kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / drivers / usb / gadget / pxa27x_udc.c
blobe02bfd4df3a62cf0105927864663b13d952ca8be
1 /*
2 * Handles the Intel 27x USB Device Controller (UDC)
4 * Inspired by original driver by Frank Becker, David Brownell, and others.
5 * Copyright (C) 2008 Robert Jarzmik
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/types.h>
25 #include <linux/version.h>
26 #include <linux/errno.h>
27 #include <linux/platform_device.h>
28 #include <linux/delay.h>
29 #include <linux/list.h>
30 #include <linux/interrupt.h>
31 #include <linux/proc_fs.h>
32 #include <linux/clk.h>
33 #include <linux/irq.h>
35 #include <asm/byteorder.h>
36 #include <asm/hardware.h>
38 #include <linux/usb.h>
39 #include <linux/usb/ch9.h>
40 #include <linux/usb/gadget.h>
42 #include <asm/arch/udc.h>
44 #include "pxa27x_udc.h"
47 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
48 * series processors.
50 * Such controller drivers work with a gadget driver. The gadget driver
51 * returns descriptors, implements configuration and data protocols used
52 * by the host to interact with this device, and allocates endpoints to
53 * the different protocol interfaces. The controller driver virtualizes
54 * usb hardware so that the gadget drivers will be more portable.
56 * This UDC hardware wants to implement a bit too much USB protocol. The
57 * biggest issues are: that the endpoints have to be set up before the
58 * controller can be enabled (minor, and not uncommon); and each endpoint
59 * can only have one configuration, interface and alternative interface
60 * number (major, and very unusual). Once set up, these cannot be changed
61 * without a controller reset.
63 * The workaround is to setup all combinations necessary for the gadgets which
64 * will work with this driver. This is done in pxa_udc structure, statically.
65 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
66 * (You could modify this if needed. Some drivers have a "fifo_mode" module
67 * parameter to facilitate such changes.)
69 * The combinations have been tested with these gadgets :
70 * - zero gadget
71 * - file storage gadget
72 * - ether gadget
74 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
75 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
77 * All the requests are handled the same way :
78 * - the drivers tries to handle the request directly to the IO
79 * - if the IO fifo is not big enough, the remaining is send/received in
80 * interrupt handling.
83 #define DRIVER_VERSION "2008-04-18"
84 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
86 static const char driver_name[] = "pxa27x_udc";
87 static struct pxa_udc *the_controller;
89 static void handle_ep(struct pxa_ep *ep);
92 * Debug filesystem
94 #ifdef CONFIG_USB_GADGET_DEBUG_FS
96 #include <linux/debugfs.h>
97 #include <linux/uaccess.h>
98 #include <linux/seq_file.h>
100 static int state_dbg_show(struct seq_file *s, void *p)
102 struct pxa_udc *udc = s->private;
103 int pos = 0, ret;
104 u32 tmp;
106 ret = -ENODEV;
107 if (!udc->driver)
108 goto out;
110 /* basic device status */
111 pos += seq_printf(s, DRIVER_DESC "\n"
112 "%s version: %s\nGadget driver: %s\n",
113 driver_name, DRIVER_VERSION,
114 udc->driver ? udc->driver->driver.name : "(none)");
116 tmp = udc_readl(udc, UDCCR);
117 pos += seq_printf(s,
118 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), "
119 "con=%d,inter=%d,altinter=%d\n", tmp,
120 (tmp & UDCCR_OEN) ? " oen":"",
121 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
122 (tmp & UDCCR_AHNP) ? " rem" : "",
123 (tmp & UDCCR_BHNP) ? " rstir" : "",
124 (tmp & UDCCR_DWRE) ? " dwre" : "",
125 (tmp & UDCCR_SMAC) ? " smac" : "",
126 (tmp & UDCCR_EMCE) ? " emce" : "",
127 (tmp & UDCCR_UDR) ? " udr" : "",
128 (tmp & UDCCR_UDA) ? " uda" : "",
129 (tmp & UDCCR_UDE) ? " ude" : "",
130 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
