2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
49 /*-------------------------------------------------------------------------*/
52 * USB Host Controller Driver framework
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
82 /*-------------------------------------------------------------------------*/
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list
);
86 EXPORT_SYMBOL_GPL (usb_bus_list
);
88 /* used when allocating bus numbers */
91 unsigned long busmap
[USB_MAXBUS
/ (8*sizeof (unsigned long))];
93 static struct usb_busmap busmap
;
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock
); /* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock
);
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
108 static inline int is_root_hub(struct usb_device
*udev
)
110 return (udev
->parent
== NULL
);
113 /*-------------------------------------------------------------------------*/
116 * Sharable chunks of root hub code.
119 /*-------------------------------------------------------------------------*/
121 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor
[18] = {
126 0x12, /* __u8 bLength; */
127 0x01, /* __u8 bDescriptorType; Device */
128 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
130 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
131 0x00, /* __u8 bDeviceSubClass; */
132 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
133 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
135 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
136 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
137 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
139 0x03, /* __u8 iManufacturer; */
140 0x02, /* __u8 iProduct; */
141 0x01, /* __u8 iSerialNumber; */
142 0x01 /* __u8 bNumConfigurations; */
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor
[18] = {
149 0x12, /* __u8 bLength; */
150 0x01, /* __u8 bDescriptorType; Device */
151 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
153 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
154 0x00, /* __u8 bDeviceSubClass; */
155 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
156 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
158 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
159 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
160 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
162 0x03, /* __u8 iManufacturer; */
163 0x02, /* __u8 iProduct; */
164 0x01, /* __u8 iSerialNumber; */
165 0x01 /* __u8 bNumConfigurations; */
169 /*-------------------------------------------------------------------------*/
171 /* Configuration descriptors for our root hubs */
173 static const u8 fs_rh_config_descriptor
[] = {
175 /* one configuration */
176 0x09, /* __u8 bLength; */
177 0x02, /* __u8 bDescriptorType; Configuration */
178 0x19, 0x00, /* __le16 wTotalLength; */
179 0x01, /* __u8 bNumInterfaces; (1) */
180 0x01, /* __u8 bConfigurationValue; */
181 0x00, /* __u8 iConfiguration; */
182 0xc0, /* __u8 bmAttributes;
187 0x00, /* __u8 MaxPower; */
190 * USB 2.0, single TT organization (mandatory):
191 * one interface, protocol 0
193 * USB 2.0, multiple TT organization (optional):
194 * two interfaces, protocols 1 (like single TT)
195 * and 2 (multiple TT mode) ... config is
201 0x09, /* __u8 if_bLength; */
202 0x04, /* __u8 if_bDescriptorType; Interface */
203 0x00, /* __u8 if_bInterfaceNumber; */
204 0x00, /* __u8 if_bAlternateSetting; */
205 0x01, /* __u8 if_bNumEndpoints; */
206 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
207 0x00, /* __u8 if_bInterfaceSubClass; */
208 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
209 0x00, /* __u8 if_iInterface; */
211 /* one endpoint (status change endpoint) */
212 0x07, /* __u8 ep_bLength; */
213 0x05, /* __u8 ep_bDescriptorType; Endpoint */
214 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
215 0x03, /* __u8 ep_bmAttributes; Interrupt */
216 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
220 static const u8 hs_rh_config_descriptor
[] = {
222 /* one configuration */
223 0x09, /* __u8 bLength; */
224 0x02, /* __u8 bDescriptorType; Configuration */
225 0x19, 0x00, /* __le16 wTotalLength; */
226 0x01, /* __u8 bNumInterfaces; (1) */
227 0x01, /* __u8 bConfigurationValue; */
228 0x00, /* __u8 iConfiguration; */
229 0xc0, /* __u8 bmAttributes;
234 0x00, /* __u8 MaxPower; */
237 * USB 2.0, single TT organization (mandatory):
238 * one interface, protocol 0
240 * USB 2.0, multiple TT organization (optional):
241 * two interfaces, protocols 1 (like single TT)
242 * and 2 (multiple TT mode) ... config is
248 0x09, /* __u8 if_bLength; */
249 0x04, /* __u8 if_bDescriptorType; Interface */
250 0x00, /* __u8 if_bInterfaceNumber; */
251 0x00, /* __u8 if_bAlternateSetting; */
252 0x01, /* __u8 if_bNumEndpoints; */
253 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
254 0x00, /* __u8 if_bInterfaceSubClass; */
255 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
256 0x00, /* __u8 if_iInterface; */
258 /* one endpoint (status change endpoint) */
259 0x07, /* __u8 ep_bLength; */
260 0x05, /* __u8 ep_bDescriptorType; Endpoint */
261 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
262 0x03, /* __u8 ep_bmAttributes; Interrupt */
263 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264 * see hub.c:hub_configure() for details. */
265 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
266 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
269 /*-------------------------------------------------------------------------*/
272 * helper routine for returning string descriptors in UTF-16LE
273 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
275 static int ascii2utf (char *s
, u8
*utf
, int utfmax
)
279 for (retval
= 0; *s
&& utfmax
> 1; utfmax
-= 2, retval
+= 2) {
291 * rh_string - provides manufacturer, product and serial strings for root hub
292 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293 * @hcd: the host controller for this root hub
294 * @data: return packet in UTF-16 LE
295 * @len: length of the return packet
297 * Produces either a manufacturer, product or serial number string for the
298 * virtual root hub device.
