kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / hwmon / asb100.c
blobfe2eea4d799b60b4b4ab5df992eeb1aa200175bf
1 /*
2 asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
5 Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7 (derived from w83781d.c)
9 Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
10 Philip Edelbrock <phil@netroedge.com>, and
11 Mark Studebaker <mdsxyz123@yahoo.com>
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 This driver supports the hardware sensor chips: Asus ASB100 and
30 ASB100-A "BACH".
32 ASB100-A supports pwm1, while plain ASB100 does not. There is no known
33 way for the driver to tell which one is there.
35 Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
36 asb100 7 3 1 4 0x31 0x0694 yes no
39 #include <linux/module.h>
40 #include <linux/slab.h>
41 #include <linux/i2c.h>
42 #include <linux/hwmon.h>
43 #include <linux/hwmon-sysfs.h>
44 #include <linux/hwmon-vid.h>
45 #include <linux/err.h>
46 #include <linux/init.h>
47 #include <linux/jiffies.h>
48 #include <linux/mutex.h>
49 #include "lm75.h"
51 /* I2C addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
54 /* Insmod parameters */
55 I2C_CLIENT_INSMOD_1(asb100);
56 I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: "
57 "{bus, clientaddr, subclientaddr1, subclientaddr2}");
59 /* Voltage IN registers 0-6 */
60 #define ASB100_REG_IN(nr) (0x20 + (nr))
61 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
62 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
64 /* FAN IN registers 1-3 */
65 #define ASB100_REG_FAN(nr) (0x28 + (nr))
66 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
68 /* TEMPERATURE registers 1-4 */
69 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
70 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
71 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
73 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
74 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
75 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
77 #define ASB100_REG_TEMP2_CONFIG 0x0152
78 #define ASB100_REG_TEMP3_CONFIG 0x0252
81 #define ASB100_REG_CONFIG 0x40
82 #define ASB100_REG_ALARM1 0x41
83 #define ASB100_REG_ALARM2 0x42
84 #define ASB100_REG_SMIM1 0x43
85 #define ASB100_REG_SMIM2 0x44
86 #define ASB100_REG_VID_FANDIV 0x47
87 #define ASB100_REG_I2C_ADDR 0x48
88 #define ASB100_REG_CHIPID 0x49
89 #define ASB100_REG_I2C_SUBADDR 0x4a
90 #define ASB100_REG_PIN 0x4b
91 #define ASB100_REG_IRQ 0x4c
92 #define ASB100_REG_BANK 0x4e
93 #define ASB100_REG_CHIPMAN 0x4f
95 #define ASB100_REG_WCHIPID 0x58
97 /* bit 7 -> enable, bits 0-3 -> duty cycle */
98 #define ASB100_REG_PWM1 0x59
100 /* CONVERSIONS
101 Rounding and limit checking is only done on the TO_REG variants. */
103 /* These constants are a guess, consistent w/ w83781d */
104 #define ASB100_IN_MIN ( 0)
105 #define ASB100_IN_MAX (4080)
107 /* IN: 1/1000 V (0V to 4.08V)
108 REG: 16mV/bit */
109 static u8 IN_TO_REG(unsigned val)
111 unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
112 return (nval + 8) / 16;
115 static unsigned IN_FROM_REG(u8 reg)
117 return reg * 16;
120 static u8 FAN_TO_REG(long rpm, int div)
122 if (rpm == -1)
123 return 0;
124 if (rpm == 0)
125 return 255;
126 rpm = SENSORS_LIMIT(rpm, 1, 1000000);
127 return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
130 static int FAN_FROM_REG(u8 val, int div)
132 return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
135 /* These constants are a guess, consistent w/ w83781d */
136 #define ASB100_TEMP_MIN (-128000)
137 #define ASB100_TEMP_MAX ( 127000)
139 /* TEMP: 0.001C/bit (-128C to +127C)
140 REG: 1C/bit, two's complement */
141 static u8 TEMP_TO_REG(long temp)
143 int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
144 ntemp += (ntemp<0 ? -500 : 500);
