1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include "net_driver.h"
30 #include "workarounds.h"
33 #define EFX_MAX_MTU (9 * 1024)
35 /* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
40 static struct workqueue_struct
*refill_workqueue
;
42 /**************************************************************************
46 *************************************************************************/
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
51 * This sets the default for new devices. It can be controlled later
55 module_param(lro
, int, 0644);
56 MODULE_PARM_DESC(lro
, "Large receive offload acceleration");
59 * Use separate channels for TX and RX events
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
67 static unsigned int separate_tx_and_rx_channels
= 1;
69 /* This is the weight assigned to each of the (per-channel) virtual
72 static int napi_weight
= 64;
74 /* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
78 unsigned int efx_monitor_interval
= 1 * HZ
;
80 /* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
83 static unsigned int monitor_reset
= 1;
85 /* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
92 static unsigned int allow_bad_hwaddr
;
94 /* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
100 static unsigned int rx_irq_mod_usec
= 60;
102 /* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
111 static unsigned int tx_irq_mod_usec
= 150;
113 /* This is the first interrupt mode to try out of:
118 static unsigned int interrupt_mode
;
120 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
127 static unsigned int rss_cpus
;
128 module_param(rss_cpus
, uint
, 0444);
129 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
131 /**************************************************************************
133 * Utility functions and prototypes
135 *************************************************************************/
136 static void efx_remove_channel(struct efx_channel
*channel
);
137 static void efx_remove_port(struct efx_nic
*efx
);
138 static void efx_fini_napi(struct efx_nic
*efx
);
139 static void efx_fini_channels(struct efx_nic
*efx
);
141 #define EFX_ASSERT_RESET_SERIALISED(efx) \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
148 /**************************************************************************
150 * Event queue processing
152 *************************************************************************/
154 /* Process channel's event queue
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
161 static inline int efx_process_channel(struct efx_channel
*channel
, int rx_quota
)
164 struct efx_rx_queue
*rx_queue
;
166 if (unlikely(channel
->efx
->reset_pending
!= RESET_TYPE_NONE
||
170 rxdmaqs
= falcon_process_eventq(channel
, &rx_quota
);
172 /* Deliver last RX packet. */
173 if (channel
->rx_pkt
) {
174 __efx_rx_packet(channel
, channel
->rx_pkt
,
175 channel
->rx_pkt_csummed
);
176 channel
->rx_pkt
= NULL
;
179 efx_flush_lro(channel
);
180 efx_rx_strategy(channel
);
182 /* Refill descriptor rings as necessary */
183 rx_queue
= &channel
->efx
->rx_queue
[0];
186 efx_fast_push_rx_descriptors(rx_queue
);
194 /* Mark channel as finished processing
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
200 static inline void efx_channel_processed(struct efx_channel
*channel
)
202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
205 channel
->work_pending
= 0;
208 falcon_eventq_read_ack(channel
);
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
216 static int efx_poll(struct napi_struct
*napi
, int budget
)
218 struct efx_channel
*channel
=
219 container_of(napi
, struct efx_channel
, napi_str
);
220 struct net_device
*napi_dev
= channel
->napi_dev
;
224 EFX_TRACE(channel
->efx
, "channel %d NAPI poll executing on CPU %d\n",
225 channel
->channel
, raw_smp_processor_id());
227 unused
= efx_process_channel(channel
, budget
);
228 rx_packets
= (budget
- unused
);
230 if (rx_packets
< budget
) {
231 /* There is no race here; although napi_disable() will
232 * only wait for netif_rx_complete(), this isn't a problem
233 * since efx_channel_processed() will have no effect if
234 * interrupts have already been disabled.
236 netif_rx_complete(napi_dev
, napi
);
237 efx_channel_processed(channel
);
243 /* Process the eventq of the specified channel immediately on this CPU
245 * Disable hardware generated interrupts, wait for any existing
246 * processing to finish, then directly poll (and ack ) the eventq.
247 * Finally reenable NAPI and interrupts.
249 * Since we are touching interrupts the caller should hold the suspend lock
251 void efx_process_channel_now(struct efx_channel
*channel
)
253 struct efx_nic
*efx
= channel
->efx
;
255 BUG_ON(!channel
->used_flags
);
256 BUG_ON(!channel
->enabled
);
258 /* Disable interrupts and wait for ISRs to complete */
259 falcon_disable_interrupts(efx
);
261 synchronize_irq(efx
->legacy_irq
);
262 if (channel
->has_interrupt
&& channel
->irq
)
263 synchronize_irq(channel
->irq
);
265 /* Wait for any NAPI processing to complete */
266 napi_disable(&channel
->napi_str
);
268 /* Poll the channel */
269 efx_process_channel(channel
, efx
->type
->evq_size
);
271 /* Ack the eventq. This may cause an interrupt to be generated
272 * when they are reenabled */
273 efx_channel_processed(channel
);
275 napi_enable(&channel
->napi_str
);
276 falcon_enable_interrupts(efx
);
279 /* Create event queue
280 * Event queue memory allocations are done only once. If the channel
281 * is reset, the memory buffer will be reused; this guards against
282 * errors during channel reset and also simplifies interrupt handling.
284 static int efx_probe_eventq(struct efx_channel
*channel
)
286 EFX_LOG(channel
->efx
, "chan %d create event queue\n", channel
->channel
);
288 return falcon_probe_eventq(channel
);
291 /* Prepare channel's event queue */
292 static int efx_init_eventq(struct efx_channel
*channel
)
294 EFX_LOG(channel
->efx
, "chan %d init event queue\n", channel
->channel
);
296 channel
->eventq_read_ptr
= 0;
298 return falcon_init_eventq(channel
);
301 static void efx_fini_eventq(struct efx_channel
*channel
)
303 EFX_LOG(channel
->efx
, "chan %d fini event queue\n", channel
->channel
);
305 falcon_fini_eventq(channel
);
308 static void efx_remove_eventq(struct efx_channel
*channel
)
310 EFX_LOG(channel
->efx
, "chan %d remove event queue\n", channel
->channel
);
312 falcon_remove_eventq(channel
);
315 /**************************************************************************
319 *************************************************************************/
321 static int efx_probe_channel(struct efx_channel
*channel
)
323 struct efx_tx_queue
*tx_queue
;
324 struct efx_rx_queue
*rx_queue
;
327 EFX_LOG(channel
->efx
, "creating channel %d\n", channel
->channel
);
329 rc
= efx_probe_eventq(channel
);
333 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
334 rc
= efx_probe_tx_queue(tx_queue
);
339 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
340 rc
= efx_probe_rx_queue(rx_queue
);
345 channel
->n_rx_frm_trunc
= 0;
350 efx_for_each_channel_rx_queue(rx_queue
, channel
)
351 efx_remove_rx_queue(rx_queue
);
353 efx_for_each_channel_tx_queue(tx_queue
, channel
)
354 efx_remove_tx_queue(tx_queue
);
360 /* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
364 static int efx_init_channels(struct efx_nic
*efx
)
366 struct efx_tx_queue
*tx_queue
;
367 struct efx_rx_queue
*rx_queue
;
368 struct efx_channel
*channel
;
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
375 efx
->rx_buffer_len
= (max(EFX_PAGE_IP_ALIGN
, NET_IP_ALIGN
) +
376 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
377 efx
->type
->rx_buffer_padding
);
378 efx
->rx_buffer_order
= get_order(efx
->rx_buffer_len
);
380 /* Initialise the channels */
381 efx_for_each_channel(channel
, efx
) {
382 EFX_LOG(channel
->efx
, "init chan %d\n", channel
->channel
);
384 rc
= efx_init_eventq(channel
);
388 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
389 rc
= efx_init_tx_queue(tx_queue
);
394 /* The rx buffer allocation strategy is MTU dependent */
395 efx_rx_strategy(channel
);
397 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
398 rc
= efx_init_rx_queue(rx_queue
);
403 WARN_ON(channel
->rx_pkt
!= NULL
);
404 efx_rx_strategy(channel
);
410 EFX_ERR(efx
, "failed to initialise channel %d\n",
411 channel
? channel
->channel
: -1);
412 efx_fini_channels(efx
);
416 /* This enables event queue processing and packet transmission.