300 static int rh_string (
310 buf
[0] = 4; buf
[1] = 3; /* 4 bytes string data */
311 buf
[2] = 0x09; buf
[3] = 0x04; /* MSFT-speak for "en-us" */
313 memcpy (data
, buf
, len
);
317 } else if (id
== 1) {
318 strlcpy (buf
, hcd
->self
.bus_name
, sizeof buf
);
320 // product description
321 } else if (id
== 2) {
322 strlcpy (buf
, hcd
->product_desc
, sizeof buf
);
324 // id 3 == vendor description
325 } else if (id
== 3) {
326 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
327 init_utsname()->release
, hcd
->driver
->description
);
329 // unsupported IDs --> "protocol stall"
333 switch (len
) { /* All cases fall through */
335 len
= 2 + ascii2utf (buf
, data
+ 2, len
- 2);
337 data
[1] = 3; /* type == string */
339 data
[0] = 2 * (strlen (buf
) + 1);
341 ; /* Compiler wants a statement here */
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
350 struct usb_ctrlrequest
*cmd
;
351 u16 typeReq
, wValue
, wIndex
, wLength
;
352 u8
*ubuf
= urb
->transfer_buffer
;
353 u8 tbuf
[sizeof (struct usb_hub_descriptor
)]
354 __attribute__((aligned(4)));
355 const u8
*bufp
= tbuf
;
360 u8 patch_protocol
= 0;
364 spin_lock_irq(&hcd_root_hub_lock
);
365 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
366 spin_unlock_irq(&hcd_root_hub_lock
);
369 urb
->hcpriv
= hcd
; /* Indicate it's queued */
371 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
372 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
373 wValue
= le16_to_cpu (cmd
->wValue
);
374 wIndex
= le16_to_cpu (cmd
->wIndex
);
375 wLength
= le16_to_cpu (cmd
->wLength
);
377 if (wLength
> urb
->transfer_buffer_length
)
380 urb
->actual_length
= 0;
383 /* DEVICE REQUESTS */
385 /* The root hub's remote wakeup enable bit is implemented using
386 * driver model wakeup flags. If this system supports wakeup
387 * through USB, userspace may change the default "allow wakeup"
388 * policy through sysfs or these calls.
390 * Most root hubs support wakeup from downstream devices, for
391 * runtime power management (disabling USB clocks and reducing
392 * VBUS power usage). However, not all of them do so; silicon,
393 * board, and BIOS bugs here are not uncommon, so these can't
394 * be treated quite like external hubs.
396 * Likewise, not all root hubs will pass wakeup events upstream,
397 * to wake up the whole system. So don't assume root hub and
398 * controller capabilities are identical.
401 case DeviceRequest
| USB_REQ_GET_STATUS
:
402 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
403 << USB_DEVICE_REMOTE_WAKEUP
)
404 | (1 << USB_DEVICE_SELF_POWERED
);
408 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
409 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
410 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
414 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
415 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
416 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
417 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
421 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
425 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
427 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
428 switch (wValue
& 0xff00) {
429 case USB_DT_DEVICE
<< 8:
430 if (hcd
->driver
->flags
& HCD_USB2
)
431 bufp
= usb2_rh_dev_descriptor
;
432 else if (hcd
->driver
->flags
& HCD_USB11
)
433 bufp
= usb11_rh_dev_descriptor
;
440 case USB_DT_CONFIG
<< 8:
441 if (hcd
->driver
->flags
& HCD_USB2
) {
442 bufp
= hs_rh_config_descriptor
;
443 len
= sizeof hs_rh_config_descriptor
;
445 bufp
= fs_rh_config_descriptor
;
446 len
= sizeof fs_rh_config_descriptor
;
448 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
451 case USB_DT_STRING
<< 8:
452 n
= rh_string (wValue
& 0xff, hcd
, ubuf
, wLength
);
455 urb
->actual_length
= n
;
461 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
465 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
467 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
468 // wValue == urb->dev->devaddr
469 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
473 /* INTERFACE REQUESTS (no defined feature/status flags) */
475 /* ENDPOINT REQUESTS */
477 case EndpointRequest
| USB_REQ_GET_STATUS
:
478 // ENDPOINT_HALT flag
483 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
484 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
485 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
488 /* CLASS REQUESTS (and errors) */
491 /* non-generic request */
497 case GetHubDescriptor
:
498 len
= sizeof (struct usb_hub_descriptor
);
501 status
= hcd
->driver
->hub_control (hcd
,
502 typeReq
, wValue
, wIndex
,
506 /* "protocol stall" on error */
512 if (status
!= -EPIPE
) {
513 dev_dbg (hcd
->self
.controller
,
514 "CTRL: TypeReq=0x%x val=0x%x "
515 "idx=0x%x len=%d ==> %d\n",
516 typeReq
, wValue
, wIndex
,
521 if (urb
->transfer_buffer_length
< len
)
522 len
= urb
->transfer_buffer_length
;
523 urb
->actual_length
= len
;
524 // always USB_DIR_IN, toward host
525 memcpy (ubuf
, bufp
, len
);
527 /* report whether RH hardware supports remote wakeup */
529 len
> offsetof (struct usb_config_descriptor
,
531 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
532 |= USB_CONFIG_ATT_WAKEUP
;
534 /* report whether RH hardware has an integrated TT */
535 if (patch_protocol
&&
536 len
> offsetof(struct usb_device_descriptor
,
538 ((struct usb_device_descriptor
*) ubuf
)->
542 /* any errors get returned through the urb completion */
543 spin_lock_irq(&hcd_root_hub_lock
);
544 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
546 /* This peculiar use of spinlocks echoes what real HC drivers do.
547 * Avoiding calls to local_irq_disable/enable makes the code
550 spin_unlock(&hcd_root_hub_lock
);
551 usb_hcd_giveback_urb(hcd
, urb
, status
);
552 spin_lock(&hcd_root_hub_lock
);
554 spin_unlock_irq(&hcd_root_hub_lock
);
558 /*-------------------------------------------------------------------------*/
561 * Root Hub interrupt transfers are polled using a timer if the
562 * driver requests it; otherwise the driver is responsible for
563 * calling usb_hcd_poll_rh_status() when an event occurs.
565 * Completions are called in_interrupt(), but they may or may not
568 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
573 char buffer
[4]; /* Any root hubs with > 31 ports? */
575 if (unlikely(!hcd
->rh_registered
))
577 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
580 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
583 /* try to complete the status urb */
584 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
585 urb
= hcd
->status_urb
;
587 hcd
->poll_pending
= 0;
588 hcd
->status_urb
= NULL
;
589 urb
->actual_length
= length
;
590 memcpy(urb
->transfer_buffer
, buffer
, length
);
592 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
593 spin_unlock(&hcd_root_hub_lock
);
594 usb_hcd_giveback_urb(hcd
, urb
, 0);
595 spin_lock(&hcd_root_hub_lock
);
598 hcd
->poll_pending
= 1;
600 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
603 /* The USB 2.0 spec says 256 ms. This is close enough and won't
604 * exceed that limit if HZ is 100. The math is more clunky than
605 * maybe expected, this is to make sure that all timers for USB devices
606 * fire at the same time to give the CPU a break inbetween */
607 if (hcd
->uses_new_polling
? hcd
->poll_rh
:
608 (length
== 0 && hcd
->status_urb
!= NULL
))
609 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
614 static void rh_timer_func (unsigned long _hcd
)
616 usb_hcd_poll_rh_status((struct usb_hcd
*) _hcd
);
619 /*-------------------------------------------------------------------------*/
621 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
625 int len
= 1 + (urb
->dev
->maxchild
/ 8);
627 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
628 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
629 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
634 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
638 hcd
->status_urb
= urb
;
639 urb
->hcpriv
= hcd
; /* indicate it's queued */
640 if (!hcd
->uses_new_polling
)
641 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
643 /* If a status change has already occurred, report it ASAP */
644 else if (hcd
->poll_pending
)
645 mod_timer(&hcd
->rh_timer
, jiffies
);
648 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
652 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
654 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
655 return rh_queue_status (hcd
, urb
);
656 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
657 return rh_call_control (hcd
, urb
);
661 /*-------------------------------------------------------------------------*/
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664 * since these URBs always execute synchronously.