145 return (u8)(ntemp / 1000);
148 static int TEMP_FROM_REG(u8 reg)
150 return (s8)reg * 1000;
153 /* PWM: 0 - 255 per sensors documentation
154 REG: (6.25% duty cycle per bit) */
155 static u8 ASB100_PWM_TO_REG(int pwm)
157 pwm = SENSORS_LIMIT(pwm, 0, 255);
158 return (u8)(pwm / 16);
161 static int ASB100_PWM_FROM_REG(u8 reg)
163 return reg * 16;
166 #define DIV_FROM_REG(val) (1 << (val))
168 /* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
169 REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
170 static u8 DIV_TO_REG(long val)
172 return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
175 /* For each registered client, we need to keep some data in memory. That
176 data is pointed to by client->data. The structure itself is
177 dynamically allocated, at the same time the client itself is allocated. */
178 struct asb100_data {
179 struct i2c_client client;
180 struct device *hwmon_dev;
181 struct mutex lock;
182 enum chips type;
184 struct mutex update_lock;
185 unsigned long last_updated; /* In jiffies */
187 /* array of 2 pointers to subclients */
188 struct i2c_client *lm75[2];
190 char valid; /* !=0 if following fields are valid */
191 u8 in[7]; /* Register value */
192 u8 in_max[7]; /* Register value */
193 u8 in_min[7]; /* Register value */
194 u8 fan[3]; /* Register value */
195 u8 fan_min[3]; /* Register value */
196 u16 temp[4]; /* Register value (0 and 3 are u8 only) */
197 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
198 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
199 u8 fan_div[3]; /* Register encoding, right justified */
200 u8 pwm; /* Register encoding */
201 u8 vid; /* Register encoding, combined */
202 u32 alarms; /* Register encoding, combined */
203 u8 vrm;
206 static int asb100_read_value(struct i2c_client *client, u16 reg);
207 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
209 static int asb100_attach_adapter(struct i2c_adapter *adapter);
210 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind);
211 static int asb100_detach_client(struct i2c_client *client);
212 static struct asb100_data *asb100_update_device(struct device *dev);
213 static void asb100_init_client(struct i2c_client *client);
215 static struct i2c_driver asb100_driver = {
216 .driver = {
217 .name = "asb100",
219 .attach_adapter = asb100_attach_adapter,
220 .detach_client = asb100_detach_client,
223 /* 7 Voltages */
224 #define show_in_reg(reg) \
225 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
226 char *buf) \
228 int nr = to_sensor_dev_attr(attr)->index; \
229 struct asb100_data *data = asb100_update_device(dev); \
230 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
233 show_in_reg(in)
234 show_in_reg(in_min)
235 show_in_reg(in_max)
237 #define set_in_reg(REG, reg) \
238 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
239 const char *buf, size_t count) \
241 int nr = to_sensor_dev_attr(attr)->index; \
242 struct i2c_client *client = to_i2c_client(dev); \
243 struct asb100_data *data = i2c_get_clientdata(client); \
244 unsigned long val = simple_strtoul(buf, NULL, 10); \
246 mutex_lock(&data->update_lock); \
247 data->in_##reg[nr] = IN_TO_REG(val); \
248 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
249 data->in_##reg[nr]); \
250 mutex_unlock(&data->update_lock); \
251 return count; \
254 set_in_reg(MIN, min)
255 set_in_reg(MAX, max)
257 #define sysfs_in(offset) \
258 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
259 show_in, NULL, offset); \
260 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
261 show_in_min, set_in_min, offset); \
262 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
263 show_in_max, set_in_max, offset)
265 sysfs_in(0);
266 sysfs_in(1);
267 sysfs_in(2);
268 sysfs_in(3);
269 sysfs_in(4);
270 sysfs_in(5);
271 sysfs_in(6);
273 /* 3 Fans */