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
421 static void efx_start_channel(struct efx_channel
*channel
)
423 struct efx_rx_queue
*rx_queue
;
425 EFX_LOG(channel
->efx
, "starting chan %d\n", channel
->channel
);
427 if (!(channel
->efx
->net_dev
->flags
& IFF_UP
))
428 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
429 efx_poll
, napi_weight
);
431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
434 channel
->work_pending
= 0;
435 channel
->enabled
= 1;
438 napi_enable(&channel
->napi_str
);
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue
, channel
)
442 efx_fast_push_rx_descriptors(rx_queue
);
445 /* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
449 static void efx_stop_channel(struct efx_channel
*channel
)
451 struct efx_rx_queue
*rx_queue
;
453 if (!channel
->enabled
)
456 EFX_LOG(channel
->efx
, "stop chan %d\n", channel
->channel
);
458 channel
->enabled
= 0;
459 napi_disable(&channel
->napi_str
);
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
463 spin_lock_bh(&rx_queue
->add_lock
);
464 spin_unlock_bh(&rx_queue
->add_lock
);
468 static void efx_fini_channels(struct efx_nic
*efx
)
470 struct efx_channel
*channel
;
471 struct efx_tx_queue
*tx_queue
;
472 struct efx_rx_queue
*rx_queue
;
474 EFX_ASSERT_RESET_SERIALISED(efx
);
475 BUG_ON(efx
->port_enabled
);
477 efx_for_each_channel(channel
, efx
) {
478 EFX_LOG(channel
->efx
, "shut down chan %d\n", channel
->channel
);
480 efx_for_each_channel_rx_queue(rx_queue
, channel
)
481 efx_fini_rx_queue(rx_queue
);
482 efx_for_each_channel_tx_queue(tx_queue
, channel
)
483 efx_fini_tx_queue(tx_queue
);
486 /* Do the event queues last so that we can handle flush events
487 * for all DMA queues. */
488 efx_for_each_channel(channel
, efx
) {
489 EFX_LOG(channel
->efx
, "shut down evq %d\n", channel
->channel
);
491 efx_fini_eventq(channel
);
495 static void efx_remove_channel(struct efx_channel
*channel
)
497 struct efx_tx_queue
*tx_queue
;
498 struct efx_rx_queue
*rx_queue
;
500 EFX_LOG(channel
->efx
, "destroy chan %d\n", channel
->channel
);
502 efx_for_each_channel_rx_queue(rx_queue
, channel
)
503 efx_remove_rx_queue(rx_queue
);
504 efx_for_each_channel_tx_queue(tx_queue
, channel
)
505 efx_remove_tx_queue(tx_queue
);
506 efx_remove_eventq(channel
);
508 channel
->used_flags
= 0;
511 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
, int delay
)
513 queue_delayed_work(refill_workqueue
, &rx_queue
->work
, delay
);
516 /**************************************************************************
520 **************************************************************************/
522 /* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
526 static void efx_link_status_changed(struct efx_nic
*efx
)
530 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
531 * that no events are triggered between unregister_netdev() and the
532 * driver unloading. A more general condition is that NETDEV_CHANGE
533 * can only be generated between NETDEV_UP and NETDEV_DOWN */
534 if (!netif_running(efx
->net_dev
))
537 carrier_ok
= netif_carrier_ok(efx
->net_dev
) ? 1 : 0;
538 if (efx
->link_up
!= carrier_ok
) {
539 efx
->n_link_state_changes
++;
542 netif_carrier_on(efx
->net_dev
);
544 netif_carrier_off(efx
->net_dev
);
547 /* Status message for kernel log */
549 struct mii_if_info
*gmii
= &efx
->mii
;
551 /* NONE here means direct XAUI from the controller, with no
552 * MDIO-attached device we can query. */
553 if (efx
->phy_type
!= PHY_TYPE_NONE
) {
554 adv
= gmii_advertised(gmii
);
555 lpa
= gmii_lpa(gmii
);
557 lpa
= GM_LPA_10000
| LPA_DUPLEX
;
560 EFX_INFO(efx
, "link up at %dMbps %s-duplex "
561 "(adv %04x lpa %04x) (MTU %d)%s\n",
562 (efx
->link_options
& GM_LPA_10000
? 10000 :
563 (efx
->link_options
& GM_LPA_1000
? 1000 :
564 (efx
->link_options
& GM_LPA_100
? 100 :
566 (efx
->link_options
& GM_LPA_DUPLEX
?