666 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
671 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
672 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
676 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
679 } else { /* Status URB */
680 if (!hcd
->uses_new_polling
)
681 del_timer (&hcd
->rh_timer
);
682 if (urb
== hcd
->status_urb
) {
683 hcd
->status_urb
= NULL
;
684 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
686 spin_unlock(&hcd_root_hub_lock
);
687 usb_hcd_giveback_urb(hcd
, urb
, status
);
688 spin_lock(&hcd_root_hub_lock
);
692 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
699 * Show & store the current value of authorized_default
701 static ssize_t
usb_host_authorized_default_show(struct device
*dev
,
702 struct device_attribute
*attr
,
705 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
706 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
707 struct usb_hcd
*usb_hcd
;
709 if (usb_bus
== NULL
) /* FIXME: not sure if this case is possible */
711 usb_hcd
= bus_to_hcd(usb_bus
);
712 return snprintf(buf
, PAGE_SIZE
, "%u\n", usb_hcd
->authorized_default
);
715 static ssize_t
usb_host_authorized_default_store(struct device
*dev
,
716 struct device_attribute
*attr
,
717 const char *buf
, size_t size
)
721 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
722 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
723 struct usb_hcd
*usb_hcd
;
725 if (usb_bus
== NULL
) /* FIXME: not sure if this case is possible */
727 usb_hcd
= bus_to_hcd(usb_bus
);
728 result
= sscanf(buf
, "%u\n", &val
);
730 usb_hcd
->authorized_default
= val
? 1 : 0;
738 static DEVICE_ATTR(authorized_default
, 0644,
739 usb_host_authorized_default_show
,
740 usb_host_authorized_default_store
);
743 /* Group all the USB bus attributes */
744 static struct attribute
*usb_bus_attrs
[] = {
745 &dev_attr_authorized_default
.attr
,
749 static struct attribute_group usb_bus_attr_group
= {
750 .name
= NULL
, /* we want them in the same directory */
751 .attrs
= usb_bus_attrs
,
756 /*-------------------------------------------------------------------------*/
758 static struct class *usb_host_class
;
760 int usb_host_init(void)
764 usb_host_class
= class_create(THIS_MODULE
, "usb_host");
765 if (IS_ERR(usb_host_class
))
766 retval
= PTR_ERR(usb_host_class
);
770 void usb_host_cleanup(void)
772 class_destroy(usb_host_class
);
776 * usb_bus_init - shared initialization code
777 * @bus: the bus structure being initialized
779 * This code is used to initialize a usb_bus structure, memory for which is
780 * separately managed.
782 static void usb_bus_init (struct usb_bus
*bus
)
784 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
786 bus
->devnum_next
= 1;
788 bus
->root_hub
= NULL
;
790 bus
->bandwidth_allocated
= 0;
791 bus
->bandwidth_int_reqs
= 0;
792 bus
->bandwidth_isoc_reqs
= 0;
794 INIT_LIST_HEAD (&bus
->bus_list
);
797 /*-------------------------------------------------------------------------*/
800 * usb_register_bus - registers the USB host controller with the usb core
801 * @bus: pointer to the bus to register
802 * Context: !in_interrupt()
804 * Assigns a bus number, and links the controller into usbcore data
805 * structures so that it can be seen by scanning the bus list.
807 static int usb_register_bus(struct usb_bus
*bus
)
812 mutex_lock(&usb_bus_list_lock
);
813 busnum
= find_next_zero_bit (busmap
.busmap
, USB_MAXBUS
, 1);
814 if (busnum
>= USB_MAXBUS
) {
815 printk (KERN_ERR
"%s: too many buses\n", usbcore_name
);
816 goto error_find_busnum
;
818 set_bit (busnum
, busmap
.busmap
);
819 bus
->busnum
= busnum
;
821 bus
->dev
= device_create_drvdata(usb_host_class
, bus
->controller
,
823 "usb_host%d", busnum
);
824 result
= PTR_ERR(bus
->dev
);
825 if (IS_ERR(bus
->dev
))
826 goto error_create_class_dev
;
828 /* Add it to the local list of buses */
829 list_add (&bus
->bus_list
, &usb_bus_list
);
830 mutex_unlock(&usb_bus_list_lock
);
832 usb_notify_add_bus(bus
);
834 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
835 "number %d\n", bus
->busnum
);
838 error_create_class_dev
:
839 clear_bit(busnum
, busmap
.busmap
);
841 mutex_unlock(&usb_bus_list_lock
);
846 * usb_deregister_bus - deregisters the USB host controller
847 * @bus: pointer to the bus to deregister
848 * Context: !in_interrupt()
850 * Recycles the bus number, and unlinks the controller from usbcore data
851 * structures so that it won't be seen by scanning the bus list.
