kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / net / 3c527.c
blobfae295b6809c4a83050e23905df2d25da00001cf
1 /* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
3 * (c) Copyright 1998 Red Hat Software Inc
4 * Written by Alan Cox.
5 * Further debugging by Carl Drougge.
6 * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
7 * Heavily modified by Richard Procter <rnp@paradise.net.nz>
9 * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
10 * (for the MCA stuff) written by Wim Dumon.
12 * Thanks to 3Com for making this possible by providing me with the
13 * documentation.
15 * This software may be used and distributed according to the terms
16 * of the GNU General Public License, incorporated herein by reference.
20 #define DRV_NAME "3c527"
21 #define DRV_VERSION "0.7-SMP"
22 #define DRV_RELDATE "2003/09/21"
24 static const char *version =
25 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n";
27 /**
28 * DOC: Traps for the unwary
30 * The diagram (Figure 1-1) and the POS summary disagree with the
31 * "Interrupt Level" section in the manual.
33 * The manual contradicts itself when describing the minimum number
34 * buffers in the 'configure lists' command.
35 * My card accepts a buffer config of 4/4.
37 * Setting the SAV BP bit does not save bad packets, but
38 * only enables RX on-card stats collection.
40 * The documentation in places seems to miss things. In actual fact
41 * I've always eventually found everything is documented, it just
42 * requires careful study.
44 * DOC: Theory Of Operation
46 * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
47 * amount of on board intelligence that housekeeps a somewhat dumber
48 * Intel NIC. For performance we want to keep the transmit queue deep
49 * as the card can transmit packets while fetching others from main
50 * memory by bus master DMA. Transmission and reception are driven by
51 * circular buffer queues.
53 * The mailboxes can be used for controlling how the card traverses
54 * its buffer rings, but are used only for inital setup in this
55 * implementation. The exec mailbox allows a variety of commands to
56 * be executed. Each command must complete before the next is
57 * executed. Primarily we use the exec mailbox for controlling the
58 * multicast lists. We have to do a certain amount of interesting
59 * hoop jumping as the multicast list changes can occur in interrupt
60 * state when the card has an exec command pending. We defer such
61 * events until the command completion interrupt.
63 * A copy break scheme (taken from 3c59x.c) is employed whereby
64 * received frames exceeding a configurable length are passed
65 * directly to the higher networking layers without incuring a copy,
66 * in what amounts to a time/space trade-off.
68 * The card also keeps a large amount of statistical information
69 * on-board. In a perfect world, these could be used safely at no
70 * cost. However, lacking information to the contrary, processing
71 * them without races would involve so much extra complexity as to
72 * make it unworthwhile to do so. In the end, a hybrid SW/HW
73 * implementation was made necessary --- see mc32_update_stats().
75 * DOC: Notes
77 * It should be possible to use two or more cards, but at this stage
78 * only by loading two copies of the same module.
80 * The on-board 82586 NIC has trouble receiving multiple
81 * back-to-back frames and so is likely to drop packets from fast
82 * senders.
83 **/
85 #include <linux/module.h>
87 #include <linux/errno.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/if_ether.h>
91 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/types.h>
94 #include <linux/fcntl.h>
95 #include <linux/interrupt.h>
96 #include <linux/mca-legacy.h>
97 #include <linux/ioport.h>
98 #include <linux/in.h>
99 #include <linux/skbuff.h>
100 #include <linux/slab.h>
101 #include <linux/string.h>
102 #include <linux/wait.h>
103 #include <linux/ethtool.h>
104 #include <linux/completion.h>
105 #include <linux/bitops.h>
106 #include <linux/semaphore.h>
108 #include <asm/uaccess.h>
109 #include <asm/system.h>
110 #include <asm/io.h>
111 #include <asm/dma.h>
113 #include "3c527.h"
115 MODULE_LICENSE("GPL");
118 * The name of the card. Is used for messages and in the requests for
119 * io regions, irqs and dma channels
121 static const char* cardname = DRV_NAME;
123 /* use 0 for production, 1 for verification, >2 for debug */
124 #ifndef NET_DEBUG
125 #define NET_DEBUG 2
126 #endif
128 #undef DEBUG_IRQ
130 static unsigned int mc32_debug = NET_DEBUG;
132 /* The number of low I/O ports used by the ethercard. */
133 #define MC32_IO_EXTENT 8
135 /* As implemented, values must be a power-of-2 -- 4/8/16/32 */
136 #define TX_RING_LEN 32 /* Typically the card supports 37 */
137 #define RX_RING_LEN 8 /* " " " */
139 /* Copy break point, see above for details.