131 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
132 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
133 /* registers for device and ep0 */
134 pos += seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
135 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
136 pos += seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
137 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
138 pos += seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
139 pos += seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, "
140 "reconfig=%lu\n",
141 udc->stats.irqs_reset, udc->stats.irqs_suspend,
142 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
144 ret = 0;
145 out:
146 return ret;
149 static int queues_dbg_show(struct seq_file *s, void *p)
151 struct pxa_udc *udc = s->private;
152 struct pxa_ep *ep;
153 struct pxa27x_request *req;
154 int pos = 0, i, maxpkt, ret;
156 ret = -ENODEV;
157 if (!udc->driver)
158 goto out;
160 /* dump endpoint queues */
161 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
162 ep = &udc->pxa_ep[i];
163 maxpkt = ep->fifo_size;
164 pos += seq_printf(s, "%-12s max_pkt=%d %s\n",
165 EPNAME(ep), maxpkt, "pio");
167 if (list_empty(&ep->queue)) {
168 pos += seq_printf(s, "\t(nothing queued)\n");
169 continue;
172 list_for_each_entry(req, &ep->queue, queue) {
173 pos += seq_printf(s, "\treq %p len %d/%d buf %p\n",
174 &req->req, req->req.actual,
175 req->req.length, req->req.buf);
179 ret = 0;
180 out:
181 return ret;
184 static int eps_dbg_show(struct seq_file *s, void *p)
186 struct pxa_udc *udc = s->private;
187 struct pxa_ep *ep;
188 int pos = 0, i, ret;
189 u32 tmp;
191 ret = -ENODEV;
192 if (!udc->driver)
193 goto out;
195 ep = &udc->pxa_ep[0];
196 tmp = udc_ep_readl(ep, UDCCSR);
197 pos += seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", tmp,
198 (tmp & UDCCSR0_SA) ? " sa" : "",
199 (tmp & UDCCSR0_RNE) ? " rne" : "",
200 (tmp & UDCCSR0_FST) ? " fst" : "",
201 (tmp & UDCCSR0_SST) ? " sst" : "",
202 (tmp & UDCCSR0_DME) ? " dme" : "",
203 (tmp & UDCCSR0_IPR) ? " ipr" : "",
204 (tmp & UDCCSR0_OPC) ? " opc" : "");
205 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
206 ep = &udc->pxa_ep[i];
207 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
208 pos += seq_printf(s, "%-12s: "
209 "IN %lu(%lu reqs), OUT %lu(%lu reqs), "
210 "irqs=%lu, udccr=0x%08x, udccsr=0x%03x, "
211 "udcbcr=%d\n",
212 EPNAME(ep),
213 ep->stats.in_bytes, ep->stats.in_ops,
214 ep->stats.out_bytes, ep->stats.out_ops,
215 ep->stats.irqs,
216 tmp, udc_ep_readl(ep, UDCCSR),
217 udc_ep_readl(ep, UDCBCR));
220 ret = 0;
221 out:
222 return ret;
225 static int eps_dbg_open(struct inode *inode, struct file *file)
227 return single_open(file, eps_dbg_show, inode->i_private);
230 static int queues_dbg_open(struct inode *inode, struct file *file)
232 return single_open(file, queues_dbg_show, inode->i_private);
235 static int state_dbg_open(struct inode *inode, struct file *file)
237 return single_open(file, state_dbg_show, inode->i_private);
240 static const struct file_operations state_dbg_fops = {
241 .owner = THIS_MODULE,
242 .open = state_dbg_open,
243 .llseek = seq_lseek,
244 .read = seq_read,
245 .release = single_release,
248 static const struct file_operations queues_dbg_fops = {
249 .owner = THIS_MODULE,
250 .open = queues_dbg_open,
251 .llseek = seq_lseek,
252 .read = seq_read,
253 .release = single_release,
256 static const struct file_operations eps_dbg_fops = {
257 .owner = THIS_MODULE,
258 .open = eps_dbg_open,
259 .llseek = seq_lseek,
260 .read = seq_read,
261 .release = single_release,
264 static void pxa_init_debugfs(struct pxa_udc *udc)
266 struct dentry *root, *state, *queues, *eps;
268 root = debugfs_create_dir(udc->gadget.name, NULL);
269 if (IS_ERR(root) || !root)
270 goto err_root;
272 state = debugfs_create_file("udcstate", 0400, root, udc,
273 &state_dbg_fops);
274 if (!state)
275 goto err_state;