853 static void usb_deregister_bus (struct usb_bus
*bus
)
855 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
858 * NOTE: make sure that all the devices are removed by the
859 * controller code, as well as having it call this when cleaning
862 mutex_lock(&usb_bus_list_lock
);
863 list_del (&bus
->bus_list
);
864 mutex_unlock(&usb_bus_list_lock
);
866 usb_notify_remove_bus(bus
);
868 clear_bit (bus
->busnum
, busmap
.busmap
);
870 device_unregister(bus
->dev
);
874 * register_root_hub - called by usb_add_hcd() to register a root hub
875 * @hcd: host controller for this root hub
877 * This function registers the root hub with the USB subsystem. It sets up
878 * the device properly in the device tree and then calls usb_new_device()
879 * to register the usb device. It also assigns the root hub's USB address
882 static int register_root_hub(struct usb_hcd
*hcd
)
884 struct device
*parent_dev
= hcd
->self
.controller
;
885 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
886 const int devnum
= 1;
889 usb_dev
->devnum
= devnum
;
890 usb_dev
->bus
->devnum_next
= devnum
+ 1;
891 memset (&usb_dev
->bus
->devmap
.devicemap
, 0,
892 sizeof usb_dev
->bus
->devmap
.devicemap
);
893 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
894 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
896 mutex_lock(&usb_bus_list_lock
);
898 usb_dev
->ep0
.desc
.wMaxPacketSize
= __constant_cpu_to_le16(64);
899 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
900 if (retval
!= sizeof usb_dev
->descriptor
) {
901 mutex_unlock(&usb_bus_list_lock
);
902 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
903 usb_dev
->dev
.bus_id
, retval
);
904 return (retval
< 0) ? retval
: -EMSGSIZE
;
907 retval
= usb_new_device (usb_dev
);
909 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
910 usb_dev
->dev
.bus_id
, retval
);
912 mutex_unlock(&usb_bus_list_lock
);
915 spin_lock_irq (&hcd_root_hub_lock
);
916 hcd
->rh_registered
= 1;
917 spin_unlock_irq (&hcd_root_hub_lock
);
919 /* Did the HC die before the root hub was registered? */
920 if (hcd
->state
== HC_STATE_HALT
)
921 usb_hc_died (hcd
); /* This time clean up */
927 void usb_enable_root_hub_irq (struct usb_bus
*bus
)
931 hcd
= container_of (bus
, struct usb_hcd
, self
);
932 if (hcd
->driver
->hub_irq_enable
&& hcd
->state
!= HC_STATE_HALT
)
933 hcd
->driver
->hub_irq_enable (hcd
);
937 /*-------------------------------------------------------------------------*/
940 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
941 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
942 * @is_input: true iff the transaction sends data to the host
943 * @isoc: true for isochronous transactions, false for interrupt ones
944 * @bytecount: how many bytes in the transaction.
946 * Returns approximate bus time in nanoseconds for a periodic transaction.
947 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
948 * scheduled in software, this function is only used for such scheduling.
950 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
955 case USB_SPEED_LOW
: /* INTR only */
957 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
958 return (64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
);
960 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
961 return (64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
);
963 case USB_SPEED_FULL
: /* ISOC or INTR */
965 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
966 return (((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
);
968 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
969 return (9107L + BW_HOST_DELAY
+ tmp
);
971 case USB_SPEED_HIGH
: /* ISOC or INTR */
972 // FIXME adjust for input vs output
974 tmp
= HS_NSECS_ISO (bytecount
);
976 tmp
= HS_NSECS (bytecount
);
979 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
983 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
986 /*-------------------------------------------------------------------------*/
989 * Generic HC operations.
992 /*-------------------------------------------------------------------------*/
995 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
996 * @hcd: host controller to which @urb was submitted
997 * @urb: URB being submitted
999 * Host controller drivers should call this routine in their enqueue()
1000 * method. The HCD's private spinlock must be held and interrupts must
1001 * be disabled. The actions carried out here are required for URB
1002 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1004 * Returns 0 for no error, otherwise a negative error code (in which case
1005 * the enqueue() method must fail). If no error occurs but enqueue() fails
1006 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1007 * the private spinlock and returning.
1009 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1013 spin_lock(&hcd_urb_list_lock
);
1015 /* Check that the URB isn't being killed */
1016 if (unlikely(urb
->reject
)) {
1021 if (unlikely(!urb
->ep
->enabled
)) {
1026 if (unlikely(!urb
->dev
->can_submit
)) {
1032 * Check the host controller's state and add the URB to the
1035 switch (hcd
->state
) {
1036 case HC_STATE_RUNNING
:
1037 case HC_STATE_RESUMING
:
1039 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1046 spin_unlock(&hcd_urb_list_lock
);
1049 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1052 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1053 * @hcd: host controller to which @urb was submitted
1054 * @urb: URB being checked for unlinkability
1055 * @status: error code to store in @urb if the unlink succeeds
1057 * Host controller drivers should call this routine in their dequeue()
1058 * method. The HCD's private spinlock must be held and interrupts must
1059 * be disabled. The actions carried out here are required for making
1060 * sure than an unlink is valid.
1062 * Returns 0 for no error, otherwise a negative error code (in which case
1063 * the dequeue() method must fail). The possible error codes are:
1065 * -EIDRM: @urb was not submitted or has already completed.
1066 * The completion function may not have been called yet.
1068 * -EBUSY: @urb has already been unlinked.
1070 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1073 struct list_head
*tmp
;
1075 /* insist the urb is still queued */
1076 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1077 if (tmp
== &urb
->urb_list
)
1080 if (tmp
!= &urb
->urb_list
)
1083 /* Any status except -EINPROGRESS means something already started to
1084 * unlink this URB from the hardware. So there's no more work to do.
1088 urb
->unlinked
= status
;
1090 /* IRQ setup can easily be broken so that USB controllers
1091 * never get completion IRQs ... maybe even the ones we need to
1092 * finish unlinking the initial failed usb_set_address()
1093 * or device descriptor fetch.
1095 if (!test_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
) &&
1096 !is_root_hub(urb
->dev
)) {
1097 dev_warn(hcd
->self
.controller
, "Unlink after no-IRQ? "
1098 "Controller is probably using the wrong IRQ.\n");
1099 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
);
1104 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1107 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1108 * @hcd: host controller to which @urb was submitted
1109 * @urb: URB being unlinked
1111 * Host controller drivers should call this routine before calling
1112 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1113 * interrupts must be disabled. The actions carried out here are required
1114 * for URB completion.
1116 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1118 /* clear all state linking urb to this dev (and hcd) */
1119 spin_lock(&hcd_urb_list_lock
);
1120 list_del_init(&urb
->urb_list
);
1121 spin_unlock(&hcd_urb_list_lock
);
1123 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1126 * Some usb host controllers can only perform dma using a small SRAM area.
1127 * The usb core itself is however optimized for host controllers that can dma
1128 * using regular system memory - like pci devices doing bus mastering.
