kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / md / dm-table.c
blob94116eaf47099ccad9f8ca458afd3c4f1e835435
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <asm/atomic.h>
20 #define DM_MSG_PREFIX "table"
22 #define MAX_DEPTH 16
23 #define NODE_SIZE L1_CACHE_BYTES
24 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
27 struct dm_table {
28 struct mapped_device *md;
29 atomic_t holders;
31 /* btree table */
32 unsigned int depth;
33 unsigned int counts[MAX_DEPTH]; /* in nodes */
34 sector_t *index[MAX_DEPTH];
36 unsigned int num_targets;
37 unsigned int num_allocated;
38 sector_t *highs;
39 struct dm_target *targets;
42 * Indicates the rw permissions for the new logical
43 * device. This should be a combination of FMODE_READ
44 * and FMODE_WRITE.
46 int mode;
48 /* a list of devices used by this table */
49 struct list_head devices;
52 * These are optimistic limits taken from all the
53 * targets, some targets will need smaller limits.
55 struct io_restrictions limits;
57 /* events get handed up using this callback */
58 void (*event_fn)(void *);
59 void *event_context;
63 * Similar to ceiling(log_size(n))
65 static unsigned int int_log(unsigned int n, unsigned int base)
67 int result = 0;
69 while (n > 1) {
70 n = dm_div_up(n, base);
71 result++;
74 return result;
78 * Returns the minimum that is _not_ zero, unless both are zero.
80 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
83 * Combine two io_restrictions, always taking the lower value.
85 static void combine_restrictions_low(struct io_restrictions *lhs,
86 struct io_restrictions *rhs)
88 lhs->max_sectors =
89 min_not_zero(lhs->max_sectors, rhs->max_sectors);
91 lhs->max_phys_segments =
92 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
94 lhs->max_hw_segments =
95 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
97 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
99 lhs->max_segment_size =
100 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
102 lhs->max_hw_sectors =
103 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
105 lhs->seg_boundary_mask =
106 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
108 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
110 lhs->no_cluster |= rhs->no_cluster;
114 * Calculate the index of the child node of the n'th node k'th key.
116 static inline unsigned int get_child(unsigned int n, unsigned int k)
118 return (n * CHILDREN_PER_NODE) + k;
122 * Return the n'th node of level l from table t.
124 static inline sector_t *get_node(struct dm_table *t,
125 unsigned int l, unsigned int n)
127 return t->index[l] + (n * KEYS_PER_NODE);
131 * Return the highest key that you could lookup from the n'th
132 * node on level l of the btree.
134 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
136 for (; l < t->depth - 1; l++)
137 n = get_child(n, CHILDREN_PER_NODE - 1);
139 if (n >= t->counts[l])
140 return (sector_t) - 1;
142 return get_node(t, l, n)[KEYS_PER_NODE - 1];
146 * Fills in a level of the btree based on the highs of the level
147 * below it.
149 static int setup_btree_index(unsigned int l, struct dm_table *t)
151 unsigned int n, k;
152 sector_t *node;
154 for (n = 0U; n < t->counts[l]; n++) {
155 node = get_node(t, l, n);
157 for (k = 0U; k < KEYS_PER_NODE; k++)
158 node[k] = high(t, l + 1, get_child(n, k));
161 return 0;
164 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
166 unsigned long size;
167 void *addr;
170 * Check that we're not going to overflow.
172 if (nmemb > (ULONG_MAX / elem_size))
173 return NULL;
175 size = nmemb * elem_size;
176 addr = vmalloc(size);
177 if (addr)
178 memset(addr, 0, size);
180 return addr;
184 * highs, and targets are managed as dynamic arrays during a
185 * table load.
187 static int alloc_targets(struct dm_table *t, unsigned int num)
189 sector_t *n_highs;
190 struct dm_target *n_targets;
191 int n = t->num_targets;
194 * Allocate both the target array and offset array at once.
195 * Append an empty entry to catch sectors beyond the end of
196 * the device.