140 * Setting to > 1512 effectively disables this feature. */
141 #define RX_COPYBREAK 200 /* Value from 3c59x.c */
143 /* Issue the 82586 workaround command - this is for "busy lans", but
144 * basically means for all lans now days - has a performance (latency)
145 * cost, but best set. */
146 static const int WORKAROUND_82586=1;
148 /* Pointers to buffers and their on-card records */
149 struct mc32_ring_desc
151 volatile struct skb_header *p;
152 struct sk_buff *skb;
155 /* Information that needs to be kept for each board. */
156 struct mc32_local
158 int slot;
160 u32 base;
161 struct net_device_stats net_stats;
162 volatile struct mc32_mailbox *rx_box;
163 volatile struct mc32_mailbox *tx_box;
164 volatile struct mc32_mailbox *exec_box;
165 volatile struct mc32_stats *stats; /* Start of on-card statistics */
166 u16 tx_chain; /* Transmit list start offset */
167 u16 rx_chain; /* Receive list start offset */
168 u16 tx_len; /* Transmit list count */
169 u16 rx_len; /* Receive list count */
171 u16 xceiver_desired_state; /* HALTED or RUNNING */
172 u16 cmd_nonblocking; /* Thread is uninterested in command result */
173 u16 mc_reload_wait; /* A multicast load request is pending */
174 u32 mc_list_valid; /* True when the mclist is set */
176 struct mc32_ring_desc tx_ring[TX_RING_LEN]; /* Host Transmit ring */
177 struct mc32_ring_desc rx_ring[RX_RING_LEN]; /* Host Receive ring */
179 atomic_t tx_count; /* buffers left */
180 atomic_t tx_ring_head; /* index to tx en-queue end */
181 u16 tx_ring_tail; /* index to tx de-queue end */
183 u16 rx_ring_tail; /* index to rx de-queue end */
185 struct semaphore cmd_mutex; /* Serialises issuing of execute commands */
186 struct completion execution_cmd; /* Card has completed an execute command */
187 struct completion xceiver_cmd; /* Card has completed a tx or rx command */
190 /* The station (ethernet) address prefix, used for a sanity check. */
191 #define SA_ADDR0 0x02
192 #define SA_ADDR1 0x60
193 #define SA_ADDR2 0xAC
195 struct mca_adapters_t {
196 unsigned int id;
197 char *name;
200 static const struct mca_adapters_t mc32_adapters[] = {
201 { 0x0041, "3COM EtherLink MC/32" },
202 { 0x8EF5, "IBM High Performance Lan Adapter" },
203 { 0x0000, NULL }
207 /* Macros for ring index manipulations */
208 static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); };
209 static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); };
211 static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); };
214 /* Index to functions, as function prototypes. */
215 static int mc32_probe1(struct net_device *dev, int ioaddr);
216 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len);
217 static int mc32_open(struct net_device *dev);
218 static void mc32_timeout(struct net_device *dev);
219 static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev);
220 static irqreturn_t mc32_interrupt(int irq, void *dev_id);
221 static int mc32_close(struct net_device *dev);
222 static struct net_device_stats *mc32_get_stats(struct net_device *dev);
223 static void mc32_set_multicast_list(struct net_device *dev);
224 static void mc32_reset_multicast_list(struct net_device *dev);
225 static const struct ethtool_ops netdev_ethtool_ops;
227 static void cleanup_card(struct net_device *dev)
229 struct mc32_local *lp = netdev_priv(dev);
230 unsigned slot = lp->slot;
231 mca_mark_as_unused(slot);
232 mca_set_adapter_name(slot, NULL);
233 free_irq(dev->irq, dev);
234 release_region(dev->base_addr, MC32_IO_EXTENT);
238 * mc32_probe - Search for supported boards
239 * @unit: interface number to use
241 * Because MCA bus is a real bus and we can scan for cards we could do a
242 * single scan for all boards here. Right now we use the passed in device
243 * structure and scan for only one board. This needs fixing for modules
244 * in particular.
247 struct net_device *__init mc32_probe(int unit)
249 struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local));
250 static int current_mca_slot = -1;
251 int i;
252 int err;
254 if (!dev)
255 return ERR_PTR(-ENOMEM);
257 if (unit >= 0)
258 sprintf(dev->name, "eth%d", unit);
260 /* Do not check any supplied i/o locations.
261 POS registers usually don't fail :) */
263 /* MCA cards have POS registers.
264 Autodetecting MCA cards is extremely simple.
265 Just search for the card. */
267 for(i = 0; (mc32_adapters[i].name != NULL); i++) {
268 current_mca_slot =
269 mca_find_unused_adapter(mc32_adapters[i].id, 0);
271 if(current_mca_slot != MCA_NOTFOUND) {
272 if(!mc32_probe1(dev, current_mca_slot))
274 mca_set_adapter_name(current_mca_slot,
275 mc32_adapters[i].name);
276 mca_mark_as_used(current_mca_slot);
277 err = register_netdev(dev);
278 if (err) {
279 cleanup_card(dev);
280 free_netdev(dev);
281 dev = ERR_PTR(err);
283 return dev;
288 free_netdev(dev);
289 return ERR_PTR(-ENODEV);
293 * mc32_probe1 - Check a given slot for a board and test the card
294 * @dev: Device structure to fill in
295 * @slot: The MCA bus slot being used by this card
297 * Decode the slot data and configure the card structures. Having done this we
298 * can reset the card and configure it. The card does a full self test cycle
299 * in firmware so we have to wait for it to return and post us either a
300 * failure case or some addresses we use to find the board internals.
303 static int __init mc32_probe1(struct net_device *dev, int slot)
305 static unsigned version_printed;
306 int i, err;
307 u8 POS;
308 u32 base;
309 struct mc32_local *lp = netdev_priv(dev);
310 static u16 mca_io_bases[]={
311 0x7280,0x7290,
312 0x7680,0x7690,
313 0x7A80,0x7A90,
314 0x7E80,0x7E90
316 static u32 mca_mem_bases[]={
317 0x00C0000,
318 0x00C4000,
319 0x00C8000,
320 0x00CC000,
321 0x00D0000,
322 0x00D4000,
323 0x00D8000,
324 0x00DC000
326 static char *failures[]={
327 "Processor instruction",
328 "Processor data bus",
329 "Processor data bus",
330 "Processor data bus",
331 "Adapter bus",
332 "ROM checksum",
333 "Base RAM",
334 "Extended RAM",
335 "82586 internal loopback",
336 "82586 initialisation failure",
337 "Adapter list configuration error"
339 DECLARE_MAC_BUF(mac);
341 /* Time to play MCA games */
343 if (mc32_debug && version_printed++ == 0)
344 printk(KERN_DEBUG "%s", version);
346 printk(KERN_INFO "%s: %s found in slot %d:", dev->name, cardname, slot);
348 POS = mca_read_stored_pos(slot, 2);
350 if(!(POS&1))
352 printk(" disabled.\n");
353 return -ENODEV;