276 queues = debugfs_create_file("queues", 0400, root, udc,
277 &queues_dbg_fops);
278 if (!queues)
279 goto err_queues;
280 eps = debugfs_create_file("epstate", 0400, root, udc,
281 &eps_dbg_fops);
282 if (!queues)
283 goto err_eps;
285 udc->debugfs_root = root;
286 udc->debugfs_state = state;
287 udc->debugfs_queues = queues;
288 udc->debugfs_eps = eps;
289 return;
290 err_eps:
291 debugfs_remove(eps);
292 err_queues:
293 debugfs_remove(queues);
294 err_state:
295 debugfs_remove(root);
296 err_root:
297 dev_err(udc->dev, "debugfs is not available\n");
300 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
302 debugfs_remove(udc->debugfs_eps);
303 debugfs_remove(udc->debugfs_queues);
304 debugfs_remove(udc->debugfs_state);
305 debugfs_remove(udc->debugfs_root);
306 udc->debugfs_eps = NULL;
307 udc->debugfs_queues = NULL;
308 udc->debugfs_state = NULL;
309 udc->debugfs_root = NULL;
312 #else
313 static inline void pxa_init_debugfs(struct pxa_udc *udc)
317 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
320 #endif
323 * is_match_usb_pxa - check if usb_ep and pxa_ep match
324 * @udc_usb_ep: usb endpoint
325 * @ep: pxa endpoint
326 * @config: configuration required in pxa_ep
327 * @interface: interface required in pxa_ep
328 * @altsetting: altsetting required in pxa_ep
330 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
332 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
333 int config, int interface, int altsetting)
335 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
336 return 0;
337 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
338 return 0;
339 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
340 return 0;
341 if ((ep->config != config) || (ep->interface != interface)
342 || (ep->alternate != altsetting))
343 return 0;
344 return 1;
348 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
349 * @udc: pxa udc
350 * @udc_usb_ep: udc_usb_ep structure
352 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
353 * This is necessary because of the strong pxa hardware restriction requiring
354 * that once pxa endpoints are initialized, their configuration is freezed, and
355 * no change can be made to their address, direction, or in which configuration,
356 * interface or altsetting they are active ... which differs from more usual
357 * models which have endpoints be roughly just addressable fifos, and leave
358 * configuration events up to gadget drivers (like all control messages).
360 * Note that there is still a blurred point here :
361 * - we rely on UDCCR register "active interface" and "active altsetting".
362 * This is a nonsense in regard of USB spec, where multiple interfaces are
363 * active at the same time.
364 * - if we knew for sure that the pxa can handle multiple interface at the
365 * same time, assuming Intel's Developer Guide is wrong, this function
366 * should be reviewed, and a cache of couples (iface, altsetting) should
367 * be kept in the pxa_udc structure. In this case this function would match
368 * against the cache of couples instead of the "last altsetting" set up.
370 * Returns the matched pxa_ep structure or NULL if none found
372 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
373 struct udc_usb_ep *udc_usb_ep)
375 int i;
376 struct pxa_ep *ep;
377 int cfg = udc->config;
378 int iface = udc->last_interface;
379 int alt = udc->last_alternate;
381 if (udc_usb_ep == &udc->udc_usb_ep[0])
382 return &udc->pxa_ep[0];
384 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
385 ep = &udc->pxa_ep[i];
386 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
387 return ep;
389 return NULL;
393 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
394 * @udc: pxa udc
396 * Context: in_interrupt()
398 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
399 * previously set up (and is not NULL). The update is necessary is a
400 * configuration change or altsetting change was issued by the USB host.
