags: ATA_READID_* flags
1884 * @id: buffer to read IDENTIFY data into
1886 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1887 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1888 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1889 * for pre-ATA4 drives.
1891 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1892 * now we abort if we hit that case.
1894 * LOCKING:
1895 * Kernel thread context (may sleep)
1897 * RETURNS:
1898 * 0 on success, -errno otherwise.
1900 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1901 unsigned int flags, u16 *id)
1903 struct ata_port *ap = dev->link->ap;
1904 unsigned int class = *p_class;
1905 struct ata_taskfile tf;
1906 unsigned int err_mask = 0;
1907 const char *reason;
1908 int may_fallback = 1, tried_spinup = 0;
1909 int rc;
1911 if (ata_msg_ctl(ap))
1912 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1914 retry:
1915 ata_tf_init(dev, &tf);
1917 switch (class) {
1918 case ATA_DEV_ATA:
1919 tf.command = ATA_CMD_ID_ATA;
1920 break;
1921 case ATA_DEV_ATAPI:
1922 tf.command = ATA_CMD_ID_ATAPI;
1923 break;
1924 default:
1925 rc = -ENODEV;
1926 reason = "unsupported class";
1927 goto err_out;
1930 tf.protocol = ATA_PROT_PIO;
1932 /* Some devices choke if TF registers contain garbage. Make
1933 * sure those are properly initialized.
1935 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1937 /* Device presence detection is unreliable on some
1938 * controllers. Always poll IDENTIFY if available.
1940 tf.flags |= ATA_TFLAG_POLLING;
1942 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1943 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1944 if (err_mask) {
1945 if (err_mask & AC_ERR_NODEV_HINT) {
1946 ata_dev_printk(dev, KERN_DEBUG,
1947 "NODEV after polling detection\n");
1948 return -ENOENT;
1951 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1952 /* Device or controller might have reported
1953 * the wrong device class. Give a shot at the
1954 * other IDENTIFY if the current one is
1955 * aborted by the device.
1957 if (may_fallback) {
1958 may_fallback = 0;
1960 if (class == ATA_DEV_ATA)
1961 class = ATA_DEV_ATAPI;
1962 else
1963 class = ATA_DEV_ATA;
1964 goto retry;
1967 /* Control reaches here iff the device aborted
1968 * both flavors of IDENTIFYs which happens
1969 * sometimes with phantom devices.
1971 ata_dev_printk(dev, KERN_DEBUG,
1972 "both IDENTIFYs aborted, assuming NODEV\n");
1973 return -ENOENT;
1976 rc = -EIO;
1977 reason = "I/O error";
1978 goto err_out;
1981 /* Falling back doesn't make sense if ID data was read
1982 * successfully at least once.
1984 may_fallback = 0;
1986 swap_buf_le16(id, ATA_ID_WORDS);
1988 /* sanity check */
1989 rc = -EINVAL;
1990 reason = "device reports invalid type";
1992 if (class == ATA_DEV_ATA) {
1993 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1994 goto err_out;
1995 } else {
1996 if (ata_id_is_ata(id))
1997 goto err_out;
2000 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2001 tried_spinup = 1;
2003 * Drive powered-up in standby mode, and requires a specific
2004 * SET_FEATURES spin-up subcommand before it will accept
2005 * anything other than the original IDENTIFY command.
2007 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2008 if (err_mask && id[2] != 0x738c) {
2009 rc = -EIO;
2010 reason = "SPINUP failed";
2011 goto err_out;
2014 * If the drive initially returned incomplete IDENTIFY info,
2015 * we now must reissue the IDENTIFY command.
2017 if (id[2] == 0x37c8)
2018 goto retry;
2021 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2023 * The exact sequence expected by certain pre-ATA4 drives is:
2024 * SRST RESET
2025 * IDENTIFY (optional in early ATA)
2026 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2027 * anything else..
2028 * Some drives were very specific about that exact sequence.
2030 * Note that ATA4 says lba is mandatory so the second check
2031 * shoud never trigger.
2033 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2034 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2035 if (err_mask) {
2036 rc = -EIO;
2037 reason = "INIT_DEV_PARAMS failed";
2038 goto err_out;
2041 /* current CHS translation info (id[53-58]) might be
2042 * changed. reread the identify device info.
2044 flags &= ~ATA_READID_POSTRESET;
2045 goto retry;
2049 *p_class = class;
2051 return 0;
2053 err_out:
2054 if (ata_msg_warn(ap))
2055 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2056 "(%s, err_mask=0x%x)\n", reason, err_mask);
2057 return rc;
2060 static inline u8 ata_dev_knobble(struct ata_device *dev)
2062 struct ata_port *ap = dev->link->ap;
2063 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2066 static void ata_dev_config_ncq(struct ata_device *dev,
2067 char *desc, size_t desc_sz)
2069 struct ata_port *ap = dev->link->ap;
2070 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2072 if (!ata_id_has_ncq(dev->id)) {
2073 desc[0] = '\0';
2074 return;
2076 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2077 snprintf(desc, desc_sz, "NCQ (not used)");
2078 return;
2080 if (ap->flags & ATA_FLAG_NCQ) {
2081 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2082 dev->flags |= ATA_DFLAG_NCQ;
2085 if (hdepth >= ddepth)
2086 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2087 else
2088 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2092 * ata_dev_configure - Configure the specified ATA/ATAPI device
2093 * @dev: Target device to configure
2095 * Configure @dev according to @dev->id. Generic and low-level
2096 * driver specific fixups are also applied.
2098 * LOCKING:
2099 * Kernel thread context (may sleep)
2101 * RETURNS:
2102 * 0 on success, -errno otherwise
2104 int ata_dev_configure(struct ata_device *dev)
2106 struct ata_port *ap = dev->link->ap;
2107 struct ata_eh_context *ehc = &dev->link->eh_context;
2108 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2109 const u16 *id = dev->id;
2110 unsigned long xfer_mask;
2111 char revbuf[7]; /* XYZ-99\0 */
2112 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2113 char modelbuf[ATA_ID_PROD_LEN+1];
2114 int rc;
2116 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2117 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2118 __func__);
2119 return 0;
2122 if (ata_msg_probe(ap))
2123 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2125 /* set horkage */
2126 dev->horkage |= ata_dev_blacklisted(dev);
2127 ata_force_horkage(dev);
2129 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2130 ata_dev_printk(dev, KERN_INFO,
2131 "unsupported device, disabling\n");
2132 ata_dev_disable(dev);
2133 return 0;
2136 /* let ACPI work its magic */
2137 rc = ata_acpi_on_devcfg(dev);
2138 if (rc)
2139 return rc;
2141 /* massage HPA, do it early as it might change IDENTIFY data */
2142 rc = ata_hpa_resize(dev);
2143 if (rc)
2144 return rc;
2146 /* print device capabilities */
2147 if (ata_msg_probe(ap))
2148 ata_dev_printk(dev, KERN_DEBUG,
2149 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2150 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2151 __func__,
2152 id[49], id[82], id[83], id[84],
2153 id[85], id[86], id[87], id[88]);
2155 /* initialize to-be-configured parameters */
2156 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2157 dev->max_sectors = 0;
2158 dev->cdb_len = 0;
2159 dev->n_sectors = 0;
2160 dev->cylinders = 0;
2161 dev->heads = 0;
2162 dev->sectors = 0;
2165 * common ATA, ATAPI feature tests
2168 /* find max transfer mode; for printk only */
2169 xfer_mask = ata_id_xfermask(id);
2171 if (ata_msg_probe(ap))
2172 ata_dump_id(id);
2174 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2175 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2176 sizeof(fwrevbuf));
2178 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2179 sizeof(modelbuf));
2181 /* ATA-specific feature tests */
2182 if (dev->class == ATA_DEV_ATA) {
2183 if (ata_id_is_cfa(id)) {
2184 if (id[162] & 1) /* CPRM may make this media unusable */
2185 ata_dev_printk(dev, KERN_WARNING,
2186 "supports DRM functions and may "
2187 "not be fully accessable.\n");
2188 snprintf(revbuf, 7, "CFA");
2189 } else {
2190 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2191 /* Warn the user if the device has TPM extensions */
2192 if (ata_id_has_tpm(id))
2193 ata_dev_printk(dev, KERN_WARNING,
2194 "supports DRM functions and may "
2195 "not be fully accessable.\n");
2198 dev->n_sectors = ata_id_n_sectors(id);
2200 if (dev->id[59] & 0x100)
2201 dev->multi_count = dev->id[59] & 0xff;
2203 if (ata_id_has_lba(id)) {
2204 const char *lba_desc;
2205 char ncq_desc[20];
2207 lba_desc = "LBA";
2208 dev->flags |= ATA_DFLAG_LBA;
2209 if (ata_id_has_lba48(id)) {
2210 dev->flags |= ATA_DFLAG_LBA48;
2211 lba_desc = "LBA48";
2213 if (dev->n_sectors >= (1UL << 28) &&
2214 ata_id_has_flush_ext(id))
2215 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2218 /* config NCQ */
2219 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2221 /* print device info to dmesg */
2222 if (ata_msg_drv(ap) && print_info) {
2223 ata_dev_printk(dev, KERN_INFO,
2224 "%s: %s, %s, max %s\n",
2225 revbuf, modelbuf, fwrevbuf,
2226 ata_mode_string(xfer_mask));
2227 ata_dev_printk(dev, KERN_INFO,
2228 "%Lu sectors, multi %u: %s %s\n",
2229 (unsigned long long)dev->n_sectors,
2230 dev->multi_count, lba_desc, ncq_desc);
2232 } else {
2233 /* CHS */
2235 /* Default translation */
2236 dev->cylinders = id[1];
2237 dev->heads = id[3];
2238 dev->sectors = id[6];
2240 if (ata_id_current_chs_valid(id)) {
2241 /* Current CHS translation is valid. */
2242 dev->cylinders = id[54];
2243 dev->heads = id[55];
2244 dev->sectors = id[56];
2247 /* print device info to dmesg */
2248 if (ata_msg_drv(ap) && print_info) {
2249 ata_dev_printk(dev, KERN_INFO,
2250 "%s: %s, %s, max %s\n",
2251 revbuf, modelbuf, fwrevbuf,
2252 ata_mode_string(xfer_mask));
2253 ata_dev_printk(dev, KERN_INFO,
2254 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2255 (unsigned long long)dev->n_sectors,
2256 dev->multi_count, dev->cylinders,
2257 dev->heads, dev->sectors);
2261 dev->cdb_len = 16;
2264 /* ATAPI-specific feature tests */
2265 else if (dev->class == ATA_DEV_ATAPI) {
2266 const char *cdb_intr_string = "";
2267 const char *atapi_an_string = "";
2268 const char *dma_dir_string = "";
2269 u32 sntf;
2271 rc = atapi_cdb_len(id);
2272 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2273 if (ata_msg_warn(ap))
2274 ata_dev_printk(dev, KERN_WARNING,
2275 "unsupported CDB len\n");
2276 rc = -EINVAL;
2277 goto err_out_nosup;
2279 dev->cdb_len = (unsigned int) rc;
2281 /* Enable ATAPI AN if both the host and device have
2282 * the support. If PMP is attached, SNTF is required
2283 * to enable ATAPI AN to discern between PHY status
2284 * changed notifications and ATAPI ANs.
2286 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2287 (!sata_pmp_attached(ap) ||
2288 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2289 unsigned int err_mask;
2291 /* issue SET feature command to turn this on */
2292 err_mask = ata_dev_set_feature(dev,
2293 SETFEATURES_SATA_ENABLE, SATA_AN);
2294 if (err_mask)
2295 ata_dev_printk(dev, KERN_ERR,
2296 "failed to enable ATAPI AN "
2297 "(err_mask=0x%x)\n", err_mask);
2298 else {
2299 dev->flags |= ATA_DFLAG_AN;
2300 atapi_an_string = ", ATAPI AN";
2304 if (ata_id_cdb_intr(dev->id)) {
2305 dev->flags |= ATA_DFLAG_CDB_INTR;
2306 cdb_intr_string = ", CDB intr";
2309 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2310 dev->flags |= ATA_DFLAG_DMADIR;
2311 dma_dir_string = ", DMADIR";
2314 /* print device info to dmesg */
2315 if (ata_msg_drv(ap) && print_info)
2316 ata_dev_printk(dev, KERN_INFO,
2317 "ATAPI: %s, %s, max %s%s%s%s\n",
2318 modelbuf, fwrevbuf,
2319 ata_mode_string(xfer_mask),
2320 cdb_intr_string, atapi_an_string,
2321 dma_dir_string);
2324 /* determine max_sectors */
2325 dev->max_sectors = ATA_MAX_SECTORS;
2326 if (dev->flags & ATA_DFLAG_LBA48)
2327 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2329 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2330 if (ata_id_has_hipm(dev->id))
2331 dev->flags |= ATA_DFLAG_HIPM;
2332 if (ata_id_has_dipm(dev->id))
2333 dev->flags |= ATA_DFLAG_DIPM;
2336 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2337 200 sectors */
2338 if (ata_dev_knobble(dev)) {
2339 if (ata_msg_drv(ap) && print_info)
2340 ata_dev_printk(dev, KERN_INFO,
2341 "applying bridge limits\n");
2342 dev->udma_mask &= ATA_UDMA5;
2343 dev->max_sectors = ATA_MAX_SECTORS;
2346 if ((dev->class == ATA_DEV_ATAPI) &&
2347 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2348 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2349 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2352 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2353 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2354 dev->max_sectors);
2356 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2357 dev->horkage |= ATA_HORKAGE_IPM;
2359 /* reset link pm_policy for this port to no pm */
2360 ap->pm_policy = MAX_PERFORMANCE;
2363 if (ap->ops->dev_config)
2364 ap->ops->dev_config(dev);
2366 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2367 /* Let the user know. We don't want to disallow opens for
2368 rescue purposes, or in case the vendor is just a blithering
2369 idiot. Do this after the dev_config call as some controllers
2370 with buggy firmware may want to avoid reporting false device
2371 bugs */
2373 if (print_info) {
2374 ata_dev_printk(dev, KERN_WARNING,
2375 "Drive reports diagnostics failure. This may indicate a drive\n");
2376 ata_dev_printk(dev, KERN_WARNING,
2377 "fault or invalid emulation. Contact drive vendor for information.\n");
2381 return 0;
2383 err_out_nosup:
2384 if (ata_msg_probe(ap))
2385 ata_dev_printk(dev, KERN_DEBUG,
2386 "%s: EXIT, err\n", __func__);
2387 return rc;
2391 * ata_cable_40wire - return 40 wire cable type
2392 * @ap: port
2394 * Helper method for drivers which want to hardwire 40 wire cable
2395 * detection.
