kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / usb / gadget / amd5536udc.c
blobf261d2a9a5f00bafd2e02f6cb4b119378773c04a
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
27 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
29 * by BIOS init).
31 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33 * can be used with gadget ether.
36 /* debug control */
37 /* #define UDC_VERBOSE */
39 /* Driver strings */
40 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
41 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
43 /* system */
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/version.h>
48 #include <linux/delay.h>
49 #include <linux/ioport.h>
50 #include <linux/sched.h>
51 #include <linux/slab.h>
52 #include <linux/smp_lock.h>
53 #include <linux/errno.h>
54 #include <linux/init.h>
55 #include <linux/timer.h>
56 #include <linux/list.h>
57 #include <linux/interrupt.h>
58 #include <linux/ioctl.h>
59 #include <linux/fs.h>
60 #include <linux/dmapool.h>
61 #include <linux/moduleparam.h>
62 #include <linux/device.h>
63 #include <linux/io.h>
64 #include <linux/irq.h>
66 #include <asm/byteorder.h>
67 #include <asm/system.h>
68 #include <asm/unaligned.h>
70 /* gadget stack */
71 #include <linux/usb/ch9.h>
72 #include <linux/usb/gadget.h>
74 /* udc specific */
75 #include "amd5536udc.h"
78 static void udc_tasklet_disconnect(unsigned long);
79 static void empty_req_queue(struct udc_ep *);
80 static int udc_probe(struct udc *dev);
81 static void udc_basic_init(struct udc *dev);
82 static void udc_setup_endpoints(struct udc *dev);
83 static void udc_soft_reset(struct udc *dev);
84 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
85 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
86 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
87 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
88 unsigned long buf_len, gfp_t gfp_flags);
89 static int udc_remote_wakeup(struct udc *dev);
90 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
91 static void udc_pci_remove(struct pci_dev *pdev);
93 /* description */
94 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
95 static const char name[] = "amd5536udc";
97 /* structure to hold endpoint function pointers */
98 static const struct usb_ep_ops udc_ep_ops;
100 /* received setup data */
101 static union udc_setup_data setup_data;
103 /* pointer to device object */
104 static struct udc *udc;
106 /* irq spin lock for soft reset */
107 static DEFINE_SPINLOCK(udc_irq_spinlock);
108 /* stall spin lock */
109 static DEFINE_SPINLOCK(udc_stall_spinlock);
112 * slave mode: pending bytes in rx fifo after nyet,
113 * used if EPIN irq came but no req was available
115 static unsigned int udc_rxfifo_pending;
117 /* count soft resets after suspend to avoid loop */
118 static int soft_reset_occured;
119 static int soft_reset_after_usbreset_occured;
121 /* timer */
122 static struct timer_list udc_timer;
123 static int stop_timer;
125 /* set_rde -- Is used to control enabling of RX DMA. Problem is
126 * that UDC has only one bit (RDE) to enable/disable RX DMA for
127 * all OUT endpoints. So we have to handle race conditions like
128 * when OUT data reaches the fifo but no request was queued yet.
129 * This cannot be solved by letting the RX DMA disabled until a
130 * request gets queued because there may be other OUT packets
131 * in the FIFO (important for not blocking control traffic).
132 * The value of set_rde controls the correspondig timer.
134 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
135 * set_rde 0 == do not touch RDE, do no start the RDE timer
136 * set_rde 1 == timer function will look whether FIFO has data
137 * set_rde 2 == set by timer function to enable RX DMA on next call
139 static int set_rde = -1;
141 static DECLARE_COMPLETION(on_exit);
142 static struct timer_list udc_pollstall_timer;
143 static int stop_pollstall_timer;
144 static DECLARE_COMPLETION(on_pollstall_exit);
146 /* tasklet for usb disconnect */
147 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
148 (unsigned long) &udc);
151 /* endpoint names used for print */
152 static const char ep0_string[] = "ep0in";
153 static const char *ep_string[] = {
154 ep0_string,
155 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
156 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
157 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
158 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
159 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
160 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
161 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
164 /* DMA usage flag */
165 static int use_dma = 1;
166 /* packet per buffer dma */
167 static int use_dma_ppb = 1;
168 /* with per descr. update */
169 static int use_dma_ppb_du;
170 /* buffer fill mode */
171 static int use_dma_bufferfill_mode;
172 /* full speed only mode */
173 static int use_fullspeed;
174 /* tx buffer size for high speed */
175 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
177 /* module parameters */
178 module_param(use_dma, bool, S_IRUGO);
179 MODULE_PARM_DESC(use_dma, "true for DMA");
180 module_param(use_dma_ppb, bool, S_IRUGO);
181 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
182 module_param(use_dma_ppb_du, bool, S_IRUGO);
183 MODULE_PARM_DESC(use_dma_ppb_du,
184 "true for DMA in packet per buffer mode with descriptor update");
185 module_param(use_fullspeed, bool, S_IRUGO);
186 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
188 /*---------------------------------------------------------------------------*/
189 /* Prints UDC device registers and endpoint irq registers */
190 static void print_regs(struct udc *dev)
192 DBG(dev, "------- Device registers -------\n");
193 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
194 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
195 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
196 DBG(dev, "\n");
197 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
198 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
199 DBG(dev, "\n");
200 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
201 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
202 DBG(dev, "\n");
203 DBG(dev, "USE DMA = %d\n", use_dma);
204 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
205 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
206 "WITHOUT desc. update)\n");
207 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
208 } else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
209 DBG(dev, "DMA mode = PPBDU (packet per buffer "
210 "WITH desc. update)\n");
211 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
213 if (use_dma && use_dma_bufferfill_mode) {
214 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
215 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
217 if (!use_dma) {
218 dev_info(&dev->pdev->dev, "FIFO mode\n");
220 DBG(dev, "-------------------------------------------------------\n");
223 /* Masks unused interrupts */
224 static int udc_mask_unused_interrupts(struct udc *dev)
226 u32 tmp;
228 /* mask all dev interrupts */
229 tmp = AMD_BIT(UDC_DEVINT_SVC) |
230 AMD_BIT(UDC_DEVINT_ENUM) |
231 AMD_BIT(UDC_DEVINT_US) |
232 AMD_BIT(UDC_DEVINT_UR) |
233 AMD_BIT(UDC_DEVINT_ES) |
234 AMD_BIT(UDC_DEVINT_SI) |
235 AMD_BIT(UDC_DEVINT_SOF)|
236 AMD_BIT(UDC_DEVINT_SC);
237 writel(tmp, &dev->regs->irqmsk);
239 /* mask all ep interrupts */
240 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
242 return 0;
245 /* Enables endpoint 0 interrupts */
246 static int udc_enable_ep0_interrupts(struct udc *dev)
248 u32 tmp;
250 DBG(dev, "udc_enable_ep0_interrupts()\n");
252 /* read irq mask */
253 tmp = readl(&dev->regs->ep_irqmsk);
254 /* enable ep0 irq's */
255 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
256 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
257 writel(tmp, &dev->regs->ep_irqmsk);
259 return 0;
262 /* Enables device interrupts for SET_INTF and SET_CONFIG */
263 static int udc_enable_dev_setup_interrupts(struct udc *dev)
265 u32 tmp;
267 DBG(dev, "enable device interrupts for setup data\n");
269 /* read irq mask */
270 tmp = readl(&dev->regs->irqmsk);
272 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
273 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
275 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
276 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
277 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
278 writel(tmp, &dev->regs->irqmsk);
280 return 0;
283 /* Calculates fifo start of endpoint based on preceeding endpoints */
284 static int udc_set_txfifo_addr(struct udc_ep *ep)
286 struct udc *dev;
287 u32 tmp;
288 int i;
290 if (!ep || !(ep->in))
291 return -EINVAL;
293 dev = ep->dev;
294 ep->txfifo = dev->txfifo;
296 /* traverse ep's */
297 for (i = 0; i < ep->num; i++) {
298 if (dev->ep[i].regs) {
299 /* read fifo size */
300 tmp = readl(&dev->ep[i].regs->bufin_framenum);
301 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
302 ep->txfifo += tmp;
305 return 0;
308 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
309 static u32 cnak_pending;
311 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
313 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
314 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
315 cnak_pending |= 1 << (num);
316 ep->naking = 1;
317 } else
318 cnak_pending = cnak_pending & (~(1 << (num)));
322 /* Enables endpoint, is called by gadget driver */
323 static int
324 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
326 struct udc_ep *ep;
327 struct udc *dev;
328 u32 tmp;
329 unsigned long iflags;
330 u8 udc_csr_epix;
331 unsigned maxpacket;
333 if (!usbep
334 || usbep->name == ep0_string
335 || !desc
336 || desc->bDescriptorType != USB_DT_ENDPOINT)
337 return -EINVAL;
339 ep = container_of(usbep, struct udc_ep, ep);
340 dev = ep->dev;
342 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
344 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
345 return -ESHUTDOWN;
347 spin_lock_irqsave(&dev->lock, iflags);
348 ep->desc = desc;
350 ep->halted = 0;
352 /* set traffic type */
353 tmp = readl(&dev->ep[ep->num].regs->ctl);
354 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
355 writel(tmp, &dev->ep[ep->num].regs->ctl);
357 /* set max packet size */
358 maxpacket = le16_to_cpu(desc->wMaxPacketSize);
359 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
360 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
361 ep->ep.maxpacket = maxpacket;
362 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
364 /* IN ep */
365 if (ep->in) {
367 /* ep ix in UDC CSR register space */
368 udc_csr_epix = ep->num;
370 /* set buffer size (tx fifo entries) */
371 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
372 /* double buffering: fifo size = 2 x max packet size */
373 tmp = AMD_ADDBITS(
374 tmp,
375 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
376 / UDC_DWORD_BYTES,
377 UDC_EPIN_BUFF_SIZE);
378 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
380 /* calc. tx fifo base addr */
381 udc_set_txfifo_addr(ep);
383 /* flush fifo */
384 tmp = readl(&ep->regs->ctl);
385 tmp |= AMD_BIT(UDC_EPCTL_F);
386 writel(tmp, &ep->regs->ctl);
388 /* OUT ep */
389 } else {
390 /* ep ix in UDC CSR register space */
391 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
393 /* set max packet size UDC CSR */
394 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