198 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
199 sizeof(sector_t));
200 if (!n_highs)
201 return -ENOMEM;
203 n_targets = (struct dm_target *) (n_highs + num);
205 if (n) {
206 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
207 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
210 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
211 vfree(t->highs);
213 t->num_allocated = num;
214 t->highs = n_highs;
215 t->targets = n_targets;
217 return 0;
220 int dm_table_create(struct dm_table **result, int mode,
221 unsigned num_targets, struct mapped_device *md)
223 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
225 if (!t)
226 return -ENOMEM;
228 INIT_LIST_HEAD(&t->devices);
229 atomic_set(&t->holders, 1);
231 if (!num_targets)
232 num_targets = KEYS_PER_NODE;
234 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
236 if (alloc_targets(t, num_targets)) {
237 kfree(t);
238 t = NULL;
239 return -ENOMEM;
242 t->mode = mode;
243 t->md = md;
244 *result = t;
245 return 0;
248 static void free_devices(struct list_head *devices)
250 struct list_head *tmp, *next;
252 list_for_each_safe(tmp, next, devices) {
253 struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
254 kfree(dd);
258 static void table_destroy(struct dm_table *t)
260 unsigned int i;
262 /* free the indexes (see dm_table_complete) */
263 if (t->depth >= 2)
264 vfree(t->index[t->depth - 2]);
266 /* free the targets */
267 for (i = 0; i < t->num_targets; i++) {
268 struct dm_target *tgt = t->targets + i;
270 if (tgt->type->dtr)
271 tgt->type->dtr(tgt);
273 dm_put_target_type(tgt->type);
276 vfree(t->highs);
278 /* free the device list */
279 if (t->devices.next != &t->devices) {
280 DMWARN("devices still present during destroy: "
281 "dm_table_remove_device calls missing");
283 free_devices(&t->devices);
286 kfree(t);
289 void dm_table_get(struct dm_table *t)
291 atomic_inc(&t->holders);
294 void dm_table_put(struct dm_table *t)
296 if (!t)
297 return;
299 if (atomic_dec_and_test(&t->holders))
300 table_destroy(t);
304 * Checks to see if we need to extend highs or targets.
306 static inline int check_space(struct dm_table *t)
308 if (t->num_targets >= t->num_allocated)
309 return alloc_targets(t, t->num_allocated * 2);
311 return 0;
315 * Convert a device path to a dev_t.
317 static int lookup_device(const char *path, dev_t *dev)
319 int r;
320 struct nameidata nd;
321 struct inode *inode;
323 if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
324 return r;
326 inode = nd.path.dentry->d_inode;
327 if (!inode) {
328 r = -ENOENT;
329 goto out;
332 if (!S_ISBLK(inode->i_mode)) {
333 r = -ENOTBLK;
334 goto out;
337 *dev = inode->i_rdev;
339 out:
340 path_put(&nd.path);
341 return r;
345 * See if we've already got a device in the list.
347 static struct dm_dev *find_device(struct list_head *l, dev_t dev)
349 struct dm_dev *dd;
351 list_for_each_entry (dd, l, list)
352 if (dd->bdev->bd_dev == dev)
353 return dd;
355 return NULL;
359 * Open a device so we can use it as a map destination.
361 static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
363 static char *_claim_ptr = "I belong to device-mapper";
364 struct block_device *bdev;
366 int r;
368 BUG_ON(d->bdev);
370 bdev = open_by_devnum(dev, d->mode);
371 if (IS_ERR(bdev))
372 return PTR_ERR(bdev);
373 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
374 if (r)
375 blkdev_put(bdev);
376 else
377 d->bdev = bdev;
378 return r;
382 * Close a device that we've been using.
384 static void close_dev(struct dm_dev *d, struct mapped_device *md)
386 if (!d->bdev)
387 return;
389 bd_release_from_disk(d->bdev, dm_disk(md));
390 blkdev_put(d->bdev);
391 d->bdev = NULL;
395 * If possible, this checks an area of a destination device is valid.
397 static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
399 sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
401 if (!dev_size)
402 return 1;
404 return ((start < dev_size) && (len <= (dev_size - start)));
408 * This upgrades the mode on an already open dm_dev. Being
409 * careful to leave things as they were if we fail to reopen the
410 * device.
412 static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
414 int r;
415 struct dm_dev dd_copy;
416 dev_t dev = dd->bdev->bd_dev;
418 dd_copy = *dd;
420 dd->mode |= new_mode;
421 dd->bdev = NULL;
422 r = open_dev(dd, dev, md);
423 if (!r)
424 close_dev(&dd_copy, md);
425 else
426 *dd = dd_copy;
428 return r;
432 * Add a device to the list, or just increment the usage count if
433 * it's already present.