2398 int ata_cable_40wire(struct ata_port *ap)
2400 return ATA_CBL_PATA40;
2404 * ata_cable_80wire - return 80 wire cable type
2405 * @ap: port
2407 * Helper method for drivers which want to hardwire 80 wire cable
2408 * detection.
2411 int ata_cable_80wire(struct ata_port *ap)
2413 return ATA_CBL_PATA80;
2417 * ata_cable_unknown - return unknown PATA cable.
2418 * @ap: port
2420 * Helper method for drivers which have no PATA cable detection.
2423 int ata_cable_unknown(struct ata_port *ap)
2425 return ATA_CBL_PATA_UNK;
2429 * ata_cable_ignore - return ignored PATA cable.
2430 * @ap: port
2432 * Helper method for drivers which don't use cable type to limit
2433 * transfer mode.
2435 int ata_cable_ignore(struct ata_port *ap)
2437 return ATA_CBL_PATA_IGN;
2441 * ata_cable_sata - return SATA cable type
2442 * @ap: port
2444 * Helper method for drivers which have SATA cables
2447 int ata_cable_sata(struct ata_port *ap)
2449 return ATA_CBL_SATA;
2453 * ata_bus_probe - Reset and probe ATA bus
2454 * @ap: Bus to probe
2456 * Master ATA bus probing function. Initiates a hardware-dependent
2457 * bus reset, then attempts to identify any devices found on
2458 * the bus.
2460 * LOCKING:
2461 * PCI/etc. bus probe sem.
2463 * RETURNS:
2464 * Zero on success, negative errno otherwise.
2467 int ata_bus_probe(struct ata_port *ap)
2469 unsigned int classes[ATA_MAX_DEVICES];
2470 int tries[ATA_MAX_DEVICES];
2471 int rc;
2472 struct ata_device *dev;
2474 ata_port_probe(ap);
2476 ata_link_for_each_dev(dev, &ap->link)
2477 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2479 retry:
2480 ata_link_for_each_dev(dev, &ap->link) {
2481 /* If we issue an SRST then an ATA drive (not ATAPI)
2482 * may change configuration and be in PIO0 timing. If
2483 * we do a hard reset (or are coming from power on)
2484 * this is true for ATA or ATAPI. Until we've set a
2485 * suitable controller mode we should not touch the
2486 * bus as we may be talking too fast.
2488 dev->pio_mode = XFER_PIO_0;
2490 /* If the controller has a pio mode setup function
2491 * then use it to set the chipset to rights. Don't
2492 * touch the DMA setup as that will be dealt with when
2493 * configuring devices.
2495 if (ap->ops->set_piomode)
2496 ap->ops->set_piomode(ap, dev);
2499 /* reset and determine device classes */
2500 ap->ops->phy_reset(ap);
2502 ata_link_for_each_dev(dev, &ap->link) {
2503 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2504 dev->class != ATA_DEV_UNKNOWN)
2505 classes[dev->devno] = dev->class;
2506 else
2507 classes[dev->devno] = ATA_DEV_NONE;
2509 dev->class = ATA_DEV_UNKNOWN;
2512 ata_port_probe(ap);
2514 /* read IDENTIFY page and configure devices. We have to do the identify
2515 specific sequence bass-ackwards so that PDIAG- is released by
2516 the slave device */
2518 ata_link_for_each_dev_reverse(dev, &ap->link) {
2519 if (tries[dev->devno])
2520 dev->class = classes[dev->devno];
2522 if (!ata_dev_enabled(dev))
2523 continue;
2525 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2526 dev->id);
2527 if (rc)
2528 goto fail;
2531 /* Now ask for the cable type as PDIAG- should have been released */
2532 if (ap->ops->cable_detect)
2533 ap->cbl = ap->ops->cable_detect(ap);
2535 /* We may have SATA bridge glue hiding here irrespective of the
2536 reported cable types and sensed types */
2537 ata_link_for_each_dev(dev, &ap->link) {
2538 if (!ata_dev_enabled(dev))
2539 continue;
2540 /* SATA drives indicate we have a bridge. We don't know which
2541 end of the link the bridge is which is a problem */
2542 if (ata_id_is_sata(dev->id))
2543 ap->cbl = ATA_CBL_SATA;
2546 /* After the identify sequence we can now set up the devices. We do
2547 this in the normal order so that the user doesn't get confused */
2549 ata_link_for_each_dev(dev, &ap->link) {
2550 if (!ata_dev_enabled(dev))
2551 continue;
2553 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2554 rc = ata_dev_configure(dev);
2555 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2556 if (rc)
2557 goto fail;
2560 /* configure transfer mode */
2561 rc = ata_set_mode(&ap->link, &dev);
2562 if (rc)
2563 goto fail;
2565 ata_link_for_each_dev(dev, &ap->link)
2566 if (ata_dev_enabled(dev))
2567 return 0;
2569 /* no device present, disable port */
2570 ata_port_disable(ap);
2571 return -ENODEV;
2573 fail:
2574 tries[dev->devno]--;
2576 switch (rc) {
2577 case -EINVAL:
2578 /* eeek, something went very wrong, give up */
2579 tries[dev->devno] = 0;
2580 break;
2582 case -ENODEV:
2583 /* give it just one more chance */
2584 tries[dev->devno] = min(tries[dev->devno], 1);
2585 case -EIO:
2586 if (tries[dev->devno] == 1) {
2587 /* This is the last chance, better to slow
2588 * down than lose it.
2590 sata_down_spd_limit(&ap->link);
2591 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2595 if (!tries[dev->devno])
2596 ata_dev_disable(dev);
2598 goto retry;
2602 * ata_port_probe - Mark port as enabled
2603 * @ap: Port for which we indicate enablement
2605 * Modify @ap data structure such that the system
2606 * thinks that the entire port is enabled.
2608 * LOCKING: host lock, or some other form of
2609 * serialization.
2612 void ata_port_probe(struct ata_port *ap)
2614 ap->flags &= ~ATA_FLAG_DISABLED;
2618 * sata_print_link_status - Print SATA link status
2619 * @link: SATA link to printk link status about
2621 * This function prints link speed and status of a SATA link.
2623 * LOCKING:
2624 * None.
2626 static void sata_print_link_status(struct ata_link *link)
2628 u32 sstatus, scontrol, tmp;
2630 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2631 return;
2632 sata_scr_read(link, SCR_CONTROL, &scontrol);
2634 if (ata_link_online(link)) {
2635 tmp = (sstatus >> 4) & 0xf;
2636 ata_link_printk(link, KERN_INFO,
2637 "SATA link up %s (SStatus %X SControl %X)\n",
2638 sata_spd_string(tmp), sstatus, scontrol);
2639 } else {
2640 ata_link_printk(link, KERN_INFO,
2641 "SATA link down (SStatus %X SControl %X)\n",
2642 sstatus, scontrol);
2647 * ata_dev_pair - return other device on cable
2648 * @adev: device
2650 * Obtain the other device on the same cable, or if none is
2651 * present NULL is returned
2654 struct ata_device *ata_dev_pair(struct ata_device *adev)
2656 struct ata_link *link = adev->link;
2657 struct ata_device *pair = &link->device[1 - adev->devno];
2658 if (!ata_dev_enabled(pair))
2659 return NULL;
2660 return pair;
2664 * ata_port_disable - Disable port.
2665 * @ap: Port to be disabled.
2667 * Modify @ap data structure such that the system
2668 * thinks that the entire port is disabled, and should
2669 * never attempt to probe or communicate with devices
2670 * on this port.
2672 * LOCKING: host lock, or some other form of
2673 * serialization.
2676 void ata_port_disable(struct ata_port *ap)
2678 ap->link.device[0].class = ATA_DEV_NONE;
2679 ap->link.device[1].class = ATA_DEV_NONE;
2680 ap->flags |= ATA_FLAG_DISABLED;
2684 * sata_down_spd_limit - adjust SATA spd limit downward
2685 * @link: Link to adjust SATA spd limit for
2687 * Adjust SATA spd limit of @link downward. Note that this
2688 * function only adjusts the limit. The change must be applied
2689 * using sata_set_spd().
2691 * LOCKING:
2692 * Inherited from caller.
2694 * RETURNS:
2695 * 0 on success, negative errno on failure
2697 int sata_down_spd_limit(struct ata_link *link)
2699 u32 sstatus, spd, mask;
2700 int rc, highbit;
2702 if (!sata_scr_valid(link))
2703 return -EOPNOTSUPP;
2705 /* If SCR can be read, use it to determine the current SPD.
2706 * If not, use cached value in link->sata_spd.
2708 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2709 if (rc == 0)
2710 spd = (sstatus >> 4) & 0xf;
2711 else
2712 spd = link->sata_spd;
2714 mask = link->sata_spd_limit;
2715 if (mask <= 1)
2716 return -EINVAL;
2718 /* unconditionally mask off the highest bit */
2719 highbit = fls(mask) - 1;
2720 mask &= ~(1 << highbit);
2722 /* Mask off all speeds higher than or equal to the current
2723 * one. Force 1.5Gbps if current SPD is not available.
2725 if (spd > 1)
2726 mask &= (1 << (spd - 1)) - 1;
2727 else
2728 mask &= 1;
2730 /* were we already at the bottom? */
2731 if (!mask)
2732 return -EINVAL;
2734 link->sata_spd_limit = mask;
2736 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2737 sata_spd_string(fls(mask)));
2739 return 0;
2742 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2744 struct ata_link *host_link = &link->ap->link;
2745 u32 limit, target, spd;
2747 limit = link->sata_spd_limit;
2749 /* Don't configure downstream link faster than upstream link.
2750 * It doesn't speed up anything and some PMPs choke on such
2751 * configuration.
2753 if (!ata_is_host_link(link) && host_link->sata_spd)
2754 limit &= (1 << host_link->sata_spd) - 1;
2756 if (limit == UINT_MAX)
2757 target = 0;
2758 else
2759 target = fls(limit);
2761 spd = (*scontrol >> 4) & 0xf;
2762 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2764 return spd != target;
2768 * sata_set_spd_needed - is SATA spd configuration needed
2769 * @link: Link in question
2771 * Test whether the spd limit in SControl matches
2772 * @link->sata_spd_limit. This function is used to determine
2773 * whether hardreset is necessary to apply SATA spd
2774 * configuration.
2776 * LOCKING:
2777 * Inherited from caller.
2779 * RETURNS:
2780 * 1 if SATA spd configuration is needed, 0 otherwise.
2782 static int sata_set_spd_needed(struct ata_link *link)
2784 u32 scontrol;
2786 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2787 return 1;
2789 return __sata_set_spd_needed(link, &scontrol);
2793 * sata_set_spd - set SATA spd according to spd limit
2794 * @link: Link to set SATA spd for
2796 * Set SATA spd of @link according to sata_spd_limit.
2798 * LOCKING:
2799 * Inherited from caller.
2801 * RETURNS:
2802 * 0 if spd doesn't need to be changed, 1 if spd has been
2803 * changed. Negative errno if SCR registers are inaccessible.
2805 int sata_set_spd(struct ata_link *link)
2807 u32 scontrol;
2808 int rc;
2810 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2811 return rc;
2813 if (!__sata_set_spd_needed(link, &scontrol))
2814 return 0;
2816 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2817 return rc;
2819 return 1;
2823 * This mode timing computation functionality is ported over from
2824 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2827 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2828 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2829 * for UDMA6, which is currently supported only by Maxtor drives.
2831 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2834 static const struct ata_timing ata_timing[] = {
2835 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2836 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2837 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2838 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2839 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2840 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2841 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2842 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2844 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2845 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2846 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2848 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2849 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2850 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2851 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2852 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2854 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2855 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2856 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2857 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2858 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2859 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2860 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2861 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2863 { 0xFF }
2866 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2867 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2869 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2871 q->setup = EZ(t->setup * 1000, T);
2872 q->act8b = EZ(t->act8b * 1000, T);
2873 q->rec8b = EZ(t->rec8b * 1000, T);
2874 q->cyc8b = EZ(t->cyc8b * 1000, T);
2875 q->active = EZ(t->active * 1000, T);
2876 q->recover = EZ(t->recover * 1000, T);
2877 q->cycle = EZ(t->cycle * 1000, T);
2878 q->udma = EZ(t->udma * 1000, UT);
2881 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2882 struct ata_timing *m, unsigned int what)
2884 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2885 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2886 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2887 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2888 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2889 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2890 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2891 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2894 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2896 const struct ata_timing *t = ata_timing;
2898 while (xfer_mode > t->mode)
2899 t++;
2901 if (xfer_mode == t->mode)
2902 return t;
2903 return NULL;
2906 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2907 struct ata_timing *t, int T, int UT)
2909 const struct ata_timing *s;
2910 struct ata_timing p;
2913 * Find the mode.
2916 if (!(s = ata_timing_find_mode(speed)))
2917 return -EINVAL;
2919 memcpy(t, s, sizeof(*s));
2922 * If the drive is an EIDE drive, it can tell us it needs extended
2923 * PIO/MW_DMA cycle timing.
2926 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2927 memset(&p, 0, sizeof(p));
2928 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2929 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2930 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2931 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2932 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2934 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2938 * Convert the timing to bus clock counts.
2941 ata_timing_quantize(t, t, T, UT);
2944 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2945 * S.M.A.R.T * and some other commands. We have to ensure that the
2946 * DMA cycle timing is slower/equal than the fastest PIO timing.
2949 if (speed > XFER_PIO_6) {
2950 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2951 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2955 * Lengthen active & recovery time so that cycle time is correct.
2958 if (t->act8b + t->rec8b < t->cyc8b) {
2959 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2960 t->rec8b = t->cyc8b - t->act8b;
2963 if (t->active + t->recover < t->cycle) {
2964 t->active += (t->cycle - (t->active + t->recover)) / 2;
2965 t->recover = t->cycle - t->active;
2968 /* In a few cases quantisation may produce enough errors to
2969 leave t->cycle too low for the sum of active and recovery
2970 if so we must correct this */
2971 if (t->active + t->recover > t->cycle)
2972 t->cycle = t->active + t->recover;
2974 return 0;
2978 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2979 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2980 * @cycle: cycle duration in ns
2982 * Return matching xfer mode for @cycle. The returned mode is of
2983 * the transfer type specified by @xfer_shift. If @cycle is too
2984 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2985 * than the fastest known mode, the fasted mode is returned.