395 tmp = AMD_ADDBITS(tmp, maxpacket,
396 UDC_CSR_NE_MAX_PKT);
397 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
399 if (use_dma && !ep->in) {
400 /* alloc and init BNA dummy request */
401 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
402 ep->bna_occurred = 0;
405 if (ep->num != UDC_EP0OUT_IX)
406 dev->data_ep_enabled = 1;
409 /* set ep values */
410 tmp = readl(&dev->csr->ne[udc_csr_epix]);
411 /* max packet */
412 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
413 /* ep number */
414 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
415 /* ep direction */
416 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
417 /* ep type */
418 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
419 /* ep config */
420 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
421 /* ep interface */
422 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
423 /* ep alt */
424 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
425 /* write reg */
426 writel(tmp, &dev->csr->ne[udc_csr_epix]);
428 /* enable ep irq */
429 tmp = readl(&dev->regs->ep_irqmsk);
430 tmp &= AMD_UNMASK_BIT(ep->num);
431 writel(tmp, &dev->regs->ep_irqmsk);
434 * clear NAK by writing CNAK
435 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
437 if (!use_dma || ep->in) {
438 tmp = readl(&ep->regs->ctl);
439 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
440 writel(tmp, &ep->regs->ctl);
441 ep->naking = 0;
442 UDC_QUEUE_CNAK(ep, ep->num);
444 tmp = desc->bEndpointAddress;
445 DBG(dev, "%s enabled\n", usbep->name);
447 spin_unlock_irqrestore(&dev->lock, iflags);
448 return 0;
451 /* Resets endpoint */
452 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
454 u32 tmp;
456 VDBG(ep->dev, "ep-%d reset\n", ep->num);
457 ep->desc = NULL;
458 ep->ep.ops = &udc_ep_ops;
459 INIT_LIST_HEAD(&ep->queue);
461 ep->ep.maxpacket = (u16) ~0;
462 /* set NAK */
463 tmp = readl(&ep->regs->ctl);
464 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
465 writel(tmp, &ep->regs->ctl);
466 ep->naking = 1;
468 /* disable interrupt */
469 tmp = readl(&regs->ep_irqmsk);
470 tmp |= AMD_BIT(ep->num);
471 writel(tmp, &regs->ep_irqmsk);
473 if (ep->in) {
474 /* unset P and IN bit of potential former DMA */
475 tmp = readl(&ep->regs->ctl);
476 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
477 writel(tmp, &ep->regs->ctl);
479 tmp = readl(&ep->regs->sts);
480 tmp |= AMD_BIT(UDC_EPSTS_IN);
481 writel(tmp, &ep->regs->sts);
483 /* flush the fifo */
484 tmp = readl(&ep->regs->ctl);
485 tmp |= AMD_BIT(UDC_EPCTL_F);
486 writel(tmp, &ep->regs->ctl);
489 /* reset desc pointer */
490 writel(0, &ep->regs->desptr);
493 /* Disables endpoint, is called by gadget driver */
494 static int udc_ep_disable(struct usb_ep *usbep)
496 struct udc_ep *ep = NULL;
497 unsigned long iflags;
499 if (!usbep)
500 return -EINVAL;
502 ep = container_of(usbep, struct udc_ep, ep);
503 if (usbep->name == ep0_string || !ep->desc)
504 return -EINVAL;
506 DBG(ep->dev, "Disable ep-%d\n", ep->num);
508 spin_lock_irqsave(&ep->dev->lock, iflags);
509 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
510 empty_req_queue(ep);
511 ep_init(ep->dev->regs, ep);
512 spin_unlock_irqrestore(&ep->dev->lock, iflags);
514 return 0;
517 /* Allocates request packet, called by gadget driver */
518 static struct usb_request *
519 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
521 struct udc_request *req;
522 struct udc_data_dma *dma_desc;
523 struct udc_ep *ep;
525 if (!usbep)
526 return NULL;
528 ep = container_of(usbep, struct udc_ep, ep);
530 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
531 req = kzalloc(sizeof(struct udc_request), gfp);
532 if (!req)
533 return NULL;
535 req->req.dma = DMA_DONT_USE;
536 INIT_LIST_HEAD(&req->queue);
538 if (ep->dma) {
539 /* ep0 in requests are allocated from data pool here */
540 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
541 &req->td_phys);
542 if (!dma_desc) {
543 kfree(req);
544 return NULL;
547 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
548 "td_phys = %lx\n",
549 req, dma_desc,
550 (unsigned long)req->td_phys);
551 /* prevent from using desc. - set HOST BUSY */
552 dma_desc->status = AMD_ADDBITS(dma_desc->status,
553 UDC_DMA_STP_STS_BS_HOST_BUSY,
554 UDC_DMA_STP_STS_BS);
555 dma_desc->bufptr = __constant_cpu_to_le32(DMA_DONT_USE);
556 req->td_data = dma_desc;
557 req->td_data_last = NULL;
558 req->chain_len = 1;
561 return &req->req;
564 /* Frees request packet, called by gadget driver */
565 static void
566 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
568 struct udc_ep *ep;
569 struct udc_request *req;
571 if (!usbep || !usbreq)
572 return;
574 ep = container_of(usbep, struct udc_ep, ep);
575 req = container_of(usbreq, struct udc_request, req);
576 VDBG(ep->dev, "free_req req=%p\n", req);
577 BUG_ON(!list_empty(&req->queue));
578 if (req->td_data) {
579 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
581 /* free dma chain if created */
582 if (req->chain_len > 1) {
583 udc_free_dma_chain(ep->dev, req);
586 pci_pool_free(ep->dev->data_requests, req->td_data,
587 req->td_phys);
589 kfree(req);
592 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
593 static void udc_init_bna_dummy(struct udc_request *req)
595 if (req) {
596 /* set last bit */
597 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
598 /* set next pointer to itself */
599 req->td_data->next = req->td_phys;
600 /* set HOST BUSY */
601 req->td_data->status
602 = AMD_ADDBITS(req->td_data->status,
603 UDC_DMA_STP_STS_BS_DMA_DONE,
604 UDC_DMA_STP_STS_BS);
605 #ifdef UDC_VERBOSE
606 pr_debug("bna desc = %p, sts = %08x\n",
607 req->td_data, req->td_data->status);
608 #endif
612 /* Allocate BNA dummy descriptor */
613 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
615 struct udc_request *req = NULL;
616 struct usb_request *_req = NULL;
618 /* alloc the dummy request */
619 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
620 if (_req) {
621 req = container_of(_req, struct udc_request, req);
622 ep->bna_dummy_req = req;
623 udc_init_bna_dummy(req);
625 return req;
628 /* Write data to TX fifo for IN packets */
629 static void
630 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
632 u8 *req_buf;
633 u32 *buf;
634 int i, j;
635 unsigned bytes = 0;
636 unsigned remaining = 0;
638 if (!req || !ep)
639 return;
641 req_buf = req->buf + req->actual;
642 prefetch(req_buf);
643 remaining = req->length - req->actual;
645 buf = (u32 *) req_buf;
647 bytes = ep->ep.maxpacket;
648 if (bytes > remaining)
649 bytes = remaining;
651 /* dwords first */
652 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
653 writel(*(buf + i), ep->txfifo);
656 /* remaining bytes must be written by byte access */
657 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
658 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
659 ep->txfifo);
662 /* dummy write confirm */
663 writel(0, &ep->regs->confirm);
666 /* Read dwords from RX fifo for OUT transfers */
667 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
669 int i;
671 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
673 for (i = 0; i < dwords; i++) {
674 *(buf + i) = readl(dev->rxfifo);
676 return 0;
679 /* Read bytes from RX fifo for OUT transfers */
680 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
682 int i, j;
683 u32 tmp;
685 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
687 /* dwords first */
688 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
689 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
692 /* remaining bytes must be read by byte access */
693 if (bytes % UDC_DWORD_BYTES) {
694 tmp = readl(dev->rxfifo);
695 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
696 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
697 tmp = tmp >> UDC_BITS_PER_BYTE;
701 return 0;
704 /* Read data from RX fifo for OUT transfers */
705 static int
706 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
708 u8 *buf;
709 unsigned buf_space;
710 unsigned bytes = 0;
711 unsigned finished = 0;
713 /* received number bytes */
714 bytes = readl(&ep->regs->sts);
715 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
717 buf_space = req->req.length - req->req.actual;
718 buf = req->req.buf + req->req.actual;
719 if (bytes > buf_space) {
720 if ((buf_space % ep->ep.maxpacket) != 0) {
721 DBG(ep->dev,
722 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
723 ep->ep.name, bytes, buf_space);
724 req->req.status = -EOVERFLOW;
726 bytes = buf_space;
728 req->req.actual += bytes;
730 /* last packet ? */
731 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
732 || ((req->req.actual == req->req.length) && !req->req.zero))
733 finished = 1;
735 /* read rx fifo bytes */
736 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
737 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
739 return finished;
742 /* create/re-init a DMA descriptor or a DMA descriptor chain */
743 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
745 int retval = 0;
746 u32 tmp;
748 VDBG(ep->dev, "prep_dma\n");
749 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
750 ep->num, req->td_data);
752 /* set buffer pointer */
753 req->td_data->bufptr = req->req.dma;
755 /* set last bit */
756 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
758 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
759 if (use_dma_ppb) {
761 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
762 if (retval != 0) {
763 if (retval == -ENOMEM)
764 DBG(ep->dev, "Out of DMA memory\n");
765 return retval;
767 if (ep->in) {
768 if (req->req.length == ep->ep.maxpacket) {
769 /* write tx bytes */
770 req->td_data->status =
771 AMD_ADDBITS(req->td_data->status,
772 ep->ep.maxpacket,
773 UDC_DMA_IN_STS_TXBYTES);
780 if (ep->in) {
781 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
782 "maxpacket=%d ep%d\n",
783 use_dma_ppb, req->req.length,
784 ep->ep.maxpacket, ep->num);
786 * if bytes < max packet then tx bytes must
787 * be written in packet per buffer mode
789 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
790 || ep->num == UDC_EP0OUT_IX
791 || ep->num == UDC_EP0IN_IX) {
792 /* write tx bytes */
793 req->td_data->status =
794 AMD_ADDBITS(req->td_data->status,
795 req->req.length,
796 UDC_DMA_IN_STS_TXBYTES);
797 /* reset frame num */
798 req->td_data->status =
799 AMD_ADDBITS(req->td_data->status,
801 UDC_DMA_IN_STS_FRAMENUM);
803 /* set HOST BUSY */
804 req->td_data->status =
805 AMD_ADDBITS(req->td_data->status,
806 UDC_DMA_STP_STS_BS_HOST_BUSY,
807 UDC_DMA_STP_STS_BS);
808 } else {
809 VDBG(ep->dev, "OUT set host ready\n");
810 /* set HOST READY */
811 req->td_data->status =
812 AMD_ADDBITS(req->td_data->status,
813 UDC_DMA_STP_STS_BS_HOST_READY,
814 UDC_DMA_STP_STS_BS);
817 /* clear NAK by writing CNAK */
818 if (ep->naking) {
819 tmp = readl(&ep->regs->ctl);
820 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
821 writel(tmp, &ep->regs->ctl);
822 ep->naking = 0;
823 UDC_QUEUE_CNAK(ep, ep->num);
828 return retval;
831 /* Completes request packet ... caller MUST hold lock */
832 static void
833 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
834 __releases(ep->dev->lock)
835 __acquires(ep->dev->lock)
837 struct udc *dev;
838 unsigned halted;
840 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
842 dev = ep->dev;
843 /* unmap DMA */
844 if (req->dma_mapping) {
845 if (ep->in)
846 pci_unmap_single(dev->pdev,
847 req->req.dma,