402 static void update_pxa_ep_matches(struct pxa_udc *udc)
404 int i;
405 struct udc_usb_ep *udc_usb_ep;
407 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
408 udc_usb_ep = &udc->udc_usb_ep[i];
409 if (udc_usb_ep->pxa_ep)
410 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
415 * pio_irq_enable - Enables irq generation for one endpoint
416 * @ep: udc endpoint
418 static void pio_irq_enable(struct pxa_ep *ep)
420 struct pxa_udc *udc = ep->dev;
421 int index = EPIDX(ep);
422 u32 udcicr0 = udc_readl(udc, UDCICR0);
423 u32 udcicr1 = udc_readl(udc, UDCICR1);
425 if (index < 16)
426 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
427 else
428 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
432 * pio_irq_disable - Disables irq generation for one endpoint
433 * @ep: udc endpoint
434 * @index: endpoint number
436 static void pio_irq_disable(struct pxa_ep *ep)
438 struct pxa_udc *udc = ep->dev;
439 int index = EPIDX(ep);
440 u32 udcicr0 = udc_readl(udc, UDCICR0);
441 u32 udcicr1 = udc_readl(udc, UDCICR1);
443 if (index < 16)
444 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
445 else
446 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
450 * udc_set_mask_UDCCR - set bits in UDCCR
451 * @udc: udc device
452 * @mask: bits to set in UDCCR
454 * Sets bits in UDCCR, leaving DME and FST bits as they were.
456 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
458 u32 udccr = udc_readl(udc, UDCCR);
459 udc_writel(udc, UDCCR,
460 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
464 * udc_clear_mask_UDCCR - clears bits in UDCCR
465 * @udc: udc device
466 * @mask: bit to clear in UDCCR
468 * Clears bits in UDCCR, leaving DME and FST bits as they were.
470 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
472 u32 udccr = udc_readl(udc, UDCCR);
473 udc_writel(udc, UDCCR,
474 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
478 * ep_count_bytes_remain - get how many bytes in udc endpoint
479 * @ep: udc endpoint
481 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
483 static int ep_count_bytes_remain(struct pxa_ep *ep)
485 if (ep->dir_in)
486 return -EOPNOTSUPP;
487 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
491 * ep_is_empty - checks if ep has byte ready for reading
492 * @ep: udc endpoint
494 * If endpoint is the control endpoint, checks if there are bytes in the
495 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
496 * are ready for reading on OUT endpoint.
498 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
500 static int ep_is_empty(struct pxa_ep *ep)
502 int ret;
504 if (!is_ep0(ep) && ep->dir_in)
505 return -EOPNOTSUPP;
506 if (is_ep0(ep))
507 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
508 else
509 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
510 return ret;
514 * ep_is_full - checks if ep has place to write bytes
515 * @ep: udc endpoint
517 * If endpoint is not the control endpoint and is an IN endpoint, checks if
518 * there is place to write bytes into the endpoint.
520 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
522 static int ep_is_full(struct pxa_ep *ep)
524 if (is_ep0(ep))
525 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
526 if (!ep->dir_in)
527 return -EOPNOTSUPP;
528 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
532 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
533 * @ep: pxa endpoint
535 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
537 static int epout_has_pkt(struct pxa_ep *ep)
539 if (!is_ep0(ep) && ep->dir_in)
540 return -EOPNOTSUPP;
541 if (is_ep0(ep))
542 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
543 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
547 * set_ep0state - Set ep0 automata state
548 * @dev: udc device
549 * @state: state
551 static void set_ep0state(struct pxa_udc *udc, int state)
553 struct pxa_ep *ep = &udc->pxa_ep[0];
554 char *old_stname = EP0_STNAME(udc);
556 udc->ep0state = state;
557 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
558 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
559 udc_ep_readl(ep, UDCBCR));
563 * ep0_idle - Put control endpoint into idle state
564 * @dev: udc device
566 static void ep0_idle(struct pxa_udc *dev)
568 set_ep0state(dev, WAIT_FOR_SETUP);
572 * inc_ep_stats_reqs - Update ep stats counts
573 * @ep: physical endpoint
574 * @req: usb request
575 * @is_in: ep direction (USB_DIR_IN or 0)
578 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
580 if (is_in)