274 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
275 char *buf)
277 int nr = to_sensor_dev_attr(attr)->index;
278 struct asb100_data *data = asb100_update_device(dev);
279 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
280 DIV_FROM_REG(data->fan_div[nr])));
283 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
284 char *buf)
286 int nr = to_sensor_dev_attr(attr)->index;
287 struct asb100_data *data = asb100_update_device(dev);
288 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
289 DIV_FROM_REG(data->fan_div[nr])));
292 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
293 char *buf)
295 int nr = to_sensor_dev_attr(attr)->index;
296 struct asb100_data *data = asb100_update_device(dev);
297 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
300 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
301 const char *buf, size_t count)
303 int nr = to_sensor_dev_attr(attr)->index;
304 struct i2c_client *client = to_i2c_client(dev);
305 struct asb100_data *data = i2c_get_clientdata(client);
306 u32 val = simple_strtoul(buf, NULL, 10);
308 mutex_lock(&data->update_lock);
309 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
310 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
311 mutex_unlock(&data->update_lock);
312 return count;
315 /* Note: we save and restore the fan minimum here, because its value is
316 determined in part by the fan divisor. This follows the principle of
317 least surprise; the user doesn't expect the fan minimum to change just
318 because the divisor changed. */
319 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
320 const char *buf, size_t count)
322 int nr = to_sensor_dev_attr(attr)->index;
323 struct i2c_client *client = to_i2c_client(dev);
324 struct asb100_data *data = i2c_get_clientdata(client);
325 unsigned long min;
326 unsigned long val = simple_strtoul(buf, NULL, 10);
327 int reg;
329 mutex_lock(&data->update_lock);
331 min = FAN_FROM_REG(data->fan_min[nr],
332 DIV_FROM_REG(data->fan_div[nr]));
333 data->fan_div[nr] = DIV_TO_REG(val);
335 switch (nr) {
336 case 0: /* fan 1 */
337 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
338 reg = (reg & 0xcf) | (data->fan_div[0] << 4);
339 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
340 break;
342 case 1: /* fan 2 */
343 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
344 reg = (reg & 0x3f) | (data->fan_div[1] << 6);
345 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
346 break;
348 case 2: /* fan 3 */
349 reg = asb100_read_value(client, ASB100_REG_PIN);
350 reg = (reg & 0x3f) | (data->fan_div[2] << 6);
351 asb100_write_value(client, ASB100_REG_PIN, reg);
352 break;
355 data->fan_min[nr] =
356 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
357 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
359 mutex_unlock(&data->update_lock);
361 return count;
364 #define sysfs_fan(offset) \
365 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
366 show_fan, NULL, offset - 1); \
367 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
368 show_fan_min, set_fan_min, offset - 1); \
369 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
370 show_fan_div, set_fan_div, offset - 1)
372 sysfs_fan(1);
373 sysfs_fan(2);
374 sysfs_fan(3);
376 /* 4 Temp. Sensors */
377 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
379 int ret = 0;
381 switch (nr) {
382 case 1: case 2:
383 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
384 break;
385 case 0: case 3: default:
386 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
387 break;
389 return ret;
392 #define show_temp_reg(reg) \
393 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
394 char *buf) \
396 int nr = to_sensor_dev_attr(attr)->index; \
397 struct asb100_data *data = asb100_update_device(dev); \
398 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
