kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / ata / sata_mv.c
blobad169ffbc4cb2a0ad8387c478b6a9540992f99b6
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 * sata_mv TODO list:
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
40 * --> Develop a low-power-consumption strategy, and implement it.
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
74 #define DRV_NAME "sata_mv"
75 #define DRV_VERSION "1.24"
77 enum {
78 /* BAR's are enumerated in terms of pci_resource_start() terms */
79 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
80 MV_IO_BAR = 2, /* offset 0x18: IO space */
81 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
83 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
84 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
86 MV_PCI_REG_BASE = 0,
87 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
88 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
89 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
90 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
91 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
92 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
94 MV_SATAHC0_REG_BASE = 0x20000,
95 MV_FLASH_CTL_OFS = 0x1046c,
96 MV_GPIO_PORT_CTL_OFS = 0x104f0,
97 MV_RESET_CFG_OFS = 0x180d8,
99 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
100 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
101 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
102 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
104 MV_MAX_Q_DEPTH = 32,
105 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
107 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 * CRPB needs alignment on a 256B boundary. Size == 256B
109 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
111 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
112 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
113 MV_MAX_SG_CT = 256,
114 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
116 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 MV_PORT_HC_SHIFT = 2,
118 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
119 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
122 /* Host Flags */
123 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
124 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
126 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
127 ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
128 ATA_FLAG_PIO_POLLING,
130 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
132 MV_GENIIE_FLAGS = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
133 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
134 ATA_FLAG_NCQ | ATA_FLAG_AN,
136 CRQB_FLAG_READ = (1 << 0),
137 CRQB_TAG_SHIFT = 1,
138 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
139 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
140 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
141 CRQB_CMD_ADDR_SHIFT = 8,
142 CRQB_CMD_CS = (0x2 << 11),
143 CRQB_CMD_LAST = (1 << 15),
145 CRPB_FLAG_STATUS_SHIFT = 8,
146 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
147 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
149 EPRD_FLAG_END_OF_TBL = (1 << 31),
151 /* PCI interface registers */
153 PCI_COMMAND_OFS = 0xc00,
154 PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
156 PCI_MAIN_CMD_STS_OFS = 0xd30,
157 STOP_PCI_MASTER = (1 << 2),
158 PCI_MASTER_EMPTY = (1 << 3),
159 GLOB_SFT_RST = (1 << 4),
161 MV_PCI_MODE_OFS = 0xd00,
162 MV_PCI_MODE_MASK = 0x30,
164 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
165 MV_PCI_DISC_TIMER = 0xd04,
166 MV_PCI_MSI_TRIGGER = 0xc38,
167 MV_PCI_SERR_MASK = 0xc28,
168 MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
169 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
170 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
171 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
172 MV_PCI_ERR_COMMAND = 0x1d50,
174 PCI_IRQ_CAUSE_OFS = 0x1d58,
175 PCI_IRQ_MASK_OFS = 0x1d5c,
176 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
178 PCIE_IRQ_CAUSE_OFS = 0x1900,
179 PCIE_IRQ_MASK_OFS = 0x1910,
180 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
182 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
183 PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
184 PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
185 SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
186 SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
187 ERR_IRQ = (1 << 0), /* shift by port # */
188 DONE_IRQ = (1 << 1), /* shift by port # */
189 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
190 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
191 PCI_ERR = (1 << 18),
192 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
193 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
194 PORTS_0_3_COAL_DONE = (1 << 8),
195 PORTS_4_7_COAL_DONE = (1 << 17),
196 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
197 GPIO_INT = (1 << 22),
198 SELF_INT = (1 << 23),
199 TWSI_INT = (1 << 24),
200 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
201 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
202 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
204 /* SATAHC registers */
205 HC_CFG_OFS = 0,
207 HC_IRQ_CAUSE_OFS = 0x14,
208 DMA_IRQ = (1 << 0), /* shift by port # */
209 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
210 DEV_IRQ = (1 << 8), /* shift by port # */
212 /* Shadow block registers */
213 SHD_BLK_OFS = 0x100,
214 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
216 /* SATA registers */
217 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
218 SATA_ACTIVE_OFS = 0x350,
219 SATA_FIS_IRQ_CAUSE_OFS = 0x364,
220 SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
222 LTMODE_OFS = 0x30c,
223 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
225 PHY_MODE3 = 0x310,
226 PHY_MODE4 = 0x314,
227 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
228 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
229 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
230 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
232 PHY_MODE2 = 0x330,
233 SATA_IFCTL_OFS = 0x344,
234 SATA_TESTCTL_OFS = 0x348,
235 SATA_IFSTAT_OFS = 0x34c,
236 VENDOR_UNIQUE_FIS_OFS = 0x35c,
238 FISCFG_OFS = 0x360,
239 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
240 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
242 MV5_PHY_MODE = 0x74,
243 MV5_LTMODE_OFS = 0x30,
244 MV5_PHY_CTL_OFS = 0x0C,
245 SATA_INTERFACE_CFG_OFS = 0x050,
247 MV_M2_PREAMP_MASK = 0x7e0,
249 /* Port registers */
250 EDMA_CFG_OFS = 0,
251 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
252 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
253 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
254 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
255 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
256 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
257 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
259 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
260 EDMA_ERR_IRQ_MASK_OFS = 0xc,
261 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
262 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
263 EDMA_ERR_DEV = (1 << 2), /* device error */
264 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
265 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
266 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
267 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
268 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
269 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
270 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
271 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
272 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
273 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
274 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
276 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
277 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
278 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
279 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
280 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
282 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
284 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
285 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
286 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
287 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
288 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
289 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
291 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
293 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
294 EDMA_ERR_OVERRUN_5 = (1 << 5),
295 EDMA_ERR_UNDERRUN_5 = (1 << 6),
297 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
298 EDMA_ERR_LNK_CTRL_RX_1 |
299 EDMA_ERR_LNK_CTRL_RX_3 |
300 EDMA_ERR_LNK_CTRL_TX,
302 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
303 EDMA_ERR_PRD_PAR |
304 EDMA_ERR_DEV_DCON |
305 EDMA_ERR_DEV_CON |
306 EDMA_ERR_SERR |
307 EDMA_ERR_SELF_DIS |
308 EDMA_ERR_CRQB_PAR |
309 EDMA_ERR_CRPB_PAR |
310 EDMA_ERR_INTRL_PAR |
311 EDMA_ERR_IORDY |
312 EDMA_ERR_LNK_CTRL_RX_2 |
313 EDMA_ERR_LNK_DATA_RX |
314 EDMA_ERR_LNK_DATA_TX |
315 EDMA_ERR_TRANS_PROTO,
317 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
318 EDMA_ERR_PRD_PAR |
319 EDMA_ERR_DEV_DCON |
320 EDMA_ERR_DEV_CON |
321 EDMA_ERR_OVERRUN_5 |
322 EDMA_ERR_UNDERRUN_5 |
323 EDMA_ERR_SELF_DIS_5 |
324 EDMA_ERR_CRQB_PAR |
325 EDMA_ERR_CRPB_PAR |
326 EDMA_ERR_INTRL_PAR |
327 EDMA_ERR_IORDY,
329 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
330 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
332 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
333 EDMA_REQ_Q_PTR_SHIFT = 5,
335 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
336 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
337 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
338 EDMA_RSP_Q_PTR_SHIFT = 3,
340 EDMA_CMD_OFS = 0x28, /* EDMA command register */
341 EDMA_EN = (1 << 0), /* enable EDMA */
342 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
343 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
345 EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
346 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
347 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
349 EDMA_IORDY_TMOUT_OFS = 0x34,
350 EDMA_ARB_CFG_OFS = 0x38,
352 EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
354 GEN_II_NCQ_MAX_SECTORS = 256, /* max sects/io on Gen2 w/NCQ */
356 /* Host private flags (hp_flags) */
357 MV_HP_FLAG_MSI = (1 << 0),
358 MV_HP_ERRATA_50XXB0 = (1 << 1),
359 MV_HP_ERRATA_50XXB2 = (1 << 2),
360 MV_HP_ERRATA_60X1B2 = (1 << 3),
361 MV_HP_ERRATA_60X1C0 = (1 << 4),
362 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
363 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
364 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
365 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
366 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
367 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
369 /* Port private flags (pp_flags) */
370 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
371 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
372 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
373 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
376 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
377 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
378 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
379 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
380 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
382 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
383 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
385 enum {
386 /* DMA boundary 0xffff is required by the s/g splitting
387 * we need on /length/ in mv_fill-sg().
389 MV_DMA_BOUNDARY = 0xffffU,
391 /* mask of register bits containing lower 32 bits
392 * of EDMA request queue DMA address
394 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
396 /* ditto, for response queue */
397 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
400 enum chip_type {
401 chip_504x,
402 chip_508x,
403 chip_5080,
404 chip_604x,
405 chip_608x,
406 chip_6042,
407 chip_7042,
408 chip_soc,
411 /* Command ReQuest Block: 32B */
412 struct mv_crqb {
413 __le32 sg_addr;
414 __le32 sg_addr_hi;
415 __le16 ctrl_flags;
416 __le16 ata_cmd[11];
419 struct mv_crqb_iie {
420 __le32 addr;
421 __le32 addr_hi;
422 __le32 flags;
423 __le32 len;
424 __le32 ata_cmd[4];
427 /* Command ResPonse Block: 8B */
428 struct mv_crpb {
429 __le16 id;
430 __le16 flags;
431 __le32 tmstmp;
434 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
435 struct mv_sg {
436 __le32 addr;
437 __le32 flags_size;
438 __le32 addr_hi;
439 __le32 reserved;
442 struct mv_port_priv {
443 struct mv_crqb *crqb;
444 dma_addr_t crqb_dma;
445 struct mv_crpb *crpb;
446 dma_addr_t crpb_dma;
447 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
448 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
450 unsigned int req_idx;
451 unsigned int resp_idx;
453 u32 pp_flags;
454 unsigned int delayed_eh_pmp_map;
457 struct mv_port_signal {
458 u32 amps;
459 u32 pre;
462 struct mv_host_priv {
463 u32 hp_flags;
464 u32 main_irq_mask;
465 struct mv_port_signal signal[8];
466 const struct mv_hw_ops *ops;
467 int n_ports;
468 void __iomem *base;
469 void __iomem *main_irq_cause_addr;
470 void __iomem *main_irq_mask_addr;
471 u32 irq_cause_ofs;
472 u32 irq_mask_ofs;
473 u32 unmask_all_irqs;
475 * These consistent DMA memory pools give us guaranteed
476 * alignment for hardware-accessed data structures,
477 * and less memory waste in accomplishing the alignment.