1130 * To support host controllers with limited dma capabilites we provide dma
1131 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1132 * For this to work properly the host controller code must first use the
1133 * function dma_declare_coherent_memory() to point out which memory area
1134 * that should be used for dma allocations.
1136 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1137 * dma using dma_alloc_coherent() which in turn allocates from the memory
1138 * area pointed out with dma_declare_coherent_memory().
1140 * So, to summarize...
1142 * - We need "local" memory, canonical example being
1143 * a small SRAM on a discrete controller being the
1144 * only memory that the controller can read ...
1145 * (a) "normal" kernel memory is no good, and
1146 * (b) there's not enough to share
1148 * - The only *portable* hook for such stuff in the
1149 * DMA framework is dma_declare_coherent_memory()
1151 * - So we use that, even though the primary requirement
1152 * is that the memory be "local" (hence addressible
1153 * by that device), not "coherent".
1157 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1158 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1159 void **vaddr_handle
, size_t size
,
1160 enum dma_data_direction dir
)
1162 unsigned char *vaddr
;
1164 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1165 mem_flags
, dma_handle
);
1170 * Store the virtual address of the buffer at the end
1171 * of the allocated dma buffer. The size of the buffer
1172 * may be uneven so use unaligned functions instead
1173 * of just rounding up. It makes sense to optimize for
1174 * memory footprint over access speed since the amount
1175 * of memory available for dma may be limited.
1177 put_unaligned((unsigned long)*vaddr_handle
,
1178 (unsigned long *)(vaddr
+ size
));
1180 if (dir
== DMA_TO_DEVICE
)
1181 memcpy(vaddr
, *vaddr_handle
, size
);
1183 *vaddr_handle
= vaddr
;
1187 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1188 void **vaddr_handle
, size_t size
,
1189 enum dma_data_direction dir
)
1191 unsigned char *vaddr
= *vaddr_handle
;
1193 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1195 if (dir
== DMA_FROM_DEVICE
)
1196 memcpy(vaddr
, *vaddr_handle
, size
);
1198 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1200 *vaddr_handle
= vaddr
;
1204 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1207 enum dma_data_direction dir
;
1210 /* Map the URB's buffers for DMA access.
1211 * Lower level HCD code should use *_dma exclusively,
1212 * unless it uses pio or talks to another transport.
1214 if (is_root_hub(urb
->dev
))
1217 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)
1218 && !(urb
->transfer_flags
& URB_NO_SETUP_DMA_MAP
)) {
1219 if (hcd
->self
.uses_dma
)
1220 urb
->setup_dma
= dma_map_single(
1221 hcd
->self
.controller
,
1223 sizeof(struct usb_ctrlrequest
),
1225 else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
)
1226 ret
= hcd_alloc_coherent(
1227 urb
->dev
->bus
, mem_flags
,
1229 (void **)&urb
->setup_packet
,
1230 sizeof(struct usb_ctrlrequest
),
1234 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1235 if (ret
== 0 && urb
->transfer_buffer_length
!= 0
1236 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1237 if (hcd
->self
.uses_dma
)
1238 urb
->transfer_dma
= dma_map_single (
1239 hcd
->self
.controller
,
1240 urb
->transfer_buffer
,
1241 urb
->transfer_buffer_length
,
1243 else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1244 ret
= hcd_alloc_coherent(
1245 urb
->dev
->bus
, mem_flags
,
1247 &urb
->transfer_buffer
,
1248 urb
->transfer_buffer_length
,
1251 if (ret
&& usb_endpoint_xfer_control(&urb
->ep
->desc
)
1252 && !(urb
->transfer_flags
& URB_NO_SETUP_DMA_MAP
))
1253 hcd_free_coherent(urb
->dev
->bus
,
1255 (void **)&urb
->setup_packet
,
1256 sizeof(struct usb_ctrlrequest
),
1263 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1265 enum dma_data_direction dir
;
1267 if (is_root_hub(urb
->dev
))
1270 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)
1271 && !(urb
->transfer_flags
& URB_NO_SETUP_DMA_MAP
)) {
1272 if (hcd
->self
.uses_dma
)
1273 dma_unmap_single(hcd
->self
.controller
, urb
->setup_dma
,
1274 sizeof(struct usb_ctrlrequest
),
1276 else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
)
1277 hcd_free_coherent(urb
->dev
->bus
, &urb
->setup_dma
,
1278 (void **)&urb
->setup_packet
,
1279 sizeof(struct usb_ctrlrequest
),
1283 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1284 if (urb
->transfer_buffer_length
!= 0
1285 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1286 if (hcd
->self
.uses_dma
)
1287 dma_unmap_single(hcd
->self
.controller
,
1289 urb
->transfer_buffer_length
,
1291 else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
)
1292 hcd_free_coherent(urb
->dev
->bus
, &urb
->transfer_dma
,
1293 &urb
->transfer_buffer
,
1294 urb
->transfer_buffer_length
,
1299 /*-------------------------------------------------------------------------*/
1301 /* may be called in any context with a valid urb->dev usecount
1302 * caller surrenders "ownership" of urb
1303 * expects usb_submit_urb() to have sanity checked and conditioned all
1306 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1309 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1311 /* increment urb's reference count as part of giving it to the HCD
1312 * (which will control it). HCD guarantees that it either returns
1313 * an error or calls giveback(), but not both.
1316 atomic_inc(&urb
->use_count
);
1317 atomic_inc(&urb
->dev
->urbnum
);
1318 usbmon_urb_submit(&hcd
->self
, urb
);
1320 /* NOTE requirements on root-hub callers (usbfs and the hub
1321 * driver, for now): URBs' urb->transfer_buffer must be
1322 * valid and usb_buffer_{sync,unmap}() not be needed, since
1323 * they could clobber root hub response data. Also, control
1324 * URBs must be submitted in process context with interrupts
1327 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1328 if (unlikely(status
)) {
1329 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1333 if (is_root_hub(urb
->dev
))
1334 status
= rh_urb_enqueue(hcd
, urb
);
1336 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1338 if (unlikely(status
)) {
1339 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1340 unmap_urb_for_dma(hcd
, urb
);
1343 INIT_LIST_HEAD(&urb
->urb_list
);
1344 atomic_dec(&urb
->use_count
);
1345 atomic_dec(&urb
->dev
->urbnum
);
1347 wake_up(&usb_kill_urb_queue
);
1353 /*-------------------------------------------------------------------------*/
1355 /* this makes the hcd giveback() the urb more quickly, by kicking it
1356 * off hardware queues (which may take a while) and returning it as
1357 * soon as practical. we've already set up the urb's return status,
1358 * but we can't know if the callback completed already.