401 show_temp_reg(temp);
402 show_temp_reg(temp_max);
403 show_temp_reg(temp_hyst);
405 #define set_temp_reg(REG, reg) \
406 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
407 const char *buf, size_t count) \
409 int nr = to_sensor_dev_attr(attr)->index; \
410 struct i2c_client *client = to_i2c_client(dev); \
411 struct asb100_data *data = i2c_get_clientdata(client); \
412 long val = simple_strtol(buf, NULL, 10); \
414 mutex_lock(&data->update_lock); \
415 switch (nr) { \
416 case 1: case 2: \
417 data->reg[nr] = LM75_TEMP_TO_REG(val); \
418 break; \
419 case 0: case 3: default: \
420 data->reg[nr] = TEMP_TO_REG(val); \
421 break; \
423 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
424 data->reg[nr]); \
425 mutex_unlock(&data->update_lock); \
426 return count; \
429 set_temp_reg(MAX, temp_max);
430 set_temp_reg(HYST, temp_hyst);
432 #define sysfs_temp(num) \
433 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
434 show_temp, NULL, num - 1); \
435 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
436 show_temp_max, set_temp_max, num - 1); \
437 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
438 show_temp_hyst, set_temp_hyst, num - 1)
440 sysfs_temp(1);
441 sysfs_temp(2);
442 sysfs_temp(3);
443 sysfs_temp(4);
445 /* VID */
446 static ssize_t show_vid(struct device *dev, struct device_attribute *attr,
447 char *buf)
449 struct asb100_data *data = asb100_update_device(dev);
450 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
453 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
455 /* VRM */
456 static ssize_t show_vrm(struct device *dev, struct device_attribute *attr,
457 char *buf)
459 struct asb100_data *data = dev_get_drvdata(dev);
460 return sprintf(buf, "%d\n", data->vrm);
463 static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
464 const char *buf, size_t count)
466 struct asb100_data *data = dev_get_drvdata(dev);
467 data->vrm = simple_strtoul(buf, NULL, 10);
468 return count;
471 /* Alarms */
472 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
474 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
475 char *buf)
477 struct asb100_data *data = asb100_update_device(dev);
478 return sprintf(buf, "%u\n", data->alarms);
481 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
483 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
484 char *buf)
486 int bitnr = to_sensor_dev_attr(attr)->index;
487 struct asb100_data *data = asb100_update_device(dev);
488 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
490 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
491 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
492 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
493 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
494 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
495 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
496 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
497 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
498 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
499 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
500 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
502 /* 1 PWM */
503 static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr,
504 char *buf)
506 struct asb100_data *data = asb100_update_device(dev);
507 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
510 static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr,
511 const char *buf, size_t count)
513 struct i2c_client *client = to_i2c_client(dev);
514 struct asb100_data *data = i2c_get_clientdata(client);
515 unsigned long val = simple_strtoul(buf, NULL, 10);
517 mutex_lock(&data->update_lock);
518 data->pwm &= 0x80; /* keep the enable bit */
519 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