356 /* Fill in the 'dev' fields. */
357 dev->base_addr = mca_io_bases[(POS>>1)&7];
358 dev->mem_start = mca_mem_bases[(POS>>4)&7];
360 POS = mca_read_stored_pos(slot, 4);
361 if(!(POS&1))
363 printk("memory window disabled.\n");
364 return -ENODEV;
367 POS = mca_read_stored_pos(slot, 5);
369 i=(POS>>4)&3;
370 if(i==3)
372 printk("invalid memory window.\n");
373 return -ENODEV;
376 i*=16384;
377 i+=16384;
379 dev->mem_end=dev->mem_start + i;
381 dev->irq = ((POS>>2)&3)+9;
383 if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname))
385 printk("io 0x%3lX, which is busy.\n", dev->base_addr);
386 return -EBUSY;
389 printk("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
390 dev->base_addr, dev->irq, dev->mem_start, i/1024);
393 /* We ought to set the cache line size here.. */
397 * Go PROM browsing
400 /* Retrieve and print the ethernet address. */
401 for (i = 0; i < 6; i++)
403 mca_write_pos(slot, 6, i+12);
404 mca_write_pos(slot, 7, 0);
406 dev->dev_addr[i] = mca_read_pos(slot,3);
409 printk("%s: Address %s", dev->name, print_mac(mac, dev->dev_addr));
411 mca_write_pos(slot, 6, 0);
412 mca_write_pos(slot, 7, 0);
414 POS = mca_read_stored_pos(slot, 4);
416 if(POS&2)
417 printk(" : BNC port selected.\n");
418 else
419 printk(" : AUI port selected.\n");
421 POS=inb(dev->base_addr+HOST_CTRL);
422 POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET;
423 POS&=~HOST_CTRL_INTE;
424 outb(POS, dev->base_addr+HOST_CTRL);
425 /* Reset adapter */
426 udelay(100);
427 /* Reset off */
428 POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET);
429 outb(POS, dev->base_addr+HOST_CTRL);
431 udelay(300);
434 * Grab the IRQ
437 err = request_irq(dev->irq, &mc32_interrupt, IRQF_SHARED | IRQF_SAMPLE_RANDOM, DRV_NAME, dev);
438 if (err) {
439 release_region(dev->base_addr, MC32_IO_EXTENT);
440 printk(KERN_ERR "%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq);
441 goto err_exit_ports;
444 memset(lp, 0, sizeof(struct mc32_local));
445 lp->slot = slot;
447 i=0;
449 base = inb(dev->base_addr);
451 while(base == 0xFF)
453 i++;
454 if(i == 1000)
456 printk(KERN_ERR "%s: failed to boot adapter.\n", dev->name);
457 err = -ENODEV;
458 goto err_exit_irq;
460 udelay(1000);
461 if(inb(dev->base_addr+2)&(1<<5))
462 base = inb(dev->base_addr);
465 if(base>0)
467 if(base < 0x0C)
468 printk(KERN_ERR "%s: %s%s.\n", dev->name, failures[base-1],
469 base<0x0A?" test failure":"");
470 else
471 printk(KERN_ERR "%s: unknown failure %d.\n", dev->name, base);
472 err = -ENODEV;
473 goto err_exit_irq;
476 base=0;
477 for(i=0;i<4;i++)
479 int n=0;
481 while(!(inb(dev->base_addr+2)&(1<<5)))
483 n++;
484 udelay(50);
485 if(n>100)
487 printk(KERN_ERR "%s: mailbox read fail (%d).\n", dev->name, i);
488 err = -ENODEV;
489 goto err_exit_irq;
493 base|=(inb(dev->base_addr)<<(8*i));
496 lp->exec_box=isa_bus_to_virt(dev->mem_start+base);
498 base=lp->exec_box->data[1]<<16|lp->exec_box->data[0];
500 lp->base = dev->mem_start+base;
502 lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]);
503 lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]);
505 lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]);
508 * Descriptor chains (card relative)
511 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
512 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
513 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
514 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
516 init_MUTEX_LOCKED(&lp->cmd_mutex);
517 init_completion(&lp->execution_cmd);
518 init_completion(&lp->xceiver_cmd);
520 printk("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
521 dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base);
523 dev->open = mc32_open;
524 dev->stop = mc32_close;
525 dev->hard_start_xmit = mc32_send_packet;
526 dev->get_stats = mc32_get_stats;
527 dev->set_multicast_list = mc32_set_multicast_list;
528 dev->tx_timeout = mc32_timeout;
529 dev->watchdog_timeo = HZ*5; /* Board does all the work */
530 dev->ethtool_ops = &netdev_ethtool_ops;
532 return 0;
534 err_exit_irq:
535 free_irq(dev->irq, dev);
536 err_exit_ports:
537 release_region(dev->base_addr, MC32_IO_EXTENT);
538 return err;
543 * mc32_ready_poll - wait until we can feed it a command
544 * @dev: The device to wait for
546 * Wait until the card becomes ready to accept a command via the
547 * command register. This tells us nothing about the completion
548 * status of any pending commands and takes very little time at all.
551 static inline void mc32_ready_poll(struct net_device *dev)
553 int ioaddr = dev->base_addr;
554 while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR));
559 * mc32_command_nowait - send a command non blocking
560 * @dev: The 3c527 to issue the command to
561 * @cmd: The command word to write to the mailbox
562 * @data: A data block if the command expects one
563 * @len: Length of the data block
565 * Send a command from interrupt state. If there is a command
566 * currently being executed then we return an error of -1. It
567 * simply isn't viable to wait around as commands may be
568 * slow. This can theoretically be starved on SMP, but it's hard
569 * to see a realistic situation. We do not wait for the command
570 * to complete --- we rely on the interrupt handler to tidy up
571 * after us.
574 static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len)
576 struct mc32_local *lp = netdev_priv(dev);
577 int ioaddr = dev->base_addr;
578 int ret = -1;
580 if (down_trylock(&lp->cmd_mutex) == 0)
582 lp->cmd_nonblocking=1;
583 lp->exec_box->mbox=0;
584 lp->exec_box->mbox=cmd;
585 memcpy((void *)lp->exec_box->data, data, len);
586 barrier(); /* the memcpy forgot the volatile so be sure */
588 /* Send the command */
589 mc32_ready_poll(dev);
590 outb(1<<6, ioaddr+HOST_CMD);
592 ret = 0;
594 /* Interrupt handler will signal mutex on completion */
597 return ret;
602 * mc32_command - send a command and sleep until completion
603 * @dev: The 3c527 card to issue the command to
604 * @cmd: The command word to write to the mailbox
605 * @data: A data block if the command expects one
606 * @len: Length of the data block
608 * Sends exec commands in a user context. This permits us to wait around
609 * for the replies and also to wait for the command buffer to complete
610 * from a previous command before we execute our command. After our
611 * command completes we will attempt any pending multicast reload
612 * we blocked off by hogging the exec buffer.