1360 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1364 if (is_root_hub(urb
->dev
))
1365 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1368 /* The only reason an HCD might fail this call is if
1369 * it has not yet fully queued the urb to begin with.
1370 * Such failures should be harmless. */
1371 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1377 * called in any context
1379 * caller guarantees urb won't be recycled till both unlink()
1380 * and the urb's completion function return
1382 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1384 struct usb_hcd
*hcd
;
1387 hcd
= bus_to_hcd(urb
->dev
->bus
);
1388 retval
= unlink1(hcd
, urb
, status
);
1391 retval
= -EINPROGRESS
;
1392 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1393 dev_dbg(&urb
->dev
->dev
, "hcd_unlink_urb %p fail %d\n",
1398 /*-------------------------------------------------------------------------*/
1401 * usb_hcd_giveback_urb - return URB from HCD to device driver
1402 * @hcd: host controller returning the URB
1403 * @urb: urb being returned to the USB device driver.
1404 * @status: completion status code for the URB.
1405 * Context: in_interrupt()
1407 * This hands the URB from HCD to its USB device driver, using its
1408 * completion function. The HCD has freed all per-urb resources
1409 * (and is done using urb->hcpriv). It also released all HCD locks;
1410 * the device driver won't cause problems if it frees, modifies,
1411 * or resubmits this URB.
1413 * If @urb was unlinked, the value of @status will be overridden by
1414 * @urb->unlinked. Erroneous short transfers are detected in case
1415 * the HCD hasn't checked for them.
1417 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1420 if (unlikely(urb
->unlinked
))
1421 status
= urb
->unlinked
;
1422 else if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1423 urb
->actual_length
< urb
->transfer_buffer_length
&&
1425 status
= -EREMOTEIO
;
1427 unmap_urb_for_dma(hcd
, urb
);
1428 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1429 usb_unanchor_urb(urb
);
1431 /* pass ownership to the completion handler */
1432 urb
->status
= status
;
1433 urb
->complete (urb
);
1434 atomic_dec (&urb
->use_count
);
1435 if (unlikely (urb
->reject
))
1436 wake_up (&usb_kill_urb_queue
);
1439 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1441 /*-------------------------------------------------------------------------*/
1443 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1444 * queue to drain completely. The caller must first insure that no more
1445 * URBs can be submitted for this endpoint.
1447 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1448 struct usb_host_endpoint
*ep
)
1450 struct usb_hcd
*hcd
;
1456 hcd
= bus_to_hcd(udev
->bus
);
1458 /* No more submits can occur */
1459 spin_lock_irq(&hcd_urb_list_lock
);
1461 list_for_each_entry (urb
, &ep
->urb_list
, urb_list
) {
1467 is_in
= usb_urb_dir_in(urb
);
1468 spin_unlock(&hcd_urb_list_lock
);
1471 unlink1(hcd
, urb
, -ESHUTDOWN
);
1472 dev_dbg (hcd
->self
.controller
,
1473 "shutdown urb %p ep%d%s%s\n",
1474 urb
, usb_endpoint_num(&ep
->desc
),
1475 is_in
? "in" : "out",
1478 switch (usb_endpoint_type(&ep
->desc
)) {
1479 case USB_ENDPOINT_XFER_CONTROL
:
1481 case USB_ENDPOINT_XFER_BULK
:
1483 case USB_ENDPOINT_XFER_INT
:
1492 /* list contents may have changed */
1493 spin_lock(&hcd_urb_list_lock
);
1496 spin_unlock_irq(&hcd_urb_list_lock
);
1498 /* Wait until the endpoint queue is completely empty */
1499 while (!list_empty (&ep
->urb_list
)) {
1500 spin_lock_irq(&hcd_urb_list_lock
);
1502 /* The list may have changed while we acquired the spinlock */
1504 if (!list_empty (&ep
->urb_list
)) {
1505 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1509 spin_unlock_irq(&hcd_urb_list_lock
);
1518 /* Disables the endpoint: synchronizes with the hcd to make sure all
1519 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1520 * have been called previously. Use for set_configuration, set_interface,
1521 * driver removal, physical disconnect.
1523 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1524 * type, maxpacket size, toggle, halt status, and scheduling.
1526 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
1527 struct usb_host_endpoint
*ep
)
1529 struct usb_hcd
*hcd
;
1532 hcd
= bus_to_hcd(udev
->bus
);
1533 if (hcd
->driver
->endpoint_disable
)
1534 hcd
->driver
->endpoint_disable(hcd
, ep
);
1537 /*-------------------------------------------------------------------------*/
1539 /* called in any context */
1540 int usb_hcd_get_frame_number (struct usb_device
*udev
)
1542 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
1544 if (!HC_IS_RUNNING (hcd
->state
))
1546 return hcd
->driver
->get_frame_number (hcd
);
1549 /*-------------------------------------------------------------------------*/
1553 int hcd_bus_suspend(struct usb_device
*rhdev
)
1555 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
1557 int old_state
= hcd
->state
;
1559 dev_dbg(&rhdev
->dev
, "bus %s%s\n",
1560 rhdev
->auto_pm
? "auto-" : "", "suspend");
1561 if (!hcd
->driver
->bus_suspend
) {
1564 hcd
->state
= HC_STATE_QUIESCING
;
1565 status
= hcd
->driver
->bus_suspend(hcd
);
1568 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
1569 hcd
->state
= HC_STATE_SUSPENDED
;
1571 hcd
->state
= old_state
;
1572 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
1578 int hcd_bus_resume(struct usb_device
*rhdev
)
1580 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
1582 int old_state
= hcd
->state
;
1584 dev_dbg(&rhdev
->dev
, "usb %s%s\n",
1585 rhdev
->auto_pm
? "auto-" : "", "resume");
1586 if (!hcd
->driver
->bus_resume
)
1588 if (hcd
->state
== HC_STATE_RUNNING
)
1591 hcd
->state
= HC_STATE_RESUMING
;
1592 status
= hcd
->driver
->bus_resume(hcd
);
1594 /* TRSMRCY = 10 msec */
1596 usb_set_device_state(rhdev
, rhdev
->actconfig
1597 ? USB_STATE_CONFIGURED
1598 : USB_STATE_ADDRESS
);
1599 hcd
->state
= HC_STATE_RUNNING
;
1601 hcd
->state
= old_state
;
1602 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
1604 if (status
!= -ESHUTDOWN
)
1610 /* Workqueue routine for root-hub remote wakeup */
1611 static void hcd_resume_work(struct work_struct
*work
)
1613 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
1614 struct usb_device
*udev
= hcd
->self
.root_hub
;
1616 usb_lock_device(udev
);
1617 usb_mark_last_busy(udev
);
1618 usb_external_resume_device(udev
);
1619 usb_unlock_device(udev
);
1623 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1624 * @hcd: host controller for this root hub
1626 * The USB host controller calls this function when its root hub is
1627 * suspended (with the remote wakeup feature enabled) and a remote
1628 * wakeup request is received. The routine submits a workqueue request
1629 * to resume the root hub (that is, manage its downstream ports again).