848 req->req.length,
849 PCI_DMA_TODEVICE);
850 else
851 pci_unmap_single(dev->pdev,
852 req->req.dma,
853 req->req.length,
854 PCI_DMA_FROMDEVICE);
855 req->dma_mapping = 0;
856 req->req.dma = DMA_DONT_USE;
859 halted = ep->halted;
860 ep->halted = 1;
862 /* set new status if pending */
863 if (req->req.status == -EINPROGRESS)
864 req->req.status = sts;
866 /* remove from ep queue */
867 list_del_init(&req->queue);
869 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
870 &req->req, req->req.length, ep->ep.name, sts);
872 spin_unlock(&dev->lock);
873 req->req.complete(&ep->ep, &req->req);
874 spin_lock(&dev->lock);
875 ep->halted = halted;
878 /* frees pci pool descriptors of a DMA chain */
879 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
882 int ret_val = 0;
883 struct udc_data_dma *td;
884 struct udc_data_dma *td_last = NULL;
885 unsigned int i;
887 DBG(dev, "free chain req = %p\n", req);
889 /* do not free first desc., will be done by free for request */
890 td_last = req->td_data;
891 td = phys_to_virt(td_last->next);
893 for (i = 1; i < req->chain_len; i++) {
895 pci_pool_free(dev->data_requests, td,
896 (dma_addr_t) td_last->next);
897 td_last = td;
898 td = phys_to_virt(td_last->next);
901 return ret_val;
904 /* Iterates to the end of a DMA chain and returns last descriptor */
905 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
907 struct udc_data_dma *td;
909 td = req->td_data;
910 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
911 td = phys_to_virt(td->next);
914 return td;
918 /* Iterates to the end of a DMA chain and counts bytes received */
919 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
921 struct udc_data_dma *td;
922 u32 count;
924 td = req->td_data;
925 /* received number bytes */
926 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
928 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
929 td = phys_to_virt(td->next);
930 /* received number bytes */
931 if (td) {
932 count += AMD_GETBITS(td->status,
933 UDC_DMA_OUT_STS_RXBYTES);
937 return count;
941 /* Creates or re-inits a DMA chain */
942 static int udc_create_dma_chain(
943 struct udc_ep *ep,
944 struct udc_request *req,
945 unsigned long buf_len, gfp_t gfp_flags
948 unsigned long bytes = req->req.length;
949 unsigned int i;
950 dma_addr_t dma_addr;
951 struct udc_data_dma *td = NULL;
952 struct udc_data_dma *last = NULL;
953 unsigned long txbytes;
954 unsigned create_new_chain = 0;
955 unsigned len;
957 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
958 bytes, buf_len);
959 dma_addr = DMA_DONT_USE;
961 /* unset L bit in first desc for OUT */
962 if (!ep->in) {
963 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
966 /* alloc only new desc's if not already available */
967 len = req->req.length / ep->ep.maxpacket;
968 if (req->req.length % ep->ep.maxpacket) {
969 len++;
972 if (len > req->chain_len) {
973 /* shorter chain already allocated before */
974 if (req->chain_len > 1) {
975 udc_free_dma_chain(ep->dev, req);
977 req->chain_len = len;
978 create_new_chain = 1;
981 td = req->td_data;
982 /* gen. required number of descriptors and buffers */
983 for (i = buf_len; i < bytes; i += buf_len) {
984 /* create or determine next desc. */
985 if (create_new_chain) {
987 td = pci_pool_alloc(ep->dev->data_requests,
988 gfp_flags, &dma_addr);
989 if (!td)
990 return -ENOMEM;
992 td->status = 0;
993 } else if (i == buf_len) {
994 /* first td */
995 td = (struct udc_data_dma *) phys_to_virt(
996 req->td_data->next);
997 td->status = 0;
998 } else {
999 td = (struct udc_data_dma *) phys_to_virt(last->next);
1000 td->status = 0;
1004 if (td)
1005 td->bufptr = req->req.dma + i; /* assign buffer */
1006 else
1007 break;
1009 /* short packet ? */
1010 if ((bytes - i) >= buf_len) {
1011 txbytes = buf_len;
1012 } else {
1013 /* short packet */
1014 txbytes = bytes - i;
1017 /* link td and assign tx bytes */
1018 if (i == buf_len) {
1019 if (create_new_chain) {
1020 req->td_data->next = dma_addr;
1021 } else {
1022 /* req->td_data->next = virt_to_phys(td); */
1024 /* write tx bytes */
1025 if (ep->in) {
1026 /* first desc */
1027 req->td_data->status =
1028 AMD_ADDBITS(req->td_data->status,
1029 ep->ep.maxpacket,
1030 UDC_DMA_IN_STS_TXBYTES);
1031 /* second desc */
1032 td->status = AMD_ADDBITS(td->status,
1033 txbytes,
1034 UDC_DMA_IN_STS_TXBYTES);
1036 } else {
1037 if (create_new_chain) {
1038 last->next = dma_addr;
1039 } else {
1040 /* last->next = virt_to_phys(td); */
1042 if (ep->in) {
1043 /* write tx bytes */
1044 td->status = AMD_ADDBITS(td->status,
1045 txbytes,
1046 UDC_DMA_IN_STS_TXBYTES);
1049 last = td;
1051 /* set last bit */
1052 if (td) {
1053 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1054 /* last desc. points to itself */
1055 req->td_data_last = td;
1058 return 0;
1061 /* Enabling RX DMA */
1062 static void udc_set_rde(struct udc *dev)
1064 u32 tmp;
1066 VDBG(dev, "udc_set_rde()\n");
1067 /* stop RDE timer */
1068 if (timer_pending(&udc_timer)) {
1069 set_rde = 0;
1070 mod_timer(&udc_timer, jiffies - 1);
1072 /* set RDE */
1073 tmp = readl(&dev->regs->ctl);
1074 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1075 writel(tmp, &dev->regs->ctl);
1078 /* Queues a request packet, called by gadget driver */
1079 static int
1080 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1082 int retval = 0;
1083 u8 open_rxfifo = 0;
1084 unsigned long iflags;
1085 struct udc_ep *ep;
1086 struct udc_request *req;
1087 struct udc *dev;
1088 u32 tmp;
1090 /* check the inputs */
1091 req = container_of(usbreq, struct udc_request, req);
1093 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1094 || !list_empty(&req->queue))
1095 return -EINVAL;
1097 ep = container_of(usbep, struct udc_ep, ep);
1098 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1099 return -EINVAL;
1101 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1102 dev = ep->dev;
1104 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1105 return -ESHUTDOWN;
1107 /* map dma (usually done before) */
1108 if (ep->dma && usbreq->length != 0
1109 && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
1110 VDBG(dev, "DMA map req %p\n", req);
1111 if (ep->in)
1112 usbreq->dma = pci_map_single(dev->pdev,
1113 usbreq->buf,
1114 usbreq->length,
1115 PCI_DMA_TODEVICE);
1116 else
1117 usbreq->dma = pci_map_single(dev->pdev,
1118 usbreq->buf,
1119 usbreq->length,
1120 PCI_DMA_FROMDEVICE);
1121 req->dma_mapping = 1;
1124 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1125 usbep->name, usbreq, usbreq->length,
1126 req->td_data, usbreq->buf);
1128 spin_lock_irqsave(&dev->lock, iflags);
1129 usbreq->actual = 0;
1130 usbreq->status = -EINPROGRESS;
1131 req->dma_done = 0;
1133 /* on empty queue just do first transfer */
1134 if (list_empty(&ep->queue)) {
1135 /* zlp */
1136 if (usbreq->length == 0) {
1137 /* IN zlp's are handled by hardware */
1138 complete_req(ep, req, 0);
1139 VDBG(dev, "%s: zlp\n", ep->ep.name);
1141 * if set_config or set_intf is waiting for ack by zlp
1142 * then set CSR_DONE
1144 if (dev->set_cfg_not_acked) {
1145 tmp = readl(&dev->regs->ctl);
1146 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1147 writel(tmp, &dev->regs->ctl);
1148 dev->set_cfg_not_acked = 0;
1150 /* setup command is ACK'ed now by zlp */
1151 if (dev->waiting_zlp_ack_ep0in) {
1152 /* clear NAK by writing CNAK in EP0_IN */
1153 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1154 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1155 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1156 dev->ep[UDC_EP0IN_IX].naking = 0;
1157 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1158 UDC_EP0IN_IX);
1159 dev->waiting_zlp_ack_ep0in = 0;
1161 goto finished;
1163 if (ep->dma) {
1164 retval = prep_dma(ep, req, gfp);
1165 if (retval != 0)
1166 goto finished;
1167 /* write desc pointer to enable DMA */
1168 if (ep->in) {
1169 /* set HOST READY */
1170 req->td_data->status =
1171 AMD_ADDBITS(req->td_data->status,
1172 UDC_DMA_IN_STS_BS_HOST_READY,
1173 UDC_DMA_IN_STS_BS);
1176 /* disabled rx dma while descriptor update */
1177 if (!ep->in) {
1178 /* stop RDE timer */
1179 if (timer_pending(&udc_timer)) {
1180 set_rde = 0;
1181 mod_timer(&udc_timer, jiffies - 1);
1183 /* clear RDE */
1184 tmp = readl(&dev->regs->ctl);
1185 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1186 writel(tmp, &dev->regs->ctl);
1187 open_rxfifo = 1;
1190 * if BNA occurred then let BNA dummy desc.
1191 * point to current desc.
1193 if (ep->bna_occurred) {
1194 VDBG(dev, "copy to BNA dummy desc.\n");
1195 memcpy(ep->bna_dummy_req->td_data,
1196 req->td_data,
1197 sizeof(struct udc_data_dma));
1200 /* write desc pointer */
1201 writel(req->td_phys, &ep->regs->desptr);
1203 /* clear NAK by writing CNAK */
1204 if (ep->naking) {
1205 tmp = readl(&ep->regs->ctl);
1206 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1207 writel(tmp, &ep->regs->ctl);
1208 ep->naking = 0;
1209 UDC_QUEUE_CNAK(ep, ep->num);
1212 if (ep->in) {
1213 /* enable ep irq */
1214 tmp = readl(&dev->regs->ep_irqmsk);
1215 tmp &= AMD_UNMASK_BIT(ep->num);
1216 writel(tmp, &dev->regs->ep_irqmsk);
1220 } else if (ep->dma) {
1223 * prep_dma not used for OUT ep's, this is not possible
1224 * for PPB modes, because of chain creation reasons
1226 if (ep->in) {
1227 retval = prep_dma(ep, req, gfp);
1228 if (retval != 0)
1229 goto finished;
1232 VDBG(dev, "list_add\n");
1233 /* add request to ep queue */
1234 if (req) {
1236 list_add_tail(&req->queue, &ep->queue);
1238 /* open rxfifo if out data queued */
1239 if (open_rxfifo) {
1240 /* enable DMA */
1241 req->dma_going = 1;
1242 udc_set_rde(dev);
1243 if (ep->num != UDC_EP0OUT_IX)
1244 dev->data_ep_queued = 1;
1246 /* stop OUT naking */
1247 if (!ep->in) {
1248 if (!use_dma && udc_rxfifo_pending) {
1249 DBG(dev, "udc_queue(): pending bytes in "
1250 "rxfifo after nyet\n");
1252 * read pending bytes afer nyet:
1253 * referring to isr
1255 if (udc_rxfifo_read(ep, req)) {
1256 /* finish */
1257 complete_req(ep, req, 0);
1259 udc_rxfifo_pending = 0;
1265 finished:
1266 spin_unlock_irqrestore(&dev->lock, iflags);
1267 return retval;
1270 /* Empty request queue of an endpoint; caller holds spinlock */
1271 static void empty_req_queue(struct udc_ep *ep)
1273 struct udc_request *req;
1275 ep->halted = 1;
1276 while (!list_empty(&ep->queue)) {
1277 req = list_entry(ep->queue.next,
1278 struct udc_request,
1279 queue);
1280 complete_req(ep, req, -ESHUTDOWN);
1284 /* Dequeues a request packet, called by gadget driver */
1285 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1287 struct udc_ep *ep;
1288 struct udc_request *req;
1289 unsigned halted;
1290 unsigned long iflags;
1292 ep = container_of(usbep, struct udc_ep, ep);
1293 if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
1294 && ep->num != UDC_EP0OUT_IX)))
1295 return -EINVAL;
1297 req = container_of(usbreq, struct udc_request, req);
1299 spin_lock_irqsave(&ep->dev->lock, iflags);
1300 halted = ep->halted;
1301 ep->halted = 1;
1302 /* request in processing or next one */
1303 if (ep->queue.next == &req->queue) {
1304 if (ep->dma && req->dma_going) {
1305 if (ep->in)
1306 ep->cancel_transfer = 1;
1307 else {
1308 u32 tmp;
1309 u32 dma_sts;
1310 /* stop potential receive DMA */
1311 tmp = readl(&udc->regs->ctl);
1312 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1313 &udc->regs->ctl);
1315 * Cancel transfer later in ISR
1316 * if descriptor was touched.