570 (efx
->promiscuous
? " [PROMISC]" : ""));
572 EFX_INFO(efx
, "link down\n");
577 /* This call reinitialises the MAC to pick up new PHY settings. The
578 * caller must hold the mac_lock */
579 static void __efx_reconfigure_port(struct efx_nic
*efx
)
581 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
583 EFX_LOG(efx
, "reconfiguring MAC from PHY settings on CPU %d\n",
584 raw_smp_processor_id());
586 falcon_reconfigure_xmac(efx
);
588 /* Inform kernel of loss/gain of carrier */
589 efx_link_status_changed(efx
);
592 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
594 void efx_reconfigure_port(struct efx_nic
*efx
)
596 EFX_ASSERT_RESET_SERIALISED(efx
);
598 mutex_lock(&efx
->mac_lock
);
599 __efx_reconfigure_port(efx
);
600 mutex_unlock(&efx
->mac_lock
);
603 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
604 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
605 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
606 static void efx_reconfigure_work(struct work_struct
*data
)
608 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
611 mutex_lock(&efx
->mac_lock
);
612 if (efx
->port_enabled
)
613 __efx_reconfigure_port(efx
);
614 mutex_unlock(&efx
->mac_lock
);
617 static int efx_probe_port(struct efx_nic
*efx
)
621 EFX_LOG(efx
, "create port\n");
623 /* Connect up MAC/PHY operations table and read MAC address */
624 rc
= falcon_probe_port(efx
);
628 /* Sanity check MAC address */
629 if (is_valid_ether_addr(efx
->mac_address
)) {
630 memcpy(efx
->net_dev
->dev_addr
, efx
->mac_address
, ETH_ALEN
);
632 DECLARE_MAC_BUF(mac
);
634 EFX_ERR(efx
, "invalid MAC address %s\n",
635 print_mac(mac
, efx
->mac_address
));
636 if (!allow_bad_hwaddr
) {
640 random_ether_addr(efx
->net_dev
->dev_addr
);
641 EFX_INFO(efx
, "using locally-generated MAC %s\n",
642 print_mac(mac
, efx
->net_dev
->dev_addr
));
648 efx_remove_port(efx
);
652 static int efx_init_port(struct efx_nic
*efx
)
656 EFX_LOG(efx
, "init port\n");
658 /* Initialise the MAC and PHY */
659 rc
= falcon_init_xmac(efx
);
663 efx
->port_initialized
= 1;
665 /* Reconfigure port to program MAC registers */
666 falcon_reconfigure_xmac(efx
);
671 /* Allow efx_reconfigure_port() to be scheduled, and close the window
672 * between efx_stop_port and efx_flush_all whereby a previously scheduled
673 * efx_reconfigure_port() may have been cancelled */
674 static void efx_start_port(struct efx_nic
*efx
)
676 EFX_LOG(efx
, "start port\n");
677 BUG_ON(efx
->port_enabled
);
679 mutex_lock(&efx
->mac_lock
);
680 efx
->port_enabled
= 1;
681 __efx_reconfigure_port(efx
);
682 mutex_unlock(&efx
->mac_lock
);
685 /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
686 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
687 * efx_reconfigure_work can still be scheduled via NAPI processing
688 * until efx_flush_all() is called */
689 static void efx_stop_port(struct efx_nic
*efx
)
691 EFX_LOG(efx
, "stop port\n");
693 mutex_lock(&efx
->mac_lock
);
694 efx
->port_enabled
= 0;
695 mutex_unlock(&efx
->mac_lock
);
697 /* Serialise against efx_set_multicast_list() */
698 if (efx_dev_registered(efx
)) {
699 netif_tx_lock_bh(efx
->net_dev
);
700 netif_tx_unlock_bh(efx
->net_dev
);
704 static void efx_fini_port(struct efx_nic
*efx
)
706 EFX_LOG(efx
, "shut down port\n");
708 if (!efx
->port_initialized
)
711 falcon_fini_xmac(efx
);
712 efx
->port_initialized
= 0;
715 efx_link_status_changed(efx
);
718 static void efx_remove_port(struct efx_nic
*efx
)
720 EFX_LOG(efx
, "destroying port\n");
722 falcon_remove_port(efx
);
725 /**************************************************************************
729 **************************************************************************/
731 /* This configures the PCI device to enable I/O and DMA. */
732 static int efx_init_io(struct efx_nic
*efx
)
734 struct pci_dev
*pci_dev
= efx
->pci_dev
;
735 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
738 EFX_LOG(efx
, "initialising I/O\n");
740 rc
= pci_enable_device(pci_dev
);
742 EFX_ERR(efx
, "failed to enable PCI device\n");
746 pci_set_master(pci_dev
);
748 /* Set the PCI DMA mask. Try all possibilities from our
749 * genuine mask down to 32 bits, because some architectures
750 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
751 * masks event though they reject 46 bit masks.
753 while (dma_mask
> 0x7fffffffUL
) {
754 if (pci_dma_supported(pci_dev
, dma_mask
) &&
755 ((rc
= pci_set_dma_mask(pci_dev
, dma_mask
)) == 0))
760 EFX_ERR(efx
, "could not find a suitable DMA mask\n");
763 EFX_LOG(efx
, "using DMA mask %llx\n", (unsigned long long) dma_mask
);
764 rc
= pci_set_consistent_dma_mask(pci_dev
, dma_mask
);
766 /* pci_set_consistent_dma_mask() is not *allowed* to
767 * fail with a mask that pci_set_dma_mask() accepted,
768 * but just in case...
770 EFX_ERR(efx
, "failed to set consistent DMA mask\n");
774 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
,
776 rc
= pci_request_region(pci_dev
, efx
->type
->mem_bar
, "sfc");
778 EFX_ERR(efx
, "request for memory BAR failed\n");
782 efx
->membase
= ioremap_nocache(efx
->membase_phys
,
783 efx
->type
->mem_map_size
);
785 EFX_ERR(efx
, "could not map memory BAR %d at %llx+%x\n",
787 (unsigned long long)efx
->membase_phys
,
788 efx
->type
->mem_map_size
);
792 EFX_LOG(efx
, "memory BAR %u at %llx+%x (virtual %p)\n",
793 efx
->type
->mem_bar
, (unsigned long long)efx
->membase_phys
,
794 efx
->type
->mem_map_size
, efx
->membase
);
799 release_mem_region(efx
->membase_phys
, efx
->type
->mem_map_size
);
801 efx
->membase_phys
= 0;
803 pci_disable_device(efx
->pci_dev
);
808 static void efx_fini_io(struct efx_nic
*efx
)
810 EFX_LOG(efx
, "shutting down I/O\n");
813 iounmap(efx
->membase
);
817 if (efx
->membase_phys
) {
818 pci_release_region(efx
->pci_dev
, efx
->type
->mem_bar
);
819 efx
->membase_phys
= 0;
822 pci_disable_device(efx
->pci_dev
);
825 /* Probe the number and type of interrupts we are able to obtain. */
826 static void efx_probe_interrupts(struct efx_nic
*efx
)
828 int max_channel
= efx
->type
->phys_addr_channels
- 1;
829 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
832 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
833 BUG_ON(!pci_find_capability(efx
->pci_dev
, PCI_CAP_ID_MSIX
));
835 efx
->rss_queues
= rss_cpus
? rss_cpus
: num_online_cpus();
836 efx
->rss_queues
= min(efx
->rss_queues
, max_channel
+ 1);
837 efx
->rss_queues
= min(efx
->rss_queues
, EFX_MAX_CHANNELS
);
839 /* Request maximum number of MSI interrupts, and fill out
840 * the channel interrupt information the allowed allocation */
841 for (i
= 0; i
< efx
->rss_queues
; i
++)
842 xentries
[i
].entry
= i
;
843 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, efx
->rss_queues
);
845 EFX_BUG_ON_PARANOID(rc
>= efx
->rss_queues
);
846 efx
->rss_queues
= rc
;
847 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
852 for (i
= 0; i
< efx
->rss_queues
; i
++) {
853 efx
->channel
[i
].has_interrupt
= 1;
854 efx
->channel
[i
].irq
= xentries
[i
].vector
;
857 /* Fall back to single channel MSI */
858 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
859 EFX_ERR(efx
, "could not enable MSI-X\n");
863 /* Try single interrupt MSI */
864 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
866 rc
= pci_enable_msi(efx
->pci_dev
);
868 efx
->channel
[0].irq
= efx
->pci_dev
->irq
;
869 efx
->channel
[0].has_interrupt
= 1;
871 EFX_ERR(efx
, "could not enable MSI\n");
872 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
876 /* Assume legacy interrupts */
877 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
879 /* Every channel is interruptible */
880 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
881 efx
->channel
[i
].has_interrupt
= 1;
882 efx
->legacy_irq
= efx
->pci_dev
->irq
;
886 static void efx_remove_interrupts(struct efx_nic
*efx
)
888 struct efx_channel
*channel
;
890 /* Remove MSI/MSI-X interrupts */
891 efx_for_each_channel_with_interrupt(channel
, efx
)
893 pci_disable_msi(efx
->pci_dev
);
894 pci_disable_msix(efx
->pci_dev
);
896 /* Remove legacy interrupt */
900 /* Select number of used resources
901 * Should be called after probe_interrupts()
903 static void efx_select_used(struct efx_nic
*efx
)
905 struct efx_tx_queue
*tx_queue
;
906 struct efx_rx_queue
*rx_queue
;
909 /* TX queues. One per port per channel with TX capability
910 * (more than one per port won't work on Linux, due to out
911 * of order issues... but will be fine on Solaris)
913 tx_queue
= &efx
->tx_queue
[0];
915 /* Perform this for each channel with TX capabilities.