2987 * LOCKING:
2988 * None.
2990 * RETURNS:
2991 * Matching xfer_mode, 0xff if no match found.
2993 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
2995 u8 base_mode = 0xff, last_mode = 0xff;
2996 const struct ata_xfer_ent *ent;
2997 const struct ata_timing *t;
2999 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3000 if (ent->shift == xfer_shift)
3001 base_mode = ent->base;
3003 for (t = ata_timing_find_mode(base_mode);
3004 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3005 unsigned short this_cycle;
3007 switch (xfer_shift) {
3008 case ATA_SHIFT_PIO:
3009 case ATA_SHIFT_MWDMA:
3010 this_cycle = t->cycle;
3011 break;
3012 case ATA_SHIFT_UDMA:
3013 this_cycle = t->udma;
3014 break;
3015 default:
3016 return 0xff;
3019 if (cycle > this_cycle)
3020 break;
3022 last_mode = t->mode;
3025 return last_mode;
3029 * ata_down_xfermask_limit - adjust dev xfer masks downward
3030 * @dev: Device to adjust xfer masks
3031 * @sel: ATA_DNXFER_* selector
3033 * Adjust xfer masks of @dev downward. Note that this function
3034 * does not apply the change. Invoking ata_set_mode() afterwards
3035 * will apply the limit.
3037 * LOCKING:
3038 * Inherited from caller.
3040 * RETURNS:
3041 * 0 on success, negative errno on failure
3043 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3045 char buf[32];
3046 unsigned long orig_mask, xfer_mask;
3047 unsigned long pio_mask, mwdma_mask, udma_mask;
3048 int quiet, highbit;
3050 quiet = !!(sel & ATA_DNXFER_QUIET);
3051 sel &= ~ATA_DNXFER_QUIET;
3053 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3054 dev->mwdma_mask,
3055 dev->udma_mask);
3056 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3058 switch (sel) {
3059 case ATA_DNXFER_PIO:
3060 highbit = fls(pio_mask) - 1;
3061 pio_mask &= ~(1 << highbit);
3062 break;
3064 case ATA_DNXFER_DMA:
3065 if (udma_mask) {
3066 highbit = fls(udma_mask) - 1;
3067 udma_mask &= ~(1 << highbit);
3068 if (!udma_mask)
3069 return -ENOENT;
3070 } else if (mwdma_mask) {
3071 highbit = fls(mwdma_mask) - 1;
3072 mwdma_mask &= ~(1 << highbit);
3073 if (!mwdma_mask)
3074 return -ENOENT;
3076 break;
3078 case ATA_DNXFER_40C:
3079 udma_mask &= ATA_UDMA_MASK_40C;
3080 break;
3082 case ATA_DNXFER_FORCE_PIO0:
3083 pio_mask &= 1;
3084 case ATA_DNXFER_FORCE_PIO:
3085 mwdma_mask = 0;
3086 udma_mask = 0;
3087 break;
3089 default:
3090 BUG();
3093 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3095 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3096 return -ENOENT;
3098 if (!quiet) {
3099 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3100 snprintf(buf, sizeof(buf), "%s:%s",
3101 ata_mode_string(xfer_mask),
3102 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3103 else
3104 snprintf(buf, sizeof(buf), "%s",
3105 ata_mode_string(xfer_mask));
3107 ata_dev_printk(dev, KERN_WARNING,
3108 "limiting speed to %s\n", buf);
3111 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3112 &dev->udma_mask);
3114 return 0;
3117 static int ata_dev_set_mode(struct ata_device *dev)
3119 struct ata_eh_context *ehc = &dev->link->eh_context;
3120 const char *dev_err_whine = "";
3121 int ign_dev_err = 0;
3122 unsigned int err_mask;
3123 int rc;
3125 dev->flags &= ~ATA_DFLAG_PIO;
3126 if (dev->xfer_shift == ATA_SHIFT_PIO)
3127 dev->flags |= ATA_DFLAG_PIO;
3129 err_mask = ata_dev_set_xfermode(dev);
3131 if (err_mask & ~AC_ERR_DEV)
3132 goto fail;
3134 /* revalidate */
3135 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3136 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3137 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3138 if (rc)
3139 return rc;
3141 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3142 /* Old CFA may refuse this command, which is just fine */
3143 if (ata_id_is_cfa(dev->id))
3144 ign_dev_err = 1;
3145 /* Catch several broken garbage emulations plus some pre
3146 ATA devices */
3147 if (ata_id_major_version(dev->id) == 0 &&
3148 dev->pio_mode <= XFER_PIO_2)
3149 ign_dev_err = 1;
3150 /* Some very old devices and some bad newer ones fail
3151 any kind of SET_XFERMODE request but support PIO0-2
3152 timings and no IORDY */
3153 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3154 ign_dev_err = 1;
3156 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3157 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3158 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3159 dev->dma_mode == XFER_MW_DMA_0 &&
3160 (dev->id[63] >> 8) & 1)
3161 ign_dev_err = 1;
3163 /* if the device is actually configured correctly, ignore dev err */
3164 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3165 ign_dev_err = 1;
3167 if (err_mask & AC_ERR_DEV) {
3168 if (!ign_dev_err)
3169 goto fail;
3170 else
3171 dev_err_whine = " (device error ignored)";
3174 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3175 dev->xfer_shift, (int)dev->xfer_mode);
3177 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3178 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3179 dev_err_whine);
3181 return 0;
3183 fail:
3184 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3185 "(err_mask=0x%x)\n", err_mask);
3186 return -EIO;
3190 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3191 * @link: link on which timings will be programmed
3192 * @r_failed_dev: out parameter for failed device
3194 * Standard implementation of the function used to tune and set
3195 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3196 * ata_dev_set_mode() fails, pointer to the failing device is
3197 * returned in @r_failed_dev.
3199 * LOCKING:
3200 * PCI/etc. bus probe sem.
3202 * RETURNS:
3203 * 0 on success, negative errno otherwise
3206 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3208 struct ata_port *ap = link->ap;
3209 struct ata_device *dev;
3210 int rc = 0, used_dma = 0, found = 0;
3212 /* step 1: calculate xfer_mask */
3213 ata_link_for_each_dev(dev, link) {
3214 unsigned long pio_mask, dma_mask;
3215 unsigned int mode_mask;
3217 if (!ata_dev_enabled(dev))
3218 continue;
3220 mode_mask = ATA_DMA_MASK_ATA;
3221 if (dev->class == ATA_DEV_ATAPI)
3222 mode_mask = ATA_DMA_MASK_ATAPI;
3223 else if (ata_id_is_cfa(dev->id))
3224 mode_mask = ATA_DMA_MASK_CFA;
3226 ata_dev_xfermask(dev);
3227 ata_force_xfermask(dev);
3229 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3230 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3232 if (libata_dma_mask & mode_mask)
3233 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3234 else
3235 dma_mask = 0;
3237 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3238 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3240 found = 1;
3241 if (dev->dma_mode != 0xff)
3242 used_dma = 1;
3244 if (!found)
3245 goto out;
3247 /* step 2: always set host PIO timings */
3248 ata_link_for_each_dev(dev, link) {
3249 if (!ata_dev_enabled(dev))
3250 continue;
3252 if (dev->pio_mode == 0xff) {
3253 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3254 rc = -EINVAL;
3255 goto out;
3258 dev->xfer_mode = dev->pio_mode;
3259 dev->xfer_shift = ATA_SHIFT_PIO;
3260 if (ap->ops->set_piomode)
3261 ap->ops->set_piomode(ap, dev);
3264 /* step 3: set host DMA timings */
3265 ata_link_for_each_dev(dev, link) {
3266 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3267 continue;
3269 dev->xfer_mode = dev->dma_mode;
3270 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3271 if (ap->ops->set_dmamode)
3272 ap->ops->set_dmamode(ap, dev);
3275 /* step 4: update devices' xfer mode */
3276 ata_link_for_each_dev(dev, link) {
3277 /* don't update suspended devices' xfer mode */
3278 if (!ata_dev_enabled(dev))
3279 continue;
3281 rc = ata_dev_set_mode(dev);
3282 if (rc)
3283 goto out;
3286 /* Record simplex status. If we selected DMA then the other
3287 * host channels are not permitted to do so.
3289 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3290 ap->host->simplex_claimed = ap;
3292 out:
3293 if (rc)
3294 *r_failed_dev = dev;
3295 return rc;
3299 * ata_wait_ready - wait for link to become ready
3300 * @link: link to be waited on
3301 * @deadline: deadline jiffies for the operation
3302 * @check_ready: callback to check link readiness
3304 * Wait for @link to become ready. @check_ready should return
3305 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3306 * link doesn't seem to be occupied, other errno for other error
3307 * conditions.
3309 * Transient -ENODEV conditions are allowed for
3310 * ATA_TMOUT_FF_WAIT.
3312 * LOCKING:
3313 * EH context.
3315 * RETURNS:
3316 * 0 if @linke is ready before @deadline; otherwise, -errno.
3318 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3319 int (*check_ready)(struct ata_link *link))
3321 unsigned long start = jiffies;
3322 unsigned long nodev_deadline = start + ATA_TMOUT_FF_WAIT;
3323 int warned = 0;
3325 if (time_after(nodev_deadline, deadline))
3326 nodev_deadline = deadline;
3328 while (1) {
3329 unsigned long now = jiffies;
3330 int ready, tmp;
3332 ready = tmp = check_ready(link);
3333 if (ready > 0)
3334 return 0;
3336 /* -ENODEV could be transient. Ignore -ENODEV if link
3337 * is online. Also, some SATA devices take a long
3338 * time to clear 0xff after reset. For example,
3339 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3340 * GoVault needs even more than that. Wait for
3341 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3343 * Note that some PATA controllers (pata_ali) explode
3344 * if status register is read more than once when
3345 * there's no device attached.
3347 if (ready == -ENODEV) {
3348 if (ata_link_online(link))
3349 ready = 0;
3350 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3351 !ata_link_offline(link) &&
3352 time_before(now, nodev_deadline))
3353 ready = 0;
3356 if (ready)
3357 return ready;
3358 if (time_after(now, deadline))
3359 return -EBUSY;
3361 if (!warned && time_after(now, start + 5 * HZ) &&
3362 (deadline - now > 3 * HZ)) {
3363 ata_link_printk(link, KERN_WARNING,
3364 "link is slow to respond, please be patient "
3365 "(ready=%d)\n", tmp);
3366 warned = 1;
3369 msleep(50);
3374 * ata_wait_after_reset - wait for link to become ready after reset
3375 * @link: link to be waited on
3376 * @deadline: deadline jiffies for the operation
3377 * @check_ready: callback to check link readiness
3379 * Wait for @link to become ready after reset.
3381 * LOCKING:
3382 * EH context.
3384 * RETURNS:
3385 * 0 if @linke is ready before @deadline; otherwise, -errno.
3387 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3388 int (*check_ready)(struct ata_link *link))
3390 msleep(ATA_WAIT_AFTER_RESET_MSECS);
3392 return ata_wait_ready(link, deadline, check_ready);
3396 * sata_link_debounce - debounce SATA phy status
3397 * @link: ATA link to debounce SATA phy status for
3398 * @params: timing parameters { interval, duratinon, timeout } in msec
3399 * @deadline: deadline jiffies for the operation
3401 * Make sure SStatus of @link reaches stable state, determined by
3402 * holding the same value where DET is not 1 for @duration polled
3403 * every @interval, before @timeout. Timeout constraints the
3404 * beginning of the stable state. Because DET gets stuck at 1 on
3405 * some controllers after hot unplugging, this functions waits
3406 * until timeout then returns 0 if DET is stable at 1.
3408 * @timeout is further limited by @deadline. The sooner of the
3409 * two is used.
3411 * LOCKING:
3412 * Kernel thread context (may sleep)
3414 * RETURNS:
3415 * 0 on success, -errno on failure.
3417 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3418 unsigned long deadline)
3420 unsigned long interval_msec = params[0];
3421 unsigned long duration = msecs_to_jiffies(params[1]);
3422 unsigned long last_jiffies, t;
3423 u32 last, cur;
3424 int rc;
3426 t = jiffies + msecs_to_jiffies(params[2]);
3427 if (time_before(t, deadline))
3428 deadline = t;
3430 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3431 return rc;
3432 cur &= 0xf;
3434 last = cur;
3435 last_jiffies = jiffies;
3437 while (1) {
3438 msleep(interval_msec);
3439 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3440 return rc;
3441 cur &= 0xf;
3443 /* DET stable? */
3444 if (cur == last) {
3445 if (cur == 1 && time_before(jiffies, deadline))
3446 continue;
3447 if (time_after(jiffies, last_jiffies + duration))
3448 return 0;
3449 continue;
3452 /* unstable, start over */
3453 last = cur;
3454 last_jiffies = jiffies;
3456 /* Check deadline. If debouncing failed, return
3457 * -EPIPE to tell upper layer to lower link speed.
3459 if (time_after(jiffies, deadline))
3460 return -EPIPE;
3465 * sata_link_resume - resume SATA link
3466 * @link: ATA link to resume SATA
3467 * @params: timing parameters { interval, duratinon, timeout } in msec
3468 * @deadline: deadline jiffies for the operation
3470 * Resume SATA phy @link and debounce it.
3472 * LOCKING:
3473 * Kernel thread context (may sleep)
3475 * RETURNS:
3476 * 0 on success, -errno on failure.
3478 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3479 unsigned long deadline)
3481 u32 scontrol, serror;
3482 int rc;
3484 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3485 return rc;
3487 scontrol = (scontrol & 0x0f0) | 0x300;
3489 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3490 return rc;
3492 /* Some PHYs react badly if SStatus is pounded immediately
3493 * after resuming. Delay 200ms before debouncing.
3495 msleep(200);
3497 if ((rc = sata_link_debounce(link, params, deadline)))
3498 return rc;
3500 /* clear SError, some PHYs require this even for SRST to work */
3501 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3502 rc = sata_scr_write(link, SCR_ERROR, serror);
3504 return rc != -EINVAL ? rc : 0;
3508 * ata_std_prereset - prepare for reset
3509 * @link: ATA link to be reset
3510 * @deadline: deadline jiffies for the operation
3512 * @link is about to be reset. Initialize it. Failure from
3513 * prereset makes libata abort whole reset sequence and give up
3514 * that port, so prereset should be best-effort. It does its
3515 * best to prepare for reset sequence but if things go wrong, it
3516 * should just whine, not fail.