435 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
436 const char *path, sector_t start, sector_t len,
437 int mode, struct dm_dev **result)
439 int r;
440 dev_t uninitialized_var(dev);
441 struct dm_dev *dd;
442 unsigned int major, minor;
444 BUG_ON(!t);
446 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
447 /* Extract the major/minor numbers */
448 dev = MKDEV(major, minor);
449 if (MAJOR(dev) != major || MINOR(dev) != minor)
450 return -EOVERFLOW;
451 } else {
452 /* convert the path to a device */
453 if ((r = lookup_device(path, &dev)))
454 return r;
457 dd = find_device(&t->devices, dev);
458 if (!dd) {
459 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
460 if (!dd)
461 return -ENOMEM;
463 dd->mode = mode;
464 dd->bdev = NULL;
466 if ((r = open_dev(dd, dev, t->md))) {
467 kfree(dd);
468 return r;
471 format_dev_t(dd->name, dev);
473 atomic_set(&dd->count, 0);
474 list_add(&dd->list, &t->devices);
476 } else if (dd->mode != (mode | dd->mode)) {
477 r = upgrade_mode(dd, mode, t->md);
478 if (r)
479 return r;
481 atomic_inc(&dd->count);
483 if (!check_device_area(dd, start, len)) {
484 DMWARN("device %s too small for target", path);
485 dm_put_device(ti, dd);
486 return -EINVAL;
489 *result = dd;
491 return 0;
494 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
496 struct request_queue *q = bdev_get_queue(bdev);
497 struct io_restrictions *rs = &ti->limits;
500 * Combine the device limits low.
502 * FIXME: if we move an io_restriction struct
503 * into q this would just be a call to
504 * combine_restrictions_low()
506 rs->max_sectors =
507 min_not_zero(rs->max_sectors, q->max_sectors);
509 /* FIXME: Device-Mapper on top of RAID-0 breaks because DM
510 * currently doesn't honor MD's merge_bvec_fn routine.
511 * In this case, we'll force DM to use PAGE_SIZE or
512 * smaller I/O, just to be safe. A better fix is in the
513 * works, but add this for the time being so it will at
514 * least operate correctly.
516 if (q->merge_bvec_fn)
517 rs->max_sectors =
518 min_not_zero(rs->max_sectors,
519 (unsigned int) (PAGE_SIZE >> 9));
521 rs->max_phys_segments =
522 min_not_zero(rs->max_phys_segments,
523 q->max_phys_segments);
525 rs->max_hw_segments =
526 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
528 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
530 rs->max_segment_size =
531 min_not_zero(rs->max_segment_size, q->max_segment_size);
533 rs->max_hw_sectors =
534 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
536 rs->seg_boundary_mask =
537 min_not_zero(rs->seg_boundary_mask,
538 q->seg_boundary_mask);
540 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
542 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
544 EXPORT_SYMBOL_GPL(dm_set_device_limits);
546 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
547 sector_t len, int mode, struct dm_dev **result)
549 int r = __table_get_device(ti->table, ti, path,
550 start, len, mode, result);
552 if (!r)
553 dm_set_device_limits(ti, (*result)->bdev);
555 return r;
559 * Decrement a devices use count and remove it if necessary.
561 void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
563 if (atomic_dec_and_test(&dd->count)) {
564 close_dev(dd, ti->table->md);
565 list_del(&dd->list);
566 kfree(dd);
571 * Checks to see if the target joins onto the end of the table.
573 static int adjoin(struct dm_table *table, struct dm_target *ti)
575 struct dm_target *prev;
577 if (!table->num_targets)
578 return !ti->begin;
580 prev = &table->targets[table->num_targets - 1];
581 return (ti->begin == (prev->begin + prev->len));
585 * Used to dynamically allocate the arg array.
587 static char **realloc_argv(unsigned *array_size, char **old_argv)
589 char **argv;
590 unsigned new_size;
592 new_size = *array_size ? *array_size * 2 : 64;
593 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
594 if (argv) {
595 memcpy(argv, old_argv, *array_size * sizeof(*argv));
596 *array_size = new_size;
599 kfree(old_argv);
600 return argv;
604 * Destructively splits up the argument list to pass to ctr.