916 * At the moment, we only support a single TX queue
919 if ((!EFX_INT_MODE_USE_MSI(efx
)) && separate_tx_and_rx_channels
)
920 tx_queue
->channel
= &efx
->channel
[1];
922 tx_queue
->channel
= &efx
->channel
[0];
923 tx_queue
->channel
->used_flags
|= EFX_USED_BY_TX
;
926 /* RX queues. Each has a dedicated channel. */
927 for (i
= 0; i
< EFX_MAX_RX_QUEUES
; i
++) {
928 rx_queue
= &efx
->rx_queue
[i
];
930 if (i
< efx
->rss_queues
) {
932 /* If we allow multiple RX queues per channel
933 * we need to decide that here
935 rx_queue
->channel
= &efx
->channel
[rx_queue
->queue
];
936 rx_queue
->channel
->used_flags
|= EFX_USED_BY_RX
;
942 static int efx_probe_nic(struct efx_nic
*efx
)
946 EFX_LOG(efx
, "creating NIC\n");
948 /* Carry out hardware-type specific initialisation */
949 rc
= falcon_probe_nic(efx
);
953 /* Determine the number of channels and RX queues by trying to hook
954 * in MSI-X interrupts. */
955 efx_probe_interrupts(efx
);
957 /* Determine number of RX queues and TX queues */
958 efx_select_used(efx
);
960 /* Initialise the interrupt moderation settings */
961 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
);
966 static void efx_remove_nic(struct efx_nic
*efx
)
968 EFX_LOG(efx
, "destroying NIC\n");
970 efx_remove_interrupts(efx
);
971 falcon_remove_nic(efx
);
974 /**************************************************************************
976 * NIC startup/shutdown
978 *************************************************************************/
980 static int efx_probe_all(struct efx_nic
*efx
)
982 struct efx_channel
*channel
;
986 rc
= efx_probe_nic(efx
);
988 EFX_ERR(efx
, "failed to create NIC\n");
993 rc
= efx_probe_port(efx
);
995 EFX_ERR(efx
, "failed to create port\n");
999 /* Create channels */
1000 efx_for_each_channel(channel
, efx
) {
1001 rc
= efx_probe_channel(channel
);
1003 EFX_ERR(efx
, "failed to create channel %d\n",
1012 efx_for_each_channel(channel
, efx
)
1013 efx_remove_channel(channel
);
1014 efx_remove_port(efx
);
1016 efx_remove_nic(efx
);
1021 /* Called after previous invocation(s) of efx_stop_all, restarts the
1022 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1023 * and ensures that the port is scheduled to be reconfigured.
1024 * This function is safe to call multiple times when the NIC is in any
1026 static void efx_start_all(struct efx_nic
*efx
)
1028 struct efx_channel
*channel
;
1030 EFX_ASSERT_RESET_SERIALISED(efx
);
1032 /* Check that it is appropriate to restart the interface. All
1033 * of these flags are safe to read under just the rtnl lock */
1034 if (efx
->port_enabled
)
1036 if ((efx
->state
!= STATE_RUNNING
) && (efx
->state
!= STATE_INIT
))
1038 if (efx_dev_registered(efx
) && !netif_running(efx
->net_dev
))
1041 /* Mark the port as enabled so port reconfigurations can start, then
1042 * restart the transmit interface early so the watchdog timer stops */
1043 efx_start_port(efx
);
1044 efx_wake_queue(efx
);
1046 efx_for_each_channel(channel
, efx
)
1047 efx_start_channel(channel
);
1049 falcon_enable_interrupts(efx
);
1051 /* Start hardware monitor if we're in RUNNING */
1052 if (efx
->state
== STATE_RUNNING
)
1053 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1054 efx_monitor_interval
);
1057 /* Flush all delayed work. Should only be called when no more delayed work
1058 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1059 * since we're holding the rtnl_lock at this point. */
1060 static void efx_flush_all(struct efx_nic
*efx
)
1062 struct efx_rx_queue
*rx_queue
;
1064 /* Make sure the hardware monitor is stopped */
1065 cancel_delayed_work_sync(&efx
->monitor_work
);
1067 /* Ensure that all RX slow refills are complete. */
1068 efx_for_each_rx_queue(rx_queue
, efx
)
1069 cancel_delayed_work_sync(&rx_queue
->work
);
1071 /* Stop scheduled port reconfigurations */
1072 cancel_work_sync(&efx
->reconfigure_work
);
1076 /* Quiesce hardware and software without bringing the link down.
1077 * Safe to call multiple times, when the nic and interface is in any
1078 * state. The caller is guaranteed to subsequently be in a position
1079 * to modify any hardware and software state they see fit without
1081 static void efx_stop_all(struct efx_nic
*efx
)
1083 struct efx_channel
*channel
;
1085 EFX_ASSERT_RESET_SERIALISED(efx
);
1087 /* port_enabled can be read safely under the rtnl lock */
1088 if (!efx
->port_enabled
)
1091 /* Disable interrupts and wait for ISR to complete */
1092 falcon_disable_interrupts(efx
);
1093 if (efx
->legacy_irq
)
1094 synchronize_irq(efx
->legacy_irq
);
1095 efx_for_each_channel_with_interrupt(channel
, efx
) {
1097 synchronize_irq(channel
->irq
);
1100 /* Stop all NAPI processing and synchronous rx refills */
1101 efx_for_each_channel(channel
, efx
)
1102 efx_stop_channel(channel
);
1104 /* Stop all asynchronous port reconfigurations. Since all
1105 * event processing has already been stopped, there is no
1106 * window to loose phy events */
1109 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1112 /* Isolate the MAC from the TX and RX engines, so that queue
1113 * flushes will complete in a timely fashion. */
1114 falcon_deconfigure_mac_wrapper(efx
);
1115 falcon_drain_tx_fifo(efx
);
1117 /* Stop the kernel transmit interface late, so the watchdog
1118 * timer isn't ticking over the flush */
1119 efx_stop_queue(efx
);
1120 if (efx_dev_registered(efx
)) {
1121 netif_tx_lock_bh(efx
->net_dev
);
1122 netif_tx_unlock_bh(efx
->net_dev
);
1126 static void efx_remove_all(struct efx_nic
*efx
)
1128 struct efx_channel
*channel
;
1130 efx_for_each_channel(channel
, efx
)
1131 efx_remove_channel(channel
);
1132 efx_remove_port(efx
);
1133 efx_remove_nic(efx
);
1136 /* A convinience function to safely flush all the queues */
1137 int efx_flush_queues(struct efx_nic
*efx
)
1141 EFX_ASSERT_RESET_SERIALISED(efx
);
1145 efx_fini_channels(efx
);
1146 rc
= efx_init_channels(efx
);
1148 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1157 /**************************************************************************
1159 * Interrupt moderation
1161 **************************************************************************/
1163 /* Set interrupt moderation parameters */
1164 void efx_init_irq_moderation(struct efx_nic
*efx
, int tx_usecs
, int rx_usecs
)
1166 struct efx_tx_queue
*tx_queue
;
1167 struct efx_rx_queue
*rx_queue
;
1169 EFX_ASSERT_RESET_SERIALISED(efx
);
1171 efx_for_each_tx_queue(tx_queue
, efx
)
1172 tx_queue
->channel
->irq_moderation
= tx_usecs
;
1174 efx_for_each_rx_queue(rx_queue
, efx
)
1175 rx_queue
->channel
->irq_moderation
= rx_usecs
;
1178 /**************************************************************************
1182 **************************************************************************/
1184 /* Run periodically off the general workqueue. Serialised against
1185 * efx_reconfigure_port via the mac_lock */
1186 static void efx_monitor(struct work_struct
*data
)
1188 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1192 EFX_TRACE(efx
, "hardware monitor executing on CPU %d\n",
1193 raw_smp_processor_id());
1196 /* If the mac_lock is already held then it is likely a port
1197 * reconfiguration is already in place, which will likely do
1198 * most of the work of check_hw() anyway. */
1199 if (!mutex_trylock(&efx
->mac_lock
)) {
1200 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1201 efx_monitor_interval
);
1205 if (efx
->port_enabled
)
1206 rc
= falcon_check_xmac(efx
);
1207 mutex_unlock(&efx
->mac_lock
);
1210 if (monitor_reset
) {
1211 EFX_ERR(efx
, "hardware monitor detected a fault: "
1212 "triggering reset\n");
1213 efx_schedule_reset(efx
, RESET_TYPE_MONITOR
);
1215 EFX_ERR(efx
, "hardware monitor detected a fault, "
1216 "skipping reset\n");
1220 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1221 efx_monitor_interval
);
1224 /**************************************************************************
1228 *************************************************************************/
1231 * Context: process, rtnl_lock() held.