520 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
521 mutex_unlock(&data->update_lock);
522 return count;
525 static ssize_t show_pwm_enable1(struct device *dev,
526 struct device_attribute *attr, char *buf)
528 struct asb100_data *data = asb100_update_device(dev);
529 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
532 static ssize_t set_pwm_enable1(struct device *dev,
533 struct device_attribute *attr, const char *buf, size_t count)
535 struct i2c_client *client = to_i2c_client(dev);
536 struct asb100_data *data = i2c_get_clientdata(client);
537 unsigned long val = simple_strtoul(buf, NULL, 10);
539 mutex_lock(&data->update_lock);
540 data->pwm &= 0x0f; /* keep the duty cycle bits */
541 data->pwm |= (val ? 0x80 : 0x00);
542 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
543 mutex_unlock(&data->update_lock);
544 return count;
547 static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
548 static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
549 show_pwm_enable1, set_pwm_enable1);
551 static struct attribute *asb100_attributes[] = {
552 &sensor_dev_attr_in0_input.dev_attr.attr,
553 &sensor_dev_attr_in0_min.dev_attr.attr,
554 &sensor_dev_attr_in0_max.dev_attr.attr,
555 &sensor_dev_attr_in1_input.dev_attr.attr,
556 &sensor_dev_attr_in1_min.dev_attr.attr,
557 &sensor_dev_attr_in1_max.dev_attr.attr,
558 &sensor_dev_attr_in2_input.dev_attr.attr,
559 &sensor_dev_attr_in2_min.dev_attr.attr,
560 &sensor_dev_attr_in2_max.dev_attr.attr,
561 &sensor_dev_attr_in3_input.dev_attr.attr,
562 &sensor_dev_attr_in3_min.dev_attr.attr,
563 &sensor_dev_attr_in3_max.dev_attr.attr,
564 &sensor_dev_attr_in4_input.dev_attr.attr,
565 &sensor_dev_attr_in4_min.dev_attr.attr,
566 &sensor_dev_attr_in4_max.dev_attr.attr,
567 &sensor_dev_attr_in5_input.dev_attr.attr,
568 &sensor_dev_attr_in5_min.dev_attr.attr,
569 &sensor_dev_attr_in5_max.dev_attr.attr,
570 &sensor_dev_attr_in6_input.dev_attr.attr,
571 &sensor_dev_attr_in6_min.dev_attr.attr,
572 &sensor_dev_attr_in6_max.dev_attr.attr,
574 &sensor_dev_attr_fan1_input.dev_attr.attr,
575 &sensor_dev_attr_fan1_min.dev_attr.attr,
576 &sensor_dev_attr_fan1_div.dev_attr.attr,
577 &sensor_dev_attr_fan2_input.dev_attr.attr,
578 &sensor_dev_attr_fan2_min.dev_attr.attr,
579 &sensor_dev_attr_fan2_div.dev_attr.attr,
580 &sensor_dev_attr_fan3_input.dev_attr.attr,
581 &sensor_dev_attr_fan3_min.dev_attr.attr,
582 &sensor_dev_attr_fan3_div.dev_attr.attr,
584 &sensor_dev_attr_temp1_input.dev_attr.attr,
585 &sensor_dev_attr_temp1_max.dev_attr.attr,
586 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
587 &sensor_dev_attr_temp2_input.dev_attr.attr,
588 &sensor_dev_attr_temp2_max.dev_attr.attr,
589 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
590 &sensor_dev_attr_temp3_input.dev_attr.attr,
591 &sensor_dev_attr_temp3_max.dev_attr.attr,
592 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
593 &sensor_dev_attr_temp4_input.dev_attr.attr,
594 &sensor_dev_attr_temp4_max.dev_attr.attr,
595 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
597 &sensor_dev_attr_in0_alarm.dev_attr.attr,
598 &sensor_dev_attr_in1_alarm.dev_attr.attr,
599 &sensor_dev_attr_in2_alarm.dev_attr.attr,
600 &sensor_dev_attr_in3_alarm.dev_attr.attr,
601 &sensor_dev_attr_in4_alarm.dev_attr.attr,
602 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
603 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
604 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
605 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
606 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
607 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
609 &dev_attr_cpu0_vid.attr,
610 &dev_attr_vrm.attr,
611 &dev_attr_alarms.attr,
612 &dev_attr_pwm1.attr,
613 &dev_attr_pwm1_enable.attr,
615 NULL
618 static const struct attribute_group asb100_group = {