479 struct dma_pool *crqb_pool;
480 struct dma_pool *crpb_pool;
481 struct dma_pool *sg_tbl_pool;
484 struct mv_hw_ops {
485 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
486 unsigned int port);
487 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
488 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
489 void __iomem *mmio);
490 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
491 unsigned int n_hc);
492 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
493 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
496 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
497 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
498 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
499 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
500 static int mv_port_start(struct ata_port *ap);
501 static void mv_port_stop(struct ata_port *ap);
502 static int mv_qc_defer(struct ata_queued_cmd *qc);
503 static void mv_qc_prep(struct ata_queued_cmd *qc);
504 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
505 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
506 static int mv_hardreset(struct ata_link *link, unsigned int *class,
507 unsigned long deadline);
508 static void mv_eh_freeze(struct ata_port *ap);
509 static void mv_eh_thaw(struct ata_port *ap);
510 static void mv6_dev_config(struct ata_device *dev);
512 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
513 unsigned int port);
514 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
515 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
516 void __iomem *mmio);
517 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
518 unsigned int n_hc);
519 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
520 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
522 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
523 unsigned int port);
524 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
525 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
526 void __iomem *mmio);
527 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
528 unsigned int n_hc);
529 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
530 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
531 void __iomem *mmio);
532 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
533 void __iomem *mmio);
534 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
535 void __iomem *mmio, unsigned int n_hc);
536 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
537 void __iomem *mmio);
538 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
539 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
540 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
541 unsigned int port_no);
542 static int mv_stop_edma(struct ata_port *ap);
543 static int mv_stop_edma_engine(void __iomem *port_mmio);
544 static void mv_edma_cfg(struct ata_port *ap, int want_ncq);
546 static void mv_pmp_select(struct ata_port *ap, int pmp);
547 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
548 unsigned long deadline);
549 static int mv_softreset(struct ata_link *link, unsigned int *class,
550 unsigned long deadline);
551 static void mv_pmp_error_handler(struct ata_port *ap);
552 static void mv_process_crpb_entries(struct ata_port *ap,
553 struct mv_port_priv *pp);
555 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
556 * because we have to allow room for worst case splitting of
557 * PRDs for 64K boundaries in mv_fill_sg().
559 static struct scsi_host_template mv5_sht = {
560 ATA_BASE_SHT(DRV_NAME),
561 .sg_tablesize = MV_MAX_SG_CT / 2,
562 .dma_boundary = MV_DMA_BOUNDARY,
565 static struct scsi_host_template mv6_sht = {
566 ATA_NCQ_SHT(DRV_NAME),
567 .can_queue = MV_MAX_Q_DEPTH - 1,
568 .sg_tablesize = MV_MAX_SG_CT / 2,
569 .dma_boundary = MV_DMA_BOUNDARY,
572 static struct ata_port_operations mv5_ops = {
573 .inherits = &ata_sff_port_ops,
575 .qc_defer = mv_qc_defer,
576 .qc_prep = mv_qc_prep,
577 .qc_issue = mv_qc_issue,
579 .freeze = mv_eh_freeze,
580 .thaw = mv_eh_thaw,
581 .hardreset = mv_hardreset,
582 .error_handler = ata_std_error_handler, /* avoid SFF EH */
583 .post_internal_cmd = ATA_OP_NULL,
585 .scr_read = mv5_scr_read,
586 .scr_write = mv5_scr_write,
588 .port_start = mv_port_start,
589 .port_stop = mv_port_stop,
592 static struct ata_port_operations mv6_ops = {
593 .inherits = &mv5_ops,
594 .dev_config = mv6_dev_config,
595 .scr_read = mv_scr_read,
596 .scr_write = mv_scr_write,
598 .pmp_hardreset = mv_pmp_hardreset,
599 .pmp_softreset = mv_softreset,
600 .softreset = mv_softreset,
601 .error_handler = mv_pmp_error_handler,
604 static struct ata_port_operations mv_iie_ops = {
605 .inherits = &mv6_ops,
606 .dev_config = ATA_OP_NULL,
607 .qc_prep = mv_qc_prep_iie,
610 static const struct ata_port_info mv_port_info[] = {
611 { /* chip_504x */
612 .flags = MV_COMMON_FLAGS,
613 .pio_mask = 0x1f, /* pio0-4 */
614 .udma_mask = ATA_UDMA6,
615 .port_ops = &mv5_ops,
617 { /* chip_508x */
618 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
619 .pio_mask = 0x1f, /* pio0-4 */
620 .udma_mask = ATA_UDMA6,
621 .port_ops = &mv5_ops,
623 { /* chip_5080 */
624 .flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
625 .pio_mask = 0x1f, /* pio0-4 */
626 .udma_mask = ATA_UDMA6,
627 .port_ops = &mv5_ops,
629 { /* chip_604x */
630 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
631 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
632 ATA_FLAG_NCQ,
633 .pio_mask = 0x1f, /* pio0-4 */
634 .udma_mask = ATA_UDMA6,
635 .port_ops = &mv6_ops,
637 { /* chip_608x */
638 .flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
639 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA |
640 ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
641 .pio_mask = 0x1f, /* pio0-4 */
642 .udma_mask = ATA_UDMA6,
643 .port_ops = &mv6_ops,
645 { /* chip_6042 */
646 .flags = MV_GENIIE_FLAGS,
647 .pio_mask = 0x1f, /* pio0-4 */
648 .udma_mask = ATA_UDMA6,
649 .port_ops = &mv_iie_ops,
651 { /* chip_7042 */
652 .flags = MV_GENIIE_FLAGS,
653 .pio_mask = 0x1f, /* pio0-4 */
654 .udma_mask = ATA_UDMA6,
655 .port_ops = &mv_iie_ops,
657 { /* chip_soc */
658 .flags = MV_GENIIE_FLAGS,
659 .pio_mask = 0x1f, /* pio0-4 */
660 .udma_mask = ATA_UDMA6,
661 .port_ops = &mv_iie_ops,
665 static const struct pci_device_id mv_pci_tbl[] = {
666 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
667 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
668 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
669 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
670 /* RocketRAID 1740/174x have different identifiers */
671 { PCI_VDEVICE(TTI, 0x1740), chip_508x },
672 { PCI_VDEVICE(TTI, 0x1742), chip_508x },
674 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
675 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
676 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
677 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
678 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
680 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
682 /* Adaptec 1430SA */
683 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
685 /* Marvell 7042 support */
686 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
688 /* Highpoint RocketRAID PCIe series */
689 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
690 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
692 { } /* terminate list */
695 static const struct mv_hw_ops mv5xxx_ops = {
696 .phy_errata = mv5_phy_errata,
697 .enable_leds = mv5_enable_leds,
698 .read_preamp = mv5_read_preamp,
699 .reset_hc = mv5_reset_hc,
700 .reset_flash = mv5_reset_flash,
701 .reset_bus = mv5_reset_bus,
704 static const struct mv_hw_ops mv6xxx_ops = {
705 .phy_errata = mv6_phy_errata,
706 .enable_leds = mv6_enable_leds,
707 .read_preamp = mv6_read_preamp,
708 .reset_hc = mv6_reset_hc,
709 .reset_flash = mv6_reset_flash,
710 .reset_bus = mv_reset_pci_bus,
713 static const struct mv_hw_ops mv_soc_ops = {
714 .phy_errata = mv6_phy_errata,
715 .enable_leds = mv_soc_enable_leds,
716 .read_preamp = mv_soc_read_preamp,
717 .reset_hc = mv_soc_reset_hc,
718 .reset_flash = mv_soc_reset_flash,
719 .reset_bus = mv_soc_reset_bus,
723 * Functions
726 static inline void writelfl(unsigned long data, void __iomem *addr)
728 writel(data, addr);
729 (void) readl(addr); /* flush to avoid PCI posted write */
732 static inline unsigned int mv_hc_from_port(unsigned int port)
734 return port >> MV_PORT_HC_SHIFT;
737 static inline unsigned int mv_hardport_from_port(unsigned int port)
739 return port & MV_PORT_MASK;
743 * Consolidate some rather tricky bit shift calculations.
744 * This is hot-path stuff, so not a function.
745 * Simple code, with two return values, so macro rather than inline.
747 * port is the sole input, in range 0..7.
748 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
749 * hardport is the other output, in range 0..3.
751 * Note that port and hardport may be the same variable in some cases.
753 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
755 shift = mv_hc_from_port(port) * HC_SHIFT; \
756 hardport = mv_hardport_from_port(port); \
757 shift += hardport * 2; \
760 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
762 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
765 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
766 unsigned int port)
768 return mv_hc_base(base, mv_hc_from_port(port));
771 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
773 return mv_hc_base_from_port(base, port) +
774 MV_SATAHC_ARBTR_REG_SZ +
775 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
778 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
780 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
781 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
783 return hc_mmio + ofs;
786 static inline void __iomem *mv_host_base(struct ata_host *host)
788 struct mv_host_priv *hpriv = host->private_data;
789 return hpriv->base;
792 static inline void __iomem *mv_ap_base(struct ata_port *ap)
794 return mv_port_base(mv_host_base(ap->host), ap->port_no);
797 static inline int mv_get_hc_count(unsigned long port_flags)
799 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
802 static void mv_set_edma_ptrs(void __iomem *port_mmio,
803 struct mv_host_priv *hpriv,
804 struct mv_port_priv *pp)
806 u32 index;
809 * initialize request queue
811 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
812 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
814 WARN_ON(pp->crqb_dma & 0x3ff);
815 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
816 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
817 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
818 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
821 * initialize response queue
823 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
824 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
826 WARN_ON(pp->crpb_dma & 0xff);
827 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
828 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
829 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
830 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
833 static void mv_set_main_irq_mask(struct ata_host *host,
834 u32 disable_bits, u32 enable_bits)
836 struct mv_host_priv *hpriv = host->private_data;
837 u32 old_mask, new_mask;
839 old_mask = hpriv->main_irq_mask;
840 new_mask = (old_mask & ~disable_bits) | enable_bits;
841 if (new_mask != old_mask) {
842 hpriv->main_irq_mask = new_mask;
843 writelfl(new_mask, hpriv->main_irq_mask_addr);
847 static void mv_enable_port_irqs(struct ata_port *ap,
848 unsigned int port_bits)
850 unsigned int shift, hardport, port = ap->port_no;
851 u32 disable_bits, enable_bits;
853 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
855 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
856 enable_bits = port_bits << shift;
857 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
861 * mv_start_dma - Enable eDMA engine
862 * @base: port base address
863 * @pp: port private data
865 * Verify the local cache of the eDMA state is accurate with a
866 * WARN_ON.
868 * LOCKING:
869 * Inherited from caller.
871 static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
872 struct mv_port_priv *pp, u8 protocol)
874 int want_ncq = (protocol == ATA_PROT_NCQ);
876 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
877 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
878 if (want_ncq != using_ncq)
879 mv_stop_edma(ap);
881 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
882 struct mv_host_priv *hpriv = ap->host->private_data;
883 int hardport = mv_hardport_from_port(ap->port_no);
884 void __iomem *hc_mmio = mv_hc_base_from_port(
885 mv_host_base(ap->host), hardport);
886 u32 hc_irq_cause, ipending;
888 /* clear EDMA event indicators, if any */
889 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
891 /* clear EDMA interrupt indicator, if any */
892 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
893 ipending = (DEV_IRQ | DMA_IRQ) << hardport;
894 if (hc_irq_cause & ipending) {
895 writelfl(hc_irq_cause & ~ipending,
896 hc_mmio + HC_IRQ_CAUSE_OFS);
899 mv_edma_cfg(ap, want_ncq);
901 /* clear FIS IRQ Cause */
902 if (IS_GEN_IIE(hpriv))
903 writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
905 mv_set_edma_ptrs(port_mmio, hpriv, pp);
906 mv_enable_port_irqs(ap, DONE_IRQ|ERR_IRQ);
908 writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
909 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
913 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
915 void __iomem *port_mmio = mv_ap_base(ap);
916 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
917 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
918 int i;
921 * Wait for the EDMA engine to finish transactions in progress.
922 * No idea what a good "timeout" value might be, but measurements
923 * indicate that it often requires hundreds of microseconds
924 * with two drives in-use. So we use the 15msec value above
925 * as a rough guess at what even more drives might require.
927 for (i = 0; i < timeout; ++i) {
928 u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
929 if ((edma_stat & empty_idle) == empty_idle)
930 break;
931 udelay(per_loop);
933 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
937 * mv_stop_edma_engine - Disable eDMA engine
938 * @port_mmio: io base address
940 * LOCKING:
941 * Inherited from caller.