1233 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1235 struct efx_nic
*efx
= net_dev
->priv
;
1237 EFX_ASSERT_RESET_SERIALISED(efx
);
1239 return generic_mii_ioctl(&efx
->mii
, if_mii(ifr
), cmd
, NULL
);
1242 /**************************************************************************
1246 **************************************************************************/
1248 static int efx_init_napi(struct efx_nic
*efx
)
1250 struct efx_channel
*channel
;
1253 efx_for_each_channel(channel
, efx
) {
1254 channel
->napi_dev
= efx
->net_dev
;
1255 rc
= efx_lro_init(&channel
->lro_mgr
, efx
);
1265 static void efx_fini_napi(struct efx_nic
*efx
)
1267 struct efx_channel
*channel
;
1269 efx_for_each_channel(channel
, efx
) {
1270 efx_lro_fini(&channel
->lro_mgr
);
1271 channel
->napi_dev
= NULL
;
1275 /**************************************************************************
1277 * Kernel netpoll interface
1279 *************************************************************************/
1281 #ifdef CONFIG_NET_POLL_CONTROLLER
1283 /* Although in the common case interrupts will be disabled, this is not
1284 * guaranteed. However, all our work happens inside the NAPI callback,
1285 * so no locking is required.
1287 static void efx_netpoll(struct net_device
*net_dev
)
1289 struct efx_nic
*efx
= net_dev
->priv
;
1290 struct efx_channel
*channel
;
1292 efx_for_each_channel_with_interrupt(channel
, efx
)
1293 efx_schedule_channel(channel
);
1298 /**************************************************************************
1300 * Kernel net device interface
1302 *************************************************************************/
1304 /* Context: process, rtnl_lock() held. */
1305 static int efx_net_open(struct net_device
*net_dev
)
1307 struct efx_nic
*efx
= net_dev
->priv
;
1308 EFX_ASSERT_RESET_SERIALISED(efx
);
1310 EFX_LOG(efx
, "opening device %s on CPU %d\n", net_dev
->name
,
1311 raw_smp_processor_id());
1317 /* Context: process, rtnl_lock() held.
1318 * Note that the kernel will ignore our return code; this method
1319 * should really be a void.
1321 static int efx_net_stop(struct net_device
*net_dev
)
1323 struct efx_nic
*efx
= net_dev
->priv
;
1326 EFX_LOG(efx
, "closing %s on CPU %d\n", net_dev
->name
,
1327 raw_smp_processor_id());
1329 /* Stop the device and flush all the channels */
1331 efx_fini_channels(efx
);
1332 rc
= efx_init_channels(efx
);
1334 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1339 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1340 static struct net_device_stats
*efx_net_stats(struct net_device
*net_dev
)
1342 struct efx_nic
*efx
= net_dev
->priv
;
1343 struct efx_mac_stats
*mac_stats
= &efx
->mac_stats
;
1344 struct net_device_stats
*stats
= &net_dev
->stats
;
1346 /* Update stats if possible, but do not wait if another thread
1347 * is updating them (or resetting the NIC); slightly stale
1348 * stats are acceptable.
1350 if (!spin_trylock(&efx
->stats_lock
))
1352 if (efx
->state
== STATE_RUNNING
) {
1353 falcon_update_stats_xmac(efx
);
1354 falcon_update_nic_stats(efx
);
1356 spin_unlock(&efx
->stats_lock
);
1358 stats
->rx_packets
= mac_stats
->rx_packets
;
1359 stats
->tx_packets
= mac_stats
->tx_packets
;
1360 stats
->rx_bytes
= mac_stats
->rx_bytes
;
1361 stats
->tx_bytes
= mac_stats
->tx_bytes
;
1362 stats
->multicast
= mac_stats
->rx_multicast
;
1363 stats
->collisions
= mac_stats
->tx_collision
;
1364 stats
->rx_length_errors
= (mac_stats
->rx_gtjumbo
+
1365 mac_stats
->rx_length_error
);
1366 stats
->rx_over_errors
= efx
->n_rx_nodesc_drop_cnt
;
1367 stats
->rx_crc_errors
= mac_stats
->rx_bad
;
1368 stats
->rx_frame_errors
= mac_stats
->rx_align_error
;
1369 stats
->rx_fifo_errors
= mac_stats
->rx_overflow
;
1370 stats
->rx_missed_errors
= mac_stats
->rx_missed
;
1371 stats
->tx_window_errors
= mac_stats
->tx_late_collision
;
1373 stats
->rx_errors
= (stats
->rx_length_errors
+
1374 stats
->rx_over_errors
+
1375 stats
->rx_crc_errors
+
1376 stats
->rx_frame_errors
+
1377 stats
->rx_fifo_errors
+
1378 stats
->rx_missed_errors
+
1379 mac_stats
->rx_symbol_error
);
1380 stats
->tx_errors
= (stats
->tx_window_errors
+
1386 /* Context: netif_tx_lock held, BHs disabled. */
1387 static void efx_watchdog(struct net_device
*net_dev
)
1389 struct efx_nic
*efx
= net_dev
->priv
;
1391 EFX_ERR(efx
, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1392 atomic_read(&efx
->netif_stop_count
), efx
->port_enabled
,
1393 monitor_reset
? "resetting channels" : "skipping reset");
1396 efx_schedule_reset(efx
, RESET_TYPE_MONITOR
);
1400 /* Context: process, rtnl_lock() held. */
1401 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
1403 struct efx_nic
*efx
= net_dev
->priv
;
1406 EFX_ASSERT_RESET_SERIALISED(efx
);
1408 if (new_mtu
> EFX_MAX_MTU
)
1413 EFX_LOG(efx
, "changing MTU to %d\n", new_mtu
);
1415 efx_fini_channels(efx
);
1416 net_dev
->mtu
= new_mtu
;
1417 rc
= efx_init_channels(efx
);
1425 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1429 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
1431 struct efx_nic
*efx
= net_dev
->priv
;
1432 struct sockaddr
*addr
= data
;
1433 char *new_addr
= addr
->sa_data
;
1435 EFX_ASSERT_RESET_SERIALISED(efx
);
1437 if (!is_valid_ether_addr(new_addr
)) {
1438 DECLARE_MAC_BUF(mac
);
1439 EFX_ERR(efx
, "invalid ethernet MAC address requested: %s\n",
1440 print_mac(mac
, new_addr
));
1444 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
1446 /* Reconfigure the MAC */
1447 efx_reconfigure_port(efx
);
1452 /* Context: netif_tx_lock held, BHs disabled. */
1453 static void efx_set_multicast_list(struct net_device
*net_dev
)
1455 struct efx_nic
*efx
= net_dev
->priv
;
1456 struct dev_mc_list
*mc_list
= net_dev
->mc_list
;
1457 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1463 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1464 promiscuous
= (net_dev
->flags
& IFF_PROMISC
) ? 1 : 0;
1465 if (efx
->promiscuous
!= promiscuous
) {
1466 efx
->promiscuous
= promiscuous
;
1467 /* Close the window between efx_stop_port() and efx_flush_all()
1468 * by only queuing work when the port is enabled. */
1469 if (efx
->port_enabled
)