3518 * LOCKING:
3519 * Kernel thread context (may sleep)
3521 * RETURNS:
3522 * 0 on success, -errno otherwise.
3524 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3526 struct ata_port *ap = link->ap;
3527 struct ata_eh_context *ehc = &link->eh_context;
3528 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3529 int rc;
3531 /* if we're about to do hardreset, nothing more to do */
3532 if (ehc->i.action & ATA_EH_HARDRESET)
3533 return 0;
3535 /* if SATA, resume link */
3536 if (ap->flags & ATA_FLAG_SATA) {
3537 rc = sata_link_resume(link, timing, deadline);
3538 /* whine about phy resume failure but proceed */
3539 if (rc && rc != -EOPNOTSUPP)
3540 ata_link_printk(link, KERN_WARNING, "failed to resume "
3541 "link for reset (errno=%d)\n", rc);
3544 /* no point in trying softreset on offline link */
3545 if (ata_link_offline(link))
3546 ehc->i.action &= ~ATA_EH_SOFTRESET;
3548 return 0;
3552 * sata_link_hardreset - reset link via SATA phy reset
3553 * @link: link to reset
3554 * @timing: timing parameters { interval, duratinon, timeout } in msec
3555 * @deadline: deadline jiffies for the operation
3556 * @online: optional out parameter indicating link onlineness
3557 * @check_ready: optional callback to check link readiness
3559 * SATA phy-reset @link using DET bits of SControl register.
3560 * After hardreset, link readiness is waited upon using
3561 * ata_wait_ready() if @check_ready is specified. LLDs are
3562 * allowed to not specify @check_ready and wait itself after this
3563 * function returns. Device classification is LLD's
3564 * responsibility.
3566 * *@online is set to one iff reset succeeded and @link is online
3567 * after reset.
3569 * LOCKING:
3570 * Kernel thread context (may sleep)
3572 * RETURNS:
3573 * 0 on success, -errno otherwise.
3575 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3576 unsigned long deadline,
3577 bool *online, int (*check_ready)(struct ata_link *))
3579 u32 scontrol;
3580 int rc;
3582 DPRINTK("ENTER\n");
3584 if (online)
3585 *online = false;
3587 if (sata_set_spd_needed(link)) {
3588 /* SATA spec says nothing about how to reconfigure
3589 * spd. To be on the safe side, turn off phy during
3590 * reconfiguration. This works for at least ICH7 AHCI
3591 * and Sil3124.
3593 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3594 goto out;
3596 scontrol = (scontrol & 0x0f0) | 0x304;
3598 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3599 goto out;
3601 sata_set_spd(link);
3604 /* issue phy wake/reset */
3605 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3606 goto out;
3608 scontrol = (scontrol & 0x0f0) | 0x301;
3610 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3611 goto out;
3613 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3614 * 10.4.2 says at least 1 ms.
3616 msleep(1);
3618 /* bring link back */
3619 rc = sata_link_resume(link, timing, deadline);
3620 if (rc)
3621 goto out;
3622 /* if link is offline nothing more to do */
3623 if (ata_link_offline(link))
3624 goto out;
3626 /* Link is online. From this point, -ENODEV too is an error. */
3627 if (online)
3628 *online = true;
3630 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3631 /* If PMP is supported, we have to do follow-up SRST.
3632 * Some PMPs don't send D2H Reg FIS after hardreset if
3633 * the first port is empty. Wait only for
3634 * ATA_TMOUT_PMP_SRST_WAIT.
3636 if (check_ready) {
3637 unsigned long pmp_deadline;
3639 pmp_deadline = jiffies + ATA_TMOUT_PMP_SRST_WAIT;
3640 if (time_after(pmp_deadline, deadline))
3641 pmp_deadline = deadline;
3642 ata_wait_ready(link, pmp_deadline, check_ready);
3644 rc = -EAGAIN;
3645 goto out;
3648 rc = 0;
3649 if (check_ready)
3650 rc = ata_wait_ready(link, deadline, check_ready);
3651 out:
3652 if (rc && rc != -EAGAIN) {
3653 /* online is set iff link is online && reset succeeded */
3654 if (online)
3655 *online = false;
3656 ata_link_printk(link, KERN_ERR,
3657 "COMRESET failed (errno=%d)\n", rc);
3659 DPRINTK("EXIT, rc=%d\n", rc);
3660 return rc;
3664 * sata_std_hardreset - COMRESET w/o waiting or classification
3665 * @link: link to reset
3666 * @class: resulting class of attached device
3667 * @deadline: deadline jiffies for the operation
3669 * Standard SATA COMRESET w/o waiting or classification.
3671 * LOCKING:
3672 * Kernel thread context (may sleep)
3674 * RETURNS:
3675 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3677 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3678 unsigned long deadline)
3680 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3681 bool online;
3682 int rc;
3684 /* do hardreset */
3685 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3686 return online ? -EAGAIN : rc;
3690 * ata_std_postreset - standard postreset callback
3691 * @link: the target ata_link
3692 * @classes: classes of attached devices
3694 * This function is invoked after a successful reset. Note that
3695 * the device might have been reset more than once using
3696 * different reset methods before postreset is invoked.
3698 * LOCKING:
3699 * Kernel thread context (may sleep)
3701 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3703 u32 serror;
3705 DPRINTK("ENTER\n");
3707 /* reset complete, clear SError */
3708 if (!sata_scr_read(link, SCR_ERROR, &serror))
3709 sata_scr_write(link, SCR_ERROR, serror);
3711 /* print link status */
3712 sata_print_link_status(link);
3714 DPRINTK("EXIT\n");
3718 * ata_dev_same_device - Determine whether new ID matches configured device
3719 * @dev: device to compare against
3720 * @new_class: class of the new device
3721 * @new_id: IDENTIFY page of the new device
3723 * Compare @new_class and @new_id against @dev and determine
3724 * whether @dev is the device indicated by @new_class and
3725 * @new_id.
3727 * LOCKING:
3728 * None.
3730 * RETURNS:
3731 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3733 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3734 const u16 *new_id)
3736 const u16 *old_id = dev->id;
3737 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3738 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3740 if (dev->class != new_class) {
3741 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3742 dev->class, new_class);
3743 return 0;
3746 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3747 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3748 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3749 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3751 if (strcmp(model[0], model[1])) {
3752 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3753 "'%s' != '%s'\n", model[0], model[1]);
3754 return 0;
3757 if (strcmp(serial[0], serial[1])) {
3758 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3759 "'%s' != '%s'\n", serial[0], serial[1]);
3760 return 0;
3763 return 1;
3767 * ata_dev_reread_id - Re-read IDENTIFY data
3768 * @dev: target ATA device
3769 * @readid_flags: read ID flags
3771 * Re-read IDENTIFY page and make sure @dev is still attached to
3772 * the port.
3774 * LOCKING:
3775 * Kernel thread context (may sleep)
3777 * RETURNS:
3778 * 0 on success, negative errno otherwise
3780 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3782 unsigned int class = dev->class;
3783 u16 *id = (void *)dev->link->ap->sector_buf;
3784 int rc;
3786 /* read ID data */
3787 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3788 if (rc)
3789 return rc;
3791 /* is the device still there? */
3792 if (!ata_dev_same_device(dev, class, id))
3793 return -ENODEV;
3795 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3796 return 0;
3800 * ata_dev_revalidate - Revalidate ATA device
3801 * @dev: device to revalidate
3802 * @new_class: new class code
3803 * @readid_flags: read ID flags
3805 * Re-read IDENTIFY page, make sure @dev is still attached to the
3806 * port and reconfigure it according to the new IDENTIFY page.
3808 * LOCKING:
3809 * Kernel thread context (may sleep)
3811 * RETURNS:
3812 * 0 on success, negative errno otherwise
3814 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3815 unsigned int readid_flags)
3817 u64 n_sectors = dev->n_sectors;
3818 int rc;
3820 if (!ata_dev_enabled(dev))
3821 return -ENODEV;
3823 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3824 if (ata_class_enabled(new_class) &&
3825 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3826 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3827 dev->class, new_class);
3828 rc = -ENODEV;
3829 goto fail;
3832 /* re-read ID */
3833 rc = ata_dev_reread_id(dev, readid_flags);
3834 if (rc)
3835 goto fail;
3837 /* configure device according to the new ID */
3838 rc = ata_dev_configure(dev);
3839 if (rc)
3840 goto fail;
3842 /* verify n_sectors hasn't changed */
3843 if (dev->class == ATA_DEV_ATA && n_sectors &&
3844 dev->n_sectors != n_sectors) {
3845 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3846 "%llu != %llu\n",
3847 (unsigned long long)n_sectors,
3848 (unsigned long long)dev->n_sectors);
3850 /* restore original n_sectors */
3851 dev->n_sectors = n_sectors;
3853 rc = -ENODEV;
3854 goto fail;
3857 return 0;
3859 fail:
3860 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3861 return rc;
3864 struct ata_blacklist_entry {
3865 const char *model_num;
3866 const char *model_rev;
3867 unsigned long horkage;
3870 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3871 /* Devices with DMA related problems under Linux */
3872 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3873 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3874 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3875 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3876 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3877 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3878 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3879 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3880 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3881 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3882 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3883 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3884 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3885 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3886 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3887 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3888 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3889 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3890 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3891 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3892 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3893 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3894 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3895 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3896 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3897 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3898 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3899 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3900 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3901 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3902 /* Odd clown on sil3726/4726 PMPs */
3903 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3905 /* Weird ATAPI devices */
3906 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3908 /* Devices we expect to fail diagnostics */
3910 /* Devices where NCQ should be avoided */
3911 /* NCQ is slow */
3912 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3913 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3914 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3915 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3916 /* NCQ is broken */
3917 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3918 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3919 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3920 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3922 /* Blacklist entries taken from Silicon Image 3124/3132
3923 Windows driver .inf file - also several Linux problem reports */
3924 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3925 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3926 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3928 /* devices which puke on READ_NATIVE_MAX */
3929 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3930 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3931 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3932 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3934 /* Devices which report 1 sector over size HPA */
3935 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3936 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3937 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3939 /* Devices which get the IVB wrong */
3940 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3941 /* Maybe we should just blacklist TSSTcorp... */
3942 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
3943 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
3944 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
3945 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
3946 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
3947 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
3949 /* End Marker */
3953 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3955 const char *p;
3956 int len;
3959 * check for trailing wildcard: *\0
3961 p = strchr(patt, wildchar);
3962 if (p && ((*(p + 1)) == 0))
3963 len = p - patt;
3964 else {
3965 len = strlen(name);
3966 if (!len) {
3967 if (!*patt)
3968 return 0;
3969 return -1;
3973 return strncmp(patt, name, len);
3976 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3978 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3979 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3980 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3982 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3983 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3985 while (ad->model_num) {
3986 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
3987 if (ad->model_rev == NULL)
3988 return ad->horkage;
3989 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
3990 return ad->horkage;
3992 ad++;
3994 return 0;
3997 static int ata_dma_blacklisted(const struct ata_device *dev)
3999 /* We don't support polling DMA.
4000 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4001 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4003 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4004 (dev->flags & ATA_DFLAG_CDB_INTR))
4005 return 1;
4006 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4010 * ata_is_40wire - check drive side detection
4011 * @dev: device
4013 * Perform drive side detection decoding, allowing for device vendors
4014 * who can't follow the documentation.
4017 static int ata_is_40wire(struct ata_device *dev)
4019 if (dev->horkage & ATA_HORKAGE_IVB)
4020 return ata_drive_40wire_relaxed(dev->id);
4021 return ata_drive_40wire(dev->id);
4025 * cable_is_40wire - 40/80/SATA decider
4026 * @ap: port to consider
4028 * This function encapsulates the policy for speed management
4029 * in one place. At the moment we don't cache the result but
4030 * there is a good case for setting ap->cbl to the result when
4031 * we are called with unknown cables (and figuring out if it
4032 * impacts hotplug at all).
4034 * Return 1 if the cable appears to be 40 wire.
4037 static int cable_is_40wire(struct ata_port *ap)
4039 struct ata_link *link;
4040 struct ata_device *dev;
4042 /* If the controller thinks we are 40 wire, we are */
4043 if (ap->cbl == ATA_CBL_PATA40)
4044 return 1;
4045 /* If the controller thinks we are 80 wire, we are */
4046 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4047 return 0;
4048 /* If the system is known to be 40 wire short cable (eg laptop),
4049 then we allow 80 wire modes even if the drive isn't sure */
4050 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4051 return 0;
4052 /* If the controller doesn't know we scan
4054 - Note: We look for all 40 wire detects at this point.
4055 Any 80 wire detect is taken to be 80 wire cable
4056 because
4057 - In many setups only the one drive (slave if present)
4058 will give a valid detect
4059 - If you have a non detect capable drive you don't
4060 want it to colour the choice
4062 ata_port_for_each_link(link, ap) {
4063 ata_link_for_each_dev(dev, link) {
4064 if (!ata_is_40wire(dev))
4065 return 0;
4068 return 1;
4072 * ata_dev_xfermask - Compute supported xfermask of the given device
4073 * @dev: Device to compute xfermask for
4075 * Compute supported xfermask of @dev and store it in
4076 * dev->*_mask. This function is responsible for applying all
4077 * known limits including host controller limits, device
4078 * blacklist, etc...
4080 * LOCKING:
4081 * None.
4083 static void ata_dev_xfermask(struct ata_device *dev)
4085 struct ata_link *link = dev->link;
4086 struct ata_port *ap = link->ap;
4087 struct ata_host *host = ap->host;
4088 unsigned long xfer_mask;
4090 /* controller modes available */
4091 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4092 ap->mwdma_mask, ap->udma_mask);
4094 /* drive modes available */
4095 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4096 dev->mwdma_mask, dev->udma_mask);
4097 xfer_mask &= ata_id_xfermask(dev->id);
4100 * CFA Advanced TrueIDE timings are not allowed on a shared
4101 * cable
4103 if (ata_dev_pair(dev)) {
4104 /* No PIO5 or PIO6 */
4105 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4106 /* No MWDMA3 or MWDMA 4 */
4107 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4110 if (ata_dma_blacklisted(dev)) {
4111 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4112 ata_dev_printk(dev, KERN_WARNING,
4113 "device is on DMA blacklist, disabling DMA\n");
4116 if ((host->flags & ATA_HOST_SIMPLEX) &&
4117 host->simplex_claimed && host->simplex_claimed != ap) {
4118 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4119 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4120 "other device, disabling DMA\n");
4123 if (ap->flags & ATA_FLAG_NO_IORDY)
4124 xfer_mask &= ata_pio_mask_no_iordy(dev);
4126 if (ap->ops->mode_filter)
4127 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4129 /* Apply cable rule here. Don't apply it early because when
4130 * we handle hot plug the cable type can itself change.