1318 dma_sts = AMD_GETBITS(req->td_data->status,
1319 UDC_DMA_OUT_STS_BS);
1320 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1321 ep->cancel_transfer = 1;
1322 else {
1323 udc_init_bna_dummy(ep->req);
1324 writel(ep->bna_dummy_req->td_phys,
1325 &ep->regs->desptr);
1327 writel(tmp, &udc->regs->ctl);
1331 complete_req(ep, req, -ECONNRESET);
1332 ep->halted = halted;
1334 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1335 return 0;
1338 /* Halt or clear halt of endpoint */
1339 static int
1340 udc_set_halt(struct usb_ep *usbep, int halt)
1342 struct udc_ep *ep;
1343 u32 tmp;
1344 unsigned long iflags;
1345 int retval = 0;
1347 if (!usbep)
1348 return -EINVAL;
1350 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1352 ep = container_of(usbep, struct udc_ep, ep);
1353 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1354 return -EINVAL;
1355 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1356 return -ESHUTDOWN;
1358 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1359 /* halt or clear halt */
1360 if (halt) {
1361 if (ep->num == 0)
1362 ep->dev->stall_ep0in = 1;
1363 else {
1365 * set STALL
1366 * rxfifo empty not taken into acount
1368 tmp = readl(&ep->regs->ctl);
1369 tmp |= AMD_BIT(UDC_EPCTL_S);
1370 writel(tmp, &ep->regs->ctl);
1371 ep->halted = 1;
1373 /* setup poll timer */
1374 if (!timer_pending(&udc_pollstall_timer)) {
1375 udc_pollstall_timer.expires = jiffies +
1376 HZ * UDC_POLLSTALL_TIMER_USECONDS
1377 / (1000 * 1000);
1378 if (!stop_pollstall_timer) {
1379 DBG(ep->dev, "start polltimer\n");
1380 add_timer(&udc_pollstall_timer);
1384 } else {
1385 /* ep is halted by set_halt() before */
1386 if (ep->halted) {
1387 tmp = readl(&ep->regs->ctl);
1388 /* clear stall bit */
1389 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1390 /* clear NAK by writing CNAK */
1391 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1392 writel(tmp, &ep->regs->ctl);
1393 ep->halted = 0;
1394 UDC_QUEUE_CNAK(ep, ep->num);
1397 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1398 return retval;
1401 /* gadget interface */
1402 static const struct usb_ep_ops udc_ep_ops = {
1403 .enable = udc_ep_enable,
1404 .disable = udc_ep_disable,
1406 .alloc_request = udc_alloc_request,
1407 .free_request = udc_free_request,
1409 .queue = udc_queue,
1410 .dequeue = udc_dequeue,
1412 .set_halt = udc_set_halt,
1413 /* fifo ops not implemented */
1416 /*-------------------------------------------------------------------------*/
1418 /* Get frame counter (not implemented) */
1419 static int udc_get_frame(struct usb_gadget *gadget)
1421 return -EOPNOTSUPP;
1424 /* Remote wakeup gadget interface */
1425 static int udc_wakeup(struct usb_gadget *gadget)
1427 struct udc *dev;
1429 if (!gadget)
1430 return -EINVAL;
1431 dev = container_of(gadget, struct udc, gadget);
1432 udc_remote_wakeup(dev);
1434 return 0;
1437 /* gadget operations */
1438 static const struct usb_gadget_ops udc_ops = {
1439 .wakeup = udc_wakeup,
1440 .get_frame = udc_get_frame,
1443 /* Setups endpoint parameters, adds endpoints to linked list */
1444 static void make_ep_lists(struct udc *dev)
1446 /* make gadget ep lists */
1447 INIT_LIST_HEAD(&dev->gadget.ep_list);
1448 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1449 &dev->gadget.ep_list);
1450 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1451 &dev->gadget.ep_list);
1452 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1453 &dev->gadget.ep_list);
1455 /* fifo config */
1456 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1457 if (dev->gadget.speed == USB_SPEED_FULL)
1458 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1459 else if (dev->gadget.speed == USB_SPEED_HIGH)
1460 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1461 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1464 /* init registers at driver load time */
1465 static int startup_registers(struct udc *dev)
1467 u32 tmp;
1469 /* init controller by soft reset */
1470 udc_soft_reset(dev);
1472 /* mask not needed interrupts */
1473 udc_mask_unused_interrupts(dev);
1475 /* put into initial config */
1476 udc_basic_init(dev);
1477 /* link up all endpoints */
1478 udc_setup_endpoints(dev);
1480 /* program speed */
1481 tmp = readl(&dev->regs->cfg);
1482 if (use_fullspeed) {
1483 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1484 } else {
1485 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1487 writel(tmp, &dev->regs->cfg);
1489 return 0;
1492 /* Inits UDC context */
1493 static void udc_basic_init(struct udc *dev)
1495 u32 tmp;
1497 DBG(dev, "udc_basic_init()\n");
1499 dev->gadget.speed = USB_SPEED_UNKNOWN;
1501 /* stop RDE timer */
1502 if (timer_pending(&udc_timer)) {
1503 set_rde = 0;
1504 mod_timer(&udc_timer, jiffies - 1);
1506 /* stop poll stall timer */
1507 if (timer_pending(&udc_pollstall_timer)) {
1508 mod_timer(&udc_pollstall_timer, jiffies - 1);
1510 /* disable DMA */
1511 tmp = readl(&dev->regs->ctl);
1512 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1513 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1514 writel(tmp, &dev->regs->ctl);
1516 /* enable dynamic CSR programming */
1517 tmp = readl(&dev->regs->cfg);
1518 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1519 /* set self powered */
1520 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1521 /* set remote wakeupable */
1522 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1523 writel(tmp, &dev->regs->cfg);
1525 make_ep_lists(dev);
1527 dev->data_ep_enabled = 0;
1528 dev->data_ep_queued = 0;
1531 /* Sets initial endpoint parameters */
1532 static void udc_setup_endpoints(struct udc *dev)
1534 struct udc_ep *ep;
1535 u32 tmp;
1536 u32 reg;
1538 DBG(dev, "udc_setup_endpoints()\n");
1540 /* read enum speed */
1541 tmp = readl(&dev->regs->sts);
1542 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1543 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
1544 dev->gadget.speed = USB_SPEED_HIGH;
1545 } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
1546 dev->gadget.speed = USB_SPEED_FULL;
1549 /* set basic ep parameters */
1550 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1551 ep = &dev->ep[tmp];
1552 ep->dev = dev;
1553 ep->ep.name = ep_string[tmp];
1554 ep->num = tmp;
1555 /* txfifo size is calculated at enable time */
1556 ep->txfifo = dev->txfifo;
1558 /* fifo size */
1559 if (tmp < UDC_EPIN_NUM) {
1560 ep->fifo_depth = UDC_TXFIFO_SIZE;
1561 ep->in = 1;
1562 } else {
1563 ep->fifo_depth = UDC_RXFIFO_SIZE;
1564 ep->in = 0;
1567 ep->regs = &dev->ep_regs[tmp];
1569 * ep will be reset only if ep was not enabled before to avoid
1570 * disabling ep interrupts when ENUM interrupt occurs but ep is
1571 * not enabled by gadget driver
1573 if (!ep->desc) {
1574 ep_init(dev->regs, ep);
1577 if (use_dma) {
1579 * ep->dma is not really used, just to indicate that
1580 * DMA is active: remove this
1581 * dma regs = dev control regs
1583 ep->dma = &dev->regs->ctl;
1585 /* nak OUT endpoints until enable - not for ep0 */
1586 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1587 && tmp > UDC_EPIN_NUM) {
1588 /* set NAK */
1589 reg = readl(&dev->ep[tmp].regs->ctl);
1590 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1591 writel(reg, &dev->ep[tmp].regs->ctl);
1592 dev->ep[tmp].naking = 1;
1597 /* EP0 max packet */
1598 if (dev->gadget.speed == USB_SPEED_FULL) {
1599 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1600 dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1601 UDC_FS_EP0OUT_MAX_PKT_SIZE;
1602 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1603 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1604 dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1608 * with suspend bug workaround, ep0 params for gadget driver
1609 * are set at gadget driver bind() call
1611 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1612 dev->ep[UDC_EP0IN_IX].halted = 0;
1613 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1615 /* init cfg/alt/int */
1616 dev->cur_config = 0;
1617 dev->cur_intf = 0;
1618 dev->cur_alt = 0;
1621 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1622 static void usb_connect(struct udc *dev)
1625 dev_info(&dev->pdev->dev, "USB Connect\n");
1627 dev->connected = 1;
1629 /* put into initial config */
1630 udc_basic_init(dev);
1632 /* enable device setup interrupts */
1633 udc_enable_dev_setup_interrupts(dev);
1637 * Calls gadget with disconnect event and resets the UDC and makes
1638 * initial bringup to be ready for ep0 events
1640 static void usb_disconnect(struct udc *dev)
1643 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1645 dev->connected = 0;
1647 /* mask interrupts */
1648 udc_mask_unused_interrupts(dev);
1650 /* REVISIT there doesn't seem to be a point to having this
1651 * talk to a tasklet ... do it directly, we already hold
1652 * the spinlock needed to process the disconnect.
1655 tasklet_schedule(&disconnect_tasklet);
1658 /* Tasklet for disconnect to be outside of interrupt context */
1659 static void udc_tasklet_disconnect(unsigned long par)
1661 struct udc *dev = (struct udc *)(*((struct udc **) par));
1662 u32 tmp;
1664 DBG(dev, "Tasklet disconnect\n");
1665 spin_lock_irq(&dev->lock);
1667 if (dev->driver) {
1668 spin_unlock(&dev->lock);
1669 dev->driver->disconnect(&dev->gadget);
1670 spin_lock(&dev->lock);
1672 /* empty queues */
1673 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1674 empty_req_queue(&dev->ep[tmp]);
1679 /* disable ep0 */
1680 ep_init(dev->regs,
1681 &dev->ep[UDC_EP0IN_IX]);
1684 if (!soft_reset_occured) {
1685 /* init controller by soft reset */
1686 udc_soft_reset(dev);
1687 soft_reset_occured++;
1690 /* re-enable dev interrupts */
1691 udc_enable_dev_setup_interrupts(dev);
1692 /* back to full speed ? */
1693 if (use_fullspeed) {
1694 tmp = readl(&dev->regs->cfg);
1695 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1696 writel(tmp, &dev->regs->cfg);
1699 spin_unlock_irq(&dev->lock);
1702 /* Reset the UDC core */
1703 static void udc_soft_reset(struct udc *dev)
1705 unsigned long flags;
1707 DBG(dev, "Soft reset\n");
1709 * reset possible waiting interrupts, because int.
1710 * status is lost after soft reset,
1711 * ep int. status reset
1713 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1714 /* device int. status reset */
1715 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1717 spin_lock_irqsave(&udc_irq_spinlock, flags);
1718 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1719 readl(&dev->regs->cfg);
1720 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1724 /* RDE timer callback to set RDE bit */
1725 static void udc_timer_function(unsigned long v)
1727 u32 tmp;
1729 spin_lock_irq(&udc_irq_spinlock);
1731 if (set_rde > 0) {
1733 * open the fifo if fifo was filled on last timer call
1734 * conditionally
1736 if (set_rde > 1) {
1737 /* set RDE to receive setup data */
1738 tmp = readl(&udc->regs->ctl);
1739 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1740 writel(tmp, &udc->regs->ctl);
1741 set_rde = -1;
1742 } else if (readl(&udc->regs->sts)
1743 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1745 * if fifo empty setup polling, do not just
1746 * open the fifo
1748 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1749 if (!stop_timer) {
1750 add_timer(&udc_timer);
1752 } else {
1754 * fifo contains data now, setup timer for opening
1755 * the fifo when timer expires to be able to receive
1756 * setup packets, when data packets gets queued by
1757 * gadget layer then timer will forced to expire with
1758 * set_rde=0 (RDE is set in udc_queue())
1760 set_rde++;
1761 /* debug: lhadmot_timer_start = 221070 */
1762 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1763 if (!stop_timer) {
1764 add_timer(&udc_timer);
1768 } else
1769 set_rde = -1; /* RDE was set by udc_queue() */
1770 spin_unlock_irq(&udc_irq_spinlock);
1771 if (stop_timer)
1772 complete(&on_exit);
1776 /* Handle halt state, used in stall poll timer */
1777 static void udc_handle_halt_state(struct udc_ep *ep)
1779 u32 tmp;
1780 /* set stall as long not halted */
1781 if (ep->halted == 1) {
1782 tmp = readl(&ep->regs->ctl);
1783 /* STALL cleared ? */
1784 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1786 * FIXME: MSC spec requires that stall remains
1787 * even on receivng of CLEAR_FEATURE HALT. So
1788 * we would set STALL again here to be compliant.