1631 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
1633 unsigned long flags
;
1635 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
1636 if (hcd
->rh_registered
)
1637 queue_work(ksuspend_usb_wq
, &hcd
->wakeup_work
);
1638 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
1640 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
1644 /*-------------------------------------------------------------------------*/
1646 #ifdef CONFIG_USB_OTG
1649 * usb_bus_start_enum - start immediate enumeration (for OTG)
1650 * @bus: the bus (must use hcd framework)
1651 * @port_num: 1-based number of port; usually bus->otg_port
1652 * Context: in_interrupt()
1654 * Starts enumeration, with an immediate reset followed later by
1655 * khubd identifying and possibly configuring the device.
1656 * This is needed by OTG controller drivers, where it helps meet
1657 * HNP protocol timing requirements for starting a port reset.
1659 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
1661 struct usb_hcd
*hcd
;
1662 int status
= -EOPNOTSUPP
;
1664 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1665 * boards with root hubs hooked up to internal devices (instead of
1666 * just the OTG port) may need more attention to resetting...
1668 hcd
= container_of (bus
, struct usb_hcd
, self
);
1669 if (port_num
&& hcd
->driver
->start_port_reset
)
1670 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
1672 /* run khubd shortly after (first) root port reset finishes;
1673 * it may issue others, until at least 50 msecs have passed.
1676 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
1679 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
1683 /*-------------------------------------------------------------------------*/
1686 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1687 * @irq: the IRQ being raised
1688 * @__hcd: pointer to the HCD whose IRQ is being signaled
1690 * If the controller isn't HALTed, calls the driver's irq handler.
1691 * Checks whether the controller is now dead.
1693 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
1695 struct usb_hcd
*hcd
= __hcd
;
1696 unsigned long flags
;
1699 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1700 * when the first handler doesn't use it. So let's just
1701 * assume it's never used.
1703 local_irq_save(flags
);
1705 if (unlikely(hcd
->state
== HC_STATE_HALT
||
1706 !test_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
))) {
1708 } else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
) {
1711 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
);
1713 if (unlikely(hcd
->state
== HC_STATE_HALT
))
1718 local_irq_restore(flags
);
1722 /*-------------------------------------------------------------------------*/
1725 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1726 * @hcd: pointer to the HCD representing the controller
1728 * This is called by bus glue to report a USB host controller that died
1729 * while operations may still have been pending. It's called automatically
1730 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1732 void usb_hc_died (struct usb_hcd
*hcd
)
1734 unsigned long flags
;
1736 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
1738 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
1739 if (hcd
->rh_registered
) {
1742 /* make khubd clean up old urbs and devices */
1743 usb_set_device_state (hcd
->self
.root_hub
,
1744 USB_STATE_NOTATTACHED
);
1745 usb_kick_khubd (hcd
->self
.root_hub
);
1747 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
1749 EXPORT_SYMBOL_GPL (usb_hc_died
);
1751 /*-------------------------------------------------------------------------*/
1754 * usb_create_hcd - create and initialize an HCD structure
1755 * @driver: HC driver that will use this hcd
1756 * @dev: device for this HC, stored in hcd->self.controller
1757 * @bus_name: value to store in hcd->self.bus_name
1758 * Context: !in_interrupt()
1760 * Allocate a struct usb_hcd, with extra space at the end for the
1761 * HC driver's private data. Initialize the generic members of the
1764 * If memory is unavailable, returns NULL.
1766 struct usb_hcd
*usb_create_hcd (const struct hc_driver
*driver
,
1767 struct device
*dev
, char *bus_name
)
1769 struct usb_hcd
*hcd
;
1771 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
1773 dev_dbg (dev
, "hcd alloc failed\n");
1776 dev_set_drvdata(dev
, hcd
);
1777 kref_init(&hcd
->kref
);
1779 usb_bus_init(&hcd
->self
);
1780 hcd
->self
.controller
= dev
;
1781 hcd
->self
.bus_name
= bus_name
;
1782 hcd
->self
.uses_dma
= (dev
->dma_mask
!= NULL
);
1784 init_timer(&hcd
->rh_timer
);
1785 hcd
->rh_timer
.function
= rh_timer_func
;
1786 hcd
->rh_timer
.data
= (unsigned long) hcd
;
1788 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
1791 hcd
->driver
= driver
;
1792 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
1793 "USB Host Controller";
1796 EXPORT_SYMBOL_GPL(usb_create_hcd
);
1798 static void hcd_release (struct kref
*kref
)
1800 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
1805 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
1808 kref_get (&hcd
->kref
);
1811 EXPORT_SYMBOL_GPL(usb_get_hcd
);
1813 void usb_put_hcd (struct usb_hcd
*hcd
)
1816 kref_put (&hcd
->kref
, hcd_release
);
1818 EXPORT_SYMBOL_GPL(usb_put_hcd
);
1821 * usb_add_hcd - finish generic HCD structure initialization and register
1822 * @hcd: the usb_hcd structure to initialize
1823 * @irqnum: Interrupt line to allocate
1824 * @irqflags: Interrupt type flags
1826 * Finish the remaining parts of generic HCD initialization: allocate the
1827 * buffers of consistent memory, register the bus, request the IRQ line,
1828 * and call the driver's reset() and start() routines.