614 * You feed the card a command, you wait, it interrupts you get a
615 * reply. All well and good. The complication arises because you use
616 * commands for filter list changes which come in at bh level from things
617 * like IPV6 group stuff.
620 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len)
622 struct mc32_local *lp = netdev_priv(dev);
623 int ioaddr = dev->base_addr;
624 int ret = 0;
626 down(&lp->cmd_mutex);
629 * My Turn
632 lp->cmd_nonblocking=0;
633 lp->exec_box->mbox=0;
634 lp->exec_box->mbox=cmd;
635 memcpy((void *)lp->exec_box->data, data, len);
636 barrier(); /* the memcpy forgot the volatile so be sure */
638 mc32_ready_poll(dev);
639 outb(1<<6, ioaddr+HOST_CMD);
641 wait_for_completion(&lp->execution_cmd);
643 if(lp->exec_box->mbox&(1<<13))
644 ret = -1;
646 up(&lp->cmd_mutex);
649 * A multicast set got blocked - try it now
652 if(lp->mc_reload_wait)
654 mc32_reset_multicast_list(dev);
657 return ret;
662 * mc32_start_transceiver - tell board to restart tx/rx
663 * @dev: The 3c527 card to issue the command to
665 * This may be called from the interrupt state, where it is used
666 * to restart the rx ring if the card runs out of rx buffers.
668 * We must first check if it's ok to (re)start the transceiver. See
669 * mc32_close for details.
672 static void mc32_start_transceiver(struct net_device *dev) {
674 struct mc32_local *lp = netdev_priv(dev);
675 int ioaddr = dev->base_addr;
677 /* Ignore RX overflow on device closure */
678 if (lp->xceiver_desired_state==HALTED)
679 return;
681 /* Give the card the offset to the post-EOL-bit RX descriptor */
682 mc32_ready_poll(dev);
683 lp->rx_box->mbox=0;
684 lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next;
685 outb(HOST_CMD_START_RX, ioaddr+HOST_CMD);
687 mc32_ready_poll(dev);
688 lp->tx_box->mbox=0;
689 outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD); /* card ignores this on RX restart */
691 /* We are not interrupted on start completion */
696 * mc32_halt_transceiver - tell board to stop tx/rx
697 * @dev: The 3c527 card to issue the command to
699 * We issue the commands to halt the card's transceiver. In fact,
700 * after some experimenting we now simply tell the card to
701 * suspend. When issuing aborts occasionally odd things happened.
703 * We then sleep until the card has notified us that both rx and
704 * tx have been suspended.
707 static void mc32_halt_transceiver(struct net_device *dev)
709 struct mc32_local *lp = netdev_priv(dev);
710 int ioaddr = dev->base_addr;
712 mc32_ready_poll(dev);
713 lp->rx_box->mbox=0;
714 outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD);
715 wait_for_completion(&lp->xceiver_cmd);
717 mc32_ready_poll(dev);
718 lp->tx_box->mbox=0;
719 outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD);
720 wait_for_completion(&lp->xceiver_cmd);
725 * mc32_load_rx_ring - load the ring of receive buffers
726 * @dev: 3c527 to build the ring for
728 * This initalises the on-card and driver datastructures to
729 * the point where mc32_start_transceiver() can be called.
731 * The card sets up the receive ring for us. We are required to use the
732 * ring it provides, although the size of the ring is configurable.
734 * We allocate an sk_buff for each ring entry in turn and
735 * initalise its house-keeping info. At the same time, we read
736 * each 'next' pointer in our rx_ring array. This reduces slow
737 * shared-memory reads and makes it easy to access predecessor
738 * descriptors.
740 * We then set the end-of-list bit for the last entry so that the
741 * card will know when it has run out of buffers.
744 static int mc32_load_rx_ring(struct net_device *dev)
746 struct mc32_local *lp = netdev_priv(dev);
747 int i;
748 u16 rx_base;
749 volatile struct skb_header *p;
751 rx_base=lp->rx_chain;
753 for(i=0; i<RX_RING_LEN; i++) {
754 lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL);
755 if (lp->rx_ring[i].skb==NULL) {
756 for (;i>=0;i--)
757 kfree_skb(lp->rx_ring[i].skb);
758 return -ENOBUFS;
760 skb_reserve(lp->rx_ring[i].skb, 18);
762 p=isa_bus_to_virt(lp->base+rx_base);
764 p->control=0;
765 p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data);
766 p->status=0;
767 p->length=1532;
769 lp->rx_ring[i].p=p;
770 rx_base=p->next;
773 lp->rx_ring[i-1].p->control |= CONTROL_EOL;
775 lp->rx_ring_tail=0;
777 return 0;
782 * mc32_flush_rx_ring - free the ring of receive buffers
783 * @lp: Local data of 3c527 to flush the rx ring of
785 * Free the buffer for each ring slot. This may be called
786 * before mc32_load_rx_ring(), eg. on error in mc32_open().
787 * Requires rx skb pointers to point to a valid skb, or NULL.
790 static void mc32_flush_rx_ring(struct net_device *dev)
792 struct mc32_local *lp = netdev_priv(dev);
793 int i;
795 for(i=0; i < RX_RING_LEN; i++)
797 if (lp->rx_ring[i].skb) {
798 dev_kfree_skb(lp->rx_ring[i].skb);
799 lp->rx_ring[i].skb = NULL;
801 lp->rx_ring[i].p=NULL;
807 * mc32_load_tx_ring - load transmit ring
808 * @dev: The 3c527 card to issue the command to
810 * This sets up the host transmit data-structures.
812 * First, we obtain from the card it's current postion in the tx
813 * ring, so that we will know where to begin transmitting
814 * packets.