581 ep->stats.in_ops++;
582 else
583 ep->stats.out_ops++;
587 * inc_ep_stats_bytes - Update ep stats counts
588 * @ep: physical endpoint
589 * @count: bytes transfered on endpoint
590 * @req: usb request
591 * @is_in: ep direction (USB_DIR_IN or 0)
593 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
595 if (is_in)
596 ep->stats.in_bytes += count;
597 else
598 ep->stats.out_bytes += count;
602 * pxa_ep_setup - Sets up an usb physical endpoint
603 * @ep: pxa27x physical endpoint
605 * Find the physical pxa27x ep, and setup its UDCCR
607 static __init void pxa_ep_setup(struct pxa_ep *ep)
609 u32 new_udccr;
611 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
612 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
613 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
614 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
615 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
616 | ((ep->dir_in) ? UDCCONR_ED : 0)
617 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
618 | UDCCONR_EE;
620 udc_ep_writel(ep, UDCCR, new_udccr);
624 * pxa_eps_setup - Sets up all usb physical endpoints
625 * @dev: udc device
627 * Setup all pxa physical endpoints, except ep0
629 static __init void pxa_eps_setup(struct pxa_udc *dev)
631 unsigned int i;
633 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
635 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
636 pxa_ep_setup(&dev->pxa_ep[i]);
640 * pxa_ep_alloc_request - Allocate usb request
641 * @_ep: usb endpoint
642 * @gfp_flags:
644 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
645 * must still pass correctly initialized endpoints, since other controller
646 * drivers may care about how it's currently set up (dma issues etc).
648 static struct usb_request *
649 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
651 struct pxa27x_request *req;
653 req = kzalloc(sizeof *req, gfp_flags);
654 if (!req || !_ep)
655 return NULL;
657 INIT_LIST_HEAD(&req->queue);
658 req->in_use = 0;
659 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
661 return &req->req;
665 * pxa_ep_free_request - Free usb request
666 * @_ep: usb endpoint
667 * @_req: usb request
669 * Wrapper around kfree to free _req
671 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
673 struct pxa27x_request *req;
675 req = container_of(_req, struct pxa27x_request, req);
676 WARN_ON(!list_empty(&req->queue));
677 kfree(req);
681 * ep_add_request - add a request to the endpoint's queue
682 * @ep: usb endpoint
683 * @req: usb request
685 * Context: ep->lock held
687 * Queues the request in the endpoint's queue, and enables the interrupts
688 * on the endpoint.
690 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
692 if (unlikely(!req))
693 return;
694 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
695 req->req.length, udc_ep_readl(ep, UDCCSR));
697 req->in_use = 1;
698 list_add_tail(&req->queue, &ep->queue);
699 pio_irq_enable(ep);
703 * ep_del_request - removes a request from the endpoint's queue
704 * @ep: usb endpoint
705 * @req: usb request
707 * Context: ep->lock held
709 * Unqueue the request from the endpoint's queue. If there are no more requests
710 * on the endpoint, and if it's not the control endpoint, interrupts are
711 * disabled on the endpoint.
713 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
715 if (unlikely(!req))
716 return;
717 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
718 req->req.length, udc_ep_readl(ep, UDCCSR));
720 list_del_init(&req->queue);
721 req->in_use = 0;
722 if (!is_ep0(ep) && list_empty(&ep->queue))
723 pio_irq_disable(ep);
727 * req_done - Complete an usb request
728 * @ep: pxa physical endpoint
729 * @req: pxa request
730 * @status: usb request status sent to gadget API
732 * Context: ep->lock held
734 * Retire a pxa27x usb request. Endpoint must be locked.
736 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status)
738 ep_del_request(ep, req);
739 if (likely(req->req.status == -EINPROGRESS))
740 req->req.status = status;
741 else
742 status = req->req.status;
744 if (status && status != -ESHUTDOWN)
745 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
746 &req->req, status,
747 req->req.actual, req->req.length);
749 req->req.complete(&req->udc_usb_ep->usb_ep, &req->req);
753 * ep_end_out_req - Ends control endpoint in request
754 * @ep: physical endpoint
755 * @req: pxa request
757 * Context: ep->lock held
759 * Ends endpoint in request (completes usb request).