1830 int usb_add_hcd(struct usb_hcd
*hcd
,
1831 unsigned int irqnum
, unsigned long irqflags
)
1834 struct usb_device
*rhdev
;
1836 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
1838 hcd
->authorized_default
= hcd
->wireless
? 0 : 1;
1839 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
1841 /* HC is in reset state, but accessible. Now do the one-time init,
1842 * bottom up so that hcds can customize the root hubs before khubd
1843 * starts talking to them. (Note, bus id is assigned early too.)
1845 if ((retval
= hcd_buffer_create(hcd
)) != 0) {
1846 dev_dbg(hcd
->self
.controller
, "pool alloc failed\n");
1850 if ((retval
= usb_register_bus(&hcd
->self
)) < 0)
1851 goto err_register_bus
;
1853 if ((rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0)) == NULL
) {
1854 dev_err(hcd
->self
.controller
, "unable to allocate root hub\n");
1856 goto err_allocate_root_hub
;
1858 rhdev
->speed
= (hcd
->driver
->flags
& HCD_USB2
) ? USB_SPEED_HIGH
:
1860 hcd
->self
.root_hub
= rhdev
;
1862 /* wakeup flag init defaults to "everything works" for root hubs,
1863 * but drivers can override it in reset() if needed, along with
1864 * recording the overall controller's system wakeup capability.
1866 device_init_wakeup(&rhdev
->dev
, 1);
1868 /* "reset" is misnamed; its role is now one-time init. the controller
1869 * should already have been reset (and boot firmware kicked off etc).
1871 if (hcd
->driver
->reset
&& (retval
= hcd
->driver
->reset(hcd
)) < 0) {
1872 dev_err(hcd
->self
.controller
, "can't setup\n");
1873 goto err_hcd_driver_setup
;
1876 /* NOTE: root hub and controller capabilities may not be the same */
1877 if (device_can_wakeup(hcd
->self
.controller
)
1878 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
1879 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
1881 /* enable irqs just before we start the controller */
1882 if (hcd
->driver
->irq
) {
1884 /* IRQF_DISABLED doesn't work as advertised when used together
1885 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1886 * interrupts we can remove it here.
1888 irqflags
&= ~IRQF_DISABLED
;
1890 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
1891 hcd
->driver
->description
, hcd
->self
.busnum
);
1892 if ((retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
1893 hcd
->irq_descr
, hcd
)) != 0) {
1894 dev_err(hcd
->self
.controller
,
1895 "request interrupt %d failed\n", irqnum
);
1896 goto err_request_irq
;
1899 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
1900 (hcd
->driver
->flags
& HCD_MEMORY
) ?
1901 "io mem" : "io base",
1902 (unsigned long long)hcd
->rsrc_start
);
1905 if (hcd
->rsrc_start
)
1906 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
1907 (hcd
->driver
->flags
& HCD_MEMORY
) ?
1908 "io mem" : "io base",
1909 (unsigned long long)hcd
->rsrc_start
);
1912 if ((retval
= hcd
->driver
->start(hcd
)) < 0) {
1913 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
1914 goto err_hcd_driver_start
;
1917 /* starting here, usbcore will pay attention to this root hub */
1918 rhdev
->bus_mA
= min(500u, hcd
->power_budget
);
1919 if ((retval
= register_root_hub(hcd
)) != 0)
1920 goto err_register_root_hub
;
1922 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
1924 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
1926 goto error_create_attr_group
;
1928 if (hcd
->uses_new_polling
&& hcd
->poll_rh
)
1929 usb_hcd_poll_rh_status(hcd
);
1932 error_create_attr_group
:
1933 mutex_lock(&usb_bus_list_lock
);
1934 usb_disconnect(&hcd
->self
.root_hub
);
1935 mutex_unlock(&usb_bus_list_lock
);
1936 err_register_root_hub
:
1937 hcd
->driver
->stop(hcd
);
1938 err_hcd_driver_start
:
1940 free_irq(irqnum
, hcd
);
1942 err_hcd_driver_setup
:
1943 hcd
->self
.root_hub
= NULL
;
1945 err_allocate_root_hub
:
1946 usb_deregister_bus(&hcd
->self
);
1948 hcd_buffer_destroy(hcd
);
1951 EXPORT_SYMBOL_GPL(usb_add_hcd
);
1954 * usb_remove_hcd - shutdown processing for generic HCDs
1955 * @hcd: the usb_hcd structure to remove
1956 * Context: !in_interrupt()
1958 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1959 * invoking the HCD's stop() method.
1961 void usb_remove_hcd(struct usb_hcd
*hcd
)
1963 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
1965 if (HC_IS_RUNNING (hcd
->state
))
1966 hcd
->state
= HC_STATE_QUIESCING
;
1968 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
1969 spin_lock_irq (&hcd_root_hub_lock
);
1970 hcd
->rh_registered
= 0;
1971 spin_unlock_irq (&hcd_root_hub_lock
);
1974 cancel_work_sync(&hcd
->wakeup_work
);
1977 sysfs_remove_group(&hcd
->self
.root_hub
->dev
.kobj
, &usb_bus_attr_group
);
1978 mutex_lock(&usb_bus_list_lock
);
1979 usb_disconnect(&hcd
->self
.root_hub
);
1980 mutex_unlock(&usb_bus_list_lock
);
1982 hcd
->driver
->stop(hcd
);
1983 hcd
->state
= HC_STATE_HALT
;
1986 del_timer_sync(&hcd
->rh_timer
);
1989 free_irq(hcd
->irq
, hcd
);
1990 usb_deregister_bus(&hcd
->self
);
1991 hcd_buffer_destroy(hcd
);
1993 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
1996 usb_hcd_platform_shutdown(struct platform_device
* dev
)
1998 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
2000 if (hcd
->driver
->shutdown
)
2001 hcd
->driver
->shutdown(hcd
);
2003 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
2005 /*-------------------------------------------------------------------------*/
2007 #if defined(CONFIG_USB_MON)
2009 struct usb_mon_operations
*mon_ops
;
2012 * The registration is unlocked.
2013 * We do it this way because we do not want to lock in hot paths.
2015 * Notice that the code is minimally error-proof. Because usbmon needs
2016 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2019 int usb_mon_register (struct usb_mon_operations
*ops
)
2029 EXPORT_SYMBOL_GPL (usb_mon_register
);
2031 void usb_mon_deregister (void)
2034 if (mon_ops
== NULL
) {
2035 printk(KERN_ERR
"USB: monitor was not registered\n");
2041 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
2043 #endif /* CONFIG_USB_MON */