1470 queue_work(efx
->workqueue
, &efx
->reconfigure_work
);
1473 /* Build multicast hash table */
1474 if (promiscuous
|| (net_dev
->flags
& IFF_ALLMULTI
)) {
1475 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
1477 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
1478 for (i
= 0; i
< net_dev
->mc_count
; i
++) {
1479 crc
= ether_crc_le(ETH_ALEN
, mc_list
->dmi_addr
);
1480 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
1481 set_bit_le(bit
, mc_hash
->byte
);
1482 mc_list
= mc_list
->next
;
1486 /* Create and activate new global multicast hash table */
1487 falcon_set_multicast_hash(efx
);
1490 static int efx_netdev_event(struct notifier_block
*this,
1491 unsigned long event
, void *ptr
)
1493 struct net_device
*net_dev
= ptr
;
1495 if (net_dev
->open
== efx_net_open
&& event
== NETDEV_CHANGENAME
) {
1496 struct efx_nic
*efx
= net_dev
->priv
;
1498 strcpy(efx
->name
, net_dev
->name
);
1504 static struct notifier_block efx_netdev_notifier
= {
1505 .notifier_call
= efx_netdev_event
,
1508 static int efx_register_netdev(struct efx_nic
*efx
)
1510 struct net_device
*net_dev
= efx
->net_dev
;
1513 net_dev
->watchdog_timeo
= 5 * HZ
;
1514 net_dev
->irq
= efx
->pci_dev
->irq
;
1515 net_dev
->open
= efx_net_open
;
1516 net_dev
->stop
= efx_net_stop
;
1517 net_dev
->get_stats
= efx_net_stats
;
1518 net_dev
->tx_timeout
= &efx_watchdog
;
1519 net_dev
->hard_start_xmit
= efx_hard_start_xmit
;
1520 net_dev
->do_ioctl
= efx_ioctl
;
1521 net_dev
->change_mtu
= efx_change_mtu
;
1522 net_dev
->set_mac_address
= efx_set_mac_address
;
1523 net_dev
->set_multicast_list
= efx_set_multicast_list
;
1524 #ifdef CONFIG_NET_POLL_CONTROLLER
1525 net_dev
->poll_controller
= efx_netpoll
;
1527 SET_NETDEV_DEV(net_dev
, &efx
->pci_dev
->dev
);
1528 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
1530 /* Always start with carrier off; PHY events will detect the link */
1531 netif_carrier_off(efx
->net_dev
);
1533 /* Clear MAC statistics */
1534 falcon_update_stats_xmac(efx
);
1535 memset(&efx
->mac_stats
, 0, sizeof(efx
->mac_stats
));
1537 rc
= register_netdev(net_dev
);
1539 EFX_ERR(efx
, "could not register net dev\n");
1542 strcpy(efx
->name
, net_dev
->name
);
1547 static void efx_unregister_netdev(struct efx_nic
*efx
)
1549 struct efx_tx_queue
*tx_queue
;
1554 BUG_ON(efx
->net_dev
->priv
!= efx
);
1556 /* Free up any skbs still remaining. This has to happen before
1557 * we try to unregister the netdev as running their destructors
1558 * may be needed to get the device ref. count to 0. */
1559 efx_for_each_tx_queue(tx_queue
, efx
)
1560 efx_release_tx_buffers(tx_queue
);
1562 if (efx_dev_registered(efx
)) {
1563 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
1564 unregister_netdev(efx
->net_dev
);
1568 /**************************************************************************
1570 * Device reset and suspend
1572 **************************************************************************/
1574 /* The final hardware and software finalisation before reset. */
1575 static int efx_reset_down(struct efx_nic
*efx
, struct ethtool_cmd
*ecmd
)
1579 EFX_ASSERT_RESET_SERIALISED(efx
);
1581 rc
= falcon_xmac_get_settings(efx
, ecmd
);
1583 EFX_ERR(efx
, "could not back up PHY settings\n");
1587 efx_fini_channels(efx
);
1594 /* The first part of software initialisation after a hardware reset
1595 * This function does not handle serialisation with the kernel, it
1596 * assumes the caller has done this */
1597 static int efx_reset_up(struct efx_nic
*efx
, struct ethtool_cmd
*ecmd
)
1601 rc
= efx_init_channels(efx
);
1605 /* Restore MAC and PHY settings. */
1606 rc
= falcon_xmac_set_settings(efx
, ecmd
);
1608 EFX_ERR(efx
, "could not restore PHY settings\n");
1615 efx_fini_channels(efx
);
1620 /* Reset the NIC as transparently as possible. Do not reset the PHY
1621 * Note that the reset may fail, in which case the card will be left
1622 * in a most-probably-unusable state.
1624 * This function will sleep. You cannot reset from within an atomic
1625 * state; use efx_schedule_reset() instead.
1627 * Grabs the rtnl_lock.
1629 static int efx_reset(struct efx_nic
*efx
)
1631 struct ethtool_cmd ecmd
;
1632 enum reset_type method
= efx
->reset_pending
;
1635 /* Serialise with kernel interfaces */
1638 /* If we're not RUNNING then don't reset. Leave the reset_pending
1639 * flag set so that efx_pci_probe_main will be retried */
1640 if (efx
->state
!= STATE_RUNNING
) {
1641 EFX_INFO(efx
, "scheduled reset quenched. NIC not RUNNING\n");
1645 efx
->state
= STATE_RESETTING
;
1646 EFX_INFO(efx
, "resetting (%d)\n", method
);
1648 /* The net_dev->get_stats handler is quite slow, and will fail
1649 * if a fetch is pending over reset. Serialise against it. */
1650 spin_lock(&efx
->stats_lock
);
1651 spin_unlock(&efx
->stats_lock
);
1654 mutex_lock(&efx
->mac_lock
);
1656 rc
= efx_reset_down(efx
, &ecmd
);
1660 rc
= falcon_reset_hw(efx
, method
);
1662 EFX_ERR(efx
, "failed to reset hardware\n");
1666 /* Allow resets to be rescheduled. */
1667 efx
->reset_pending
= RESET_TYPE_NONE
;
1669 /* Reinitialise bus-mastering, which may have been turned off before
1670 * the reset was scheduled. This is still appropriate, even in the
1671 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1672 * can respond to requests. */
1673 pci_set_master(efx
->pci_dev
);
1675 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1676 * case so the driver can talk to external SRAM */
1677 rc
= falcon_init_nic(efx
);
1679 EFX_ERR(efx
, "failed to initialise NIC\n");
1683 /* Leave device stopped if necessary */
1684 if (method
== RESET_TYPE_DISABLE
) {
1685 /* Reinitialise the device anyway so the driver unload sequence
1686 * can talk to the external SRAM */
1687 falcon_init_nic(efx
);
1692 rc
= efx_reset_up(efx
, &ecmd
);
1696 mutex_unlock(&efx
->mac_lock
);
1697 EFX_LOG(efx
, "reset complete\n");
1699 efx
->state
= STATE_RUNNING
;
1711 EFX_ERR(efx
, "has been disabled\n");
1712 efx
->state
= STATE_DISABLED
;
1714 mutex_unlock(&efx
->mac_lock
);
1716 efx_unregister_netdev(efx
);
1721 /* The worker thread exists so that code that cannot sleep can
1722 * schedule a reset for later.