761 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req)
763 inc_ep_stats_reqs(ep, !USB_DIR_IN);
764 req_done(ep, req, 0);
768 * ep0_end_out_req - Ends control endpoint in request (ends data stage)
769 * @ep: physical endpoint
770 * @req: pxa request
772 * Context: ep->lock held
774 * Ends control endpoint in request (completes usb request), and puts
775 * control endpoint into idle state
777 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req)
779 set_ep0state(ep->dev, OUT_STATUS_STAGE);
780 ep_end_out_req(ep, req);
781 ep0_idle(ep->dev);
785 * ep_end_in_req - Ends endpoint out request
786 * @ep: physical endpoint
787 * @req: pxa request
789 * Context: ep->lock held
791 * Ends endpoint out request (completes usb request).
793 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req)
795 inc_ep_stats_reqs(ep, USB_DIR_IN);
796 req_done(ep, req, 0);
800 * ep0_end_in_req - Ends control endpoint out request (ends data stage)
801 * @ep: physical endpoint
802 * @req: pxa request
804 * Context: ep->lock held
806 * Ends control endpoint out request (completes usb request), and puts
807 * control endpoint into status state
809 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req)
811 struct pxa_udc *udc = ep->dev;
813 set_ep0state(udc, IN_STATUS_STAGE);
814 ep_end_in_req(ep, req);
818 * nuke - Dequeue all requests
819 * @ep: pxa endpoint
820 * @status: usb request status
822 * Context: ep->lock held
824 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
825 * disabled on that endpoint (because no more requests).
827 static void nuke(struct pxa_ep *ep, int status)
829 struct pxa27x_request *req;
831 while (!list_empty(&ep->queue)) {
832 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
833 req_done(ep, req, status);
838 * read_packet - transfer 1 packet from an OUT endpoint into request
839 * @ep: pxa physical endpoint
840 * @req: usb request
842 * Takes bytes from OUT endpoint and transfers them info the usb request.
843 * If there is less space in request than bytes received in OUT endpoint,
844 * bytes are left in the OUT endpoint.
846 * Returns how many bytes were actually transfered
848 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
850 u32 *buf;
851 int bytes_ep, bufferspace, count, i;
853 bytes_ep = ep_count_bytes_remain(ep);
854 bufferspace = req->req.length - req->req.actual;
856 buf = (u32 *)(req->req.buf + req->req.actual);
857 prefetchw(buf);
859 if (likely(!ep_is_empty(ep)))
860 count = min(bytes_ep, bufferspace);
861 else /* zlp */
862 count = 0;
864 for (i = count; i > 0; i -= 4)
865 *buf++ = udc_ep_readl(ep, UDCDR);
866 req->req.actual += count;
868 udc_ep_writel(ep, UDCCSR, UDCCSR_PC);
870 return count;
874 * write_packet - transfer 1 packet from request into an IN endpoint
875 * @ep: pxa physical endpoint
876 * @req: usb request
877 * @max: max bytes that fit into endpoint
879 * Takes bytes from usb request, and transfers them into the physical
880 * endpoint. If there are no bytes to transfer, doesn't write anything
881 * to physical endpoint.
883 * Returns how many bytes were actually transfered.
885 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
886 unsigned int max)
888 int length, count, remain, i;
889 u32 *buf;
890 u8 *buf_8;
892 buf = (u32 *)(req->req.buf + req->req.actual);
893 prefetch(buf);
895 length = min(req->req.length - req->req.actual, max);
896 req->req.actual += length;
898 remain = length & 0x3;
899 count = length & ~(0x3);
900 for (i = count; i > 0 ; i -= 4)
901 udc_ep_writel(ep, UDCDR, *buf++);
903 buf_8 = (u8 *)buf;
904 for (i = remain; i > 0; i--)
905 udc_ep_writeb(ep, UDCDR, *buf_8++);
907 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
908 udc_ep_readl(ep, UDCCSR));
910 return length;
914 * read_fifo - Transfer packets from OUT endpoint into usb request
915 * @ep: pxa physical endpoint
916 * @req: usb request
918 * Context: callable when in_interrupt()
920 * Unload as many packets as possible from the fifo we use for usb OUT
921 * transfers and put them into the request. Caller should have made sure
922 * there's at least one packet ready.