816 * Then, we read the 'next' pointers from the on-card tx ring into
817 * our tx_ring array to reduce slow shared-mem reads. Finally, we
818 * intitalise the tx house keeping variables.
822 static void mc32_load_tx_ring(struct net_device *dev)
824 struct mc32_local *lp = netdev_priv(dev);
825 volatile struct skb_header *p;
826 int i;
827 u16 tx_base;
829 tx_base=lp->tx_box->data[0];
831 for(i=0 ; i<TX_RING_LEN ; i++)
833 p=isa_bus_to_virt(lp->base+tx_base);
834 lp->tx_ring[i].p=p;
835 lp->tx_ring[i].skb=NULL;
837 tx_base=p->next;
840 /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
841 /* see mc32_tx_ring */
843 atomic_set(&lp->tx_count, TX_RING_LEN-1);
844 atomic_set(&lp->tx_ring_head, 0);
845 lp->tx_ring_tail=0;
850 * mc32_flush_tx_ring - free transmit ring
851 * @lp: Local data of 3c527 to flush the tx ring of
853 * If the ring is non-empty, zip over the it, freeing any
854 * allocated skb_buffs. The tx ring house-keeping variables are
855 * then reset. Requires rx skb pointers to point to a valid skb,
856 * or NULL.
859 static void mc32_flush_tx_ring(struct net_device *dev)
861 struct mc32_local *lp = netdev_priv(dev);
862 int i;
864 for (i=0; i < TX_RING_LEN; i++)
866 if (lp->tx_ring[i].skb)
868 dev_kfree_skb(lp->tx_ring[i].skb);
869 lp->tx_ring[i].skb = NULL;
873 atomic_set(&lp->tx_count, 0);
874 atomic_set(&lp->tx_ring_head, 0);
875 lp->tx_ring_tail=0;
880 * mc32_open - handle 'up' of card
881 * @dev: device to open
883 * The user is trying to bring the card into ready state. This requires
884 * a brief dialogue with the card. Firstly we enable interrupts and then
885 * 'indications'. Without these enabled the card doesn't bother telling
886 * us what it has done. This had me puzzled for a week.
888 * We configure the number of card descriptors, then load the network
889 * address and multicast filters. Turn on the workaround mode. This
890 * works around a bug in the 82586 - it asks the firmware to do
891 * so. It has a performance (latency) hit but is needed on busy
892 * [read most] lans. We load the ring with buffers then we kick it
893 * all off.
896 static int mc32_open(struct net_device *dev)
898 int ioaddr = dev->base_addr;
899 struct mc32_local *lp = netdev_priv(dev);
900 u8 one=1;
901 u8 regs;
902 u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN};
905 * Interrupts enabled
908 regs=inb(ioaddr+HOST_CTRL);
909 regs|=HOST_CTRL_INTE;
910 outb(regs, ioaddr+HOST_CTRL);
913 * Allow ourselves to issue commands
916 up(&lp->cmd_mutex);
920 * Send the indications on command
923 mc32_command(dev, 4, &one, 2);
926 * Poke it to make sure it's really dead.
929 mc32_halt_transceiver(dev);
930 mc32_flush_tx_ring(dev);
933 * Ask card to set up on-card descriptors to our spec
936 if(mc32_command(dev, 8, descnumbuffs, 4)) {
937 printk("%s: %s rejected our buffer configuration!\n",
938 dev->name, cardname);
939 mc32_close(dev);
940 return -ENOBUFS;
943 /* Report new configuration */
944 mc32_command(dev, 6, NULL, 0);
946 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
947 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
948 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
949 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
951 /* Set Network Address */
952 mc32_command(dev, 1, dev->dev_addr, 6);
954 /* Set the filters */
955 mc32_set_multicast_list(dev);
957 if (WORKAROUND_82586) {
958 u16 zero_word=0;
959 mc32_command(dev, 0x0D, &zero_word, 2); /* 82586 bug workaround on */
962 mc32_load_tx_ring(dev);
964 if(mc32_load_rx_ring(dev))
966 mc32_close(dev);
967 return -ENOBUFS;
970 lp->xceiver_desired_state = RUNNING;
972 /* And finally, set the ball rolling... */
973 mc32_start_transceiver(dev);
975 netif_start_queue(dev);
977 return 0;
982 * mc32_timeout - handle a timeout from the network layer
983 * @dev: 3c527 that timed out
985 * Handle a timeout on transmit from the 3c527. This normally means
986 * bad things as the hardware handles cable timeouts and mess for
987 * us.
991 static void mc32_timeout(struct net_device *dev)
993 printk(KERN_WARNING "%s: transmit timed out?\n", dev->name);
994 /* Try to restart the adaptor. */
995 netif_wake_queue(dev);
1000 * mc32_send_packet - queue a frame for transmit
1001 * @skb: buffer to transmit
1002 * @dev: 3c527 to send it out of
1004 * Transmit a buffer. This normally means throwing the buffer onto
1005 * the transmit queue as the queue is quite large. If the queue is
1006 * full then we set tx_busy and return. Once the interrupt handler
1007 * gets messages telling it to reclaim transmit queue entries, we will
1008 * clear tx_busy and the kernel will start calling this again.
1010 * We do not disable interrupts or acquire any locks; this can
1011 * run concurrently with mc32_tx_ring(), and the function itself
1012 * is serialised at a higher layer. However, similarly for the
1013 * card itself, we must ensure that we update tx_ring_head only
1014 * after we've established a valid packet on the tx ring (and
1015 * before we let the card "see" it, to prevent it racing with the
1016 * irq handler).