4131 * Check this last so that we know if the transfer rate was
4132 * solely limited by the cable.
4133 * Unknown or 80 wire cables reported host side are checked
4134 * drive side as well. Cases where we know a 40wire cable
4135 * is used safely for 80 are not checked here.
4137 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4138 /* UDMA/44 or higher would be available */
4139 if (cable_is_40wire(ap)) {
4140 ata_dev_printk(dev, KERN_WARNING,
4141 "limited to UDMA/33 due to 40-wire cable\n");
4142 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4145 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4146 &dev->mwdma_mask, &dev->udma_mask);
4150 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4151 * @dev: Device to which command will be sent
4153 * Issue SET FEATURES - XFER MODE command to device @dev
4154 * on port @ap.
4156 * LOCKING:
4157 * PCI/etc. bus probe sem.
4159 * RETURNS:
4160 * 0 on success, AC_ERR_* mask otherwise.
4163 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4165 struct ata_taskfile tf;
4166 unsigned int err_mask;
4168 /* set up set-features taskfile */
4169 DPRINTK("set features - xfer mode\n");
4171 /* Some controllers and ATAPI devices show flaky interrupt
4172 * behavior after setting xfer mode. Use polling instead.
4174 ata_tf_init(dev, &tf);
4175 tf.command = ATA_CMD_SET_FEATURES;
4176 tf.feature = SETFEATURES_XFER;
4177 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4178 tf.protocol = ATA_PROT_NODATA;
4179 /* If we are using IORDY we must send the mode setting command */
4180 if (ata_pio_need_iordy(dev))
4181 tf.nsect = dev->xfer_mode;
4182 /* If the device has IORDY and the controller does not - turn it off */
4183 else if (ata_id_has_iordy(dev->id))
4184 tf.nsect = 0x01;
4185 else /* In the ancient relic department - skip all of this */
4186 return 0;
4188 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4190 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4191 return err_mask;
4194 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4195 * @dev: Device to which command will be sent
4196 * @enable: Whether to enable or disable the feature
4197 * @feature: The sector count represents the feature to set
4199 * Issue SET FEATURES - SATA FEATURES command to device @dev
4200 * on port @ap with sector count
4202 * LOCKING:
4203 * PCI/etc. bus probe sem.
4205 * RETURNS:
4206 * 0 on success, AC_ERR_* mask otherwise.
4208 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4209 u8 feature)
4211 struct ata_taskfile tf;
4212 unsigned int err_mask;
4214 /* set up set-features taskfile */
4215 DPRINTK("set features - SATA features\n");
4217 ata_tf_init(dev, &tf);
4218 tf.command = ATA_CMD_SET_FEATURES;
4219 tf.feature = enable;
4220 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4221 tf.protocol = ATA_PROT_NODATA;
4222 tf.nsect = feature;
4224 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4226 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4227 return err_mask;
4231 * ata_dev_init_params - Issue INIT DEV PARAMS command
4232 * @dev: Device to which command will be sent
4233 * @heads: Number of heads (taskfile parameter)
4234 * @sectors: Number of sectors (taskfile parameter)
4236 * LOCKING:
4237 * Kernel thread context (may sleep)
4239 * RETURNS:
4240 * 0 on success, AC_ERR_* mask otherwise.
4242 static unsigned int ata_dev_init_params(struct ata_device *dev,
4243 u16 heads, u16 sectors)
4245 struct ata_taskfile tf;
4246 unsigned int err_mask;
4248 /* Number of sectors per track 1-255. Number of heads 1-16 */
4249 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4250 return AC_ERR_INVALID;
4252 /* set up init dev params taskfile */
4253 DPRINTK("init dev params \n");
4255 ata_tf_init(dev, &tf);
4256 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4257 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4258 tf.protocol = ATA_PROT_NODATA;
4259 tf.nsect = sectors;
4260 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4262 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4263 /* A clean abort indicates an original or just out of spec drive
4264 and we should continue as we issue the setup based on the
4265 drive reported working geometry */
4266 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4267 err_mask = 0;
4269 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4270 return err_mask;
4274 * ata_sg_clean - Unmap DMA memory associated with command
4275 * @qc: Command containing DMA memory to be released
4277 * Unmap all mapped DMA memory associated with this command.
4279 * LOCKING:
4280 * spin_lock_irqsave(host lock)
4282 void ata_sg_clean(struct ata_queued_cmd *qc)
4284 struct ata_port *ap = qc->ap;
4285 struct scatterlist *sg = qc->sg;
4286 int dir = qc->dma_dir;
4288 WARN_ON(sg == NULL);
4290 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4292 if (qc->n_elem)
4293 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4295 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4296 qc->sg = NULL;
4300 * atapi_check_dma - Check whether ATAPI DMA can be supported
4301 * @qc: Metadata associated with taskfile to check
4303 * Allow low-level driver to filter ATA PACKET commands, returning
4304 * a status indicating whether or not it is OK to use DMA for the
4305 * supplied PACKET command.
4307 * LOCKING:
4308 * spin_lock_irqsave(host lock)
4310 * RETURNS: 0 when ATAPI DMA can be used
4311 * nonzero otherwise
4313 int atapi_check_dma(struct ata_queued_cmd *qc)
4315 struct ata_port *ap = qc->ap;
4317 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4318 * few ATAPI devices choke on such DMA requests.
4320 if (unlikely(qc->nbytes & 15))
4321 return 1;
4323 if (ap->ops->check_atapi_dma)
4324 return ap->ops->check_atapi_dma(qc);
4326 return 0;
4330 * ata_std_qc_defer - Check whether a qc needs to be deferred
4331 * @qc: ATA command in question
4333 * Non-NCQ commands cannot run with any other command, NCQ or
4334 * not. As upper layer only knows the queue depth, we are
4335 * responsible for maintaining exclusion. This function checks
4336 * whether a new command @qc can be issued.
4338 * LOCKING:
4339 * spin_lock_irqsave(host lock)
4341 * RETURNS:
4342 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4344 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4346 struct ata_link *link = qc->dev->link;
4348 if (qc->tf.protocol == ATA_PROT_NCQ) {
4349 if (!ata_tag_valid(link->active_tag))
4350 return 0;
4351 } else {
4352 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4353 return 0;
4356 return ATA_DEFER_LINK;
4359 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4362 * ata_sg_init - Associate command with scatter-gather table.
4363 * @qc: Command to be associated
4364 * @sg: Scatter-gather table.
4365 * @n_elem: Number of elements in s/g table.
4367 * Initialize the data-related elements of queued_cmd @qc
4368 * to point to a scatter-gather table @sg, containing @n_elem
4369 * elements.
4371 * LOCKING:
4372 * spin_lock_irqsave(host lock)
4374 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4375 unsigned int n_elem)
4377 qc->sg = sg;
4378 qc->n_elem = n_elem;
4379 qc->cursg = qc->sg;
4383 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4384 * @qc: Command with scatter-gather table to be mapped.
4386 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4388 * LOCKING:
4389 * spin_lock_irqsave(host lock)
4391 * RETURNS:
4392 * Zero on success, negative on error.
4395 static int ata_sg_setup(struct ata_queued_cmd *qc)
4397 struct ata_port *ap = qc->ap;
4398 unsigned int n_elem;
4400 VPRINTK("ENTER, ata%u\n", ap->print_id);
4402 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4403 if (n_elem < 1)
4404 return -1;
4406 DPRINTK("%d sg elements mapped\n", n_elem);
4408 qc->n_elem = n_elem;
4409 qc->flags |= ATA_QCFLAG_DMAMAP;
4411 return 0;
4415 * swap_buf_le16 - swap halves of 16-bit words in place
4416 * @buf: Buffer to swap
4417 * @buf_words: Number of 16-bit words in buffer.
4419 * Swap halves of 16-bit words if needed to convert from
4420 * little-endian byte order to native cpu byte order, or
4421 * vice-versa.
4423 * LOCKING:
4424 * Inherited from caller.
4426 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4428 #ifdef __BIG_ENDIAN
4429 unsigned int i;
4431 for (i = 0; i < buf_words; i++)
4432 buf[i] = le16_to_cpu(buf[i]);
4433 #endif /* __BIG_ENDIAN */
4437 * ata_qc_new - Request an available ATA command, for queueing
4438 * @ap: Port associated with device @dev
4439 * @dev: Device from whom we request an available command structure
4441 * LOCKING:
4442 * None.
4445 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4447 struct ata_queued_cmd *qc = NULL;
4448 unsigned int i;
4450 /* no command while frozen */
4451 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4452 return NULL;
4454 /* the last tag is reserved for internal command. */
4455 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4456 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4457 qc = __ata_qc_from_tag(ap, i);
4458 break;
4461 if (qc)
4462 qc->tag = i;
4464 return qc;
4468 * ata_qc_new_init - Request an available ATA command, and initialize it
4469 * @dev: Device from whom we request an available command structure
4471 * LOCKING:
4472 * None.
4475 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4477 struct ata_port *ap = dev->link->ap;
4478 struct ata_queued_cmd *qc;
4480 qc = ata_qc_new(ap);
4481 if (qc) {
4482 qc->scsicmd = NULL;
4483 qc->ap = ap;
4484 qc->dev = dev;
4486 ata_qc_reinit(qc);
4489 return qc;
4493 * ata_qc_free - free unused ata_queued_cmd
4494 * @qc: Command to complete
4496 * Designed to free unused ata_queued_cmd object
4497 * in case something prevents using it.
4499 * LOCKING:
4500 * spin_lock_irqsave(host lock)
4502 void ata_qc_free(struct ata_queued_cmd *qc)
4504 struct ata_port *ap = qc->ap;
4505 unsigned int tag;
4507 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4509 qc->flags = 0;
4510 tag = qc->tag;
4511 if (likely(ata_tag_valid(tag))) {
4512 qc->tag = ATA_TAG_POISON;
4513 clear_bit(tag, &ap->qc_allocated);
4517 void __ata_qc_complete(struct ata_queued_cmd *qc)
4519 struct ata_port *ap = qc->ap;
4520 struct ata_link *link = qc->dev->link;
4522 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4523 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4525 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4526 ata_sg_clean(qc);
4528 /* command should be marked inactive atomically with qc completion */
4529 if (qc->tf.protocol == ATA_PROT_NCQ) {
4530 link->sactive &= ~(1 << qc->tag);
4531 if (!link->sactive)
4532 ap->nr_active_links--;
4533 } else {
4534 link->active_tag = ATA_TAG_POISON;
4535 ap->nr_active_links--;
4538 /* clear exclusive status */
4539 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4540 ap->excl_link == link))
4541 ap->excl_link = NULL;
4543 /* atapi: mark qc as inactive to prevent the interrupt handler
4544 * from completing the command twice later, before the error handler
4545 * is called. (when rc != 0 and atapi request sense is needed)
4547 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4548 ap->qc_active &= ~(1 << qc->tag);
4550 /* call completion callback */
4551 qc->complete_fn(qc);
4554 static void fill_result_tf(struct ata_queued_cmd *qc)
4556 struct ata_port *ap = qc->ap;
4558 qc->result_tf.flags = qc->tf.flags;
4559 ap->ops->qc_fill_rtf(qc);
4562 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4564 struct ata_device *dev = qc->dev;
4566 if (ata_tag_internal(qc->tag))
4567 return;
4569 if (ata_is_nodata(qc->tf.protocol))
4570 return;
4572 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4573 return;
4575 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4579 * ata_qc_complete - Complete an active ATA command
4580 * @qc: Command to complete
4581 * @err_mask: ATA Status register contents
4583 * Indicate to the mid and upper layers that an ATA
4584 * command has completed, with either an ok or not-ok status.
4586 * LOCKING:
4587 * spin_lock_irqsave(host lock)
4589 void ata_qc_complete(struct ata_queued_cmd *qc)
4591 struct ata_port *ap = qc->ap;
4593 /* XXX: New EH and old EH use different mechanisms to
4594 * synchronize EH with regular execution path.
4596 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4597 * Normal execution path is responsible for not accessing a
4598 * failed qc. libata core enforces the rule by returning NULL
4599 * from ata_qc_from_tag() for failed qcs.
4601 * Old EH depends on ata_qc_complete() nullifying completion
4602 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4603 * not synchronize with interrupt handler. Only PIO task is
4604 * taken care of.
4606 if (ap->ops->error_handler) {
4607 struct ata_device *dev = qc->dev;
4608 struct ata_eh_info *ehi = &dev->link->eh_info;
4610 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4612 if (unlikely(qc->err_mask))
4613 qc->flags |= ATA_QCFLAG_FAILED;
4615 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4616 if (!ata_tag_internal(qc->tag)) {
4617 /* always fill result TF for failed qc */
4618 fill_result_tf(qc);
4619 ata_qc_schedule_eh(qc);
4620 return;
4624 /* read result TF if requested */
4625 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4626 fill_result_tf(qc);
4628 /* Some commands need post-processing after successful
4629 * completion.
4631 switch (qc->tf.command) {
4632 case ATA_CMD_SET_FEATURES:
4633 if (qc->tf.feature != SETFEATURES_WC_ON &&
4634 qc->tf.feature != SETFEATURES_WC_OFF)
4635 break;
4636 /* fall through */
4637 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4638 case ATA_CMD_SET_MULTI: /* multi_count changed */
4639 /* revalidate device */
4640 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4641 ata_port_schedule_eh(ap);
4642 break;
4644 case ATA_CMD_SLEEP:
4645 dev->flags |= ATA_DFLAG_SLEEPING;
4646 break;
4649 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4650 ata_verify_xfer(qc);
4652 __ata_qc_complete(qc);
4653 } else {
4654 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4655 return;
4657 /* read result TF if failed or requested */
4658 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4659 fill_result_tf(qc);
4661 __ata_qc_complete(qc);
4666 * ata_qc_complete_multiple - Complete multiple qcs successfully
4667 * @ap: port in question
4668 * @qc_active: new qc_active mask
4670 * Complete in-flight commands. This functions is meant to be
4671 * called from low-level driver's interrupt routine to complete
4672 * requests normally. ap->qc_active and @qc_active is compared
4673 * and commands are completed accordingly.
4675 * LOCKING:
4676 * spin_lock_irqsave(host lock)
4678 * RETURNS:
4679 * Number of completed commands on success, -errno otherwise.