943 static int mv_stop_edma_engine(void __iomem *port_mmio)
945 int i;
947 /* Disable eDMA. The disable bit auto clears. */
948 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
950 /* Wait for the chip to confirm eDMA is off. */
951 for (i = 10000; i > 0; i--) {
952 u32 reg = readl(port_mmio + EDMA_CMD_OFS);
953 if (!(reg & EDMA_EN))
954 return 0;
955 udelay(10);
957 return -EIO;
960 static int mv_stop_edma(struct ata_port *ap)
962 void __iomem *port_mmio = mv_ap_base(ap);
963 struct mv_port_priv *pp = ap->private_data;
965 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
966 return 0;
967 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
968 mv_wait_for_edma_empty_idle(ap);
969 if (mv_stop_edma_engine(port_mmio)) {
970 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
971 return -EIO;
973 return 0;
976 #ifdef ATA_DEBUG
977 static void mv_dump_mem(void __iomem *start, unsigned bytes)
979 int b, w;
980 for (b = 0; b < bytes; ) {
981 DPRINTK("%p: ", start + b);
982 for (w = 0; b < bytes && w < 4; w++) {
983 printk("%08x ", readl(start + b));
984 b += sizeof(u32);
986 printk("\n");
989 #endif
991 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
993 #ifdef ATA_DEBUG
994 int b, w;
995 u32 dw;
996 for (b = 0; b < bytes; ) {
997 DPRINTK("%02x: ", b);
998 for (w = 0; b < bytes && w < 4; w++) {
999 (void) pci_read_config_dword(pdev, b, &dw);
1000 printk("%08x ", dw);
1001 b += sizeof(u32);
1003 printk("\n");
1005 #endif
1007 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1008 struct pci_dev *pdev)
1010 #ifdef ATA_DEBUG
1011 void __iomem *hc_base = mv_hc_base(mmio_base,
1012 port >> MV_PORT_HC_SHIFT);
1013 void __iomem *port_base;
1014 int start_port, num_ports, p, start_hc, num_hcs, hc;
1016 if (0 > port) {
1017 start_hc = start_port = 0;
1018 num_ports = 8; /* shld be benign for 4 port devs */
1019 num_hcs = 2;
1020 } else {
1021 start_hc = port >> MV_PORT_HC_SHIFT;
1022 start_port = port;
1023 num_ports = num_hcs = 1;
1025 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1026 num_ports > 1 ? num_ports - 1 : start_port);
1028 if (NULL != pdev) {
1029 DPRINTK("PCI config space regs:\n");
1030 mv_dump_pci_cfg(pdev, 0x68);
1032 DPRINTK("PCI regs:\n");
1033 mv_dump_mem(mmio_base+0xc00, 0x3c);
1034 mv_dump_mem(mmio_base+0xd00, 0x34);
1035 mv_dump_mem(mmio_base+0xf00, 0x4);
1036 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1037 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1038 hc_base = mv_hc_base(mmio_base, hc);
1039 DPRINTK("HC regs (HC %i):\n", hc);
1040 mv_dump_mem(hc_base, 0x1c);
1042 for (p = start_port; p < start_port + num_ports; p++) {
1043 port_base = mv_port_base(mmio_base, p);
1044 DPRINTK("EDMA regs (port %i):\n", p);
1045 mv_dump_mem(port_base, 0x54);
1046 DPRINTK("SATA regs (port %i):\n", p);
1047 mv_dump_mem(port_base+0x300, 0x60);
1049 #endif
1052 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1054 unsigned int ofs;
1056 switch (sc_reg_in) {
1057 case SCR_STATUS:
1058 case SCR_CONTROL:
1059 case SCR_ERROR:
1060 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
1061 break;
1062 case SCR_ACTIVE:
1063 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
1064 break;
1065 default:
1066 ofs = 0xffffffffU;
1067 break;
1069 return ofs;
1072 static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
1074 unsigned int ofs = mv_scr_offset(sc_reg_in);
1076 if (ofs != 0xffffffffU) {
1077 *val = readl(mv_ap_base(ap) + ofs);
1078 return 0;
1079 } else
1080 return -EINVAL;
1083 static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1085 unsigned int ofs = mv_scr_offset(sc_reg_in);
1087 if (ofs != 0xffffffffU) {
1088 writelfl(val, mv_ap_base(ap) + ofs);
1089 return 0;
1090 } else
1091 return -EINVAL;
1094 static void mv6_dev_config(struct ata_device *adev)
1097 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1099 * Gen-II does not support NCQ over a port multiplier
1100 * (no FIS-based switching).
1102 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1103 * See mv_qc_prep() for more info.
1105 if (adev->flags & ATA_DFLAG_NCQ) {
1106 if (sata_pmp_attached(adev->link->ap)) {
1107 adev->flags &= ~ATA_DFLAG_NCQ;
1108 ata_dev_printk(adev, KERN_INFO,
1109 "NCQ disabled for command-based switching\n");
1110 } else if (adev->max_sectors > GEN_II_NCQ_MAX_SECTORS) {
1111 adev->max_sectors = GEN_II_NCQ_MAX_SECTORS;
1112 ata_dev_printk(adev, KERN_INFO,
1113 "max_sectors limited to %u for NCQ\n",
1114 adev->max_sectors);
1119 static int mv_qc_defer(struct ata_queued_cmd *qc)
1121 struct ata_link *link = qc->dev->link;
1122 struct ata_port *ap = link->ap;
1123 struct mv_port_priv *pp = ap->private_data;
1126 * Don't allow new commands if we're in a delayed EH state
1127 * for NCQ and/or FIS-based switching.
1129 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1130 return ATA_DEFER_PORT;
1132 * If the port is completely idle, then allow the new qc.
1134 if (ap->nr_active_links == 0)
1135 return 0;
1137 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1139 * The port is operating in host queuing mode (EDMA).
1140 * It can accomodate a new qc if the qc protocol
1141 * is compatible with the current host queue mode.
1143 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1145 * The host queue (EDMA) is in NCQ mode.
1146 * If the new qc is also an NCQ command,
1147 * then allow the new qc.
1149 if (qc->tf.protocol == ATA_PROT_NCQ)
1150 return 0;
1151 } else {
1153 * The host queue (EDMA) is in non-NCQ, DMA mode.
1154 * If the new qc is also a non-NCQ, DMA command,
1155 * then allow the new qc.
1157 if (qc->tf.protocol == ATA_PROT_DMA)
1158 return 0;
1161 return ATA_DEFER_PORT;
1164 static void mv_config_fbs(void __iomem *port_mmio, int want_ncq, int want_fbs)
1166 u32 new_fiscfg, old_fiscfg;
1167 u32 new_ltmode, old_ltmode;
1168 u32 new_haltcond, old_haltcond;
1170 old_fiscfg = readl(port_mmio + FISCFG_OFS);
1171 old_ltmode = readl(port_mmio + LTMODE_OFS);
1172 old_haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
1174 new_fiscfg = old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1175 new_ltmode = old_ltmode & ~LTMODE_BIT8;
1176 new_haltcond = old_haltcond | EDMA_ERR_DEV;
1178 if (want_fbs) {
1179 new_fiscfg = old_fiscfg | FISCFG_SINGLE_SYNC;
1180 new_ltmode = old_ltmode | LTMODE_BIT8;
1181 if (want_ncq)
1182 new_haltcond &= ~EDMA_ERR_DEV;
1183 else
1184 new_fiscfg |= FISCFG_WAIT_DEV_ERR;
1187 if (new_fiscfg != old_fiscfg)
1188 writelfl(new_fiscfg, port_mmio + FISCFG_OFS);
1189 if (new_ltmode != old_ltmode)
1190 writelfl(new_ltmode, port_mmio + LTMODE_OFS);
1191 if (new_haltcond != old_haltcond)
1192 writelfl(new_haltcond, port_mmio + EDMA_HALTCOND_OFS);
1195 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1197 struct mv_host_priv *hpriv = ap->host->private_data;
1198 u32 old, new;
1200 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1201 old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
1202 if (want_ncq)
1203 new = old | (1 << 22);
1204 else
1205 new = old & ~(1 << 22);
1206 if (new != old)
1207 writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
1210 static void mv_edma_cfg(struct ata_port *ap, int want_ncq)
1212 u32 cfg;
1213 struct mv_port_priv *pp = ap->private_data;
1214 struct mv_host_priv *hpriv = ap->host->private_data;
1215 void __iomem *port_mmio = mv_ap_base(ap);
1217 /* set up non-NCQ EDMA configuration */
1218 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1219 pp->pp_flags &= ~MV_PP_FLAG_FBS_EN;
1221 if (IS_GEN_I(hpriv))
1222 cfg |= (1 << 8); /* enab config burst size mask */
1224 else if (IS_GEN_II(hpriv)) {
1225 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1226 mv_60x1_errata_sata25(ap, want_ncq);
1228 } else if (IS_GEN_IIE(hpriv)) {
1229 int want_fbs = sata_pmp_attached(ap);
1231 * Possible future enhancement:
1233 * The chip can use FBS with non-NCQ, if we allow it,
1234 * But first we need to have the error handling in place
1235 * for this mode (datasheet section 7.3.15.4.2.3).
1236 * So disallow non-NCQ FBS for now.
1238 want_fbs &= want_ncq;
1240 mv_config_fbs(port_mmio, want_ncq, want_fbs);
1242 if (want_fbs) {
1243 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1244 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1247 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1248 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1249 if (!IS_SOC(hpriv))
1250 cfg |= (1 << 18); /* enab early completion */
1251 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1252 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1255 if (want_ncq) {
1256 cfg |= EDMA_CFG_NCQ;
1257 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1258 } else
1259 pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
1261 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
1264 static void mv_port_free_dma_mem(struct ata_port *ap)
1266 struct mv_host_priv *hpriv = ap->host->private_data;
1267 struct mv_port_priv *pp = ap->private_data;
1268 int tag;
1270 if (pp->crqb) {
1271 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1272 pp->crqb = NULL;
1274 if (pp->crpb) {
1275 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1276 pp->crpb = NULL;
1279 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1280 * For later hardware, we have one unique sg_tbl per NCQ tag.
1282 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1283 if (pp->sg_tbl[tag]) {
1284 if (tag == 0 || !IS_GEN_I(hpriv))
1285 dma_pool_free(hpriv->sg_tbl_pool,
1286 pp->sg_tbl[tag],
1287 pp->sg_tbl_dma[tag]);
1288 pp->sg_tbl[tag] = NULL;
1294 * mv_port_start - Port specific init/start routine.
1295 * @ap: ATA channel to manipulate
1297 * Allocate and point to DMA memory, init port private memory,
1298 * zero indices.
1300 * LOCKING:
1301 * Inherited from caller.
1303 static int mv_port_start(struct ata_port *ap)
1305 struct device *dev = ap->host->dev;
1306 struct mv_host_priv *hpriv = ap->host->private_data;
1307 struct mv_port_priv *pp;
1308 int tag;
1310 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1311 if (!pp)
1312 return -ENOMEM;
1313 ap->private_data = pp;
1315 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1316 if (!pp->crqb)
1317 return -ENOMEM;
1318 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1320 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1321 if (!pp->crpb)
1322 goto out_port_free_dma_mem;
1323 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1325 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1326 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1327 ap->flags |= ATA_FLAG_AN;
1329 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1330 * For later hardware, we need one unique sg_tbl per NCQ tag.
1332 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1333 if (tag == 0 || !IS_GEN_I(hpriv)) {
1334 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1335 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1336 if (!pp->sg_tbl[tag])
1337 goto out_port_free_dma_mem;
1338 } else {
1339 pp->sg_tbl[tag] = pp->sg_tbl[0];
1340 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1343 return 0;
1345 out_port_free_dma_mem:
1346 mv_port_free_dma_mem(ap);
1347 return -ENOMEM;
1351 * mv_port_stop - Port specific cleanup/stop routine.