1020 static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev)
1022 struct mc32_local *lp = netdev_priv(dev);
1023 u32 head = atomic_read(&lp->tx_ring_head);
1025 volatile struct skb_header *p, *np;
1027 netif_stop_queue(dev);
1029 if(atomic_read(&lp->tx_count)==0) {
1030 return 1;
1033 if (skb_padto(skb, ETH_ZLEN)) {
1034 netif_wake_queue(dev);
1035 return 0;
1038 atomic_dec(&lp->tx_count);
1040 /* P is the last sending/sent buffer as a pointer */
1041 p=lp->tx_ring[head].p;
1043 head = next_tx(head);
1045 /* NP is the buffer we will be loading */
1046 np=lp->tx_ring[head].p;
1048 /* We will need this to flush the buffer out */
1049 lp->tx_ring[head].skb=skb;
1051 np->length = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
1052 np->data = isa_virt_to_bus(skb->data);
1053 np->status = 0;
1054 np->control = CONTROL_EOP | CONTROL_EOL;
1055 wmb();
1058 * The new frame has been setup; we can now
1059 * let the interrupt handler and card "see" it
1062 atomic_set(&lp->tx_ring_head, head);
1063 p->control &= ~CONTROL_EOL;
1065 netif_wake_queue(dev);
1066 return 0;
1071 * mc32_update_stats - pull off the on board statistics
1072 * @dev: 3c527 to service
1075 * Query and reset the on-card stats. There's the small possibility
1076 * of a race here, which would result in an underestimation of
1077 * actual errors. As such, we'd prefer to keep all our stats
1078 * collection in software. As a rule, we do. However it can't be
1079 * used for rx errors and collisions as, by default, the card discards
1080 * bad rx packets.
1082 * Setting the SAV BP in the rx filter command supposedly
1083 * stops this behaviour. However, testing shows that it only seems to
1084 * enable the collation of on-card rx statistics --- the driver
1085 * never sees an RX descriptor with an error status set.
1089 static void mc32_update_stats(struct net_device *dev)
1091 struct mc32_local *lp = netdev_priv(dev);
1092 volatile struct mc32_stats *st = lp->stats;
1094 u32 rx_errors=0;
1096 rx_errors+=lp->net_stats.rx_crc_errors +=st->rx_crc_errors;
1097 st->rx_crc_errors=0;
1098 rx_errors+=lp->net_stats.rx_fifo_errors +=st->rx_overrun_errors;
1099 st->rx_overrun_errors=0;
1100 rx_errors+=lp->net_stats.rx_frame_errors +=st->rx_alignment_errors;
1101 st->rx_alignment_errors=0;
1102 rx_errors+=lp->net_stats.rx_length_errors+=st->rx_tooshort_errors;
1103 st->rx_tooshort_errors=0;
1104 rx_errors+=lp->net_stats.rx_missed_errors+=st->rx_outofresource_errors;
1105 st->rx_outofresource_errors=0;
1106 lp->net_stats.rx_errors=rx_errors;
1108 /* Number of packets which saw one collision */
1109 lp->net_stats.collisions+=st->dataC[10];
1110 st->dataC[10]=0;
1112 /* Number of packets which saw 2--15 collisions */
1113 lp->net_stats.collisions+=st->dataC[11];
1114 st->dataC[11]=0;
1119 * mc32_rx_ring - process the receive ring
1120 * @dev: 3c527 that needs its receive ring processing
1123 * We have received one or more indications from the card that a
1124 * receive has completed. The buffer ring thus contains dirty
1125 * entries. We walk the ring by iterating over the circular rx_ring
1126 * array, starting at the next dirty buffer (which happens to be the
1127 * one we finished up at last time around).
1129 * For each completed packet, we will either copy it and pass it up
1130 * the stack or, if the packet is near MTU sized, we allocate
1131 * another buffer and flip the old one up the stack.
1133 * We must succeed in keeping a buffer on the ring. If necessary we
1134 * will toss a received packet rather than lose a ring entry. Once
1135 * the first uncompleted descriptor is found, we move the
1136 * End-Of-List bit to include the buffers just processed.
1140 static void mc32_rx_ring(struct net_device *dev)
1142 struct mc32_local *lp = netdev_priv(dev);
1143 volatile struct skb_header *p;
1144 u16 rx_ring_tail;
1145 u16 rx_old_tail;
1146 int x=0;
1148 rx_old_tail = rx_ring_tail = lp->rx_ring_tail;
1152 p=lp->rx_ring[rx_ring_tail].p;
1154 if(!(p->status & (1<<7))) { /* Not COMPLETED */
1155 break;
1157 if(p->status & (1<<6)) /* COMPLETED_OK */
1160 u16 length=p->length;
1161 struct sk_buff *skb;
1162 struct sk_buff *newskb;
1164 /* Try to save time by avoiding a copy on big frames */
1166 if ((length > RX_COPYBREAK)
1167 && ((newskb=dev_alloc_skb(1532)) != NULL))
1169 skb=lp->rx_ring[rx_ring_tail].skb;
1170 skb_put(skb, length);
1172 skb_reserve(newskb,18);
1173 lp->rx_ring[rx_ring_tail].skb=newskb;
1174 p->data=isa_virt_to_bus(newskb->data);
1176 else
1178 skb=dev_alloc_skb(length+2);
1180 if(skb==NULL) {
1181 lp->net_stats.rx_dropped++;
1182 goto dropped;
1185 skb_reserve(skb,2);
1186 memcpy(skb_put(skb, length),
1187 lp->rx_ring[rx_ring_tail].skb->data, length);
1190 skb->protocol=eth_type_trans(skb,dev);
1191 dev->last_rx = jiffies;
1192 lp->net_stats.rx_packets++;
1193 lp->net_stats.rx_bytes += length;
1194 netif_rx(skb);
1197 dropped:
1198 p->length = 1532;
1199 p->status = 0;
1201 rx_ring_tail=next_rx(rx_ring_tail);
1203 while(x++<48);
1205 /* If there was actually a frame to be processed, place the EOL bit */
1206 /* at the descriptor prior to the one to be filled next */
1208 if (rx_ring_tail != rx_old_tail)
1210 lp->rx_ring[prev_rx(rx_ring_tail)].p->control |= CONTROL_EOL;
1211 lp->rx_ring[prev_rx(rx_old_tail)].p->control &= ~CONTROL_EOL;
1213 lp->rx_ring_tail=rx_ring_tail;
1219 * mc32_tx_ring - process completed transmits
1220 * @dev: 3c527 that needs its transmit ring processing
1223 * This operates in a similar fashion to mc32_rx_ring. We iterate
1224 * over the transmit ring. For each descriptor which has been
1225 * processed by the card, we free its associated buffer and note
1226 * any errors. This continues until the transmit ring is emptied
1227 * or we reach a descriptor that hasn't yet been processed by the
1228 * card.