4681 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4683 int nr_done = 0;
4684 u32 done_mask;
4685 int i;
4687 done_mask = ap->qc_active ^ qc_active;
4689 if (unlikely(done_mask & qc_active)) {
4690 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4691 "(%08x->%08x)\n", ap->qc_active, qc_active);
4692 return -EINVAL;
4695 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4696 struct ata_queued_cmd *qc;
4698 if (!(done_mask & (1 << i)))
4699 continue;
4701 if ((qc = ata_qc_from_tag(ap, i))) {
4702 ata_qc_complete(qc);
4703 nr_done++;
4707 return nr_done;
4711 * ata_qc_issue - issue taskfile to device
4712 * @qc: command to issue to device
4714 * Prepare an ATA command to submission to device.
4715 * This includes mapping the data into a DMA-able
4716 * area, filling in the S/G table, and finally
4717 * writing the taskfile to hardware, starting the command.
4719 * LOCKING:
4720 * spin_lock_irqsave(host lock)
4722 void ata_qc_issue(struct ata_queued_cmd *qc)
4724 struct ata_port *ap = qc->ap;
4725 struct ata_link *link = qc->dev->link;
4726 u8 prot = qc->tf.protocol;
4728 /* Make sure only one non-NCQ command is outstanding. The
4729 * check is skipped for old EH because it reuses active qc to
4730 * request ATAPI sense.
4732 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4734 if (ata_is_ncq(prot)) {
4735 WARN_ON(link->sactive & (1 << qc->tag));
4737 if (!link->sactive)
4738 ap->nr_active_links++;
4739 link->sactive |= 1 << qc->tag;
4740 } else {
4741 WARN_ON(link->sactive);
4743 ap->nr_active_links++;
4744 link->active_tag = qc->tag;
4747 qc->flags |= ATA_QCFLAG_ACTIVE;
4748 ap->qc_active |= 1 << qc->tag;
4750 /* We guarantee to LLDs that they will have at least one
4751 * non-zero sg if the command is a data command.
4753 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4755 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4756 (ap->flags & ATA_FLAG_PIO_DMA)))
4757 if (ata_sg_setup(qc))
4758 goto sg_err;
4760 /* if device is sleeping, schedule reset and abort the link */
4761 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4762 link->eh_info.action |= ATA_EH_RESET;
4763 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4764 ata_link_abort(link);
4765 return;
4768 ap->ops->qc_prep(qc);
4770 qc->err_mask |= ap->ops->qc_issue(qc);
4771 if (unlikely(qc->err_mask))
4772 goto err;
4773 return;
4775 sg_err:
4776 qc->err_mask |= AC_ERR_SYSTEM;
4777 err:
4778 ata_qc_complete(qc);
4782 * sata_scr_valid - test whether SCRs are accessible
4783 * @link: ATA link to test SCR accessibility for
4785 * Test whether SCRs are accessible for @link.
4787 * LOCKING:
4788 * None.
4790 * RETURNS:
4791 * 1 if SCRs are accessible, 0 otherwise.
4793 int sata_scr_valid(struct ata_link *link)
4795 struct ata_port *ap = link->ap;
4797 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4801 * sata_scr_read - read SCR register of the specified port
4802 * @link: ATA link to read SCR for
4803 * @reg: SCR to read
4804 * @val: Place to store read value
4806 * Read SCR register @reg of @link into *@val. This function is
4807 * guaranteed to succeed if @link is ap->link, the cable type of
4808 * the port is SATA and the port implements ->scr_read.
4810 * LOCKING:
4811 * None if @link is ap->link. Kernel thread context otherwise.
4813 * RETURNS:
4814 * 0 on success, negative errno on failure.
4816 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4818 if (ata_is_host_link(link)) {
4819 struct ata_port *ap = link->ap;
4821 if (sata_scr_valid(link))
4822 return ap->ops->scr_read(ap, reg, val);
4823 return -EOPNOTSUPP;
4826 return sata_pmp_scr_read(link, reg, val);
4830 * sata_scr_write - write SCR register of the specified port
4831 * @link: ATA link to write SCR for
4832 * @reg: SCR to write
4833 * @val: value to write
4835 * Write @val to SCR register @reg of @link. This function is
4836 * guaranteed to succeed if @link is ap->link, the cable type of
4837 * the port is SATA and the port implements ->scr_read.
4839 * LOCKING:
4840 * None if @link is ap->link. Kernel thread context otherwise.
4842 * RETURNS:
4843 * 0 on success, negative errno on failure.
4845 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4847 if (ata_is_host_link(link)) {
4848 struct ata_port *ap = link->ap;
4850 if (sata_scr_valid(link))
4851 return ap->ops->scr_write(ap, reg, val);
4852 return -EOPNOTSUPP;
4855 return sata_pmp_scr_write(link, reg, val);
4859 * sata_scr_write_flush - write SCR register of the specified port and flush
4860 * @link: ATA link to write SCR for
4861 * @reg: SCR to write
4862 * @val: value to write
4864 * This function is identical to sata_scr_write() except that this
4865 * function performs flush after writing to the register.
4867 * LOCKING:
4868 * None if @link is ap->link. Kernel thread context otherwise.
4870 * RETURNS:
4871 * 0 on success, negative errno on failure.
4873 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
4875 if (ata_is_host_link(link)) {
4876 struct ata_port *ap = link->ap;
4877 int rc;
4879 if (sata_scr_valid(link)) {
4880 rc = ap->ops->scr_write(ap, reg, val);
4881 if (rc == 0)
4882 rc = ap->ops->scr_read(ap, reg, &val);
4883 return rc;
4885 return -EOPNOTSUPP;
4888 return sata_pmp_scr_write(link, reg, val);
4892 * ata_link_online - test whether the given link is online
4893 * @link: ATA link to test
4895 * Test whether @link is online. Note that this function returns
4896 * 0 if online status of @link cannot be obtained, so
4897 * ata_link_online(link) != !ata_link_offline(link).
4899 * LOCKING:
4900 * None.
4902 * RETURNS:
4903 * 1 if the port online status is available and online.
4905 int ata_link_online(struct ata_link *link)
4907 u32 sstatus;
4909 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4910 (sstatus & 0xf) == 0x3)
4911 return 1;
4912 return 0;
4916 * ata_link_offline - test whether the given link is offline
4917 * @link: ATA link to test
4919 * Test whether @link is offline. Note that this function
4920 * returns 0 if offline status of @link cannot be obtained, so
4921 * ata_link_online(link) != !ata_link_offline(link).
4923 * LOCKING:
4924 * None.
4926 * RETURNS:
4927 * 1 if the port offline status is available and offline.
4929 int ata_link_offline(struct ata_link *link)
4931 u32 sstatus;
4933 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4934 (sstatus & 0xf) != 0x3)
4935 return 1;
4936 return 0;
4939 #ifdef CONFIG_PM
4940 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
4941 unsigned int action, unsigned int ehi_flags,
4942 int wait)
4944 unsigned long flags;
4945 int i, rc;
4947 for (i = 0; i < host->n_ports; i++) {
4948 struct ata_port *ap = host->ports[i];
4949 struct ata_link *link;
4951 /* Previous resume operation might still be in
4952 * progress. Wait for PM_PENDING to clear.
4954 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4955 ata_port_wait_eh(ap);
4956 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4959 /* request PM ops to EH */
4960 spin_lock_irqsave(ap->lock, flags);
4962 ap->pm_mesg = mesg;
4963 if (wait) {
4964 rc = 0;
4965 ap->pm_result = &rc;
4968 ap->pflags |= ATA_PFLAG_PM_PENDING;
4969 __ata_port_for_each_link(link, ap) {
4970 link->eh_info.action |= action;
4971 link->eh_info.flags |= ehi_flags;
4974 ata_port_schedule_eh(ap);
4976 spin_unlock_irqrestore(ap->lock, flags);
4978 /* wait and check result */
4979 if (wait) {
4980 ata_port_wait_eh(ap);
4981 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4982 if (rc)
4983 return rc;
4987 return 0;
4991 * ata_host_suspend - suspend host
4992 * @host: host to suspend
4993 * @mesg: PM message
4995 * Suspend @host. Actual operation is performed by EH. This
4996 * function requests EH to perform PM operations and waits for EH
4997 * to finish.
4999 * LOCKING:
5000 * Kernel thread context (may sleep).
5002 * RETURNS:
5003 * 0 on success, -errno on failure.
5005 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5007 int rc;
5010 * disable link pm on all ports before requesting
5011 * any pm activity
5013 ata_lpm_enable(host);
5015 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5016 if (rc == 0)
5017 host->dev->power.power_state = mesg;
5018 return rc;
5022 * ata_host_resume - resume host
5023 * @host: host to resume
5025 * Resume @host. Actual operation is performed by EH. This
5026 * function requests EH to perform PM operations and returns.
5027 * Note that all resume operations are performed parallely.
5029 * LOCKING:
5030 * Kernel thread context (may sleep).
5032 void ata_host_resume(struct ata_host *host)
5034 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5035 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5036 host->dev->power.power_state = PMSG_ON;
5038 /* reenable link pm */
5039 ata_lpm_disable(host);
5041 #endif
5044 * ata_port_start - Set port up for dma.
5045 * @ap: Port to initialize
5047 * Called just after data structures for each port are
5048 * initialized. Allocates space for PRD table.
5050 * May be used as the port_start() entry in ata_port_operations.
5052 * LOCKING:
5053 * Inherited from caller.
5055 int ata_port_start(struct ata_port *ap)
5057 struct device *dev = ap->dev;
5059 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5060 GFP_KERNEL);
5061 if (!ap->prd)
5062 return -ENOMEM;
5064 return 0;
5068 * ata_dev_init - Initialize an ata_device structure
5069 * @dev: Device structure to initialize
5071 * Initialize @dev in preparation for probing.
5073 * LOCKING:
5074 * Inherited from caller.
5076 void ata_dev_init(struct ata_device *dev)
5078 struct ata_link *link = dev->link;
5079 struct ata_port *ap = link->ap;
5080 unsigned long flags;
5082 /* SATA spd limit is bound to the first device */
5083 link->sata_spd_limit = link->hw_sata_spd_limit;
5084 link->sata_spd = 0;
5086 /* High bits of dev->flags are used to record warm plug
5087 * requests which occur asynchronously. Synchronize using
5088 * host lock.
5090 spin_lock_irqsave(ap->lock, flags);
5091 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5092 dev->horkage = 0;
5093 spin_unlock_irqrestore(ap->lock, flags);
5095 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5096 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5097 dev->pio_mask = UINT_MAX;
5098 dev->mwdma_mask = UINT_MAX;
5099 dev->udma_mask = UINT_MAX;
5103 * ata_link_init - Initialize an ata_link structure
5104 * @ap: ATA port link is attached to
5105 * @link: Link structure to initialize
5106 * @pmp: Port multiplier port number
5108 * Initialize @link.
5110 * LOCKING:
5111 * Kernel thread context (may sleep)
5113 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5115 int i;
5117 /* clear everything except for devices */
5118 memset(link, 0, offsetof(struct ata_link, device[0]));
5120 link->ap = ap;
5121 link->pmp = pmp;
5122 link->active_tag = ATA_TAG_POISON;
5123 link->hw_sata_spd_limit = UINT_MAX;
5125 /* can't use iterator, ap isn't initialized yet */
5126 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5127 struct ata_device *dev = &link->device[i];
5129 dev->link = link;
5130 dev->devno = dev - link->device;
5131 ata_dev_init(dev);
5136 * sata_link_init_spd - Initialize link->sata_spd_limit
5137 * @link: Link to configure sata_spd_limit for
5139 * Initialize @link->[hw_]sata_spd_limit to the currently
5140 * configured value.
5142 * LOCKING:
5143 * Kernel thread context (may sleep).
5145 * RETURNS:
5146 * 0 on success, -errno on failure.
5148 int sata_link_init_spd(struct ata_link *link)
5150 u32 scontrol;
5151 u8 spd;
5152 int rc;
5154 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
5155 if (rc)
5156 return rc;
5158 spd = (scontrol >> 4) & 0xf;
5159 if (spd)
5160 link->hw_sata_spd_limit &= (1 << spd) - 1;
5162 ata_force_spd_limit(link);
5164 link->sata_spd_limit = link->hw_sata_spd_limit;
5166 return 0;
5170 * ata_port_alloc - allocate and initialize basic ATA port resources
5171 * @host: ATA host this allocated port belongs to
5173 * Allocate and initialize basic ATA port resources.
5175 * RETURNS:
5176 * Allocate ATA port on success, NULL on failure.
5178 * LOCKING:
5179 * Inherited from calling layer (may sleep).
5181 struct ata_port *ata_port_alloc(struct ata_host *host)
5183 struct ata_port *ap;
5185 DPRINTK("ENTER\n");
5187 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5188 if (!ap)
5189 return NULL;
5191 ap->pflags |= ATA_PFLAG_INITIALIZING;
5192 ap->lock = &host->lock;
5193 ap->flags = ATA_FLAG_DISABLED;
5194 ap->print_id = -1;
5195 ap->ctl = ATA_DEVCTL_OBS;
5196 ap->host = host;
5197 ap->dev = host->dev;
5198 ap->last_ctl = 0xFF;
5200 #if defined(ATA_VERBOSE_DEBUG)
5201 /* turn on all debugging levels */
5202 ap->msg_enable = 0x00FF;
5203 #elif defined(ATA_DEBUG)
5204 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5205 #else
5206 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5207 #endif
5209 #ifdef CONFIG_ATA_SFF
5210 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5211 #endif
5212 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5213 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5214 INIT_LIST_HEAD(&ap->eh_done_q);
5215 init_waitqueue_head(&ap->eh_wait_q);
5216 init_timer_deferrable(&ap->fastdrain_timer);
5217 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5218 ap->fastdrain_timer.data = (unsigned long)ap;
5220 ap->cbl = ATA_CBL_NONE;
5222 ata_link_init(ap, &ap->link, 0);
5224 #ifdef ATA_IRQ_TRAP
5225 ap->stats.unhandled_irq = 1;
5226 ap->stats.idle_irq = 1;
5227 #endif
5228 return ap;
5231 static void ata_host_release(struct device *gendev, void *res)
5233 struct ata_host *host = dev_get_drvdata(gendev);
5234 int i;
5236 for (i = 0; i < host->n_ports; i++) {
5237 struct ata_port *ap = host->ports[i];
5239 if (!ap)
5240 continue;
5242 if (ap->scsi_host)
5243 scsi_host_put(ap->scsi_host);
5245 kfree(ap->pmp_link);
5246 kfree(ap);
5247 host->ports[i] = NULL;
5250 dev_set_drvdata(gendev, NULL);
5254 * ata_host_alloc - allocate and init basic ATA host resources
5255 * @dev: generic device this host is associated with
5256 * @max_ports: maximum number of ATA ports associated with this host
5258 * Allocate and initialize basic ATA host resources. LLD calls
5259 * this function to allocate a host, initializes it fully and
5260 * attaches it using ata_host_register().