1789 * But with current mass storage drivers this does
1790 * not work (would produce endless host retries).
1791 * So we clear halt on CLEAR_FEATURE.
1793 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1794 tmp |= AMD_BIT(UDC_EPCTL_S);
1795 writel(tmp, &ep->regs->ctl);*/
1797 /* clear NAK by writing CNAK */
1798 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1799 writel(tmp, &ep->regs->ctl);
1800 ep->halted = 0;
1801 UDC_QUEUE_CNAK(ep, ep->num);
1806 /* Stall timer callback to poll S bit and set it again after */
1807 static void udc_pollstall_timer_function(unsigned long v)
1809 struct udc_ep *ep;
1810 int halted = 0;
1812 spin_lock_irq(&udc_stall_spinlock);
1814 * only one IN and OUT endpoints are handled
1815 * IN poll stall
1817 ep = &udc->ep[UDC_EPIN_IX];
1818 udc_handle_halt_state(ep);
1819 if (ep->halted)
1820 halted = 1;
1821 /* OUT poll stall */
1822 ep = &udc->ep[UDC_EPOUT_IX];
1823 udc_handle_halt_state(ep);
1824 if (ep->halted)
1825 halted = 1;
1827 /* setup timer again when still halted */
1828 if (!stop_pollstall_timer && halted) {
1829 udc_pollstall_timer.expires = jiffies +
1830 HZ * UDC_POLLSTALL_TIMER_USECONDS
1831 / (1000 * 1000);
1832 add_timer(&udc_pollstall_timer);
1834 spin_unlock_irq(&udc_stall_spinlock);
1836 if (stop_pollstall_timer)
1837 complete(&on_pollstall_exit);
1840 /* Inits endpoint 0 so that SETUP packets are processed */
1841 static void activate_control_endpoints(struct udc *dev)
1843 u32 tmp;
1845 DBG(dev, "activate_control_endpoints\n");
1847 /* flush fifo */
1848 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1849 tmp |= AMD_BIT(UDC_EPCTL_F);
1850 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1852 /* set ep0 directions */
1853 dev->ep[UDC_EP0IN_IX].in = 1;
1854 dev->ep[UDC_EP0OUT_IX].in = 0;
1856 /* set buffer size (tx fifo entries) of EP0_IN */
1857 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1858 if (dev->gadget.speed == USB_SPEED_FULL)
1859 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1860 UDC_EPIN_BUFF_SIZE);
1861 else if (dev->gadget.speed == USB_SPEED_HIGH)
1862 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1863 UDC_EPIN_BUFF_SIZE);
1864 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1866 /* set max packet size of EP0_IN */
1867 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1868 if (dev->gadget.speed == USB_SPEED_FULL)
1869 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1870 UDC_EP_MAX_PKT_SIZE);
1871 else if (dev->gadget.speed == USB_SPEED_HIGH)
1872 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1873 UDC_EP_MAX_PKT_SIZE);
1874 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1876 /* set max packet size of EP0_OUT */
1877 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1878 if (dev->gadget.speed == USB_SPEED_FULL)
1879 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1880 UDC_EP_MAX_PKT_SIZE);
1881 else if (dev->gadget.speed == USB_SPEED_HIGH)
1882 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1883 UDC_EP_MAX_PKT_SIZE);
1884 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1886 /* set max packet size of EP0 in UDC CSR */
1887 tmp = readl(&dev->csr->ne[0]);
1888 if (dev->gadget.speed == USB_SPEED_FULL)
1889 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1890 UDC_CSR_NE_MAX_PKT);
1891 else if (dev->gadget.speed == USB_SPEED_HIGH)
1892 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1893 UDC_CSR_NE_MAX_PKT);
1894 writel(tmp, &dev->csr->ne[0]);
1896 if (use_dma) {
1897 dev->ep[UDC_EP0OUT_IX].td->status |=
1898 AMD_BIT(UDC_DMA_OUT_STS_L);
1899 /* write dma desc address */
1900 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1901 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1902 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1903 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1904 /* stop RDE timer */
1905 if (timer_pending(&udc_timer)) {
1906 set_rde = 0;
1907 mod_timer(&udc_timer, jiffies - 1);
1909 /* stop pollstall timer */
1910 if (timer_pending(&udc_pollstall_timer)) {
1911 mod_timer(&udc_pollstall_timer, jiffies - 1);
1913 /* enable DMA */
1914 tmp = readl(&dev->regs->ctl);
1915 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1916 | AMD_BIT(UDC_DEVCTL_RDE)
1917 | AMD_BIT(UDC_DEVCTL_TDE);
1918 if (use_dma_bufferfill_mode) {
1919 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1920 } else if (use_dma_ppb_du) {
1921 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1923 writel(tmp, &dev->regs->ctl);
1926 /* clear NAK by writing CNAK for EP0IN */
1927 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1928 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1929 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1930 dev->ep[UDC_EP0IN_IX].naking = 0;
1931 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1933 /* clear NAK by writing CNAK for EP0OUT */
1934 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1935 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1936 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1937 dev->ep[UDC_EP0OUT_IX].naking = 0;
1938 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1941 /* Make endpoint 0 ready for control traffic */
1942 static int setup_ep0(struct udc *dev)
1944 activate_control_endpoints(dev);
1945 /* enable ep0 interrupts */
1946 udc_enable_ep0_interrupts(dev);
1947 /* enable device setup interrupts */
1948 udc_enable_dev_setup_interrupts(dev);
1950 return 0;
1953 /* Called by gadget driver to register itself */
1954 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1956 struct udc *dev = udc;
1957 int retval;
1958 u32 tmp;
1960 if (!driver || !driver->bind || !driver->setup
1961 || driver->speed != USB_SPEED_HIGH)
1962 return -EINVAL;
1963 if (!dev)
1964 return -ENODEV;
1965 if (dev->driver)
1966 return -EBUSY;
1968 driver->driver.bus = NULL;
1969 dev->driver = driver;
1970 dev->gadget.dev.driver = &driver->driver;
1972 retval = driver->bind(&dev->gadget);
1974 /* Some gadget drivers use both ep0 directions.
1975 * NOTE: to gadget driver, ep0 is just one endpoint...
1977 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1978 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1980 if (retval) {
1981 DBG(dev, "binding to %s returning %d\n",
1982 driver->driver.name, retval);
1983 dev->driver = NULL;
1984 dev->gadget.dev.driver = NULL;
1985 return retval;
1988 /* get ready for ep0 traffic */
1989 setup_ep0(dev);
1991 /* clear SD */
1992 tmp = readl(&dev->regs->ctl);
1993 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1994 writel(tmp, &dev->regs->ctl);
1996 usb_connect(dev);
1998 return 0;
2000 EXPORT_SYMBOL(usb_gadget_register_driver);
2002 /* shutdown requests and disconnect from gadget */
2003 static void
2004 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
2005 __releases(dev->lock)
2006 __acquires(dev->lock)
2008 int tmp;
2010 /* empty queues and init hardware */
2011 udc_basic_init(dev);
2012 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
2013 empty_req_queue(&dev->ep[tmp]);
2016 if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
2017 spin_unlock(&dev->lock);
2018 driver->disconnect(&dev->gadget);
2019 spin_lock(&dev->lock);
2021 /* init */
2022 udc_setup_endpoints(dev);
2025 /* Called by gadget driver to unregister itself */
2026 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2028 struct udc *dev = udc;
2029 unsigned long flags;
2030 u32 tmp;
2032 if (!dev)
2033 return -ENODEV;
2034 if (!driver || driver != dev->driver || !driver->unbind)
2035 return -EINVAL;
2037 spin_lock_irqsave(&dev->lock, flags);
2038 udc_mask_unused_interrupts(dev);
2039 shutdown(dev, driver);
2040 spin_unlock_irqrestore(&dev->lock, flags);
2042 driver->unbind(&dev->gadget);
2043 dev->gadget.dev.driver = NULL;
2044 dev->driver = NULL;
2046 /* set SD */
2047 tmp = readl(&dev->regs->ctl);
2048 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2049 writel(tmp, &dev->regs->ctl);
2052 DBG(dev, "%s: unregistered\n", driver->driver.name);
2054 return 0;
2056 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2059 /* Clear pending NAK bits */
2060 static void udc_process_cnak_queue(struct udc *dev)
2062 u32 tmp;
2063 u32 reg;
2065 /* check epin's */
2066 DBG(dev, "CNAK pending queue processing\n");
2067 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2068 if (cnak_pending & (1 << tmp)) {
2069 DBG(dev, "CNAK pending for ep%d\n", tmp);
2070 /* clear NAK by writing CNAK */
2071 reg = readl(&dev->ep[tmp].regs->ctl);
2072 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2073 writel(reg, &dev->ep[tmp].regs->ctl);
2074 dev->ep[tmp].naking = 0;
2075 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2078 /* ... and ep0out */
2079 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2080 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2081 /* clear NAK by writing CNAK */
2082 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2083 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2084 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2085 dev->ep[UDC_EP0OUT_IX].naking = 0;
2086 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2087 dev->ep[UDC_EP0OUT_IX].num);
2091 /* Enabling RX DMA after setup packet */
2092 static void udc_ep0_set_rde(struct udc *dev)
2094 if (use_dma) {
2096 * only enable RXDMA when no data endpoint enabled
2097 * or data is queued
2099 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2100 udc_set_rde(dev);
2101 } else {
2103 * setup timer for enabling RDE (to not enable
2104 * RXFIFO DMA for data endpoints to early)
2106 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2107 udc_timer.expires =
2108 jiffies + HZ/UDC_RDE_TIMER_DIV;
2109 set_rde = 1;
2110 if (!stop_timer) {
2111 add_timer(&udc_timer);
2119 /* Interrupt handler for data OUT traffic */
2120 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2122 irqreturn_t ret_val = IRQ_NONE;
2123 u32 tmp;
2124 struct udc_ep *ep;
2125 struct udc_request *req;
2126 unsigned int count;
2127 struct udc_data_dma *td = NULL;
2128 unsigned dma_done;
2130 VDBG(dev, "ep%d irq\n", ep_ix);
2131 ep = &dev->ep[ep_ix];
2133 tmp = readl(&ep->regs->sts);
2134 if (use_dma) {
2135 /* BNA event ? */
2136 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2137 DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
2138 ep->num, readl(&ep->regs->desptr));
2139 /* clear BNA */
2140 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2141 if (!ep->cancel_transfer)
2142 ep->bna_occurred = 1;
2143 else
2144 ep->cancel_transfer = 0;
2145 ret_val = IRQ_HANDLED;
2146 goto finished;
2149 /* HE event ? */
2150 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2151 dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
2153 /* clear HE */
2154 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2155 ret_val = IRQ_HANDLED;
2156 goto finished;
2159 if (!list_empty(&ep->queue)) {
2161 /* next request */
2162 req = list_entry(ep->queue.next,
2163 struct udc_request, queue);
2164 } else {
2165 req = NULL;
2166 udc_rxfifo_pending = 1;
2168 VDBG(dev, "req = %p\n", req);
2169 /* fifo mode */
2170 if (!use_dma) {
2172 /* read fifo */
2173 if (req && udc_rxfifo_read(ep, req)) {
2174 ret_val = IRQ_HANDLED;
2176 /* finish */
2177 complete_req(ep, req, 0);
2178 /* next request */
2179 if (!list_empty(&ep->queue) && !ep->halted) {
2180 req = list_entry(ep->queue.next,
2181 struct udc_request, queue);
2182 } else
2183 req = NULL;
2186 /* DMA */
2187 } else if (!ep->cancel_transfer && req != NULL) {
2188 ret_val = IRQ_HANDLED;
2190 /* check for DMA done */
2191 if (!use_dma_ppb) {
2192 dma_done = AMD_GETBITS(req->td_data->status,
2193 UDC_DMA_OUT_STS_BS);
2194 /* packet per buffer mode - rx bytes */
2195 } else {
2197 * if BNA occurred then recover desc. from
2198 * BNA dummy desc.