1232 static void mc32_tx_ring(struct net_device *dev)
1234 struct mc32_local *lp = netdev_priv(dev);
1235 volatile struct skb_header *np;
1238 * We rely on head==tail to mean 'queue empty'.
1239 * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
1240 * tx_ring_head wrapping to tail and confusing a 'queue empty'
1241 * condition with 'queue full'
1244 while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head))
1246 u16 t;
1248 t=next_tx(lp->tx_ring_tail);
1249 np=lp->tx_ring[t].p;
1251 if(!(np->status & (1<<7)))
1253 /* Not COMPLETED */
1254 break;
1256 lp->net_stats.tx_packets++;
1257 if(!(np->status & (1<<6))) /* Not COMPLETED_OK */
1259 lp->net_stats.tx_errors++;
1261 switch(np->status&0x0F)
1263 case 1:
1264 lp->net_stats.tx_aborted_errors++;
1265 break; /* Max collisions */
1266 case 2:
1267 lp->net_stats.tx_fifo_errors++;
1268 break;
1269 case 3:
1270 lp->net_stats.tx_carrier_errors++;
1271 break;
1272 case 4:
1273 lp->net_stats.tx_window_errors++;
1274 break; /* CTS Lost */
1275 case 5:
1276 lp->net_stats.tx_aborted_errors++;
1277 break; /* Transmit timeout */
1280 /* Packets are sent in order - this is
1281 basically a FIFO queue of buffers matching
1282 the card ring */
1283 lp->net_stats.tx_bytes+=lp->tx_ring[t].skb->len;
1284 dev_kfree_skb_irq(lp->tx_ring[t].skb);
1285 lp->tx_ring[t].skb=NULL;
1286 atomic_inc(&lp->tx_count);
1287 netif_wake_queue(dev);
1289 lp->tx_ring_tail=t;
1296 * mc32_interrupt - handle an interrupt from a 3c527
1297 * @irq: Interrupt number
1298 * @dev_id: 3c527 that requires servicing
1299 * @regs: Registers (unused)
1302 * An interrupt is raised whenever the 3c527 writes to the command
1303 * register. This register contains the message it wishes to send us
1304 * packed into a single byte field. We keep reading status entries
1305 * until we have processed all the control items, but simply count
1306 * transmit and receive reports. When all reports are in we empty the
1307 * transceiver rings as appropriate. This saves the overhead of
1308 * multiple command requests.
1310 * Because MCA is level-triggered, we shouldn't miss indications.
1311 * Therefore, we needn't ask the card to suspend interrupts within
1312 * this handler. The card receives an implicit acknowledgment of the
1313 * current interrupt when we read the command register.
1317 static irqreturn_t mc32_interrupt(int irq, void *dev_id)
1319 struct net_device *dev = dev_id;
1320 struct mc32_local *lp;
1321 int ioaddr, status, boguscount = 0;
1322 int rx_event = 0;
1323 int tx_event = 0;
1325 ioaddr = dev->base_addr;
1326 lp = netdev_priv(dev);
1328 /* See whats cooking */
1330 while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000)
1332 status=inb(ioaddr+HOST_CMD);
1334 #ifdef DEBUG_IRQ
1335 printk("Status TX%d RX%d EX%d OV%d BC%d\n",
1336 (status&7), (status>>3)&7, (status>>6)&1,
1337 (status>>7)&1, boguscount);
1338 #endif
1340 switch(status&7)
1342 case 0:
1343 break;
1344 case 6: /* TX fail */
1345 case 2: /* TX ok */
1346 tx_event = 1;
1347 break;
1348 case 3: /* Halt */
1349 case 4: /* Abort */
1350 complete(&lp->xceiver_cmd);
1351 break;
1352 default:
1353 printk("%s: strange tx ack %d\n", dev->name, status&7);
1355 status>>=3;
1356 switch(status&7)
1358 case 0:
1359 break;
1360 case 2: /* RX */
1361 rx_event=1;
1362 break;
1363 case 3: /* Halt */
1364 case 4: /* Abort */
1365 complete(&lp->xceiver_cmd);
1366 break;
1367 case 6:
1368 /* Out of RX buffers stat */
1369 /* Must restart rx */
1370 lp->net_stats.rx_dropped++;
1371 mc32_rx_ring(dev);
1372 mc32_start_transceiver(dev);
1373 break;
1374 default:
1375 printk("%s: strange rx ack %d\n",
1376 dev->name, status&7);
1378 status>>=3;
1379 if(status&1)
1382 * No thread is waiting: we need to tidy
1383 * up ourself.
1386 if (lp->cmd_nonblocking) {
1387 up(&lp->cmd_mutex);
1388 if (lp->mc_reload_wait)
1389 mc32_reset_multicast_list(dev);
1391 else complete(&lp->execution_cmd);
1393 if(status&2)
1396 * We get interrupted once per
1397 * counter that is about to overflow.
1400 mc32_update_stats(dev);
1406 * Process the transmit and receive rings
1409 if(tx_event)
1410 mc32_tx_ring(dev);
1412 if(rx_event)
1413 mc32_rx_ring(dev);
1415 return IRQ_HANDLED;
1420 * mc32_close - user configuring the 3c527 down
1421 * @dev: 3c527 card to shut down
1423 * The 3c527 is a bus mastering device. We must be careful how we
1424 * shut it down. It may also be running shared interrupt so we have
1425 * to be sure to silence it properly
1427 * We indicate that the card is closing to the rest of the
1428 * driver. Otherwise, it is possible that the card may run out
1429 * of receive buffers and restart the transceiver while we're
1430 * trying to close it.
1432 * We abort any receive and transmits going on and then wait until
1433 * any pending exec commands have completed in other code threads.
1434 * In theory we can't get here while that is true, in practice I am
1435 * paranoid
1437 * We turn off the interrupt enable for the board to be sure it can't
1438 * intefere with other devices.