1724 static void efx_reset_work(struct work_struct
*data
)
1726 struct efx_nic
*nic
= container_of(data
, struct efx_nic
, reset_work
);
1731 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
1733 enum reset_type method
;
1735 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
1736 EFX_INFO(efx
, "quenching already scheduled reset\n");
1741 case RESET_TYPE_INVISIBLE
:
1742 case RESET_TYPE_ALL
:
1743 case RESET_TYPE_WORLD
:
1744 case RESET_TYPE_DISABLE
:
1747 case RESET_TYPE_RX_RECOVERY
:
1748 case RESET_TYPE_RX_DESC_FETCH
:
1749 case RESET_TYPE_TX_DESC_FETCH
:
1750 case RESET_TYPE_TX_SKIP
:
1751 method
= RESET_TYPE_INVISIBLE
;
1754 method
= RESET_TYPE_ALL
;
1759 EFX_LOG(efx
, "scheduling reset (%d:%d)\n", type
, method
);
1761 EFX_LOG(efx
, "scheduling reset (%d)\n", method
);
1763 efx
->reset_pending
= method
;
1765 queue_work(efx
->workqueue
, &efx
->reset_work
);
1768 /**************************************************************************
1770 * List of NICs we support
1772 **************************************************************************/
1774 /* PCI device ID table */
1775 static struct pci_device_id efx_pci_table
[] __devinitdata
= {
1776 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_A_P_DEVID
),
1777 .driver_data
= (unsigned long) &falcon_a_nic_type
},
1778 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_B_P_DEVID
),
1779 .driver_data
= (unsigned long) &falcon_b_nic_type
},
1780 {0} /* end of list */
1783 /**************************************************************************
1785 * Dummy PHY/MAC/Board operations
1787 * Can be used where the MAC does not implement this operation
1788 * Needed so all function pointers are valid and do not have to be tested
1791 **************************************************************************/
1792 int efx_port_dummy_op_int(struct efx_nic
*efx
)
1796 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
1797 void efx_port_dummy_op_blink(struct efx_nic
*efx
, int blink
) {}
1799 static struct efx_phy_operations efx_dummy_phy_operations
= {
1800 .init
= efx_port_dummy_op_int
,
1801 .reconfigure
= efx_port_dummy_op_void
,
1802 .check_hw
= efx_port_dummy_op_int
,
1803 .fini
= efx_port_dummy_op_void
,
1804 .clear_interrupt
= efx_port_dummy_op_void
,
1805 .reset_xaui
= efx_port_dummy_op_void
,
1808 /* Dummy board operations */
1809 static int efx_nic_dummy_op_int(struct efx_nic
*nic
)
1814 static struct efx_board efx_dummy_board_info
= {
1815 .init
= efx_nic_dummy_op_int
,
1816 .init_leds
= efx_port_dummy_op_int
,
1817 .set_fault_led
= efx_port_dummy_op_blink
,
1820 /**************************************************************************
1824 **************************************************************************/
1826 /* This zeroes out and then fills in the invariants in a struct
1827 * efx_nic (including all sub-structures).
1829 static int efx_init_struct(struct efx_nic
*efx
, struct efx_nic_type
*type
,
1830 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
1832 struct efx_channel
*channel
;
1833 struct efx_tx_queue
*tx_queue
;
1834 struct efx_rx_queue
*rx_queue
;
1837 /* Initialise common structures */
1838 memset(efx
, 0, sizeof(*efx
));
1839 spin_lock_init(&efx
->biu_lock
);
1840 spin_lock_init(&efx
->phy_lock
);
1841 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
1842 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
1843 efx
->pci_dev
= pci_dev
;
1844 efx
->state
= STATE_INIT
;
1845 efx
->reset_pending
= RESET_TYPE_NONE
;
1846 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
1847 efx
->board_info
= efx_dummy_board_info
;
1849 efx
->net_dev
= net_dev
;
1850 efx
->rx_checksum_enabled
= 1;
1851 spin_lock_init(&efx
->netif_stop_lock
);
1852 spin_lock_init(&efx
->stats_lock
);
1853 mutex_init(&efx
->mac_lock
);
1854 efx
->phy_op
= &efx_dummy_phy_operations
;
1855 efx
->mii
.dev
= net_dev
;
1856 INIT_WORK(&efx
->reconfigure_work
, efx_reconfigure_work
);
1857 atomic_set(&efx
->netif_stop_count
, 1);
1859 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
1860 channel
= &efx
->channel
[i
];
1862 channel
->channel
= i
;
1863 channel
->evqnum
= i
;
1864 channel
->work_pending
= 0;
1866 for (i
= 0; i
< EFX_MAX_TX_QUEUES
; i
++) {
1867 tx_queue
= &efx
->tx_queue
[i
];
1868 tx_queue
->efx
= efx
;
1869 tx_queue
->queue
= i
;
1870 tx_queue
->buffer
= NULL
;
1871 tx_queue
->channel
= &efx
->channel
[0]; /* for safety */
1872 tx_queue
->tso_headers_free
= NULL
;
1874 for (i
= 0; i
< EFX_MAX_RX_QUEUES
; i
++) {
1875 rx_queue
= &efx
->rx_queue
[i
];
1876 rx_queue
->efx
= efx
;
1877 rx_queue
->queue
= i
;
1878 rx_queue
->channel
= &efx
->channel
[0]; /* for safety */
1879 rx_queue
->buffer
= NULL
;
1880 spin_lock_init(&rx_queue
->add_lock
);
1881 INIT_DELAYED_WORK(&rx_queue
->work
, efx_rx_work
);
1886 /* Sanity-check NIC type */
1887 EFX_BUG_ON_PARANOID(efx
->type
->txd_ring_mask
&
1888 (efx
->type
->txd_ring_mask
+ 1));
1889 EFX_BUG_ON_PARANOID(efx
->type
->rxd_ring_mask
&
1890 (efx
->type
->rxd_ring_mask
+ 1));
1891 EFX_BUG_ON_PARANOID(efx
->type
->evq_size
&
1892 (efx
->type
->evq_size
- 1));
1893 /* As close as we can get to guaranteeing that we don't overflow */
1894 EFX_BUG_ON_PARANOID(efx
->type
->evq_size
<
1895 (efx
->type
->txd_ring_mask
+ 1 +
1896 efx
->type
->rxd_ring_mask
+ 1));
1897 EFX_BUG_ON_PARANOID(efx
->type
->phys_addr_channels
> EFX_MAX_CHANNELS
);
1899 /* Higher numbered interrupt modes are less capable! */
1900 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
1903 efx
->workqueue
= create_singlethread_workqueue("sfc_work");
1904 if (!efx
->workqueue
) {
1915 static void efx_fini_struct(struct efx_nic
*efx
)
1917 if (efx
->workqueue
) {
1918 destroy_workqueue(efx
->workqueue
);
1919 efx
->workqueue
= NULL
;
1923 /**************************************************************************
1927 **************************************************************************/
1929 /* Main body of final NIC shutdown code
1930 * This is called only at module unload (or hotplug removal).