5262 * @max_ports ports are allocated and host->n_ports is
5263 * initialized to @max_ports. The caller is allowed to decrease
5264 * host->n_ports before calling ata_host_register(). The unused
5265 * ports will be automatically freed on registration.
5267 * RETURNS:
5268 * Allocate ATA host on success, NULL on failure.
5270 * LOCKING:
5271 * Inherited from calling layer (may sleep).
5273 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5275 struct ata_host *host;
5276 size_t sz;
5277 int i;
5279 DPRINTK("ENTER\n");
5281 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5282 return NULL;
5284 /* alloc a container for our list of ATA ports (buses) */
5285 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5286 /* alloc a container for our list of ATA ports (buses) */
5287 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5288 if (!host)
5289 goto err_out;
5291 devres_add(dev, host);
5292 dev_set_drvdata(dev, host);
5294 spin_lock_init(&host->lock);
5295 host->dev = dev;
5296 host->n_ports = max_ports;
5298 /* allocate ports bound to this host */
5299 for (i = 0; i < max_ports; i++) {
5300 struct ata_port *ap;
5302 ap = ata_port_alloc(host);
5303 if (!ap)
5304 goto err_out;
5306 ap->port_no = i;
5307 host->ports[i] = ap;
5310 devres_remove_group(dev, NULL);
5311 return host;
5313 err_out:
5314 devres_release_group(dev, NULL);
5315 return NULL;
5319 * ata_host_alloc_pinfo - alloc host and init with port_info array
5320 * @dev: generic device this host is associated with
5321 * @ppi: array of ATA port_info to initialize host with
5322 * @n_ports: number of ATA ports attached to this host
5324 * Allocate ATA host and initialize with info from @ppi. If NULL
5325 * terminated, @ppi may contain fewer entries than @n_ports. The
5326 * last entry will be used for the remaining ports.
5328 * RETURNS:
5329 * Allocate ATA host on success, NULL on failure.
5331 * LOCKING:
5332 * Inherited from calling layer (may sleep).
5334 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5335 const struct ata_port_info * const * ppi,
5336 int n_ports)
5338 const struct ata_port_info *pi;
5339 struct ata_host *host;
5340 int i, j;
5342 host = ata_host_alloc(dev, n_ports);
5343 if (!host)
5344 return NULL;
5346 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5347 struct ata_port *ap = host->ports[i];
5349 if (ppi[j])
5350 pi = ppi[j++];
5352 ap->pio_mask = pi->pio_mask;
5353 ap->mwdma_mask = pi->mwdma_mask;
5354 ap->udma_mask = pi->udma_mask;
5355 ap->flags |= pi->flags;
5356 ap->link.flags |= pi->link_flags;
5357 ap->ops = pi->port_ops;
5359 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5360 host->ops = pi->port_ops;
5363 return host;
5366 static void ata_host_stop(struct device *gendev, void *res)
5368 struct ata_host *host = dev_get_drvdata(gendev);
5369 int i;
5371 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5373 for (i = 0; i < host->n_ports; i++) {
5374 struct ata_port *ap = host->ports[i];
5376 if (ap->ops->port_stop)
5377 ap->ops->port_stop(ap);
5380 if (host->ops->host_stop)
5381 host->ops->host_stop(host);
5385 * ata_finalize_port_ops - finalize ata_port_operations
5386 * @ops: ata_port_operations to finalize
5388 * An ata_port_operations can inherit from another ops and that
5389 * ops can again inherit from another. This can go on as many
5390 * times as necessary as long as there is no loop in the
5391 * inheritance chain.
5393 * Ops tables are finalized when the host is started. NULL or
5394 * unspecified entries are inherited from the closet ancestor
5395 * which has the method and the entry is populated with it.
5396 * After finalization, the ops table directly points to all the
5397 * methods and ->inherits is no longer necessary and cleared.
5399 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5401 * LOCKING:
5402 * None.
5404 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5406 static DEFINE_SPINLOCK(lock);
5407 const struct ata_port_operations *cur;
5408 void **begin = (void **)ops;
5409 void **end = (void **)&ops->inherits;
5410 void **pp;
5412 if (!ops || !ops->inherits)
5413 return;
5415 spin_lock(&lock);
5417 for (cur = ops->inherits; cur; cur = cur->inherits) {
5418 void **inherit = (void **)cur;
5420 for (pp = begin; pp < end; pp++, inherit++)
5421 if (!*pp)
5422 *pp = *inherit;
5425 for (pp = begin; pp < end; pp++)
5426 if (IS_ERR(*pp))
5427 *pp = NULL;
5429 ops->inherits = NULL;
5431 spin_unlock(&lock);
5435 * ata_host_start - start and freeze ports of an ATA host
5436 * @host: ATA host to start ports for
5438 * Start and then freeze ports of @host. Started status is
5439 * recorded in host->flags, so this function can be called
5440 * multiple times. Ports are guaranteed to get started only
5441 * once. If host->ops isn't initialized yet, its set to the
5442 * first non-dummy port ops.
5444 * LOCKING:
5445 * Inherited from calling layer (may sleep).
5447 * RETURNS:
5448 * 0 if all ports are started successfully, -errno otherwise.
5450 int ata_host_start(struct ata_host *host)
5452 int have_stop = 0;
5453 void *start_dr = NULL;
5454 int i, rc;
5456 if (host->flags & ATA_HOST_STARTED)
5457 return 0;
5459 ata_finalize_port_ops(host->ops);
5461 for (i = 0; i < host->n_ports; i++) {
5462 struct ata_port *ap = host->ports[i];
5464 ata_finalize_port_ops(ap->ops);
5466 if (!host->ops && !ata_port_is_dummy(ap))
5467 host->ops = ap->ops;
5469 if (ap->ops->port_stop)
5470 have_stop = 1;
5473 if (host->ops->host_stop)
5474 have_stop = 1;
5476 if (have_stop) {
5477 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5478 if (!start_dr)
5479 return -ENOMEM;
5482 for (i = 0; i < host->n_ports; i++) {
5483 struct ata_port *ap = host->ports[i];
5485 if (ap->ops->port_start) {
5486 rc = ap->ops->port_start(ap);
5487 if (rc) {
5488 if (rc != -ENODEV)
5489 dev_printk(KERN_ERR, host->dev,
5490 "failed to start port %d "
5491 "(errno=%d)\n", i, rc);
5492 goto err_out;
5495 ata_eh_freeze_port(ap);
5498 if (start_dr)
5499 devres_add(host->dev, start_dr);
5500 host->flags |= ATA_HOST_STARTED;
5501 return 0;
5503 err_out:
5504 while (--i >= 0) {
5505 struct ata_port *ap = host->ports[i];
5507 if (ap->ops->port_stop)
5508 ap->ops->port_stop(ap);
5510 devres_free(start_dr);
5511 return rc;
5515 * ata_sas_host_init - Initialize a host struct
5516 * @host: host to initialize
5517 * @dev: device host is attached to
5518 * @flags: host flags
5519 * @ops: port_ops
5521 * LOCKING:
5522 * PCI/etc. bus probe sem.
5525 /* KILLME - the only user left is ipr */
5526 void ata_host_init(struct ata_host *host, struct device *dev,
5527 unsigned long flags, struct ata_port_operations *ops)
5529 spin_lock_init(&host->lock);
5530 host->dev = dev;
5531 host->flags = flags;
5532 host->ops = ops;
5536 * ata_host_register - register initialized ATA host
5537 * @host: ATA host to register
5538 * @sht: template for SCSI host
5540 * Register initialized ATA host. @host is allocated using
5541 * ata_host_alloc() and fully initialized by LLD. This function
5542 * starts ports, registers @host with ATA and SCSI layers and
5543 * probe registered devices.
5545 * LOCKING:
5546 * Inherited from calling layer (may sleep).
5548 * RETURNS:
5549 * 0 on success, -errno otherwise.
5551 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5553 int i, rc;
5555 /* host must have been started */
5556 if (!(host->flags & ATA_HOST_STARTED)) {
5557 dev_printk(KERN_ERR, host->dev,
5558 "BUG: trying to register unstarted host\n");
5559 WARN_ON(1);
5560 return -EINVAL;
5563 /* Blow away unused ports. This happens when LLD can't
5564 * determine the exact number of ports to allocate at
5565 * allocation time.
5567 for (i = host->n_ports; host->ports[i]; i++)
5568 kfree(host->ports[i]);
5570 /* give ports names and add SCSI hosts */
5571 for (i = 0; i < host->n_ports; i++)
5572 host->ports[i]->print_id = ata_print_id++;
5574 rc = ata_scsi_add_hosts(host, sht);
5575 if (rc)
5576 return rc;
5578 /* associate with ACPI nodes */
5579 ata_acpi_associate(host);
5581 /* set cable, sata_spd_limit and report */
5582 for (i = 0; i < host->n_ports; i++) {
5583 struct ata_port *ap = host->ports[i];
5584 unsigned long xfer_mask;
5586 /* set SATA cable type if still unset */
5587 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5588 ap->cbl = ATA_CBL_SATA;
5590 /* init sata_spd_limit to the current value */
5591 sata_link_init_spd(&ap->link);
5593 /* print per-port info to dmesg */
5594 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5595 ap->udma_mask);
5597 if (!ata_port_is_dummy(ap)) {
5598 ata_port_printk(ap, KERN_INFO,
5599 "%cATA max %s %s\n",
5600 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5601 ata_mode_string(xfer_mask),
5602 ap->link.eh_info.desc);
5603 ata_ehi_clear_desc(&ap->link.eh_info);
5604 } else
5605 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5608 /* perform each probe synchronously */
5609 DPRINTK("probe begin\n");
5610 for (i = 0; i < host->n_ports; i++) {
5611 struct ata_port *ap = host->ports[i];
5613 /* probe */
5614 if (ap->ops->error_handler) {
5615 struct ata_eh_info *ehi = &ap->link.eh_info;
5616 unsigned long flags;
5618 ata_port_probe(ap);
5620 /* kick EH for boot probing */
5621 spin_lock_irqsave(ap->lock, flags);
5623 ehi->probe_mask |= ATA_ALL_DEVICES;
5624 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5625 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5627 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5628 ap->pflags |= ATA_PFLAG_LOADING;
5629 ata_port_schedule_eh(ap);
5631 spin_unlock_irqrestore(ap->lock, flags);
5633 /* wait for EH to finish */
5634 ata_port_wait_eh(ap);
5635 } else {
5636 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5637 rc = ata_bus_probe(ap);
5638 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5640 if (rc) {
5641 /* FIXME: do something useful here?
5642 * Current libata behavior will
5643 * tear down everything when
5644 * the module is removed
5645 * or the h/w is unplugged.
5651 /* probes are done, now scan each port's disk(s) */
5652 DPRINTK("host probe begin\n");
5653 for (i = 0; i < host->n_ports; i++) {
5654 struct ata_port *ap = host->ports[i];
5656 ata_scsi_scan_host(ap, 1);
5659 return 0;
5663 * ata_host_activate - start host, request IRQ and register it
5664 * @host: target ATA host
5665 * @irq: IRQ to request
5666 * @irq_handler: irq_handler used when requesting IRQ
5667 * @irq_flags: irq_flags used when requesting IRQ
5668 * @sht: scsi_host_template to use when registering the host
5670 * After allocating an ATA host and initializing it, most libata
5671 * LLDs perform three steps to activate the host - start host,
5672 * request IRQ and register it. This helper takes necessasry
5673 * arguments and performs the three steps in one go.
5675 * An invalid IRQ skips the IRQ registration and expects the host to
5676 * have set polling mode on the port. In this case, @irq_handler
5677 * should be NULL.
5679 * LOCKING:
5680 * Inherited from calling layer (may sleep).
5682 * RETURNS:
5683 * 0 on success, -errno otherwise.
5685 int ata_host_activate(struct ata_host *host, int irq,
5686 irq_handler_t irq_handler, unsigned long irq_flags,
5687 struct scsi_host_template *sht)
5689 int i, rc;
5691 rc = ata_host_start(host);
5692 if (rc)
5693 return rc;
5695 /* Special case for polling mode */
5696 if (!irq) {
5697 WARN_ON(irq_handler);
5698 return ata_host_register(host, sht);
5701 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5702 dev_driver_string(host->dev), host);
5703 if (rc)
5704 return rc;
5706 for (i = 0; i < host->n_ports; i++)
5707 ata_port_desc(host->ports[i], "irq %d", irq);
5709 rc = ata_host_register(host, sht);
5710 /* if failed, just free the IRQ and leave ports alone */
5711 if (rc)
5712 devm_free_irq(host->dev, irq, host);
5714 return rc;
5718 * ata_port_detach - Detach ATA port in prepration of device removal
5719 * @ap: ATA port to be detached
5721 * Detach all ATA devices and the associated SCSI devices of @ap;
5722 * then, remove the associated SCSI host. @ap is guaranteed to
5723 * be quiescent on return from this function.
5725 * LOCKING:
5726 * Kernel thread context (may sleep).
5728 static void ata_port_detach(struct ata_port *ap)
5730 unsigned long flags;
5731 struct ata_link *link;
5732 struct ata_device *dev;
5734 if (!ap->ops->error_handler)
5735 goto skip_eh;
5737 /* tell EH we're leaving & flush EH */
5738 spin_lock_irqsave(ap->lock, flags);
5739 ap->pflags |= ATA_PFLAG_UNLOADING;
5740 spin_unlock_irqrestore(ap->lock, flags);
5742 ata_port_wait_eh(ap);
5744 /* EH is now guaranteed to see UNLOADING - EH context belongs
5745 * to us. Disable all existing devices.
5747 ata_port_for_each_link(link, ap) {
5748 ata_link_for_each_dev(dev, link)
5749 ata_dev_disable(dev);
5752 /* Final freeze & EH. All in-flight commands are aborted. EH
5753 * will be skipped and retrials will be terminated with bad
5754 * target.