619 .attrs = asb100_attributes,
622 /* This function is called when:
623 asb100_driver is inserted (when this module is loaded), for each
624 available adapter
625 when a new adapter is inserted (and asb100_driver is still present)
627 static int asb100_attach_adapter(struct i2c_adapter *adapter)
629 if (!(adapter->class & I2C_CLASS_HWMON))
630 return 0;
631 return i2c_probe(adapter, &addr_data, asb100_detect);
634 static int asb100_detect_subclients(struct i2c_adapter *adapter, int address,
635 int kind, struct i2c_client *client)
637 int i, id, err;
638 struct asb100_data *data = i2c_get_clientdata(client);
640 data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
641 if (!(data->lm75[0])) {
642 err = -ENOMEM;
643 goto ERROR_SC_0;
646 data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
647 if (!(data->lm75[1])) {
648 err = -ENOMEM;
649 goto ERROR_SC_1;
652 id = i2c_adapter_id(adapter);
654 if (force_subclients[0] == id && force_subclients[1] == address) {
655 for (i = 2; i <= 3; i++) {
656 if (force_subclients[i] < 0x48 ||
657 force_subclients[i] > 0x4f) {
658 dev_err(&client->dev, "invalid subclient "
659 "address %d; must be 0x48-0x4f\n",
660 force_subclients[i]);
661 err = -ENODEV;
662 goto ERROR_SC_2;
665 asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
666 (force_subclients[2] & 0x07) |
667 ((force_subclients[3] & 0x07) << 4));
668 data->lm75[0]->addr = force_subclients[2];
669 data->lm75[1]->addr = force_subclients[3];
670 } else {
671 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
672 data->lm75[0]->addr = 0x48 + (val & 0x07);
673 data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07);
676 if (data->lm75[0]->addr == data->lm75[1]->addr) {
677 dev_err(&client->dev, "duplicate addresses 0x%x "
678 "for subclients\n", data->lm75[0]->addr);
679 err = -ENODEV;
680 goto ERROR_SC_2;
683 for (i = 0; i <= 1; i++) {
684 i2c_set_clientdata(data->lm75[i], NULL);
685 data->lm75[i]->adapter = adapter;
686 data->lm75[i]->driver = &asb100_driver;
687 strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE);
690 if ((err = i2c_attach_client(data->lm75[0]))) {
691 dev_err(&client->dev, "subclient %d registration "
692 "at address 0x%x failed.\n", i, data->lm75[0]->addr);
693 goto ERROR_SC_2;
696 if ((err = i2c_attach_client(data->lm75[1]))) {
697 dev_err(&client->dev, "subclient %d registration "
698 "at address 0x%x failed.\n", i, data->lm75[1]->addr);
699 goto ERROR_SC_3;
702 return 0;
704 /* Undo inits in case of errors */
705 ERROR_SC_3:
706 i2c_detach_client(data->lm75[0]);
707 ERROR_SC_2:
708 kfree(data->lm75[1]);
709 ERROR_SC_1:
710 kfree(data->lm75[0]);
711 ERROR_SC_0:
712 return err;
715 static int asb100_detect(struct i2c_adapter *adapter, int address, int kind)
717 int err;
718 struct i2c_client *client;
719 struct asb100_data *data;
721 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
722 pr_debug("asb100.o: detect failed, "
723 "smbus byte data not supported!\n");
724 err = -ENODEV;
725 goto ERROR0;
728 /* OK. For now, we presume we have a valid client. We now create the
729 client structure, even though we cannot fill it completely yet.
730 But it allows us to access asb100_{read,write}_value. */
732 if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) {
733 pr_debug("asb100.o: detect failed, kzalloc failed!\n");
734 err = -ENOMEM;
735 goto ERROR0;
738 client = &data->client;
739 mutex_init(&data->lock);
740 i2c_set_clientdata(client, data);
741 client->addr = address;
742 client->adapter = adapter;
743 client->driver = &asb100_driver;
745 /* Now, we do the remaining detection. */
747 /* The chip may be stuck in some other bank than bank 0. This may
748 make reading other information impossible. Specify a force=... or
749 force_*=... parameter, and the chip will be reset to the right
750 bank. */