923 * Doesn't complete the request, that's the caller's job
925 * Returns 1 if the request completed, 0 otherwise
927 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
929 int count, is_short, completed = 0;
931 while (epout_has_pkt(ep)) {
932 count = read_packet(ep, req);
933 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
935 is_short = (count < ep->fifo_size);
936 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
937 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
938 &req->req, req->req.actual, req->req.length);
940 /* completion */
941 if (is_short || req->req.actual == req->req.length) {
942 completed = 1;
943 break;
945 /* finished that packet. the next one may be waiting... */
947 return completed;
951 * write_fifo - transfer packets from usb request into an IN endpoint
952 * @ep: pxa physical endpoint
953 * @req: pxa usb request
955 * Write to an IN endpoint fifo, as many packets as possible.
956 * irqs will use this to write the rest later.
957 * caller guarantees at least one packet buffer is ready (or a zlp).
958 * Doesn't complete the request, that's the caller's job
960 * Returns 1 if request fully transfered, 0 if partial transfer
962 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
964 unsigned max;
965 int count, is_short, is_last = 0, completed = 0, totcount = 0;
966 u32 udccsr;
968 max = ep->fifo_size;
969 do {
970 is_short = 0;
972 udccsr = udc_ep_readl(ep, UDCCSR);
973 if (udccsr & UDCCSR_PC) {
974 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
975 udccsr);
976 udc_ep_writel(ep, UDCCSR, UDCCSR_PC);
978 if (udccsr & UDCCSR_TRN) {
979 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
980 udccsr);
981 udc_ep_writel(ep, UDCCSR, UDCCSR_TRN);
984 count = write_packet(ep, req, max);
985 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
986 totcount += count;
988 /* last packet is usually short (or a zlp) */
989 if (unlikely(count < max)) {
990 is_last = 1;
991 is_short = 1;
992 } else {
993 if (likely(req->req.length > req->req.actual)
994 || req->req.zero)
995 is_last = 0;
996 else
997 is_last = 1;
998 /* interrupt/iso maxpacket may not fill the fifo */
999 is_short = unlikely(max < ep->fifo_size);
1002 if (is_short)
1003 udc_ep_writel(ep, UDCCSR, UDCCSR_SP);
1005 /* requests complete when all IN data is in the FIFO */
1006 if (is_last) {
1007 completed = 1;
1008 break;
1010 } while (!ep_is_full(ep));
1012 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
1013 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
1014 req->req.length - req->req.actual, &req->req);
1016 return completed;
1020 * read_ep0_fifo - Transfer packets from control endpoint into usb request
1021 * @ep: control endpoint
1022 * @req: pxa usb request
1024 * Special ep0 version of the above read_fifo. Reads as many bytes from control
1025 * endpoint as can be read, and stores them into usb request (limited by request
1026 * maximum length).
1028 * Returns 0 if usb request only partially filled, 1 if fully filled
1030 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1032 int count, is_short, completed = 0;
1034 while (epout_has_pkt(ep)) {
1035 count = read_packet(ep, req);
1036 udc_ep_writel(ep, UDCCSR, UDCCSR0_OPC);
1037 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
1039 is_short = (count < ep->fifo_size);
1040 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
1041 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
1042 &req->req, req->req.actual, req->req.length);
1044 if (is_short || req->req.actual >= req->req.length) {
1045 completed = 1;
1046 break;
1050 return completed;
1054 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
1055 * @ep: control endpoint
1056 * @req: request
1058 * Context: callable when in_interrupt()
1060 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1061 * If the request doesn't fit, the remaining part will be sent from irq.