2200 if (ep->bna_occurred) {
2201 VDBG(dev, "Recover desc. from BNA dummy\n");
2202 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2203 sizeof(struct udc_data_dma));
2204 ep->bna_occurred = 0;
2205 udc_init_bna_dummy(ep->req);
2207 td = udc_get_last_dma_desc(req);
2208 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2210 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2211 /* buffer fill mode - rx bytes */
2212 if (!use_dma_ppb) {
2213 /* received number bytes */
2214 count = AMD_GETBITS(req->td_data->status,
2215 UDC_DMA_OUT_STS_RXBYTES);
2216 VDBG(dev, "rx bytes=%u\n", count);
2217 /* packet per buffer mode - rx bytes */
2218 } else {
2219 VDBG(dev, "req->td_data=%p\n", req->td_data);
2220 VDBG(dev, "last desc = %p\n", td);
2221 /* received number bytes */
2222 if (use_dma_ppb_du) {
2223 /* every desc. counts bytes */
2224 count = udc_get_ppbdu_rxbytes(req);
2225 } else {
2226 /* last desc. counts bytes */
2227 count = AMD_GETBITS(td->status,
2228 UDC_DMA_OUT_STS_RXBYTES);
2229 if (!count && req->req.length
2230 == UDC_DMA_MAXPACKET) {
2232 * on 64k packets the RXBYTES
2233 * field is zero
2235 count = UDC_DMA_MAXPACKET;
2238 VDBG(dev, "last desc rx bytes=%u\n", count);
2241 tmp = req->req.length - req->req.actual;
2242 if (count > tmp) {
2243 if ((tmp % ep->ep.maxpacket) != 0) {
2244 DBG(dev, "%s: rx %db, space=%db\n",
2245 ep->ep.name, count, tmp);
2246 req->req.status = -EOVERFLOW;
2248 count = tmp;
2250 req->req.actual += count;
2251 req->dma_going = 0;
2252 /* complete request */
2253 complete_req(ep, req, 0);
2255 /* next request */
2256 if (!list_empty(&ep->queue) && !ep->halted) {
2257 req = list_entry(ep->queue.next,
2258 struct udc_request,
2259 queue);
2261 * DMA may be already started by udc_queue()
2262 * called by gadget drivers completion
2263 * routine. This happens when queue
2264 * holds one request only.
2266 if (req->dma_going == 0) {
2267 /* next dma */
2268 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2269 goto finished;
2270 /* write desc pointer */
2271 writel(req->td_phys,
2272 &ep->regs->desptr);
2273 req->dma_going = 1;
2274 /* enable DMA */
2275 udc_set_rde(dev);
2277 } else {
2279 * implant BNA dummy descriptor to allow
2280 * RXFIFO opening by RDE
2282 if (ep->bna_dummy_req) {
2283 /* write desc pointer */
2284 writel(ep->bna_dummy_req->td_phys,
2285 &ep->regs->desptr);
2286 ep->bna_occurred = 0;
2290 * schedule timer for setting RDE if queue
2291 * remains empty to allow ep0 packets pass
2292 * through
2294 if (set_rde != 0
2295 && !timer_pending(&udc_timer)) {
2296 udc_timer.expires =
2297 jiffies
2298 + HZ*UDC_RDE_TIMER_SECONDS;
2299 set_rde = 1;
2300 if (!stop_timer) {
2301 add_timer(&udc_timer);
2304 if (ep->num != UDC_EP0OUT_IX)
2305 dev->data_ep_queued = 0;
2308 } else {
2310 * RX DMA must be reenabled for each desc in PPBDU mode
2311 * and must be enabled for PPBNDU mode in case of BNA
2313 udc_set_rde(dev);
2316 } else if (ep->cancel_transfer) {
2317 ret_val = IRQ_HANDLED;
2318 ep->cancel_transfer = 0;
2321 /* check pending CNAKS */
2322 if (cnak_pending) {
2323 /* CNAk processing when rxfifo empty only */
2324 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2325 udc_process_cnak_queue(dev);
2329 /* clear OUT bits in ep status */
2330 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2331 finished:
2332 return ret_val;
2335 /* Interrupt handler for data IN traffic */
2336 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2338 irqreturn_t ret_val = IRQ_NONE;
2339 u32 tmp;
2340 u32 epsts;
2341 struct udc_ep *ep;
2342 struct udc_request *req;
2343 struct udc_data_dma *td;
2344 unsigned dma_done;
2345 unsigned len;
2347 ep = &dev->ep[ep_ix];
2349 epsts = readl(&ep->regs->sts);
2350 if (use_dma) {
2351 /* BNA ? */
2352 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2353 dev_err(&dev->pdev->dev,
2354 "BNA ep%din occured - DESPTR = %08lx \n",
2355 ep->num,
2356 (unsigned long) readl(&ep->regs->desptr));
2358 /* clear BNA */
2359 writel(epsts, &ep->regs->sts);
2360 ret_val = IRQ_HANDLED;
2361 goto finished;
2364 /* HE event ? */
2365 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2366 dev_err(&dev->pdev->dev,
2367 "HE ep%dn occured - DESPTR = %08lx \n",
2368 ep->num, (unsigned long) readl(&ep->regs->desptr));
2370 /* clear HE */
2371 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2372 ret_val = IRQ_HANDLED;
2373 goto finished;
2376 /* DMA completion */
2377 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2378 VDBG(dev, "TDC set- completion\n");
2379 ret_val = IRQ_HANDLED;
2380 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2381 req = list_entry(ep->queue.next,
2382 struct udc_request, queue);
2383 if (req) {
2385 * length bytes transfered
2386 * check dma done of last desc. in PPBDU mode
2388 if (use_dma_ppb_du) {
2389 td = udc_get_last_dma_desc(req);
2390 if (td) {
2391 dma_done =
2392 AMD_GETBITS(td->status,
2393 UDC_DMA_IN_STS_BS);
2394 /* don't care DMA done */
2395 req->req.actual =
2396 req->req.length;
2398 } else {
2399 /* assume all bytes transferred */
2400 req->req.actual = req->req.length;
2403 if (req->req.actual == req->req.length) {
2404 /* complete req */
2405 complete_req(ep, req, 0);
2406 req->dma_going = 0;
2407 /* further request available ? */
2408 if (list_empty(&ep->queue)) {
2409 /* disable interrupt */
2410 tmp = readl(
2411 &dev->regs->ep_irqmsk);
2412 tmp |= AMD_BIT(ep->num);
2413 writel(tmp,
2414 &dev->regs->ep_irqmsk);
2420 ep->cancel_transfer = 0;
2424 * status reg has IN bit set and TDC not set (if TDC was handled,
2425 * IN must not be handled (UDC defect) ?
2427 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2428 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2429 ret_val = IRQ_HANDLED;
2430 if (!list_empty(&ep->queue)) {
2431 /* next request */
2432 req = list_entry(ep->queue.next,
2433 struct udc_request, queue);
2434 /* FIFO mode */
2435 if (!use_dma) {
2436 /* write fifo */
2437 udc_txfifo_write(ep, &req->req);
2438 len = req->req.length - req->req.actual;
2439 if (len > ep->ep.maxpacket)
2440 len = ep->ep.maxpacket;
2441 req->req.actual += len;
2442 if (req->req.actual == req->req.length
2443 || (len != ep->ep.maxpacket)) {
2444 /* complete req */
2445 complete_req(ep, req, 0);
2447 /* DMA */
2448 } else if (req && !req->dma_going) {
2449 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2450 req, req->td_data);
2451 if (req->td_data) {
2453 req->dma_going = 1;
2456 * unset L bit of first desc.
2457 * for chain
2459 if (use_dma_ppb && req->req.length >
2460 ep->ep.maxpacket) {
2461 req->td_data->status &=
2462 AMD_CLEAR_BIT(
2463 UDC_DMA_IN_STS_L);
2466 /* write desc pointer */
2467 writel(req->td_phys, &ep->regs->desptr);
2469 /* set HOST READY */
2470 req->td_data->status =
2471 AMD_ADDBITS(
2472 req->td_data->status,
2473 UDC_DMA_IN_STS_BS_HOST_READY,
2474 UDC_DMA_IN_STS_BS);
2476 /* set poll demand bit */
2477 tmp = readl(&ep->regs->ctl);
2478 tmp |= AMD_BIT(UDC_EPCTL_P);
2479 writel(tmp, &ep->regs->ctl);
2485 /* clear status bits */
2486 writel(epsts, &ep->regs->sts);
2488 finished:
2489 return ret_val;
2493 /* Interrupt handler for Control OUT traffic */
2494 static irqreturn_t udc_control_out_isr(struct udc *dev)
2495 __releases(dev->lock)
2496 __acquires(dev->lock)
2498 irqreturn_t ret_val = IRQ_NONE;
2499 u32 tmp;
2500 int setup_supported;
2501 u32 count;
2502 int set = 0;
2503 struct udc_ep *ep;
2504 struct udc_ep *ep_tmp;
2506 ep = &dev->ep[UDC_EP0OUT_IX];
2508 /* clear irq */
2509 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2511 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2512 /* check BNA and clear if set */
2513 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2514 VDBG(dev, "ep0: BNA set\n");
2515 writel(AMD_BIT(UDC_EPSTS_BNA),
2516 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2517 ep->bna_occurred = 1;
2518 ret_val = IRQ_HANDLED;
2519 goto finished;
2522 /* type of data: SETUP or DATA 0 bytes */
2523 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2524 VDBG(dev, "data_typ = %x\n", tmp);
2526 /* setup data */
2527 if (tmp == UDC_EPSTS_OUT_SETUP) {
2528 ret_val = IRQ_HANDLED;
2530 ep->dev->stall_ep0in = 0;
2531 dev->waiting_zlp_ack_ep0in = 0;
2533 /* set NAK for EP0_IN */
2534 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2535 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2536 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2537 dev->ep[UDC_EP0IN_IX].naking = 1;
2538 /* get setup data */
2539 if (use_dma) {
2541 /* clear OUT bits in ep status */
2542 writel(UDC_EPSTS_OUT_CLEAR,
2543 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2545 setup_data.data[0] =
2546 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2547 setup_data.data[1] =
2548 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2549 /* set HOST READY */
2550 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2551 UDC_DMA_STP_STS_BS_HOST_READY;
2552 } else {
2553 /* read fifo */
2554 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2557 /* determine direction of control data */
2558 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2559 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2560 /* enable RDE */
2561 udc_ep0_set_rde(dev);
2562 set = 0;
2563 } else {
2564 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2566 * implant BNA dummy descriptor to allow RXFIFO opening
2567 * by RDE
2569 if (ep->bna_dummy_req) {
2570 /* write desc pointer */
2571 writel(ep->bna_dummy_req->td_phys,
2572 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2573 ep->bna_occurred = 0;
2576 set = 1;
2577 dev->ep[UDC_EP0OUT_IX].naking = 1;
2579 * setup timer for enabling RDE (to not enable
2580 * RXFIFO DMA for data to early)
2582 set_rde = 1;
2583 if (!timer_pending(&udc_timer)) {
2584 udc_timer.expires = jiffies +
2585 HZ/UDC_RDE_TIMER_DIV;
2586 if (!stop_timer) {
2587 add_timer(&udc_timer);
2593 * mass storage reset must be processed here because
2594 * next packet may be a CLEAR_FEATURE HALT which would not
2595 * clear the stall bit when no STALL handshake was received
2596 * before (autostall can cause this)
2598 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2599 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2600 DBG(dev, "MSC Reset\n");
2602 * clear stall bits
2603 * only one IN and OUT endpoints are handled
2605 ep_tmp = &udc->ep[UDC_EPIN_IX];
2606 udc_set_halt(&ep_tmp->ep, 0);
2607 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2608 udc_set_halt(&ep_tmp->ep, 0);
2611 /* call gadget with setup data received */
2612 spin_unlock(&dev->lock);
2613 setup_supported = dev->driver->setup(&dev->gadget,
2614 &setup_data.request);
2615 spin_lock(&dev->lock);
2617 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2618 /* ep0 in returns data (not zlp) on IN phase */
2619 if (setup_supported >= 0 && setup_supported <
2620 UDC_EP0IN_MAXPACKET) {
2621 /* clear NAK by writing CNAK in EP0_IN */
2622 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2623 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2624 dev->ep[UDC_EP0IN_IX].naking = 0;