5756 spin_lock_irqsave(ap->lock, flags);
5757 ata_port_freeze(ap); /* won't be thawed */
5758 spin_unlock_irqrestore(ap->lock, flags);
5760 ata_port_wait_eh(ap);
5761 cancel_rearming_delayed_work(&ap->hotplug_task);
5763 skip_eh:
5764 /* remove the associated SCSI host */
5765 scsi_remove_host(ap->scsi_host);
5769 * ata_host_detach - Detach all ports of an ATA host
5770 * @host: Host to detach
5772 * Detach all ports of @host.
5774 * LOCKING:
5775 * Kernel thread context (may sleep).
5777 void ata_host_detach(struct ata_host *host)
5779 int i;
5781 for (i = 0; i < host->n_ports; i++)
5782 ata_port_detach(host->ports[i]);
5784 /* the host is dead now, dissociate ACPI */
5785 ata_acpi_dissociate(host);
5788 #ifdef CONFIG_PCI
5791 * ata_pci_remove_one - PCI layer callback for device removal
5792 * @pdev: PCI device that was removed
5794 * PCI layer indicates to libata via this hook that hot-unplug or
5795 * module unload event has occurred. Detach all ports. Resource
5796 * release is handled via devres.
5798 * LOCKING:
5799 * Inherited from PCI layer (may sleep).
5801 void ata_pci_remove_one(struct pci_dev *pdev)
5803 struct device *dev = &pdev->dev;
5804 struct ata_host *host = dev_get_drvdata(dev);
5806 ata_host_detach(host);
5809 /* move to PCI subsystem */
5810 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5812 unsigned long tmp = 0;
5814 switch (bits->width) {
5815 case 1: {
5816 u8 tmp8 = 0;
5817 pci_read_config_byte(pdev, bits->reg, &tmp8);
5818 tmp = tmp8;
5819 break;
5821 case 2: {
5822 u16 tmp16 = 0;
5823 pci_read_config_word(pdev, bits->reg, &tmp16);
5824 tmp = tmp16;
5825 break;
5827 case 4: {
5828 u32 tmp32 = 0;
5829 pci_read_config_dword(pdev, bits->reg, &tmp32);
5830 tmp = tmp32;
5831 break;
5834 default:
5835 return -EINVAL;
5838 tmp &= bits->mask;
5840 return (tmp == bits->val) ? 1 : 0;
5843 #ifdef CONFIG_PM
5844 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5846 pci_save_state(pdev);
5847 pci_disable_device(pdev);
5849 if (mesg.event & PM_EVENT_SLEEP)
5850 pci_set_power_state(pdev, PCI_D3hot);
5853 int ata_pci_device_do_resume(struct pci_dev *pdev)
5855 int rc;
5857 pci_set_power_state(pdev, PCI_D0);
5858 pci_restore_state(pdev);
5860 rc = pcim_enable_device(pdev);
5861 if (rc) {
5862 dev_printk(KERN_ERR, &pdev->dev,
5863 "failed to enable device after resume (%d)\n", rc);
5864 return rc;
5867 pci_set_master(pdev);
5868 return 0;
5871 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5873 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5874 int rc = 0;
5876 rc = ata_host_suspend(host, mesg);
5877 if (rc)
5878 return rc;
5880 ata_pci_device_do_suspend(pdev, mesg);
5882 return 0;
5885 int ata_pci_device_resume(struct pci_dev *pdev)
5887 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5888 int rc;
5890 rc = ata_pci_device_do_resume(pdev);
5891 if (rc == 0)
5892 ata_host_resume(host);
5893 return rc;
5895 #endif /* CONFIG_PM */
5897 #endif /* CONFIG_PCI */
5899 static int __init ata_parse_force_one(char **cur,
5900 struct ata_force_ent *force_ent,
5901 const char **reason)
5903 /* FIXME: Currently, there's no way to tag init const data and
5904 * using __initdata causes build failure on some versions of
5905 * gcc. Once __initdataconst is implemented, add const to the
5906 * following structure.
5908 static struct ata_force_param force_tbl[] __initdata = {
5909 { "40c", .cbl = ATA_CBL_PATA40 },
5910 { "80c", .cbl = ATA_CBL_PATA80 },
5911 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
5912 { "unk", .cbl = ATA_CBL_PATA_UNK },
5913 { "ign", .cbl = ATA_CBL_PATA_IGN },
5914 { "sata", .cbl = ATA_CBL_SATA },
5915 { "1.5Gbps", .spd_limit = 1 },
5916 { "3.0Gbps", .spd_limit = 2 },
5917 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
5918 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
5919 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
5920 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
5921 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
5922 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
5923 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
5924 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
5925 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
5926 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
5927 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
5928 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
5929 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
5930 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
5931 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5932 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5933 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5934 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5935 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5936 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5937 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5938 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5939 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5940 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5941 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5942 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5943 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5944 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5945 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5946 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5947 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5948 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5949 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5950 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5951 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5952 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
5954 char *start = *cur, *p = *cur;
5955 char *id, *val, *endp;
5956 const struct ata_force_param *match_fp = NULL;
5957 int nr_matches = 0, i;
5959 /* find where this param ends and update *cur */
5960 while (*p != '\0' && *p != ',')
5961 p++;
5963 if (*p == '\0')
5964 *cur = p;
5965 else
5966 *cur = p + 1;
5968 *p = '\0';
5970 /* parse */
5971 p = strchr(start, ':');
5972 if (!p) {
5973 val = strstrip(start);
5974 goto parse_val;
5976 *p = '\0';
5978 id = strstrip(start);
5979 val = strstrip(p + 1);
5981 /* parse id */
5982 p = strchr(id, '.');
5983 if (p) {
5984 *p++ = '\0';
5985 force_ent->device = simple_strtoul(p, &endp, 10);
5986 if (p == endp || *endp != '\0') {
5987 *reason = "invalid device";
5988 return -EINVAL;
5992 force_ent->port = simple_strtoul(id, &endp, 10);
5993 if (p == endp || *endp != '\0') {
5994 *reason = "invalid port/link";
5995 return -EINVAL;
5998 parse_val:
5999 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6000 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6001 const struct ata_force_param *fp = &force_tbl[i];
6003 if (strncasecmp(val, fp->name, strlen(val)))
6004 continue;
6006 nr_matches++;
6007 match_fp = fp;
6009 if (strcasecmp(val, fp->name) == 0) {
6010 nr_matches = 1;
6011 break;
6015 if (!nr_matches) {
6016 *reason = "unknown value";
6017 return -EINVAL;
6019 if (nr_matches > 1) {
6020 *reason = "ambigious value";
6021 return -EINVAL;
6024 force_ent->param = *match_fp;
6026 return 0;
6029 static void __init ata_parse_force_param(void)
6031 int idx = 0, size = 1;
6032 int last_port = -1, last_device = -1;
6033 char *p, *cur, *next;
6035 /* calculate maximum number of params and allocate force_tbl */
6036 for (p = ata_force_param_buf; *p; p++)
6037 if (*p == ',')
6038 size++;
6040 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6041 if (!ata_force_tbl) {
6042 printk(KERN_WARNING "ata: failed to extend force table, "
6043 "libata.force ignored\n");
6044 return;
6047 /* parse and populate the table */
6048 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6049 const char *reason = "";
6050 struct ata_force_ent te = { .port = -1, .device = -1 };
6052 next = cur;
6053 if (ata_parse_force_one(&next, &te, &reason)) {
6054 printk(KERN_WARNING "ata: failed to parse force "
6055 "parameter \"%s\" (%s)\n",
6056 cur, reason);
6057 continue;
6060 if (te.port == -1) {
6061 te.port = last_port;
6062 te.device = last_device;
6065 ata_force_tbl[idx++] = te;
6067 last_port = te.port;
6068 last_device = te.device;
6071 ata_force_tbl_size = idx;
6074 static int __init ata_init(void)
6076 ata_probe_timeout *= HZ;
6078 ata_parse_force_param();
6080 ata_wq = create_workqueue("ata");
6081 if (!ata_wq)
6082 return -ENOMEM;
6084 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6085 if (!ata_aux_wq) {
6086 destroy_workqueue(ata_wq);
6087 return -ENOMEM;
6090 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6091 return 0;
6094 static void __exit ata_exit(void)
6096 kfree(ata_force_tbl);
6097 destroy_workqueue(ata_wq);
6098 destroy_workqueue(ata_aux_wq);
6101 subsys_initcall(ata_init);
6102 module_exit(ata_exit);
6104 static unsigned long ratelimit_time;
6105 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6107 int ata_ratelimit(void)
6109 int rc;
6110 unsigned long flags;
6112 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6114 if (time_after(jiffies, ratelimit_time)) {
6115 rc = 1;
6116 ratelimit_time = jiffies + (HZ/5);
6117 } else
6118 rc = 0;
6120 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6122 return rc;
6126 * ata_wait_register - wait until register value changes
6127 * @reg: IO-mapped register
6128 * @mask: Mask to apply to read register value
6129 * @val: Wait condition
6130 * @interval_msec: polling interval in milliseconds
6131 * @timeout_msec: timeout in milliseconds
6133 * Waiting for some bits of register to change is a common
6134 * operation for ATA controllers. This function reads 32bit LE
6135 * IO-mapped register @reg and tests for the following condition.
6137 * (*@reg & mask) != val
6139 * If the condition is met, it returns; otherwise, the process is
6140 * repeated after @interval_msec until timeout.
6142 * LOCKING:
6143 * Kernel thread context (may sleep)
6145 * RETURNS:
6146 * The final register value.
6148 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6149 unsigned long interval_msec,
6150 unsigned long timeout_msec)
6152 unsigned long timeout;
6153 u32 tmp;
6155 tmp = ioread32(reg);
6157 /* Calculate timeout _after_ the first read to make sure
6158 * preceding writes reach the controller before starting to
6159 * eat away the timeout.
6161 timeout = jiffies + (timeout_msec * HZ) / 1000;
6163 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6164 msleep(interval_msec);
6165 tmp = ioread32(reg);
6168 return tmp;
6172 * Dummy port_ops
6174 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6176 return AC_ERR_SYSTEM;
6179 static void ata_dummy_error_handler(struct ata_port *ap)
6181 /* truly dummy */
6184 struct ata_port_operations ata_dummy_port_ops = {
6185 .qc_prep = ata_noop_qc_prep,
6186 .qc_issue = ata_dummy_qc_issue,
6187 .error_handler = ata_dummy_error_handler,
6190 const struct ata_port_info ata_dummy_port_info = {
6191 .port_ops = &ata_dummy_port_ops,
6195 * libata is essentially a library of internal helper functions for
6196 * low-level ATA host controller drivers. As such, the API/ABI is
6197 * likely to change as new drivers are added and updated.
6198 * Do not depend on ABI/API stability.
6200 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6201 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6202 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6203 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6204 EXPORT_SYMBOL_GPL(sata_port_ops);
6205 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6206 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6207 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6208 EXPORT_SYMBOL_GPL(ata_host_init);
6209 EXPORT_SYMBOL_GPL(ata_host_alloc);
6210 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6211 EXPORT_SYMBOL_GPL(ata_host_start);
6212 EXPORT_SYMBOL_GPL(ata_host_register);
6213 EXPORT_SYMBOL_GPL(ata_host_activate);
6214 EXPORT_SYMBOL_GPL(ata_host_detach);
6215 EXPORT_SYMBOL_GPL(ata_sg_init);
6216 EXPORT_SYMBOL_GPL(ata_qc_complete);
6217 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6218 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6219 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6220 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6221 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6222 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6223 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6224 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6225 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6226 EXPORT_SYMBOL_GPL(ata_mode_string);
6227 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6228 EXPORT_SYMBOL_GPL(ata_port_start);
6229 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6230 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6231 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6232 EXPORT_SYMBOL_GPL(ata_port_probe);
6233 EXPORT_SYMBOL_GPL(ata_dev_disable);
6234 EXPORT_SYMBOL_GPL(sata_set_spd);
6235 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6236 EXPORT_SYMBOL_GPL(sata_link_debounce);
6237 EXPORT_SYMBOL_GPL(sata_link_resume);
6238 EXPORT_SYMBOL_GPL(ata_std_prereset);
6239 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6240 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6241 EXPORT_SYMBOL_GPL(ata_std_postreset);
6242 EXPORT_SYMBOL_GPL(ata_dev_classify);
6243 EXPORT_SYMBOL_GPL(ata_dev_pair);
6244 EXPORT_SYMBOL_GPL(ata_port_disable);
6245 EXPORT_SYMBOL_GPL(ata_ratelimit);
6246 EXPORT_SYMBOL_GPL(ata_wait_register);
6247 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6248 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6249 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6250 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6251 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6252 EXPORT_SYMBOL_GPL(sata_scr_valid);
6253 EXPORT_SYMBOL_GPL(sata_scr_read);
6254 EXPORT_SYMBOL_GPL(sata_scr_write);
6255 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6256 EXPORT_SYMBOL_GPL(ata_link_online);
6257 EXPORT_SYMBOL_GPL(ata_link_offline);
6258 #ifdef CONFIG_PM
6259 EXPORT_SYMBOL_GPL(ata_host_suspend);
6260 EXPORT_SYMBOL_GPL(ata_host_resume);
6261 #endif /* CONFIG_PM */
6262 EXPORT_SYMBOL_GPL(ata_id_string);
6263 EXPORT_SYMBOL_GPL(ata_id_c_string);
6264 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6266 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6267 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6268 EXPORT_SYMBOL_GPL(ata_timing_compute);
6269 EXPORT_SYMBOL_GPL(ata_timing_merge);
6270 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6272 #ifdef CONFIG_PCI
6273 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6274 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6275 #ifdef CONFIG_PM
6276 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6277 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6278 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6279 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6280 #endif /* CONFIG_PM */
6281 #endif /* CONFIG_PCI */
6283 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6284 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6285 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6286 EXPORT_SYMBOL_GPL(ata_port_desc);
6287 #ifdef CONFIG_PCI
6288 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6289 #endif /* CONFIG_PCI */
6290 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6291 EXPORT_SYMBOL_GPL(ata_link_abort);
6292 EXPORT_SYMBOL_GPL(ata_port_abort);
6293 EXPORT_SYMBOL_GPL(ata_port_freeze);
6294 EXPORT_SYMBOL_GPL(sata_async_notification);
6295 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6296 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6297 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6298 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6299 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6300 EXPORT_SYMBOL_GPL(ata_do_eh);
6301 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6303 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6304 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6305 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6306 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6307 EXPORT_SYMBOL_GPL(ata_cable_sata);