1352 * @ap: ATA channel to manipulate
1354 * Stop DMA, cleanup port memory.
1356 * LOCKING:
1357 * This routine uses the host lock to protect the DMA stop.
1359 static void mv_port_stop(struct ata_port *ap)
1361 mv_stop_edma(ap);
1362 mv_enable_port_irqs(ap, 0);
1363 mv_port_free_dma_mem(ap);
1367 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1368 * @qc: queued command whose SG list to source from
1370 * Populate the SG list and mark the last entry.
1372 * LOCKING:
1373 * Inherited from caller.
1375 static void mv_fill_sg(struct ata_queued_cmd *qc)
1377 struct mv_port_priv *pp = qc->ap->private_data;
1378 struct scatterlist *sg;
1379 struct mv_sg *mv_sg, *last_sg = NULL;
1380 unsigned int si;
1382 mv_sg = pp->sg_tbl[qc->tag];
1383 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1384 dma_addr_t addr = sg_dma_address(sg);
1385 u32 sg_len = sg_dma_len(sg);
1387 while (sg_len) {
1388 u32 offset = addr & 0xffff;
1389 u32 len = sg_len;
1391 if ((offset + sg_len > 0x10000))
1392 len = 0x10000 - offset;
1394 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1395 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1396 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1398 sg_len -= len;
1399 addr += len;
1401 last_sg = mv_sg;
1402 mv_sg++;
1406 if (likely(last_sg))
1407 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1410 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1412 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1413 (last ? CRQB_CMD_LAST : 0);
1414 *cmdw = cpu_to_le16(tmp);
1418 * mv_qc_prep - Host specific command preparation.
1419 * @qc: queued command to prepare
1421 * This routine simply redirects to the general purpose routine
1422 * if command is not DMA. Else, it handles prep of the CRQB
1423 * (command request block), does some sanity checking, and calls
1424 * the SG load routine.
1426 * LOCKING:
1427 * Inherited from caller.
1429 static void mv_qc_prep(struct ata_queued_cmd *qc)
1431 struct ata_port *ap = qc->ap;
1432 struct mv_port_priv *pp = ap->private_data;
1433 __le16 *cw;
1434 struct ata_taskfile *tf;
1435 u16 flags = 0;
1436 unsigned in_index;
1438 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1439 (qc->tf.protocol != ATA_PROT_NCQ))
1440 return;
1442 /* Fill in command request block
1444 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1445 flags |= CRQB_FLAG_READ;
1446 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1447 flags |= qc->tag << CRQB_TAG_SHIFT;
1448 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1450 /* get current queue index from software */
1451 in_index = pp->req_idx;
1453 pp->crqb[in_index].sg_addr =
1454 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1455 pp->crqb[in_index].sg_addr_hi =
1456 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1457 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1459 cw = &pp->crqb[in_index].ata_cmd[0];
1460 tf = &qc->tf;
1462 /* Sadly, the CRQB cannot accomodate all registers--there are
1463 * only 11 bytes...so we must pick and choose required
1464 * registers based on the command. So, we drop feature and
1465 * hob_feature for [RW] DMA commands, but they are needed for
1466 * NCQ. NCQ will drop hob_nsect.
1468 switch (tf->command) {
1469 case ATA_CMD_READ:
1470 case ATA_CMD_READ_EXT:
1471 case ATA_CMD_WRITE:
1472 case ATA_CMD_WRITE_EXT:
1473 case ATA_CMD_WRITE_FUA_EXT:
1474 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1475 break;
1476 case ATA_CMD_FPDMA_READ:
1477 case ATA_CMD_FPDMA_WRITE:
1478 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1479 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1480 break;
1481 default:
1482 /* The only other commands EDMA supports in non-queued and
1483 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1484 * of which are defined/used by Linux. If we get here, this
1485 * driver needs work.
1487 * FIXME: modify libata to give qc_prep a return value and
1488 * return error here.
1490 BUG_ON(tf->command);
1491 break;
1493 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1494 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1495 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1496 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1497 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1498 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1499 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1500 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1501 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1503 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1504 return;
1505 mv_fill_sg(qc);
1509 * mv_qc_prep_iie - Host specific command preparation.
1510 * @qc: queued command to prepare
1512 * This routine simply redirects to the general purpose routine
1513 * if command is not DMA. Else, it handles prep of the CRQB
1514 * (command request block), does some sanity checking, and calls
1515 * the SG load routine.
1517 * LOCKING:
1518 * Inherited from caller.
1520 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1522 struct ata_port *ap = qc->ap;
1523 struct mv_port_priv *pp = ap->private_data;
1524 struct mv_crqb_iie *crqb;
1525 struct ata_taskfile *tf;
1526 unsigned in_index;
1527 u32 flags = 0;
1529 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1530 (qc->tf.protocol != ATA_PROT_NCQ))
1531 return;
1533 /* Fill in Gen IIE command request block */
1534 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1535 flags |= CRQB_FLAG_READ;
1537 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1538 flags |= qc->tag << CRQB_TAG_SHIFT;
1539 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
1540 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
1542 /* get current queue index from software */
1543 in_index = pp->req_idx;
1545 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1546 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
1547 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
1548 crqb->flags = cpu_to_le32(flags);
1550 tf = &qc->tf;
1551 crqb->ata_cmd[0] = cpu_to_le32(
1552 (tf->command << 16) |
1553 (tf->feature << 24)
1555 crqb->ata_cmd[1] = cpu_to_le32(
1556 (tf->lbal << 0) |
1557 (tf->lbam << 8) |
1558 (tf->lbah << 16) |
1559 (tf->device << 24)
1561 crqb->ata_cmd[2] = cpu_to_le32(
1562 (tf->hob_lbal << 0) |
1563 (tf->hob_lbam << 8) |
1564 (tf->hob_lbah << 16) |
1565 (tf->hob_feature << 24)
1567 crqb->ata_cmd[3] = cpu_to_le32(
1568 (tf->nsect << 0) |
1569 (tf->hob_nsect << 8)
1572 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1573 return;
1574 mv_fill_sg(qc);
1578 * mv_qc_issue - Initiate a command to the host
1579 * @qc: queued command to start
1581 * This routine simply redirects to the general purpose routine
1582 * if command is not DMA. Else, it sanity checks our local
1583 * caches of the request producer/consumer indices then enables
1584 * DMA and bumps the request producer index.
1586 * LOCKING:
1587 * Inherited from caller.
1589 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1591 struct ata_port *ap = qc->ap;
1592 void __iomem *port_mmio = mv_ap_base(ap);
1593 struct mv_port_priv *pp = ap->private_data;
1594 u32 in_index;
1596 if ((qc->tf.protocol != ATA_PROT_DMA) &&
1597 (qc->tf.protocol != ATA_PROT_NCQ)) {
1598 static int limit_warnings = 10;
1600 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1602 * Someday, we might implement special polling workarounds
1603 * for these, but it all seems rather unnecessary since we
1604 * normally use only DMA for commands which transfer more
1605 * than a single block of data.
1607 * Much of the time, this could just work regardless.
1608 * So for now, just log the incident, and allow the attempt.
1610 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
1611 --limit_warnings;
1612 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
1613 ": attempting PIO w/multiple DRQ: "
1614 "this may fail due to h/w errata\n");
1617 * We're about to send a non-EDMA capable command to the
1618 * port. Turn off EDMA so there won't be problems accessing
1619 * shadow block, etc registers.
1621 mv_stop_edma(ap);
1622 mv_enable_port_irqs(ap, ERR_IRQ);
1623 mv_pmp_select(ap, qc->dev->link->pmp);
1624 return ata_sff_qc_issue(qc);
1627 mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
1629 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
1630 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1632 /* and write the request in pointer to kick the EDMA to life */
1633 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
1634 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1636 return 0;
1639 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
1641 struct mv_port_priv *pp = ap->private_data;
1642 struct ata_queued_cmd *qc;
1644 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1645 return NULL;
1646 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1647 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1648 qc = NULL;
1649 return qc;
1652 static void mv_pmp_error_handler(struct ata_port *ap)
1654 unsigned int pmp, pmp_map;
1655 struct mv_port_priv *pp = ap->private_data;
1657 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
1659 * Perform NCQ error analysis on failed PMPs
1660 * before we freeze the port entirely.
1662 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1664 pmp_map = pp->delayed_eh_pmp_map;
1665 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
1666 for (pmp = 0; pmp_map != 0; pmp++) {
1667 unsigned int this_pmp = (1 << pmp);
1668 if (pmp_map & this_pmp) {
1669 struct ata_link *link = &ap->pmp_link[pmp];
1670 pmp_map &= ~this_pmp;
1671 ata_eh_analyze_ncq_error(link);
1674 ata_port_freeze(ap);
1676 sata_pmp_error_handler(ap);
1679 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
1681 void __iomem *port_mmio = mv_ap_base(ap);
1683 return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
1686 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
1688 struct ata_eh_info *ehi;
1689 unsigned int pmp;
1692 * Initialize EH info for PMPs which saw device errors
1694 ehi = &ap->link.eh_info;
1695 for (pmp = 0; pmp_map != 0; pmp++) {
1696 unsigned int this_pmp = (1 << pmp);
1697 if (pmp_map & this_pmp) {
1698 struct ata_link *link = &ap->pmp_link[pmp];
1700 pmp_map &= ~this_pmp;
1701 ehi = &link->eh_info;
1702 ata_ehi_clear_desc(ehi);
1703 ata_ehi_push_desc(ehi, "dev err");
1704 ehi->err_mask |= AC_ERR_DEV;
1705 ehi->action |= ATA_EH_RESET;
1706 ata_link_abort(link);
1711 static int mv_req_q_empty(struct ata_port *ap)
1713 void __iomem *port_mmio = mv_ap_base(ap);
1714 u32 in_ptr, out_ptr;
1716 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
1717 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1718 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1719 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1720 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
1723 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
1725 struct mv_port_priv *pp = ap->private_data;
1726 int failed_links;
1727 unsigned int old_map, new_map;
1730 * Device error during FBS+NCQ operation:
1732 * Set a port flag to prevent further I/O being enqueued.
1733 * Leave the EDMA running to drain outstanding commands from this port.
1734 * Perform the post-mortem/EH only when all responses are complete.
1735 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1737 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
1738 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
1739 pp->delayed_eh_pmp_map = 0;
1741 old_map = pp->delayed_eh_pmp_map;
1742 new_map = old_map | mv_get_err_pmp_map(ap);
1744 if (old_map != new_map) {
1745 pp->delayed_eh_pmp_map = new_map;
1746 mv_pmp_eh_prep(ap, new_map & ~old_map);
1748 failed_links = hweight16(new_map);
1750 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
1751 "failed_links=%d nr_active_links=%d\n",
1752 __func__, pp->delayed_eh_pmp_map,
1753 ap->qc_active, failed_links,
1754 ap->nr_active_links);
1756 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
1757 mv_process_crpb_entries(ap, pp);
1758 mv_stop_edma(ap);
1759 mv_eh_freeze(ap);
1760 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
1761 return 1; /* handled */
1763 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
1764 return 1; /* handled */
1767 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
1770 * Possible future enhancement:
1772 * FBS+non-NCQ operation is not yet implemented.
1773 * See related notes in mv_edma_cfg().
1775 * Device error during FBS+non-NCQ operation:
1777 * We need to snapshot the shadow registers for each failed command.