606 int dm_split_args(int *argc, char ***argvp, char *input)
608 char *start, *end = input, *out, **argv = NULL;
609 unsigned array_size = 0;
611 *argc = 0;
613 if (!input) {
614 *argvp = NULL;
615 return 0;
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
622 while (1) {
623 start = end;
625 /* Skip whitespace */
626 while (*start && isspace(*start))
627 start++;
629 if (!*start)
630 break; /* success, we hit the end */
632 /* 'out' is used to remove any back-quotes */
633 end = out = start;
634 while (*end) {
635 /* Everything apart from '\0' can be quoted */
636 if (*end == '\\' && *(end + 1)) {
637 *out++ = *(end + 1);
638 end += 2;
639 continue;
642 if (isspace(*end))
643 break; /* end of token */
645 *out++ = *end++;
648 /* have we already filled the array ? */
649 if ((*argc + 1) > array_size) {
650 argv = realloc_argv(&array_size, argv);
651 if (!argv)
652 return -ENOMEM;
655 /* we know this is whitespace */
656 if (*end)
657 end++;
659 /* terminate the string and put it in the array */
660 *out = '\0';
661 argv[*argc] = start;
662 (*argc)++;
665 *argvp = argv;
666 return 0;
669 static void check_for_valid_limits(struct io_restrictions *rs)
671 if (!rs->max_sectors)
672 rs->max_sectors = SAFE_MAX_SECTORS;
673 if (!rs->max_hw_sectors)
674 rs->max_hw_sectors = SAFE_MAX_SECTORS;
675 if (!rs->max_phys_segments)
676 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
677 if (!rs->max_hw_segments)
678 rs->max_hw_segments = MAX_HW_SEGMENTS;
679 if (!rs->hardsect_size)
680 rs->hardsect_size = 1 << SECTOR_SHIFT;
681 if (!rs->max_segment_size)
682 rs->max_segment_size = MAX_SEGMENT_SIZE;
683 if (!rs->seg_boundary_mask)
684 rs->seg_boundary_mask = -1;
685 if (!rs->bounce_pfn)
686 rs->bounce_pfn = -1;
689 int dm_table_add_target(struct dm_table *t, const char *type,
690 sector_t start, sector_t len, char *params)
692 int r = -EINVAL, argc;
693 char **argv;
694 struct dm_target *tgt;
696 if ((r = check_space(t)))
697 return r;
699 tgt = t->targets + t->num_targets;
700 memset(tgt, 0, sizeof(*tgt));
702 if (!len) {
703 DMERR("%s: zero-length target", dm_device_name(t->md));
704 return -EINVAL;
707 tgt->type = dm_get_target_type(type);
708 if (!tgt->type) {
709 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
710 type);
711 return -EINVAL;
714 tgt->table = t;
715 tgt->begin = start;
716 tgt->len = len;
717 tgt->error = "Unknown error";
720 * Does this target adjoin the previous one ?
722 if (!adjoin(t, tgt)) {
723 tgt->error = "Gap in table";
724 r = -EINVAL;
725 goto bad;
728 r = dm_split_args(&argc, &argv, params);
729 if (r) {
730 tgt->error = "couldn't split parameters (insufficient memory)";
731 goto bad;
734 r = tgt->type->ctr(tgt, argc, argv);
735 kfree(argv);
736 if (r)
737 goto bad;
739 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
741 /* FIXME: the plan is to combine high here and then have
742 * the merge fn apply the target level restrictions. */
743 combine_restrictions_low(&t->limits, &tgt->limits);
744 return 0;
746 bad:
747 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
748 dm_put_target_type(tgt->type);
749 return r;
752 static int setup_indexes(struct dm_table *t)
754 int i;
755 unsigned int total = 0;
756 sector_t *indexes;
758 /* allocate the space for *all* the indexes */
759 for (i = t->depth - 2; i >= 0; i--) {
760 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
761 total += t->counts[i];
764 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
765 if (!indexes)
766 return -ENOMEM;
768 /* set up internal nodes, bottom-up */
769 for (i = t->depth - 2; i >= 0; i--) {
770 t->index[i] = indexes;
771 indexes += (KEYS_PER_NODE * t->counts[i]);
772 setup_btree_index(i, t);
775 return 0;
779 * Builds the btree to index the map.
781 int dm_table_complete(struct dm_table *t)
783 int r = 0;
784 unsigned int leaf_nodes;
786 check_for_valid_limits(&t->limits);
788 /* how many indexes will the btree have ? */
789 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
790 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
792 /* leaf layer has already been set up */
793 t->counts[t->depth - 1] = leaf_nodes;
794 t->index[t->depth - 1] = t->highs;
796 if (t->depth >= 2)
797 r = setup_indexes(t);
799 return r;
802 static DEFINE_MUTEX(_event_lock);
803 void dm_table_event_callback(struct dm_table *t,
804 void (*fn)(void *), void *context)
806 mutex_lock(&_event_lock);
807 t->event_fn = fn;
808 t->event_context = context;
809 mutex_unlock(&_event_lock);
812 void dm_table_event(struct dm_table *t)
815 * You can no longer call dm_table_event() from interrupt
816 * context, use a bottom half instead.