1441 static int mc32_close(struct net_device *dev)
1443 struct mc32_local *lp = netdev_priv(dev);
1444 int ioaddr = dev->base_addr;
1446 u8 regs;
1447 u16 one=1;
1449 lp->xceiver_desired_state = HALTED;
1450 netif_stop_queue(dev);
1453 * Send the indications on command (handy debug check)
1456 mc32_command(dev, 4, &one, 2);
1458 /* Shut down the transceiver */
1460 mc32_halt_transceiver(dev);
1462 /* Ensure we issue no more commands beyond this point */
1464 down(&lp->cmd_mutex);
1466 /* Ok the card is now stopping */
1468 regs=inb(ioaddr+HOST_CTRL);
1469 regs&=~HOST_CTRL_INTE;
1470 outb(regs, ioaddr+HOST_CTRL);
1472 mc32_flush_rx_ring(dev);
1473 mc32_flush_tx_ring(dev);
1475 mc32_update_stats(dev);
1477 return 0;
1482 * mc32_get_stats - hand back stats to network layer
1483 * @dev: The 3c527 card to handle
1485 * We've collected all the stats we can in software already. Now
1486 * it's time to update those kept on-card and return the lot.
1490 static struct net_device_stats *mc32_get_stats(struct net_device *dev)
1492 struct mc32_local *lp = netdev_priv(dev);
1494 mc32_update_stats(dev);
1495 return &lp->net_stats;
1500 * do_mc32_set_multicast_list - attempt to update multicasts
1501 * @dev: 3c527 device to load the list on
1502 * @retry: indicates this is not the first call.
1505 * Actually set or clear the multicast filter for this adaptor. The
1506 * locking issues are handled by this routine. We have to track
1507 * state as it may take multiple calls to get the command sequence
1508 * completed. We just keep trying to schedule the loads until we
1509 * manage to process them all.
1511 * num_addrs == -1 Promiscuous mode, receive all packets
1513 * num_addrs == 0 Normal mode, clear multicast list
1515 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1516 * and do best-effort filtering.
1518 * See mc32_update_stats() regards setting the SAV BP bit.
1522 static void do_mc32_set_multicast_list(struct net_device *dev, int retry)
1524 struct mc32_local *lp = netdev_priv(dev);
1525 u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */
1527 if (dev->flags&IFF_PROMISC)
1528 /* Enable promiscuous mode */
1529 filt |= 1;
1530 else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > 10)
1532 dev->flags|=IFF_PROMISC;
1533 filt |= 1;
1535 else if(dev->mc_count)
1537 unsigned char block[62];
1538 unsigned char *bp;
1539 struct dev_mc_list *dmc=dev->mc_list;
1541 int i;
1543 if(retry==0)
1544 lp->mc_list_valid = 0;
1545 if(!lp->mc_list_valid)
1547 block[1]=0;
1548 block[0]=dev->mc_count;
1549 bp=block+2;
1551 for(i=0;i<dev->mc_count;i++)
1553 memcpy(bp, dmc->dmi_addr, 6);
1554 bp+=6;
1555 dmc=dmc->next;
1557 if(mc32_command_nowait(dev, 2, block, 2+6*dev->mc_count)==-1)
1559 lp->mc_reload_wait = 1;
1560 return;
1562 lp->mc_list_valid=1;
1566 if(mc32_command_nowait(dev, 0, &filt, 2)==-1)
1568 lp->mc_reload_wait = 1;
1570 else {
1571 lp->mc_reload_wait = 0;
1577 * mc32_set_multicast_list - queue multicast list update
1578 * @dev: The 3c527 to use
1580 * Commence loading the multicast list. This is called when the kernel
1581 * changes the lists. It will override any pending list we are trying to
1582 * load.
1585 static void mc32_set_multicast_list(struct net_device *dev)
1587 do_mc32_set_multicast_list(dev,0);
1592 * mc32_reset_multicast_list - reset multicast list
1593 * @dev: The 3c527 to use
1595 * Attempt the next step in loading the multicast lists. If this attempt
1596 * fails to complete then it will be scheduled and this function called
1597 * again later from elsewhere.
1600 static void mc32_reset_multicast_list(struct net_device *dev)
1602 do_mc32_set_multicast_list(dev,1);
1605 static void netdev_get_drvinfo(struct net_device *dev,
1606 struct ethtool_drvinfo *info)
1608 strcpy(info->driver, DRV_NAME);
1609 strcpy(info->version, DRV_VERSION);
1610 sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr);
1613 static u32 netdev_get_msglevel(struct net_device *dev)
1615 return mc32_debug;
1618 static void netdev_set_msglevel(struct net_device *dev, u32 level)
1620 mc32_debug = level;
1623 static const struct ethtool_ops netdev_ethtool_ops = {
1624 .get_drvinfo = netdev_get_drvinfo,
1625 .get_msglevel = netdev_get_msglevel,
1626 .set_msglevel = netdev_set_msglevel,
1629 #ifdef MODULE
1631 static struct net_device *this_device;
1634 * init_module - entry point
1636 * Probe and locate a 3c527 card. This really should probe and locate
1637 * all the 3c527 cards in the machine not just one of them. Yes you can
1638 * insmod multiple modules for now but it's a hack.
1641 int __init init_module(void)
1643 this_device = mc32_probe(-1);
1644 if (IS_ERR(this_device))
1645 return PTR_ERR(this_device);
1646 return 0;
1650 * cleanup_module - free resources for an unload
1652 * Unloading time. We release the MCA bus resources and the interrupt
1653 * at which point everything is ready to unload. The card must be stopped
1654 * at this point or we would not have been called. When we unload we
1655 * leave the card stopped but not totally shut down. When the card is
1656 * initialized it must be rebooted or the rings reloaded before any
1657 * transmit operations are allowed to start scribbling into memory.
1660 void __exit cleanup_module(void)
1662 unregister_netdev(this_device);
1663 cleanup_card(this_device);
1664 free_netdev(this_device);
1667 #endif /* MODULE */