1778 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1780 return 0; /* not handled */
1783 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
1785 struct mv_port_priv *pp = ap->private_data;
1787 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1788 return 0; /* EDMA was not active: not handled */
1789 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
1790 return 0; /* FBS was not active: not handled */
1792 if (!(edma_err_cause & EDMA_ERR_DEV))
1793 return 0; /* non DEV error: not handled */
1794 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
1795 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
1796 return 0; /* other problems: not handled */
1798 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
1800 * EDMA should NOT have self-disabled for this case.
1801 * If it did, then something is wrong elsewhere,
1802 * and we cannot handle it here.
1804 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1805 ata_port_printk(ap, KERN_WARNING,
1806 "%s: err_cause=0x%x pp_flags=0x%x\n",
1807 __func__, edma_err_cause, pp->pp_flags);
1808 return 0; /* not handled */
1810 return mv_handle_fbs_ncq_dev_err(ap);
1811 } else {
1813 * EDMA should have self-disabled for this case.
1814 * If it did not, then something is wrong elsewhere,
1815 * and we cannot handle it here.
1817 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
1818 ata_port_printk(ap, KERN_WARNING,
1819 "%s: err_cause=0x%x pp_flags=0x%x\n",
1820 __func__, edma_err_cause, pp->pp_flags);
1821 return 0; /* not handled */
1823 return mv_handle_fbs_non_ncq_dev_err(ap);
1825 return 0; /* not handled */
1828 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
1830 struct ata_eh_info *ehi = &ap->link.eh_info;
1831 char *when = "idle";
1833 ata_ehi_clear_desc(ehi);
1834 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
1835 when = "disabled";
1836 } else if (edma_was_enabled) {
1837 when = "EDMA enabled";
1838 } else {
1839 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
1840 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
1841 when = "polling";
1843 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
1844 ehi->err_mask |= AC_ERR_OTHER;
1845 ehi->action |= ATA_EH_RESET;
1846 ata_port_freeze(ap);
1850 * mv_err_intr - Handle error interrupts on the port
1851 * @ap: ATA channel to manipulate
1852 * @qc: affected command (non-NCQ), or NULL
1854 * Most cases require a full reset of the chip's state machine,
1855 * which also performs a COMRESET.
1856 * Also, if the port disabled DMA, update our cached copy to match.
1858 * LOCKING:
1859 * Inherited from caller.
1861 static void mv_err_intr(struct ata_port *ap)
1863 void __iomem *port_mmio = mv_ap_base(ap);
1864 u32 edma_err_cause, eh_freeze_mask, serr = 0;
1865 u32 fis_cause = 0;
1866 struct mv_port_priv *pp = ap->private_data;
1867 struct mv_host_priv *hpriv = ap->host->private_data;
1868 unsigned int action = 0, err_mask = 0;
1869 struct ata_eh_info *ehi = &ap->link.eh_info;
1870 struct ata_queued_cmd *qc;
1871 int abort = 0;
1874 * Read and clear the SError and err_cause bits.
1875 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1876 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1878 sata_scr_read(&ap->link, SCR_ERROR, &serr);
1879 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
1881 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1882 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1883 fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1884 writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
1886 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1888 if (edma_err_cause & EDMA_ERR_DEV) {
1890 * Device errors during FIS-based switching operation
1891 * require special handling.
1893 if (mv_handle_dev_err(ap, edma_err_cause))
1894 return;
1897 qc = mv_get_active_qc(ap);
1898 ata_ehi_clear_desc(ehi);
1899 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
1900 edma_err_cause, pp->pp_flags);
1902 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
1903 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
1904 if (fis_cause & SATA_FIS_IRQ_AN) {
1905 u32 ec = edma_err_cause &
1906 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
1907 sata_async_notification(ap);
1908 if (!ec)
1909 return; /* Just an AN; no need for the nukes */
1910 ata_ehi_push_desc(ehi, "SDB notify");
1914 * All generations share these EDMA error cause bits:
1916 if (edma_err_cause & EDMA_ERR_DEV) {
1917 err_mask |= AC_ERR_DEV;
1918 action |= ATA_EH_RESET;
1919 ata_ehi_push_desc(ehi, "dev error");
1921 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
1922 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
1923 EDMA_ERR_INTRL_PAR)) {
1924 err_mask |= AC_ERR_ATA_BUS;
1925 action |= ATA_EH_RESET;
1926 ata_ehi_push_desc(ehi, "parity error");
1928 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
1929 ata_ehi_hotplugged(ehi);
1930 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
1931 "dev disconnect" : "dev connect");
1932 action |= ATA_EH_RESET;
1936 * Gen-I has a different SELF_DIS bit,
1937 * different FREEZE bits, and no SERR bit:
1939 if (IS_GEN_I(hpriv)) {
1940 eh_freeze_mask = EDMA_EH_FREEZE_5;
1941 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
1942 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1943 ata_ehi_push_desc(ehi, "EDMA self-disable");
1945 } else {
1946 eh_freeze_mask = EDMA_EH_FREEZE;
1947 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
1948 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1949 ata_ehi_push_desc(ehi, "EDMA self-disable");
1951 if (edma_err_cause & EDMA_ERR_SERR) {
1952 ata_ehi_push_desc(ehi, "SError=%08x", serr);
1953 err_mask |= AC_ERR_ATA_BUS;
1954 action |= ATA_EH_RESET;
1958 if (!err_mask) {
1959 err_mask = AC_ERR_OTHER;
1960 action |= ATA_EH_RESET;
1963 ehi->serror |= serr;
1964 ehi->action |= action;
1966 if (qc)
1967 qc->err_mask |= err_mask;
1968 else
1969 ehi->err_mask |= err_mask;
1971 if (err_mask == AC_ERR_DEV) {
1973 * Cannot do ata_port_freeze() here,
1974 * because it would kill PIO access,
1975 * which is needed for further diagnosis.
1977 mv_eh_freeze(ap);
1978 abort = 1;
1979 } else if (edma_err_cause & eh_freeze_mask) {
1981 * Note to self: ata_port_freeze() calls ata_port_abort()
1983 ata_port_freeze(ap);
1984 } else {
1985 abort = 1;
1988 if (abort) {
1989 if (qc)
1990 ata_link_abort(qc->dev->link);
1991 else
1992 ata_port_abort(ap);
1996 static void mv_process_crpb_response(struct ata_port *ap,
1997 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
1999 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2001 if (qc) {
2002 u8 ata_status;
2003 u16 edma_status = le16_to_cpu(response->flags);
2005 * edma_status from a response queue entry:
2006 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
2007 * MSB is saved ATA status from command completion.
2009 if (!ncq_enabled) {
2010 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2011 if (err_cause) {
2013 * Error will be seen/handled by mv_err_intr().
2014 * So do nothing at all here.
2016 return;
2019 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2020 if (!ac_err_mask(ata_status))
2021 ata_qc_complete(qc);
2022 /* else: leave it for mv_err_intr() */
2023 } else {
2024 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2025 __func__, tag);
2029 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2031 void __iomem *port_mmio = mv_ap_base(ap);
2032 struct mv_host_priv *hpriv = ap->host->private_data;
2033 u32 in_index;
2034 bool work_done = false;
2035 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2037 /* Get the hardware queue position index */
2038 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
2039 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2041 /* Process new responses from since the last time we looked */
2042 while (in_index != pp->resp_idx) {
2043 unsigned int tag;
2044 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2046 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2048 if (IS_GEN_I(hpriv)) {
2049 /* 50xx: no NCQ, only one command active at a time */
2050 tag = ap->link.active_tag;
2051 } else {
2052 /* Gen II/IIE: get command tag from CRPB entry */
2053 tag = le16_to_cpu(response->id) & 0x1f;
2055 mv_process_crpb_response(ap, response, tag, ncq_enabled);
2056 work_done = true;
2059 /* Update the software queue position index in hardware */
2060 if (work_done)
2061 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2062 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2063 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
2066 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2068 struct mv_port_priv *pp;
2069 int edma_was_enabled;
2071 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2072 mv_unexpected_intr(ap, 0);
2073 return;
2076 * Grab a snapshot of the EDMA_EN flag setting,
2077 * so that we have a consistent view for this port,
2078 * even if something we call of our routines changes it.
2080 pp = ap->private_data;
2081 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2083 * Process completed CRPB response(s) before other events.
2085 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2086 mv_process_crpb_entries(ap, pp);
2087 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2088 mv_handle_fbs_ncq_dev_err(ap);
2091 * Handle chip-reported errors, or continue on to handle PIO.
2093 if (unlikely(port_cause & ERR_IRQ)) {
2094 mv_err_intr(ap);
2095 } else if (!edma_was_enabled) {
2096 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2097 if (qc)
2098 ata_sff_host_intr(ap, qc);
2099 else
2100 mv_unexpected_intr(ap, edma_was_enabled);
2105 * mv_host_intr - Handle all interrupts on the given host controller
2106 * @host: host specific structure
2107 * @main_irq_cause: Main interrupt cause register for the chip.
2109 * LOCKING:
2110 * Inherited from caller.
2112 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2114 struct mv_host_priv *hpriv = host->private_data;
2115 void __iomem *mmio = hpriv->base, *hc_mmio;
2116 unsigned int handled = 0, port;
2118 for (port = 0; port < hpriv->n_ports; port++) {
2119 struct ata_port *ap = host->ports[port];
2120 unsigned int p, shift, hardport, port_cause;
2122 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2124 * Each hc within the host has its own hc_irq_cause register,
2125 * where the interrupting ports bits get ack'd.
2127 if (hardport == 0) { /* first port on this hc ? */
2128 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2129 u32 port_mask, ack_irqs;
2131 * Skip this entire hc if nothing pending for any ports
2133 if (!hc_cause) {
2134 port += MV_PORTS_PER_HC - 1;
2135 continue;
2138 * We don't need/want to read the hc_irq_cause register,
2139 * because doing so hurts performance, and
2140 * main_irq_cause already gives us everything we need.
2142 * But we do have to *write* to the hc_irq_cause to ack
2143 * the ports that we are handling this time through.
2145 * This requires that we create a bitmap for those
2146 * ports which interrupted us, and use that bitmap
2147 * to ack (only) those ports via hc_irq_cause.
2149 ack_irqs = 0;
2150 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2151 if ((port + p) >= hpriv->n_ports)
2152 break;
2153 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2154 if (hc_cause & port_mask)
2155 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2157 hc_mmio = mv_hc_base_from_port(mmio, port);
2158 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
2159 handled = 1;
2162 * Handle interrupts signalled for this port:
2164 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2165 if (port_cause)
2166 mv_port_intr(ap, port_cause);
2168 return handled;
2171 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2173 struct mv_host_priv *hpriv = host->private_data;
2174 struct ata_port *ap;
2175 struct ata_queued_cmd *qc;
2176 struct ata_eh_info *ehi;
2177 unsigned int i, err_mask, printed = 0;
2178 u32 err_cause;
2180 err_cause = readl(mmio + hpriv->irq_cause_ofs);
2182 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2183 err_cause);
2185 DPRINTK("All regs @ PCI error\n");
2186 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2188 writelfl(0, mmio + hpriv->irq_cause_ofs);
2190 for (i = 0; i < host->n_ports; i++) {
2191 ap = host->ports[i];
2192 if (!ata_link_offline(&ap->link)) {
2193 ehi = &ap->link.eh_info;
2194 ata_ehi_clear_desc(ehi);
2195 if (!printed++)
2196 ata_ehi_push_desc(ehi,
2197 "PCI err cause 0x%08x", err_cause);
2198 err_mask = AC_ERR_HOST_BUS;
2199 ehi->action = ATA_EH_RESET;
2200 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2201 if (qc)
2202 qc->err_mask |= err_mask;
2203 else
2204 ehi->err_mask |= err_mask;
2206 ata_port_freeze(ap);
2209 return 1; /* handled */
2213 * mv_interrupt - Main interrupt event handler
2214 * @irq: unused
2215 * @dev_instance: private data; in this case the host structure
2217 * Read the read only register to determine if any host
2218 * controllers have pending interrupts. If so, call lower level
2219 * routine to handle. Also check for PCI errors which are only
2220 * reported here.