751 if (kind < 0) {
753 int val1 = asb100_read_value(client, ASB100_REG_BANK);
754 int val2 = asb100_read_value(client, ASB100_REG_CHIPMAN);
756 /* If we're in bank 0 */
757 if ((!(val1 & 0x07)) &&
758 /* Check for ASB100 ID (low byte) */
759 (((!(val1 & 0x80)) && (val2 != 0x94)) ||
760 /* Check for ASB100 ID (high byte ) */
761 ((val1 & 0x80) && (val2 != 0x06)))) {
762 pr_debug("asb100.o: detect failed, "
763 "bad chip id 0x%02x!\n", val2);
764 err = -ENODEV;
765 goto ERROR1;
768 } /* kind < 0 */
770 /* We have either had a force parameter, or we have already detected
771 Winbond. Put it now into bank 0 and Vendor ID High Byte */
772 asb100_write_value(client, ASB100_REG_BANK,
773 (asb100_read_value(client, ASB100_REG_BANK) & 0x78) | 0x80);
775 /* Determine the chip type. */
776 if (kind <= 0) {
777 int val1 = asb100_read_value(client, ASB100_REG_WCHIPID);
778 int val2 = asb100_read_value(client, ASB100_REG_CHIPMAN);
780 if ((val1 == 0x31) && (val2 == 0x06))
781 kind = asb100;
782 else {
783 if (kind == 0)
784 dev_warn(&client->dev, "ignoring "
785 "'force' parameter for unknown chip "
786 "at adapter %d, address 0x%02x.\n",
787 i2c_adapter_id(adapter), address);
788 err = -ENODEV;
789 goto ERROR1;
793 /* Fill in remaining client fields and put it into the global list */
794 strlcpy(client->name, "asb100", I2C_NAME_SIZE);
795 data->type = kind;
796 mutex_init(&data->update_lock);
798 /* Tell the I2C layer a new client has arrived */
799 if ((err = i2c_attach_client(client)))
800 goto ERROR1;
802 /* Attach secondary lm75 clients */
803 if ((err = asb100_detect_subclients(adapter, address, kind,
804 client)))
805 goto ERROR2;
807 /* Initialize the chip */
808 asb100_init_client(client);
810 /* A few vars need to be filled upon startup */
811 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
812 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
813 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
815 /* Register sysfs hooks */
816 if ((err = sysfs_create_group(&client->dev.kobj, &asb100_group)))
817 goto ERROR3;
819 data->hwmon_dev = hwmon_device_register(&client->dev);
820 if (IS_ERR(data->hwmon_dev)) {
821 err = PTR_ERR(data->hwmon_dev);
822 goto ERROR4;
825 return 0;
827 ERROR4:
828 sysfs_remove_group(&client->dev.kobj, &asb100_group);
829 ERROR3:
830 i2c_detach_client(data->lm75[1]);
831 i2c_detach_client(data->lm75[0]);
832 kfree(data->lm75[1]);
833 kfree(data->lm75[0]);
834 ERROR2:
835 i2c_detach_client(client);
836 ERROR1:
837 kfree(data);
838 ERROR0:
839 return err;
842 static int asb100_detach_client(struct i2c_client *client)
844 struct asb100_data *data = i2c_get_clientdata(client);
845 int err;
847 /* main client */
848 if (data) {
849 hwmon_device_unregister(data->hwmon_dev);
850 sysfs_remove_group(&client->dev.kobj, &asb100_group);
853 if ((err = i2c_detach_client(client)))
854 return err;
856 /* main client */
857 if (data)
858 kfree(data);
860 /* subclient */
861 else
862 kfree(client);
864 return 0;
867 /* The SMBus locks itself, usually, but nothing may access the chip between
868 bank switches. */
869 static int asb100_read_value(struct i2c_client *client, u16 reg)
871 struct asb100_data *data = i2c_get_clientdata(client);
872 struct i2c_client *cl;
873 int res, bank;
875 mutex_lock(&data->lock);
877 bank = (reg >> 8) & 0x0f;
878 if (bank > 2)
879 /* switch banks */
880 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
882 if (bank == 0 || bank > 2) {
883 res = i2c_smbus_read_byte_data(client, reg & 0xff);
884 } else {
885 /* switch to subclient */
886 cl = data->lm75[bank - 1];
888 /* convert from ISA to LM75 I2C addresses */
889 switch (reg & 0xff) {
890 case 0x50: /* TEMP */
891 res = swab16(i2c_smbus_read_word_data(cl, 0));
892 break;
893 case 0x52: /* CONFIG */
894 res = i2c_smbus_read_byte_data(cl, 1);