2625 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2627 /* if unsupported request then stall */
2628 } else if (setup_supported < 0) {
2629 tmp |= AMD_BIT(UDC_EPCTL_S);
2630 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2631 } else
2632 dev->waiting_zlp_ack_ep0in = 1;
2635 /* clear NAK by writing CNAK in EP0_OUT */
2636 if (!set) {
2637 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2638 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2639 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2640 dev->ep[UDC_EP0OUT_IX].naking = 0;
2641 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2644 if (!use_dma) {
2645 /* clear OUT bits in ep status */
2646 writel(UDC_EPSTS_OUT_CLEAR,
2647 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2650 /* data packet 0 bytes */
2651 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2652 /* clear OUT bits in ep status */
2653 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2655 /* get setup data: only 0 packet */
2656 if (use_dma) {
2657 /* no req if 0 packet, just reactivate */
2658 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2659 VDBG(dev, "ZLP\n");
2661 /* set HOST READY */
2662 dev->ep[UDC_EP0OUT_IX].td->status =
2663 AMD_ADDBITS(
2664 dev->ep[UDC_EP0OUT_IX].td->status,
2665 UDC_DMA_OUT_STS_BS_HOST_READY,
2666 UDC_DMA_OUT_STS_BS);
2667 /* enable RDE */
2668 udc_ep0_set_rde(dev);
2669 ret_val = IRQ_HANDLED;
2671 } else {
2672 /* control write */
2673 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2674 /* re-program desc. pointer for possible ZLPs */
2675 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2676 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2677 /* enable RDE */
2678 udc_ep0_set_rde(dev);
2680 } else {
2682 /* received number bytes */
2683 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2684 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2685 /* out data for fifo mode not working */
2686 count = 0;
2688 /* 0 packet or real data ? */
2689 if (count != 0) {
2690 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2691 } else {
2692 /* dummy read confirm */
2693 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2694 ret_val = IRQ_HANDLED;
2699 /* check pending CNAKS */
2700 if (cnak_pending) {
2701 /* CNAk processing when rxfifo empty only */
2702 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2703 udc_process_cnak_queue(dev);
2707 finished:
2708 return ret_val;
2711 /* Interrupt handler for Control IN traffic */
2712 static irqreturn_t udc_control_in_isr(struct udc *dev)
2714 irqreturn_t ret_val = IRQ_NONE;
2715 u32 tmp;
2716 struct udc_ep *ep;
2717 struct udc_request *req;
2718 unsigned len;
2720 ep = &dev->ep[UDC_EP0IN_IX];
2722 /* clear irq */
2723 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2725 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2726 /* DMA completion */
2727 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2728 VDBG(dev, "isr: TDC clear \n");
2729 ret_val = IRQ_HANDLED;
2731 /* clear TDC bit */
2732 writel(AMD_BIT(UDC_EPSTS_TDC),
2733 &dev->ep[UDC_EP0IN_IX].regs->sts);
2735 /* status reg has IN bit set ? */
2736 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2737 ret_val = IRQ_HANDLED;
2739 if (ep->dma) {
2740 /* clear IN bit */
2741 writel(AMD_BIT(UDC_EPSTS_IN),
2742 &dev->ep[UDC_EP0IN_IX].regs->sts);
2744 if (dev->stall_ep0in) {
2745 DBG(dev, "stall ep0in\n");
2746 /* halt ep0in */
2747 tmp = readl(&ep->regs->ctl);
2748 tmp |= AMD_BIT(UDC_EPCTL_S);
2749 writel(tmp, &ep->regs->ctl);
2750 } else {
2751 if (!list_empty(&ep->queue)) {
2752 /* next request */
2753 req = list_entry(ep->queue.next,
2754 struct udc_request, queue);
2756 if (ep->dma) {
2757 /* write desc pointer */
2758 writel(req->td_phys, &ep->regs->desptr);
2759 /* set HOST READY */
2760 req->td_data->status =
2761 AMD_ADDBITS(
2762 req->td_data->status,
2763 UDC_DMA_STP_STS_BS_HOST_READY,
2764 UDC_DMA_STP_STS_BS);
2766 /* set poll demand bit */
2767 tmp =
2768 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2769 tmp |= AMD_BIT(UDC_EPCTL_P);
2770 writel(tmp,
2771 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2773 /* all bytes will be transferred */
2774 req->req.actual = req->req.length;
2776 /* complete req */
2777 complete_req(ep, req, 0);
2779 } else {
2780 /* write fifo */
2781 udc_txfifo_write(ep, &req->req);
2783 /* lengh bytes transfered */
2784 len = req->req.length - req->req.actual;
2785 if (len > ep->ep.maxpacket)
2786 len = ep->ep.maxpacket;
2788 req->req.actual += len;
2789 if (req->req.actual == req->req.length
2790 || (len != ep->ep.maxpacket)) {
2791 /* complete req */
2792 complete_req(ep, req, 0);
2798 ep->halted = 0;
2799 dev->stall_ep0in = 0;
2800 if (!ep->dma) {
2801 /* clear IN bit */
2802 writel(AMD_BIT(UDC_EPSTS_IN),
2803 &dev->ep[UDC_EP0IN_IX].regs->sts);
2807 return ret_val;
2811 /* Interrupt handler for global device events */
2812 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2813 __releases(dev->lock)
2814 __acquires(dev->lock)
2816 irqreturn_t ret_val = IRQ_NONE;
2817 u32 tmp;
2818 u32 cfg;
2819 struct udc_ep *ep;
2820 u16 i;
2821 u8 udc_csr_epix;
2823 /* SET_CONFIG irq ? */
2824 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2825 ret_val = IRQ_HANDLED;
2827 /* read config value */
2828 tmp = readl(&dev->regs->sts);
2829 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2830 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2831 dev->cur_config = cfg;
2832 dev->set_cfg_not_acked = 1;
2834 /* make usb request for gadget driver */
2835 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2836 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2837 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2839 /* programm the NE registers */
2840 for (i = 0; i < UDC_EP_NUM; i++) {
2841 ep = &dev->ep[i];
2842 if (ep->in) {
2844 /* ep ix in UDC CSR register space */
2845 udc_csr_epix = ep->num;
2848 /* OUT ep */
2849 } else {
2850 /* ep ix in UDC CSR register space */
2851 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2854 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2855 /* ep cfg */
2856 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2857 UDC_CSR_NE_CFG);
2858 /* write reg */
2859 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2861 /* clear stall bits */
2862 ep->halted = 0;
2863 tmp = readl(&ep->regs->ctl);
2864 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2865 writel(tmp, &ep->regs->ctl);
2867 /* call gadget zero with setup data received */
2868 spin_unlock(&dev->lock);
2869 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2870 spin_lock(&dev->lock);
2872 } /* SET_INTERFACE ? */
2873 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2874 ret_val = IRQ_HANDLED;
2876 dev->set_cfg_not_acked = 1;
2877 /* read interface and alt setting values */
2878 tmp = readl(&dev->regs->sts);
2879 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2880 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2882 /* make usb request for gadget driver */
2883 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2884 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2885 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2886 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2887 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2889 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2890 dev->cur_alt, dev->cur_intf);
2892 /* programm the NE registers */
2893 for (i = 0; i < UDC_EP_NUM; i++) {
2894 ep = &dev->ep[i];
2895 if (ep->in) {
2897 /* ep ix in UDC CSR register space */
2898 udc_csr_epix = ep->num;
2901 /* OUT ep */
2902 } else {
2903 /* ep ix in UDC CSR register space */
2904 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2907 /* UDC CSR reg */
2908 /* set ep values */
2909 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2910 /* ep interface */
2911 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2912 UDC_CSR_NE_INTF);
2913 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2914 /* ep alt */
2915 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2916 UDC_CSR_NE_ALT);
2917 /* write reg */
2918 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2920 /* clear stall bits */
2921 ep->halted = 0;
2922 tmp = readl(&ep->regs->ctl);
2923 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2924 writel(tmp, &ep->regs->ctl);
2927 /* call gadget zero with setup data received */
2928 spin_unlock(&dev->lock);
2929 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2930 spin_lock(&dev->lock);
2932 } /* USB reset */
2933 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2934 DBG(dev, "USB Reset interrupt\n");
2935 ret_val = IRQ_HANDLED;
2937 /* allow soft reset when suspend occurs */
2938 soft_reset_occured = 0;
2940 dev->waiting_zlp_ack_ep0in = 0;
2941 dev->set_cfg_not_acked = 0;
2943 /* mask not needed interrupts */
2944 udc_mask_unused_interrupts(dev);
2946 /* call gadget to resume and reset configs etc. */
2947 spin_unlock(&dev->lock);
2948 if (dev->sys_suspended && dev->driver->resume) {
2949 dev->driver->resume(&dev->gadget);
2950 dev->sys_suspended = 0;
2952 dev->driver->disconnect(&dev->gadget);
2953 spin_lock(&dev->lock);
2955 /* disable ep0 to empty req queue */
2956 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2957 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2959 /* soft reset when rxfifo not empty */
2960 tmp = readl(&dev->regs->sts);
2961 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2962 && !soft_reset_after_usbreset_occured) {
2963 udc_soft_reset(dev);
2964 soft_reset_after_usbreset_occured++;
2968 * DMA reset to kill potential old DMA hw hang,
2969 * POLL bit is already reset by ep_init() through
2970 * disconnect()
2972 DBG(dev, "DMA machine reset\n");
2973 tmp = readl(&dev->regs->cfg);
2974 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2975 writel(tmp, &dev->regs->cfg);
2977 /* put into initial config */
2978 udc_basic_init(dev);
2980 /* enable device setup interrupts */
2981 udc_enable_dev_setup_interrupts(dev);
2983 /* enable suspend interrupt */
2984 tmp = readl(&dev->regs->irqmsk);
2985 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2986 writel(tmp, &dev->regs->irqmsk);
2988 } /* USB suspend */
2989 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2990 DBG(dev, "USB Suspend interrupt\n");
2991 ret_val = IRQ_HANDLED;
2992 if (dev->driver->suspend) {
2993 spin_unlock(&dev->lock);
2994 dev->sys_suspended = 1;
2995 dev->driver->suspend(&dev->gadget);
2996 spin_lock(&dev->lock);
2998 } /* new speed ? */
2999 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
3000 DBG(dev, "ENUM interrupt\n");
3001 ret_val = IRQ_HANDLED;
3002 soft_reset_after_usbreset_occured = 0;
3004 /* disable ep0 to empty req queue */
3005 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
3006 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
3008 /* link up all endpoints */
3009 udc_setup_endpoints(dev);
3010 if (dev->gadget.speed == USB_SPEED_HIGH) {
3011 dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3012 "high");