2222 * LOCKING:
2223 * This routine holds the host lock while processing pending
2224 * interrupts.
2226 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2228 struct ata_host *host = dev_instance;
2229 struct mv_host_priv *hpriv = host->private_data;
2230 unsigned int handled = 0;
2231 u32 main_irq_cause, pending_irqs;
2233 spin_lock(&host->lock);
2234 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2235 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2237 * Deal with cases where we either have nothing pending, or have read
2238 * a bogus register value which can indicate HW removal or PCI fault.
2240 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2241 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2242 handled = mv_pci_error(host, hpriv->base);
2243 else
2244 handled = mv_host_intr(host, pending_irqs);
2246 spin_unlock(&host->lock);
2247 return IRQ_RETVAL(handled);
2250 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2252 unsigned int ofs;
2254 switch (sc_reg_in) {
2255 case SCR_STATUS:
2256 case SCR_ERROR:
2257 case SCR_CONTROL:
2258 ofs = sc_reg_in * sizeof(u32);
2259 break;
2260 default:
2261 ofs = 0xffffffffU;
2262 break;
2264 return ofs;
2267 static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
2269 struct mv_host_priv *hpriv = ap->host->private_data;
2270 void __iomem *mmio = hpriv->base;
2271 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2272 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2274 if (ofs != 0xffffffffU) {
2275 *val = readl(addr + ofs);
2276 return 0;
2277 } else
2278 return -EINVAL;
2281 static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
2283 struct mv_host_priv *hpriv = ap->host->private_data;
2284 void __iomem *mmio = hpriv->base;
2285 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
2286 unsigned int ofs = mv5_scr_offset(sc_reg_in);
2288 if (ofs != 0xffffffffU) {
2289 writelfl(val, addr + ofs);
2290 return 0;
2291 } else
2292 return -EINVAL;
2295 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
2297 struct pci_dev *pdev = to_pci_dev(host->dev);
2298 int early_5080;
2300 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
2302 if (!early_5080) {
2303 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2304 tmp |= (1 << 0);
2305 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2308 mv_reset_pci_bus(host, mmio);
2311 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2313 writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
2316 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
2317 void __iomem *mmio)
2319 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
2320 u32 tmp;
2322 tmp = readl(phy_mmio + MV5_PHY_MODE);
2324 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
2325 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
2328 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2330 u32 tmp;
2332 writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
2334 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2336 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
2337 tmp |= ~(1 << 0);
2338 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
2341 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2342 unsigned int port)
2344 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
2345 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2346 u32 tmp;
2347 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
2349 if (fix_apm_sq) {
2350 tmp = readl(phy_mmio + MV5_LTMODE_OFS);
2351 tmp |= (1 << 19);
2352 writel(tmp, phy_mmio + MV5_LTMODE_OFS);
2354 tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
2355 tmp &= ~0x3;
2356 tmp |= 0x1;
2357 writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
2360 tmp = readl(phy_mmio + MV5_PHY_MODE);
2361 tmp &= ~mask;
2362 tmp |= hpriv->signal[port].pre;
2363 tmp |= hpriv->signal[port].amps;
2364 writel(tmp, phy_mmio + MV5_PHY_MODE);
2368 #undef ZERO
2369 #define ZERO(reg) writel(0, port_mmio + (reg))
2370 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
2371 unsigned int port)
2373 void __iomem *port_mmio = mv_port_base(mmio, port);
2375 mv_reset_channel(hpriv, mmio, port);
2377 ZERO(0x028); /* command */
2378 writel(0x11f, port_mmio + EDMA_CFG_OFS);
2379 ZERO(0x004); /* timer */
2380 ZERO(0x008); /* irq err cause */
2381 ZERO(0x00c); /* irq err mask */
2382 ZERO(0x010); /* rq bah */
2383 ZERO(0x014); /* rq inp */
2384 ZERO(0x018); /* rq outp */
2385 ZERO(0x01c); /* respq bah */
2386 ZERO(0x024); /* respq outp */
2387 ZERO(0x020); /* respq inp */
2388 ZERO(0x02c); /* test control */
2389 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2391 #undef ZERO
2393 #define ZERO(reg) writel(0, hc_mmio + (reg))
2394 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2395 unsigned int hc)
2397 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2398 u32 tmp;
2400 ZERO(0x00c);
2401 ZERO(0x010);
2402 ZERO(0x014);
2403 ZERO(0x018);
2405 tmp = readl(hc_mmio + 0x20);
2406 tmp &= 0x1c1c1c1c;
2407 tmp |= 0x03030303;
2408 writel(tmp, hc_mmio + 0x20);
2410 #undef ZERO
2412 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2413 unsigned int n_hc)
2415 unsigned int hc, port;
2417 for (hc = 0; hc < n_hc; hc++) {
2418 for (port = 0; port < MV_PORTS_PER_HC; port++)
2419 mv5_reset_hc_port(hpriv, mmio,
2420 (hc * MV_PORTS_PER_HC) + port);
2422 mv5_reset_one_hc(hpriv, mmio, hc);
2425 return 0;
2428 #undef ZERO
2429 #define ZERO(reg) writel(0, mmio + (reg))
2430 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
2432 struct mv_host_priv *hpriv = host->private_data;
2433 u32 tmp;
2435 tmp = readl(mmio + MV_PCI_MODE_OFS);
2436 tmp &= 0xff00ffff;
2437 writel(tmp, mmio + MV_PCI_MODE_OFS);
2439 ZERO(MV_PCI_DISC_TIMER);
2440 ZERO(MV_PCI_MSI_TRIGGER);
2441 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
2442 ZERO(MV_PCI_SERR_MASK);
2443 ZERO(hpriv->irq_cause_ofs);
2444 ZERO(hpriv->irq_mask_ofs);
2445 ZERO(MV_PCI_ERR_LOW_ADDRESS);
2446 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
2447 ZERO(MV_PCI_ERR_ATTRIBUTE);
2448 ZERO(MV_PCI_ERR_COMMAND);
2450 #undef ZERO
2452 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
2454 u32 tmp;
2456 mv5_reset_flash(hpriv, mmio);
2458 tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
2459 tmp &= 0x3;
2460 tmp |= (1 << 5) | (1 << 6);
2461 writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
2465 * mv6_reset_hc - Perform the 6xxx global soft reset
2466 * @mmio: base address of the HBA
2468 * This routine only applies to 6xxx parts.
2470 * LOCKING:
2471 * Inherited from caller.
2473 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
2474 unsigned int n_hc)
2476 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
2477 int i, rc = 0;
2478 u32 t;
2480 /* Following procedure defined in PCI "main command and status
2481 * register" table.
2483 t = readl(reg);
2484 writel(t | STOP_PCI_MASTER, reg);
2486 for (i = 0; i < 1000; i++) {
2487 udelay(1);
2488 t = readl(reg);
2489 if (PCI_MASTER_EMPTY & t)
2490 break;
2492 if (!(PCI_MASTER_EMPTY & t)) {
2493 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
2494 rc = 1;
2495 goto done;
2498 /* set reset */
2499 i = 5;
2500 do {
2501 writel(t | GLOB_SFT_RST, reg);
2502 t = readl(reg);
2503 udelay(1);
2504 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
2506 if (!(GLOB_SFT_RST & t)) {
2507 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
2508 rc = 1;
2509 goto done;
2512 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2513 i = 5;
2514 do {
2515 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
2516 t = readl(reg);
2517 udelay(1);
2518 } while ((GLOB_SFT_RST & t) && (i-- > 0));
2520 if (GLOB_SFT_RST & t) {
2521 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
2522 rc = 1;
2524 done:
2525 return rc;
2528 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
2529 void __iomem *mmio)
2531 void __iomem *port_mmio;
2532 u32 tmp;
2534 tmp = readl(mmio + MV_RESET_CFG_OFS);
2535 if ((tmp & (1 << 0)) == 0) {
2536 hpriv->signal[idx].amps = 0x7 << 8;
2537 hpriv->signal[idx].pre = 0x1 << 5;
2538 return;
2541 port_mmio = mv_port_base(mmio, idx);
2542 tmp = readl(port_mmio + PHY_MODE2);
2544 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2545 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2548 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
2550 writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
2553 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2554 unsigned int port)
2556 void __iomem *port_mmio = mv_port_base(mmio, port);
2558 u32 hp_flags = hpriv->hp_flags;
2559 int fix_phy_mode2 =
2560 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2561 int fix_phy_mode4 =
2562 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
2563 u32 m2, m3;
2565 if (fix_phy_mode2) {
2566 m2 = readl(port_mmio + PHY_MODE2);
2567 m2 &= ~(1 << 16);
2568 m2 |= (1 << 31);
2569 writel(m2, port_mmio + PHY_MODE2);
2571 udelay(200);
2573 m2 = readl(port_mmio + PHY_MODE2);
2574 m2 &= ~((1 << 16) | (1 << 31));
2575 writel(m2, port_mmio + PHY_MODE2);
2577 udelay(200);
2581 * Gen-II/IIe PHY_MODE3 errata RM#2:
2582 * Achieves better receiver noise performance than the h/w default:
2584 m3 = readl(port_mmio + PHY_MODE3);
2585 m3 = (m3 & 0x1f) | (0x5555601 << 5);
2587 /* Guideline 88F5182 (GL# SATA-S11) */
2588 if (IS_SOC(hpriv))
2589 m3 &= ~0x1c;
2591 if (fix_phy_mode4) {
2592 u32 m4 = readl(port_mmio + PHY_MODE4);
2594 * Enforce reserved-bit restrictions on GenIIe devices only.
2595 * For earlier chipsets, force only the internal config field
2596 * (workaround for errata FEr SATA#10 part 1).