895 break;
896 case 0x53: /* HYST */
897 res = swab16(i2c_smbus_read_word_data(cl, 2));
898 break;
899 case 0x55: /* MAX */
900 default:
901 res = swab16(i2c_smbus_read_word_data(cl, 3));
902 break;
906 if (bank > 2)
907 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
909 mutex_unlock(&data->lock);
911 return res;
914 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
916 struct asb100_data *data = i2c_get_clientdata(client);
917 struct i2c_client *cl;
918 int bank;
920 mutex_lock(&data->lock);
922 bank = (reg >> 8) & 0x0f;
923 if (bank > 2)
924 /* switch banks */
925 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
927 if (bank == 0 || bank > 2) {
928 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
929 } else {
930 /* switch to subclient */
931 cl = data->lm75[bank - 1];
933 /* convert from ISA to LM75 I2C addresses */
934 switch (reg & 0xff) {
935 case 0x52: /* CONFIG */
936 i2c_smbus_write_byte_data(cl, 1, value & 0xff);
937 break;
938 case 0x53: /* HYST */
939 i2c_smbus_write_word_data(cl, 2, swab16(value));
940 break;
941 case 0x55: /* MAX */
942 i2c_smbus_write_word_data(cl, 3, swab16(value));
943 break;
947 if (bank > 2)
948 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
950 mutex_unlock(&data->lock);
953 static void asb100_init_client(struct i2c_client *client)
955 struct asb100_data *data = i2c_get_clientdata(client);
957 data->vrm = vid_which_vrm();
959 /* Start monitoring */
960 asb100_write_value(client, ASB100_REG_CONFIG,
961 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
964 static struct asb100_data *asb100_update_device(struct device *dev)
966 struct i2c_client *client = to_i2c_client(dev);
967 struct asb100_data *data = i2c_get_clientdata(client);
968 int i;
970 mutex_lock(&data->update_lock);
972 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
973 || !data->valid) {
975 dev_dbg(&client->dev, "starting device update...\n");
977 /* 7 voltage inputs */
978 for (i = 0; i < 7; i++) {
979 data->in[i] = asb100_read_value(client,
980 ASB100_REG_IN(i));
981 data->in_min[i] = asb100_read_value(client,
982 ASB100_REG_IN_MIN(i));
983 data->in_max[i] = asb100_read_value(client,
984 ASB100_REG_IN_MAX(i));
987 /* 3 fan inputs */
988 for (i = 0; i < 3; i++) {
989 data->fan[i] = asb100_read_value(client,
990 ASB100_REG_FAN(i));
991 data->fan_min[i] = asb100_read_value(client,
992 ASB100_REG_FAN_MIN(i));
995 /* 4 temperature inputs */
996 for (i = 1; i <= 4; i++) {
997 data->temp[i-1] = asb100_read_value(client,
998 ASB100_REG_TEMP(i));
999 data->temp_max[i-1] = asb100_read_value(client,
1000 ASB100_REG_TEMP_MAX(i));
1001 data->temp_hyst[i-1] = asb100_read_value(client,
1002 ASB100_REG_TEMP_HYST(i));
1005 /* VID and fan divisors */
1006 i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
1007 data->vid = i & 0x0f;
1008 data->vid |= (asb100_read_value(client,
1009 ASB100_REG_CHIPID) & 0x01) << 4;
1010 data->fan_div[0] = (i >> 4) & 0x03;
1011 data->fan_div[1] = (i >> 6) & 0x03;
1012 data->fan_div[2] = (asb100_read_value(client,
1013 ASB100_REG_PIN) >> 6) & 0x03;
1015 /* PWM */
1016 data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1018 /* alarms */
1019 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1020 (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1022 data->last_updated = jiffies;
1023 data->valid = 1;
1025 dev_dbg(&client->dev, "... device update complete\n");
1028 mutex_unlock(&data->update_lock);
1030 return data;
1033 static int __init asb100_init(void)
1035 return i2c_add_driver(&asb100_driver);
1038 static void __exit asb100_exit(void)
1040 i2c_del_driver(&asb100_driver);
1043 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1044 MODULE_DESCRIPTION("ASB100 Bach driver");
1045 MODULE_LICENSE("GPL");
1047 module_init(asb100_init);
1048 module_exit(asb100_exit);