818 BUG_ON(in_interrupt());
820 mutex_lock(&_event_lock);
821 if (t->event_fn)
822 t->event_fn(t->event_context);
823 mutex_unlock(&_event_lock);
826 sector_t dm_table_get_size(struct dm_table *t)
828 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
831 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
833 if (index >= t->num_targets)
834 return NULL;
836 return t->targets + index;
840 * Search the btree for the correct target.
842 * Caller should check returned pointer with dm_target_is_valid()
843 * to trap I/O beyond end of device.
845 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
847 unsigned int l, n = 0, k = 0;
848 sector_t *node;
850 for (l = 0; l < t->depth; l++) {
851 n = get_child(n, k);
852 node = get_node(t, l, n);
854 for (k = 0; k < KEYS_PER_NODE; k++)
855 if (node[k] >= sector)
856 break;
859 return &t->targets[(KEYS_PER_NODE * n) + k];
862 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
865 * Make sure we obey the optimistic sub devices
866 * restrictions.
868 blk_queue_max_sectors(q, t->limits.max_sectors);
869 q->max_phys_segments = t->limits.max_phys_segments;
870 q->max_hw_segments = t->limits.max_hw_segments;
871 q->hardsect_size = t->limits.hardsect_size;
872 q->max_segment_size = t->limits.max_segment_size;
873 q->max_hw_sectors = t->limits.max_hw_sectors;
874 q->seg_boundary_mask = t->limits.seg_boundary_mask;
875 q->bounce_pfn = t->limits.bounce_pfn;
877 if (t->limits.no_cluster)
878 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
879 else
880 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
884 unsigned int dm_table_get_num_targets(struct dm_table *t)
886 return t->num_targets;
889 struct list_head *dm_table_get_devices(struct dm_table *t)
891 return &t->devices;
894 int dm_table_get_mode(struct dm_table *t)
896 return t->mode;
899 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
901 int i = t->num_targets;
902 struct dm_target *ti = t->targets;
904 while (i--) {
905 if (postsuspend) {
906 if (ti->type->postsuspend)
907 ti->type->postsuspend(ti);
908 } else if (ti->type->presuspend)
909 ti->type->presuspend(ti);
911 ti++;
915 void dm_table_presuspend_targets(struct dm_table *t)
917 if (!t)
918 return;
920 suspend_targets(t, 0);
923 void dm_table_postsuspend_targets(struct dm_table *t)
925 if (!t)
926 return;
928 suspend_targets(t, 1);
931 int dm_table_resume_targets(struct dm_table *t)
933 int i, r = 0;
935 for (i = 0; i < t->num_targets; i++) {
936 struct dm_target *ti = t->targets + i;
938 if (!ti->type->preresume)
939 continue;
941 r = ti->type->preresume(ti);
942 if (r)
943 return r;
946 for (i = 0; i < t->num_targets; i++) {
947 struct dm_target *ti = t->targets + i;
949 if (ti->type->resume)
950 ti->type->resume(ti);
953 return 0;
956 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
958 struct dm_dev *dd;
959 struct list_head *devices = dm_table_get_devices(t);
960 int r = 0;
962 list_for_each_entry(dd, devices, list) {
963 struct request_queue *q = bdev_get_queue(dd->bdev);
964 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
967 return r;
970 void dm_table_unplug_all(struct dm_table *t)
972 struct dm_dev *dd;
973 struct list_head *devices = dm_table_get_devices(t);
975 list_for_each_entry(dd, devices, list) {
976 struct request_queue *q = bdev_get_queue(dd->bdev);
978 blk_unplug(q);
982 struct mapped_device *dm_table_get_md(struct dm_table *t)
984 dm_get(t->md);
986 return t->md;
989 EXPORT_SYMBOL(dm_vcalloc);
990 EXPORT_SYMBOL(dm_get_device);
991 EXPORT_SYMBOL(dm_put_device);
992 EXPORT_SYMBOL(dm_table_event);
993 EXPORT_SYMBOL(dm_table_get_size);
994 EXPORT_SYMBOL(dm_table_get_mode);
995 EXPORT_SYMBOL(dm_table_get_md);
996 EXPORT_SYMBOL(dm_table_put);
997 EXPORT_SYMBOL(dm_table_get);
998 EXPORT_SYMBOL(dm_table_unplug_all);