2598 if (IS_GEN_IIE(hpriv))
2599 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
2600 else
2601 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
2602 writel(m4, port_mmio + PHY_MODE4);
2605 * Workaround for 60x1-B2 errata SATA#13:
2606 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2607 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2609 writel(m3, port_mmio + PHY_MODE3);
2611 /* Revert values of pre-emphasis and signal amps to the saved ones */
2612 m2 = readl(port_mmio + PHY_MODE2);
2614 m2 &= ~MV_M2_PREAMP_MASK;
2615 m2 |= hpriv->signal[port].amps;
2616 m2 |= hpriv->signal[port].pre;
2617 m2 &= ~(1 << 16);
2619 /* according to mvSata 3.6.1, some IIE values are fixed */
2620 if (IS_GEN_IIE(hpriv)) {
2621 m2 &= ~0xC30FF01F;
2622 m2 |= 0x0000900F;
2625 writel(m2, port_mmio + PHY_MODE2);
2628 /* TODO: use the generic LED interface to configure the SATA Presence */
2629 /* & Acitivy LEDs on the board */
2630 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
2631 void __iomem *mmio)
2633 return;
2636 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
2637 void __iomem *mmio)
2639 void __iomem *port_mmio;
2640 u32 tmp;
2642 port_mmio = mv_port_base(mmio, idx);
2643 tmp = readl(port_mmio + PHY_MODE2);
2645 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
2646 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
2649 #undef ZERO
2650 #define ZERO(reg) writel(0, port_mmio + (reg))
2651 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
2652 void __iomem *mmio, unsigned int port)
2654 void __iomem *port_mmio = mv_port_base(mmio, port);
2656 mv_reset_channel(hpriv, mmio, port);
2658 ZERO(0x028); /* command */
2659 writel(0x101f, port_mmio + EDMA_CFG_OFS);
2660 ZERO(0x004); /* timer */
2661 ZERO(0x008); /* irq err cause */
2662 ZERO(0x00c); /* irq err mask */
2663 ZERO(0x010); /* rq bah */
2664 ZERO(0x014); /* rq inp */
2665 ZERO(0x018); /* rq outp */
2666 ZERO(0x01c); /* respq bah */
2667 ZERO(0x024); /* respq outp */
2668 ZERO(0x020); /* respq inp */
2669 ZERO(0x02c); /* test control */
2670 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
2673 #undef ZERO
2675 #define ZERO(reg) writel(0, hc_mmio + (reg))
2676 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
2677 void __iomem *mmio)
2679 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
2681 ZERO(0x00c);
2682 ZERO(0x010);
2683 ZERO(0x014);
2687 #undef ZERO
2689 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
2690 void __iomem *mmio, unsigned int n_hc)
2692 unsigned int port;
2694 for (port = 0; port < hpriv->n_ports; port++)
2695 mv_soc_reset_hc_port(hpriv, mmio, port);
2697 mv_soc_reset_one_hc(hpriv, mmio);
2699 return 0;
2702 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
2703 void __iomem *mmio)
2705 return;
2708 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
2710 return;
2713 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
2715 u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
2717 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
2718 if (want_gen2i)
2719 ifcfg |= (1 << 7); /* enable gen2i speed */
2720 writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
2723 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
2724 unsigned int port_no)
2726 void __iomem *port_mmio = mv_port_base(mmio, port_no);
2729 * The datasheet warns against setting EDMA_RESET when EDMA is active
2730 * (but doesn't say what the problem might be). So we first try
2731 * to disable the EDMA engine before doing the EDMA_RESET operation.
2733 mv_stop_edma_engine(port_mmio);
2734 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2736 if (!IS_GEN_I(hpriv)) {
2737 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2738 mv_setup_ifcfg(port_mmio, 1);
2741 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2742 * link, and physical layers. It resets all SATA interface registers
2743 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2745 writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
2746 udelay(25); /* allow reset propagation */
2747 writelfl(0, port_mmio + EDMA_CMD_OFS);
2749 hpriv->ops->phy_errata(hpriv, mmio, port_no);
2751 if (IS_GEN_I(hpriv))
2752 mdelay(1);
2755 static void mv_pmp_select(struct ata_port *ap, int pmp)
2757 if (sata_pmp_supported(ap)) {
2758 void __iomem *port_mmio = mv_ap_base(ap);
2759 u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
2760 int old = reg & 0xf;
2762 if (old != pmp) {
2763 reg = (reg & ~0xf) | pmp;
2764 writelfl(reg, port_mmio + SATA_IFCTL_OFS);
2769 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
2770 unsigned long deadline)
2772 mv_pmp_select(link->ap, sata_srst_pmp(link));
2773 return sata_std_hardreset(link, class, deadline);
2776 static int mv_softreset(struct ata_link *link, unsigned int *class,
2777 unsigned long deadline)
2779 mv_pmp_select(link->ap, sata_srst_pmp(link));
2780 return ata_sff_softreset(link, class, deadline);
2783 static int mv_hardreset(struct ata_link *link, unsigned int *class,
2784 unsigned long deadline)
2786 struct ata_port *ap = link->ap;
2787 struct mv_host_priv *hpriv = ap->host->private_data;
2788 struct mv_port_priv *pp = ap->private_data;
2789 void __iomem *mmio = hpriv->base;
2790 int rc, attempts = 0, extra = 0;
2791 u32 sstatus;
2792 bool online;
2794 mv_reset_channel(hpriv, mmio, ap->port_no);
2795 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2797 /* Workaround for errata FEr SATA#10 (part 2) */
2798 do {
2799 const unsigned long *timing =
2800 sata_ehc_deb_timing(&link->eh_context);
2802 rc = sata_link_hardreset(link, timing, deadline + extra,
2803 &online, NULL);
2804 rc = online ? -EAGAIN : rc;
2805 if (rc)
2806 return rc;
2807 sata_scr_read(link, SCR_STATUS, &sstatus);
2808 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
2809 /* Force 1.5gb/s link speed and try again */
2810 mv_setup_ifcfg(mv_ap_base(ap), 0);
2811 if (time_after(jiffies + HZ, deadline))
2812 extra = HZ; /* only extend it once, max */
2814 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
2816 return rc;
2819 static void mv_eh_freeze(struct ata_port *ap)
2821 mv_stop_edma(ap);
2822 mv_enable_port_irqs(ap, 0);
2825 static void mv_eh_thaw(struct ata_port *ap)
2827 struct mv_host_priv *hpriv = ap->host->private_data;
2828 unsigned int port = ap->port_no;
2829 unsigned int hardport = mv_hardport_from_port(port);
2830 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
2831 void __iomem *port_mmio = mv_ap_base(ap);
2832 u32 hc_irq_cause;
2834 /* clear EDMA errors on this port */
2835 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2837 /* clear pending irq events */
2838 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
2839 hc_irq_cause &= ~((DEV_IRQ | DMA_IRQ) << hardport);
2840 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
2842 mv_enable_port_irqs(ap, ERR_IRQ);
2846 * mv_port_init - Perform some early initialization on a single port.
2847 * @port: libata data structure storing shadow register addresses
2848 * @port_mmio: base address of the port
2850 * Initialize shadow register mmio addresses, clear outstanding
2851 * interrupts on the port, and unmask interrupts for the future
2852 * start of the port.
2854 * LOCKING:
2855 * Inherited from caller.
2857 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2859 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2860 unsigned serr_ofs;
2862 /* PIO related setup
2864 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2865 port->error_addr =
2866 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2867 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2868 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2869 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2870 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2871 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2872 port->status_addr =
2873 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2874 /* special case: control/altstatus doesn't have ATA_REG_ address */
2875 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2877 /* unused: */
2878 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2880 /* Clear any currently outstanding port interrupt conditions */
2881 serr_ofs = mv_scr_offset(SCR_ERROR);
2882 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2883 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2885 /* unmask all non-transient EDMA error interrupts */
2886 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2888 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2889 readl(port_mmio + EDMA_CFG_OFS),
2890 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2891 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2894 static unsigned int mv_in_pcix_mode(struct ata_host *host)
2896 struct mv_host_priv *hpriv = host->private_data;
2897 void __iomem *mmio = hpriv->base;
2898 u32 reg;
2900 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
2901 return 0; /* not PCI-X capable */
2902 reg = readl(mmio + MV_PCI_MODE_OFS);
2903 if ((reg & MV_PCI_MODE_MASK) == 0)
2904 return 0; /* conventional PCI mode */
2905 return 1; /* chip is in PCI-X mode */
2908 static int mv_pci_cut_through_okay(struct ata_host *host)
2910 struct mv_host_priv *hpriv = host->private_data;
2911 void __iomem *mmio = hpriv->base;
2912 u32 reg;
2914 if (!mv_in_pcix_mode(host)) {
2915 reg = readl(mmio + PCI_COMMAND_OFS);
2916 if (reg & PCI_COMMAND_MRDTRIG)
2917 return 0; /* not okay */
2919 return 1; /* okay */
2922 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
2924 struct pci_dev *pdev = to_pci_dev(host->dev);
2925 struct mv_host_priv *hpriv = host->private_data;
2926 u32 hp_flags = hpriv->hp_flags;
2928 switch (board_idx) {
2929 case chip_5080:
2930 hpriv->ops = &mv5xxx_ops;
2931 hp_flags |= MV_HP_GEN_I;
2933 switch (pdev->revision) {
2934 case 0x1:
2935 hp_flags |= MV_HP_ERRATA_50XXB0;
2936 break;
2937 case 0x3:
2938 hp_flags |= MV_HP_ERRATA_50XXB2;
2939 break;
2940 default:
2941 dev_printk(KERN_WARNING, &pdev->dev,
2942 "Applying 50XXB2 workarounds to unknown rev\n");
2943 hp_flags |= MV_HP_ERRATA_50XXB2;
2944 break;
2946 break;
2948 case chip_504x:
2949 case chip_508x:
2950 hpriv->ops = &mv5xxx_ops;
2951 hp_flags |= MV_HP_GEN_I;
2953 switch (pdev->revision) {
2954 case 0x0:
2955 hp_flags |= MV_HP_ERRATA_50XXB0;
2956 break;
2957 case 0x3:
2958 hp_flags |= MV_HP_ERRATA_50XXB2;
2959 break;
2960 default:
2961 dev_printk(KERN_WARNING, &pdev->dev,
2962 "Applying B2 workarounds to unknown rev\n");
2963 hp_flags |= MV_HP_ERRATA_50XXB2;
2964 break;
2966 break;
2968 case chip_604x:
2969 case chip_608x:
2970 hpriv->ops = &mv6xxx_ops;
2971 hp_flags |= MV_HP_GEN_II;
2973 switch (pdev->revision) {
2974 case 0x7:
2975 hp_flags |= MV_HP_ERRATA_60X1B2;
2976 break;
2977 case 0x9:
2978 hp_flags |= MV_HP_ERRATA_60X1C0;
2979 break;
2980 default:
2981 dev_printk(KERN_WARNING, &pdev->dev,
2982 "Applying B2 workarounds to unknown rev\n");
2983 hp_flags |= MV_HP_ERRATA_60X1B2;
2984 break;
2986 break;
2988 case chip_7042:
2989 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
2990 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
2991 (pdev->device == 0x2300 || pdev->device == 0x2310))
2994 * Highpoint RocketRAID PCIe 23xx series cards:
2996 * Unconfigured drives are treated as "Legacy"
2997 * by the BIOS, and it overwrites sector 8 with
2998 * a "Lgcy" metadata block prior to Linux boot.
3000 * Configured drives (RAID or JBOD) leave sector 8
3001 * alone, but instead overwrite a high numbered
3002 * sector for the RAID metadata. This sector can
3003 * be determined exactly, by truncating the physical
3004 * drive capacity to a nice even GB value.
3006 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3008 * Warn the user, lest they think we're just buggy.
3010 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3011 " BIOS CORRUPTS DATA on all attached drives,"
3012 " regardless of if/how they are configured."
3013 " BEWARE!\n");
3014 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3015 " use sectors 8-9 on \"Legacy\" drives,"
3016 " and avoid the final two gigabytes on"
3017 " all RocketRAID BIOS initialized drives.\n");
3019 /* drop through */
3020 case chip_6042:
3021 hpriv->ops = &mv6xxx_ops;
3022 hp_flags |= MV_HP_GEN_IIE;
3023 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3024 hp_flags |= MV_HP_CUT_THROUGH;
3026 switch (pdev->revision) {
3027 case 0x2: /* Rev.B0: the first/only public release */
3028 hp_flags |= MV_HP_ERRATA_60X1C0;
3029 break;
3030 default:
3031 dev_printk(KERN_WARNING, &pdev->dev,
3032 "Applying 60X1C0 workarounds to unknown rev\n");
3033 hp_flags |= MV_HP_ERRATA_60X1C0;
3034 break;
3036 break;
3037 case chip_soc:
3038 hpriv->ops = &mv_soc_ops;
3039 hp_flags |= MV_HP_FLAG_SOC | MV_HP_ERRATA_60X1C0;
3040 break;
3042 default:
3043 dev_printk(KERN_ERR, host->dev,
3044 "BUG: invalid board index %u\n", board_idx);
3045 return 1;
3048 hpriv->hp_flags = hp_flags;
3049 if (hp_flags & MV_HP_PCIE) {
3050 hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
3051 hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
3052 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3053 } else {
3054 hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
3055 hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
3056 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3059 return 0;
3063 * mv_init_host - Perform some early initialization of the host.