1932 static void efx_pci_remove_main(struct efx_nic
*efx
)
1934 EFX_ASSERT_RESET_SERIALISED(efx
);
1936 /* Skip everything if we never obtained a valid membase */
1940 efx_fini_channels(efx
);
1943 /* Shutdown the board, then the NIC and board state */
1944 falcon_fini_interrupt(efx
);
1947 efx_remove_all(efx
);
1950 /* Final NIC shutdown
1951 * This is called only at module unload (or hotplug removal).
1953 static void efx_pci_remove(struct pci_dev
*pci_dev
)
1955 struct efx_nic
*efx
;
1957 efx
= pci_get_drvdata(pci_dev
);
1961 /* Mark the NIC as fini, then stop the interface */
1963 efx
->state
= STATE_FINI
;
1964 dev_close(efx
->net_dev
);
1966 /* Allow any queued efx_resets() to complete */
1969 if (efx
->membase
== NULL
)
1972 efx_unregister_netdev(efx
);
1974 /* Wait for any scheduled resets to complete. No more will be
1975 * scheduled from this point because efx_stop_all() has been
1976 * called, we are no longer registered with driverlink, and
1977 * the net_device's have been removed. */
1978 flush_workqueue(efx
->workqueue
);
1980 efx_pci_remove_main(efx
);
1984 EFX_LOG(efx
, "shutdown successful\n");
1986 pci_set_drvdata(pci_dev
, NULL
);
1987 efx_fini_struct(efx
);
1988 free_netdev(efx
->net_dev
);
1991 /* Main body of NIC initialisation
1992 * This is called at module load (or hotplug insertion, theoretically).
1994 static int efx_pci_probe_main(struct efx_nic
*efx
)
1998 /* Do start-of-day initialisation */
1999 rc
= efx_probe_all(efx
);
2003 rc
= efx_init_napi(efx
);
2007 /* Initialise the board */
2008 rc
= efx
->board_info
.init(efx
);
2010 EFX_ERR(efx
, "failed to initialise board\n");
2014 rc
= falcon_init_nic(efx
);
2016 EFX_ERR(efx
, "failed to initialise NIC\n");
2020 rc
= efx_init_port(efx
);
2022 EFX_ERR(efx
, "failed to initialise port\n");
2026 rc
= efx_init_channels(efx
);
2030 rc
= falcon_init_interrupt(efx
);
2037 efx_fini_channels(efx
);
2045 efx_remove_all(efx
);
2050 /* NIC initialisation
2052 * This is called at module load (or hotplug insertion,
2053 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2054 * sets up and registers the network devices with the kernel and hooks
2055 * the interrupt service routine. It does not prepare the device for
2056 * transmission; this is left to the first time one of the network
2057 * interfaces is brought up (i.e. efx_net_open).
2059 static int __devinit
efx_pci_probe(struct pci_dev
*pci_dev
,
2060 const struct pci_device_id
*entry
)
2062 struct efx_nic_type
*type
= (struct efx_nic_type
*) entry
->driver_data
;
2063 struct net_device
*net_dev
;
2064 struct efx_nic
*efx
;
2067 /* Allocate and initialise a struct net_device and struct efx_nic */
2068 net_dev
= alloc_etherdev(sizeof(*efx
));
2071 net_dev
->features
|= (NETIF_F_IP_CSUM
| NETIF_F_SG
|
2072 NETIF_F_HIGHDMA
| NETIF_F_TSO
);
2074 net_dev
->features
|= NETIF_F_LRO
;
2075 efx
= net_dev
->priv
;
2076 pci_set_drvdata(pci_dev
, efx
);
2077 rc
= efx_init_struct(efx
, type
, pci_dev
, net_dev
);
2081 EFX_INFO(efx
, "Solarflare Communications NIC detected\n");
2083 /* Set up basic I/O (BAR mappings etc) */
2084 rc
= efx_init_io(efx
);
2088 /* No serialisation is required with the reset path because
2089 * we're in STATE_INIT. */
2090 for (i
= 0; i
< 5; i
++) {
2091 rc
= efx_pci_probe_main(efx
);
2095 /* Serialise against efx_reset(). No more resets will be
2096 * scheduled since efx_stop_all() has been called, and we
2097 * have not and never have been registered with either
2098 * the rtnetlink or driverlink layers. */
2099 cancel_work_sync(&efx
->reset_work
);
2101 /* Retry if a recoverably reset event has been scheduled */
2102 if ((efx
->reset_pending
!= RESET_TYPE_INVISIBLE
) &&
2103 (efx
->reset_pending
!= RESET_TYPE_ALL
))
2106 efx
->reset_pending
= RESET_TYPE_NONE
;
2110 EFX_ERR(efx
, "Could not reset NIC\n");
2114 /* Switch to the running state before we expose the device to
2115 * the OS. This is to ensure that the initial gathering of
2116 * MAC stats succeeds. */
2118 efx
->state
= STATE_RUNNING
;
2121 rc
= efx_register_netdev(efx
);
2125 EFX_LOG(efx
, "initialisation successful\n");
2130 efx_pci_remove_main(efx
);
2135 efx_fini_struct(efx
);
2137 EFX_LOG(efx
, "initialisation failed. rc=%d\n", rc
);
2138 free_netdev(net_dev
);
2142 static struct pci_driver efx_pci_driver
= {
2143 .name
= EFX_DRIVER_NAME
,
2144 .id_table
= efx_pci_table
,
2145 .probe
= efx_pci_probe
,
2146 .remove
= efx_pci_remove
,
2149 /**************************************************************************
2151 * Kernel module interface
2153 *************************************************************************/
2155 module_param(interrupt_mode
, uint
, 0444);
2156 MODULE_PARM_DESC(interrupt_mode
,
2157 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2159 static int __init
efx_init_module(void)
2163 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
2165 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
2169 refill_workqueue
= create_workqueue("sfc_refill");
2170 if (!refill_workqueue
) {
2175 rc
= pci_register_driver(&efx_pci_driver
);
2182 destroy_workqueue(refill_workqueue
);
2184 unregister_netdevice_notifier(&efx_netdev_notifier
);
2189 static void __exit
efx_exit_module(void)
2191 printk(KERN_INFO
"Solarflare NET driver unloading\n");
2193 pci_unregister_driver(&efx_pci_driver
);
2194 destroy_workqueue(refill_workqueue
);
2195 unregister_netdevice_notifier(&efx_netdev_notifier
);
2199 module_init(efx_init_module
);
2200 module_exit(efx_exit_module
);
2202 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2203 "Solarflare Communications");
2204 MODULE_DESCRIPTION("Solarflare Communications network driver");
2205 MODULE_LICENSE("GPL");
2206 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);