3013 } else if (dev->gadget.speed == USB_SPEED_FULL) {
3014 dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3015 "full");
3018 /* init ep 0 */
3019 activate_control_endpoints(dev);
3021 /* enable ep0 interrupts */
3022 udc_enable_ep0_interrupts(dev);
3024 /* session valid change interrupt */
3025 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
3026 DBG(dev, "USB SVC interrupt\n");
3027 ret_val = IRQ_HANDLED;
3029 /* check that session is not valid to detect disconnect */
3030 tmp = readl(&dev->regs->sts);
3031 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
3032 /* disable suspend interrupt */
3033 tmp = readl(&dev->regs->irqmsk);
3034 tmp |= AMD_BIT(UDC_DEVINT_US);
3035 writel(tmp, &dev->regs->irqmsk);
3036 DBG(dev, "USB Disconnect (session valid low)\n");
3037 /* cleanup on disconnect */
3038 usb_disconnect(udc);
3043 return ret_val;
3046 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3047 static irqreturn_t udc_irq(int irq, void *pdev)
3049 struct udc *dev = pdev;
3050 u32 reg;
3051 u16 i;
3052 u32 ep_irq;
3053 irqreturn_t ret_val = IRQ_NONE;
3055 spin_lock(&dev->lock);
3057 /* check for ep irq */
3058 reg = readl(&dev->regs->ep_irqsts);
3059 if (reg) {
3060 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3061 ret_val |= udc_control_out_isr(dev);
3062 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3063 ret_val |= udc_control_in_isr(dev);
3066 * data endpoint
3067 * iterate ep's
3069 for (i = 1; i < UDC_EP_NUM; i++) {
3070 ep_irq = 1 << i;
3071 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3072 continue;
3074 /* clear irq status */
3075 writel(ep_irq, &dev->regs->ep_irqsts);
3077 /* irq for out ep ? */
3078 if (i > UDC_EPIN_NUM)
3079 ret_val |= udc_data_out_isr(dev, i);
3080 else
3081 ret_val |= udc_data_in_isr(dev, i);
3087 /* check for dev irq */
3088 reg = readl(&dev->regs->irqsts);
3089 if (reg) {
3090 /* clear irq */
3091 writel(reg, &dev->regs->irqsts);
3092 ret_val |= udc_dev_isr(dev, reg);
3096 spin_unlock(&dev->lock);
3097 return ret_val;
3100 /* Tears down device */
3101 static void gadget_release(struct device *pdev)
3103 struct amd5536udc *dev = dev_get_drvdata(pdev);
3104 kfree(dev);
3107 /* Cleanup on device remove */
3108 static void udc_remove(struct udc *dev)
3110 /* remove timer */
3111 stop_timer++;
3112 if (timer_pending(&udc_timer))
3113 wait_for_completion(&on_exit);
3114 if (udc_timer.data)
3115 del_timer_sync(&udc_timer);
3116 /* remove pollstall timer */
3117 stop_pollstall_timer++;
3118 if (timer_pending(&udc_pollstall_timer))
3119 wait_for_completion(&on_pollstall_exit);
3120 if (udc_pollstall_timer.data)
3121 del_timer_sync(&udc_pollstall_timer);
3122 udc = NULL;
3125 /* Reset all pci context */
3126 static void udc_pci_remove(struct pci_dev *pdev)
3128 struct udc *dev;
3130 dev = pci_get_drvdata(pdev);
3132 /* gadget driver must not be registered */
3133 BUG_ON(dev->driver != NULL);
3135 /* dma pool cleanup */
3136 if (dev->data_requests)
3137 pci_pool_destroy(dev->data_requests);
3139 if (dev->stp_requests) {
3140 /* cleanup DMA desc's for ep0in */
3141 pci_pool_free(dev->stp_requests,
3142 dev->ep[UDC_EP0OUT_IX].td_stp,
3143 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3144 pci_pool_free(dev->stp_requests,
3145 dev->ep[UDC_EP0OUT_IX].td,
3146 dev->ep[UDC_EP0OUT_IX].td_phys);
3148 pci_pool_destroy(dev->stp_requests);
3151 /* reset controller */
3152 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3153 if (dev->irq_registered)
3154 free_irq(pdev->irq, dev);
3155 if (dev->regs)
3156 iounmap(dev->regs);
3157 if (dev->mem_region)
3158 release_mem_region(pci_resource_start(pdev, 0),
3159 pci_resource_len(pdev, 0));
3160 if (dev->active)
3161 pci_disable_device(pdev);
3163 device_unregister(&dev->gadget.dev);
3164 pci_set_drvdata(pdev, NULL);
3166 udc_remove(dev);
3169 /* create dma pools on init */
3170 static int init_dma_pools(struct udc *dev)
3172 struct udc_stp_dma *td_stp;
3173 struct udc_data_dma *td_data;
3174 int retval;
3176 /* consistent DMA mode setting ? */
3177 if (use_dma_ppb) {
3178 use_dma_bufferfill_mode = 0;
3179 } else {
3180 use_dma_ppb_du = 0;
3181 use_dma_bufferfill_mode = 1;
3184 /* DMA setup */
3185 dev->data_requests = dma_pool_create("data_requests", NULL,
3186 sizeof(struct udc_data_dma), 0, 0);
3187 if (!dev->data_requests) {
3188 DBG(dev, "can't get request data pool\n");
3189 retval = -ENOMEM;
3190 goto finished;
3193 /* EP0 in dma regs = dev control regs */
3194 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3196 /* dma desc for setup data */
3197 dev->stp_requests = dma_pool_create("setup requests", NULL,
3198 sizeof(struct udc_stp_dma), 0, 0);
3199 if (!dev->stp_requests) {
3200 DBG(dev, "can't get stp request pool\n");
3201 retval = -ENOMEM;
3202 goto finished;
3204 /* setup */
3205 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3206 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3207 if (td_stp == NULL) {
3208 retval = -ENOMEM;
3209 goto finished;
3211 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3213 /* data: 0 packets !? */
3214 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3215 &dev->ep[UDC_EP0OUT_IX].td_phys);
3216 if (td_data == NULL) {
3217 retval = -ENOMEM;
3218 goto finished;
3220 dev->ep[UDC_EP0OUT_IX].td = td_data;
3221 return 0;
3223 finished:
3224 return retval;
3227 /* Called by pci bus driver to init pci context */
3228 static int udc_pci_probe(
3229 struct pci_dev *pdev,
3230 const struct pci_device_id *id
3233 struct udc *dev;
3234 unsigned long resource;
3235 unsigned long len;
3236 int retval = 0;
3238 /* one udc only */
3239 if (udc) {
3240 dev_dbg(&pdev->dev, "already probed\n");
3241 return -EBUSY;
3244 /* init */
3245 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3246 if (!dev) {
3247 retval = -ENOMEM;
3248 goto finished;
3251 /* pci setup */
3252 if (pci_enable_device(pdev) < 0) {
3253 kfree(dev);
3254 dev = NULL;
3255 retval = -ENODEV;
3256 goto finished;
3258 dev->active = 1;
3260 /* PCI resource allocation */
3261 resource = pci_resource_start(pdev, 0);
3262 len = pci_resource_len(pdev, 0);
3264 if (!request_mem_region(resource, len, name)) {
3265 dev_dbg(&pdev->dev, "pci device used already\n");
3266 kfree(dev);
3267 dev = NULL;
3268 retval = -EBUSY;
3269 goto finished;
3271 dev->mem_region = 1;
3273 dev->virt_addr = ioremap_nocache(resource, len);
3274 if (dev->virt_addr == NULL) {
3275 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3276 kfree(dev);
3277 dev = NULL;
3278 retval = -EFAULT;
3279 goto finished;
3282 if (!pdev->irq) {
3283 dev_err(&dev->pdev->dev, "irq not set\n");
3284 kfree(dev);
3285 dev = NULL;
3286 retval = -ENODEV;
3287 goto finished;
3290 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3291 dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3292 kfree(dev);
3293 dev = NULL;
3294 retval = -EBUSY;
3295 goto finished;
3297 dev->irq_registered = 1;
3299 pci_set_drvdata(pdev, dev);
3301 /* chip revision for Hs AMD5536 */
3302 dev->chiprev = pdev->revision;
3304 pci_set_master(pdev);
3305 pci_try_set_mwi(pdev);
3307 /* init dma pools */
3308 if (use_dma) {
3309 retval = init_dma_pools(dev);
3310 if (retval != 0)
3311 goto finished;
3314 dev->phys_addr = resource;
3315 dev->irq = pdev->irq;
3316 dev->pdev = pdev;
3317 dev->gadget.dev.parent = &pdev->dev;
3318 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3320 /* general probing */
3321 if (udc_probe(dev) == 0)
3322 return 0;
3324 finished:
3325 if (dev)
3326 udc_pci_remove(pdev);
3327 return retval;
3330 /* general probe */
3331 static int udc_probe(struct udc *dev)
3333 char tmp[128];
3334 u32 reg;
3335 int retval;
3337 /* mark timer as not initialized */
3338 udc_timer.data = 0;
3339 udc_pollstall_timer.data = 0;
3341 /* device struct setup */
3342 spin_lock_init(&dev->lock);
3343 dev->gadget.ops = &udc_ops;
3345 strcpy(dev->gadget.dev.bus_id, "gadget");
3346 dev->gadget.dev.release = gadget_release;
3347 dev->gadget.name = name;
3348 dev->gadget.name = name;
3349 dev->gadget.is_dualspeed = 1;
3351 /* udc csr registers base */
3352 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3353 /* dev registers base */
3354 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3355 /* ep registers base */
3356 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3357 /* fifo's base */
3358 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3359 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3361 /* init registers, interrupts, ... */
3362 startup_registers(dev);
3364 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3366 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3367 dev_info(&dev->pdev->dev,
3368 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3369 tmp, dev->phys_addr, dev->chiprev,
3370 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3371 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3372 if (dev->chiprev == UDC_HSA0_REV) {
3373 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3374 retval = -ENODEV;
3375 goto finished;
3377 dev_info(&dev->pdev->dev,
3378 "driver version: %s(for Geode5536 B1)\n", tmp);
3379 udc = dev;
3381 retval = device_register(&dev->gadget.dev);
3382 if (retval)
3383 goto finished;
3385 /* timer init */
3386 init_timer(&udc_timer);
3387 udc_timer.function = udc_timer_function;
3388 udc_timer.data = 1;
3389 /* timer pollstall init */
3390 init_timer(&udc_pollstall_timer);
3391 udc_pollstall_timer.function = udc_pollstall_timer_function;
3392 udc_pollstall_timer.data = 1;
3394 /* set SD */
3395 reg = readl(&dev->regs->ctl);
3396 reg |= AMD_BIT(UDC_DEVCTL_SD);
3397 writel(reg, &dev->regs->ctl);
3399 /* print dev register info */
3400 print_regs(dev);
3402 return 0;
3404 finished:
3405 return retval;
3408 /* Initiates a remote wakeup */
3409 static int udc_remote_wakeup(struct udc *dev)
3411 unsigned long flags;
3412 u32 tmp;
3414 DBG(dev, "UDC initiates remote wakeup\n");
3416 spin_lock_irqsave(&dev->lock, flags);
3418 tmp = readl(&dev->regs->ctl);
3419 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3420 writel(tmp, &dev->regs->ctl);
3421 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3422 writel(tmp, &dev->regs->ctl);
3424 spin_unlock_irqrestore(&dev->lock, flags);
3425 return 0;
3428 /* PCI device parameters */
3429 static const struct pci_device_id pci_id[] = {
3431 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3432 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3433 .class_mask = 0xffffffff,
3437 MODULE_DEVICE_TABLE(pci, pci_id);
3439 /* PCI functions */
3440 static struct pci_driver udc_pci_driver = {
3441 .name = (char *) name,
3442 .id_table = pci_id,
3443 .probe = udc_pci_probe,
3444 .remove = udc_pci_remove,
3447 /* Inits driver */
3448 static int __init init(void)
3450 return pci_register_driver(&udc_pci_driver);
3452 module_init(init);
3454 /* Cleans driver */
3455 static void __exit cleanup(void)
3457 pci_unregister_driver(&udc_pci_driver);
3459 module_exit(cleanup);
3461 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3462 MODULE_AUTHOR("Thomas Dahlmann");
3463 MODULE_LICENSE("GPL");