3064 * @host: ATA host to initialize
3065 * @board_idx: controller index
3067 * If possible, do an early global reset of the host. Then do
3068 * our port init and clear/unmask all/relevant host interrupts.
3070 * LOCKING:
3071 * Inherited from caller.
3073 static int mv_init_host(struct ata_host *host, unsigned int board_idx)
3075 int rc = 0, n_hc, port, hc;
3076 struct mv_host_priv *hpriv = host->private_data;
3077 void __iomem *mmio = hpriv->base;
3079 rc = mv_chip_id(host, board_idx);
3080 if (rc)
3081 goto done;
3083 if (IS_SOC(hpriv)) {
3084 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
3085 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
3086 } else {
3087 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
3088 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
3091 /* global interrupt mask: 0 == mask everything */
3092 mv_set_main_irq_mask(host, ~0, 0);
3094 n_hc = mv_get_hc_count(host->ports[0]->flags);
3096 for (port = 0; port < host->n_ports; port++)
3097 hpriv->ops->read_preamp(hpriv, port, mmio);
3099 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3100 if (rc)
3101 goto done;
3103 hpriv->ops->reset_flash(hpriv, mmio);
3104 hpriv->ops->reset_bus(host, mmio);
3105 hpriv->ops->enable_leds(hpriv, mmio);
3107 for (port = 0; port < host->n_ports; port++) {
3108 struct ata_port *ap = host->ports[port];
3109 void __iomem *port_mmio = mv_port_base(mmio, port);
3111 mv_port_init(&ap->ioaddr, port_mmio);
3113 #ifdef CONFIG_PCI
3114 if (!IS_SOC(hpriv)) {
3115 unsigned int offset = port_mmio - mmio;
3116 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3117 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3119 #endif
3122 for (hc = 0; hc < n_hc; hc++) {
3123 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3125 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3126 "(before clear)=0x%08x\n", hc,
3127 readl(hc_mmio + HC_CFG_OFS),
3128 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
3130 /* Clear any currently outstanding hc interrupt conditions */
3131 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
3134 if (!IS_SOC(hpriv)) {
3135 /* Clear any currently outstanding host interrupt conditions */
3136 writelfl(0, mmio + hpriv->irq_cause_ofs);
3138 /* and unmask interrupt generation for host regs */
3139 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
3142 * enable only global host interrupts for now.
3143 * The per-port interrupts get done later as ports are set up.
3145 mv_set_main_irq_mask(host, 0, PCI_ERR);
3147 done:
3148 return rc;
3151 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3153 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3154 MV_CRQB_Q_SZ, 0);
3155 if (!hpriv->crqb_pool)
3156 return -ENOMEM;
3158 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3159 MV_CRPB_Q_SZ, 0);
3160 if (!hpriv->crpb_pool)
3161 return -ENOMEM;
3163 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3164 MV_SG_TBL_SZ, 0);
3165 if (!hpriv->sg_tbl_pool)
3166 return -ENOMEM;
3168 return 0;
3171 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3172 struct mbus_dram_target_info *dram)
3174 int i;
3176 for (i = 0; i < 4; i++) {
3177 writel(0, hpriv->base + WINDOW_CTRL(i));
3178 writel(0, hpriv->base + WINDOW_BASE(i));
3181 for (i = 0; i < dram->num_cs; i++) {
3182 struct mbus_dram_window *cs = dram->cs + i;
3184 writel(((cs->size - 1) & 0xffff0000) |
3185 (cs->mbus_attr << 8) |
3186 (dram->mbus_dram_target_id << 4) | 1,
3187 hpriv->base + WINDOW_CTRL(i));
3188 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3193 * mv_platform_probe - handle a positive probe of an soc Marvell
3194 * host
3195 * @pdev: platform device found
3197 * LOCKING:
3198 * Inherited from caller.
3200 static int mv_platform_probe(struct platform_device *pdev)
3202 static int printed_version;
3203 const struct mv_sata_platform_data *mv_platform_data;
3204 const struct ata_port_info *ppi[] =
3205 { &mv_port_info[chip_soc], NULL };
3206 struct ata_host *host;
3207 struct mv_host_priv *hpriv;
3208 struct resource *res;
3209 int n_ports, rc;
3211 if (!printed_version++)
3212 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3215 * Simple resource validation ..
3217 if (unlikely(pdev->num_resources != 2)) {
3218 dev_err(&pdev->dev, "invalid number of resources\n");
3219 return -EINVAL;
3223 * Get the register base first
3225 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3226 if (res == NULL)
3227 return -EINVAL;
3229 /* allocate host */
3230 mv_platform_data = pdev->dev.platform_data;
3231 n_ports = mv_platform_data->n_ports;
3233 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3234 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3236 if (!host || !hpriv)
3237 return -ENOMEM;
3238 host->private_data = hpriv;
3239 hpriv->n_ports = n_ports;
3241 host->iomap = NULL;
3242 hpriv->base = devm_ioremap(&pdev->dev, res->start,
3243 res->end - res->start + 1);
3244 hpriv->base -= MV_SATAHC0_REG_BASE;
3247 * (Re-)program MBUS remapping windows if we are asked to.
3249 if (mv_platform_data->dram != NULL)
3250 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
3252 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3253 if (rc)
3254 return rc;
3256 /* initialize adapter */
3257 rc = mv_init_host(host, chip_soc);
3258 if (rc)
3259 return rc;
3261 dev_printk(KERN_INFO, &pdev->dev,
3262 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
3263 host->n_ports);
3265 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
3266 IRQF_SHARED, &mv6_sht);
3271 * mv_platform_remove - unplug a platform interface
3272 * @pdev: platform device
3274 * A platform bus SATA device has been unplugged. Perform the needed
3275 * cleanup. Also called on module unload for any active devices.
3277 static int __devexit mv_platform_remove(struct platform_device *pdev)
3279 struct device *dev = &pdev->dev;
3280 struct ata_host *host = dev_get_drvdata(dev);
3282 ata_host_detach(host);
3283 return 0;
3286 static struct platform_driver mv_platform_driver = {
3287 .probe = mv_platform_probe,
3288 .remove = __devexit_p(mv_platform_remove),
3289 .driver = {
3290 .name = DRV_NAME,
3291 .owner = THIS_MODULE,
3296 #ifdef CONFIG_PCI
3297 static int mv_pci_init_one(struct pci_dev *pdev,
3298 const struct pci_device_id *ent);
3301 static struct pci_driver mv_pci_driver = {
3302 .name = DRV_NAME,
3303 .id_table = mv_pci_tbl,
3304 .probe = mv_pci_init_one,
3305 .remove = ata_pci_remove_one,
3309 * module options
3311 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
3314 /* move to PCI layer or libata core? */
3315 static int pci_go_64(struct pci_dev *pdev)
3317 int rc;
3319 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3320 rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3321 if (rc) {
3322 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3323 if (rc) {
3324 dev_printk(KERN_ERR, &pdev->dev,
3325 "64-bit DMA enable failed\n");
3326 return rc;
3329 } else {
3330 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3331 if (rc) {
3332 dev_printk(KERN_ERR, &pdev->dev,
3333 "32-bit DMA enable failed\n");
3334 return rc;
3336 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3337 if (rc) {
3338 dev_printk(KERN_ERR, &pdev->dev,
3339 "32-bit consistent DMA enable failed\n");
3340 return rc;
3344 return rc;
3348 * mv_print_info - Dump key info to kernel log for perusal.
3349 * @host: ATA host to print info about
3351 * FIXME: complete this.
3353 * LOCKING:
3354 * Inherited from caller.
3356 static void mv_print_info(struct ata_host *host)
3358 struct pci_dev *pdev = to_pci_dev(host->dev);
3359 struct mv_host_priv *hpriv = host->private_data;
3360 u8 scc;
3361 const char *scc_s, *gen;
3363 /* Use this to determine the HW stepping of the chip so we know
3364 * what errata to workaround
3366 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
3367 if (scc == 0)
3368 scc_s = "SCSI";
3369 else if (scc == 0x01)
3370 scc_s = "RAID";
3371 else
3372 scc_s = "?";
3374 if (IS_GEN_I(hpriv))
3375 gen = "I";
3376 else if (IS_GEN_II(hpriv))
3377 gen = "II";
3378 else if (IS_GEN_IIE(hpriv))
3379 gen = "IIE";
3380 else
3381 gen = "?";
3383 dev_printk(KERN_INFO, &pdev->dev,
3384 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3385 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
3386 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
3390 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3391 * @pdev: PCI device found
3392 * @ent: PCI device ID entry for the matched host
3394 * LOCKING:
3395 * Inherited from caller.
3397 static int mv_pci_init_one(struct pci_dev *pdev,
3398 const struct pci_device_id *ent)
3400 static int printed_version;
3401 unsigned int board_idx = (unsigned int)ent->driver_data;
3402 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
3403 struct ata_host *host;
3404 struct mv_host_priv *hpriv;
3405 int n_ports, rc;
3407 if (!printed_version++)
3408 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
3410 /* allocate host */
3411 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
3413 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
3414 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
3415 if (!host || !hpriv)
3416 return -ENOMEM;
3417 host->private_data = hpriv;
3418 hpriv->n_ports = n_ports;
3420 /* acquire resources */
3421 rc = pcim_enable_device(pdev);
3422 if (rc)
3423 return rc;
3425 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
3426 if (rc == -EBUSY)
3427 pcim_pin_device(pdev);
3428 if (rc)
3429 return rc;
3430 host->iomap = pcim_iomap_table(pdev);
3431 hpriv->base = host->iomap[MV_PRIMARY_BAR];
3433 rc = pci_go_64(pdev);
3434 if (rc)
3435 return rc;
3437 rc = mv_create_dma_pools(hpriv, &pdev->dev);
3438 if (rc)
3439 return rc;
3441 /* initialize adapter */
3442 rc = mv_init_host(host, board_idx);
3443 if (rc)
3444 return rc;
3446 /* Enable interrupts */
3447 if (msi && pci_enable_msi(pdev))
3448 pci_intx(pdev, 1);
3450 mv_dump_pci_cfg(pdev, 0x68);
3451 mv_print_info(host);
3453 pci_set_master(pdev);
3454 pci_try_set_mwi(pdev);
3455 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
3456 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
3458 #endif
3460 static int mv_platform_probe(struct platform_device *pdev);
3461 static int __devexit mv_platform_remove(struct platform_device *pdev);
3463 static int __init mv_init(void)
3465 int rc = -ENODEV;
3466 #ifdef CONFIG_PCI
3467 rc = pci_register_driver(&mv_pci_driver);
3468 if (rc < 0)
3469 return rc;
3470 #endif
3471 rc = platform_driver_register(&mv_platform_driver);
3473 #ifdef CONFIG_PCI
3474 if (rc < 0)
3475 pci_unregister_driver(&mv_pci_driver);
3476 #endif
3477 return rc;
3480 static void __exit mv_exit(void)
3482 #ifdef CONFIG_PCI
3483 pci_unregister_driver(&mv_pci_driver);
3484 #endif
3485 platform_driver_unregister(&mv_platform_driver);
3488 MODULE_AUTHOR("Brett Russ");
3489 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3490 MODULE_LICENSE("GPL");
3491 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
3492 MODULE_VERSION(DRV_VERSION);
3493 MODULE_ALIAS("platform:" DRV_NAME);
3495 #ifdef CONFIG_PCI
3496 module_param(msi, int, 0444);
3497 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
3498 #endif
3500 module_init(mv_init);
3501 module_exit(mv_exit);