1062 * The request is considered fully written only if either :
1063 * - last write transfered all remaining bytes, but fifo was not fully filled
1064 * - last write was a 0 length write
1066 * Returns 1 if request fully written, 0 if request only partially sent
1068 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1070 unsigned count;
1071 int is_last, is_short;
1073 count = write_packet(ep, req, EP0_FIFO_SIZE);
1074 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1076 is_short = (count < EP0_FIFO_SIZE);
1077 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1079 /* Sends either a short packet or a 0 length packet */
1080 if (unlikely(is_short))
1081 udc_ep_writel(ep, UDCCSR, UDCCSR0_IPR);
1083 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1084 count, is_short ? "/S" : "", is_last ? "/L" : "",
1085 req->req.length - req->req.actual,
1086 &req->req, udc_ep_readl(ep, UDCCSR));
1088 return is_last;
1092 * pxa_ep_queue - Queue a request into an IN endpoint
1093 * @_ep: usb endpoint
1094 * @_req: usb request
1095 * @gfp_flags: flags
1097 * Context: normally called when !in_interrupt, but callable when in_interrupt()
1098 * in the special case of ep0 setup :
1099 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1101 * Returns 0 if succedeed, error otherwise
1103 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1104 gfp_t gfp_flags)
1106 struct udc_usb_ep *udc_usb_ep;
1107 struct pxa_ep *ep;
1108 struct pxa27x_request *req;
1109 struct pxa_udc *dev;
1110 unsigned long flags;
1111 int rc = 0;
1112 int is_first_req;
1113 unsigned length;
1115 req = container_of(_req, struct pxa27x_request, req);
1116 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1118 if (unlikely(!_req || !_req->complete || !_req->buf))
1119 return -EINVAL;
1121 if (unlikely(!_ep))
1122 return -EINVAL;
1124 dev = udc_usb_ep->dev;
1125 ep = udc_usb_ep->pxa_ep;
1126 if (unlikely(!ep))
1127 return -EINVAL;
1129 dev = ep->dev;
1130 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1131 ep_dbg(ep, "bogus device state\n");
1132 return -ESHUTDOWN;
1135 /* iso is always one packet per request, that's the only way
1136 * we can report per-packet status. that also helps with dma.
1138 if (unlikely(EPXFERTYPE_is_ISO(ep)
1139 && req->req.length > ep->fifo_size))
1140 return -EMSGSIZE;
1142 spin_lock_irqsave(&ep->lock, flags);
1144 is_first_req = list_empty(&ep->queue);
1145 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1146 _req, is_first_req ? "yes" : "no",
1147 _req->length, _req->buf);
1149 if (!ep->enabled) {
1150 _req->status = -ESHUTDOWN;
1151 rc = -ESHUTDOWN;
1152 goto out;
1155 if (req->in_use) {
1156 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1157 goto out;
1160 length = _req->length;
1161 _req->status = -EINPROGRESS;
1162 _req->actual = 0;
1164 ep_add_request(ep, req);
1166 if (is_ep0(ep)) {
1167 switch (dev->ep0state) {
1168 case WAIT_ACK_SET_CONF_INTERF:
1169 if (length == 0) {
1170 ep_end_in_req(ep, req);
1171 } else {
1172 ep_err(ep, "got a request of %d bytes while"
1173 "in state WATI_ACK_SET_CONF_INTERF\n",
1174 length);
1175 ep_del_request(ep, req);
1176 rc = -EL2HLT;
1178 ep0_idle(ep->dev);
1179 break;
1180 case IN_DATA_STAGE:
1181 if (!ep_is_full(ep))
1182 if (write_ep0_fifo(ep, req))
1183 ep0_end_in_req(ep, req);
1184 break;
1185 case OUT_DATA_STAGE:
1186 if ((length == 0) || !epout_has_pkt(ep))
1187 if (read_ep0_fifo(ep, req))
1188 ep0_end_out_req(ep, req);
1189 break;
1190 default:
1191 ep_err(ep, "odd state %s to send me a request\n",
1192 EP0_STNAME(ep->dev));
1193 ep_del_request(ep, req);
1194 rc = -EL2HLT;
1195 break;
1197 } else {
1198 handle_ep(ep);
1201 out:
1202 spin_unlock_irqrestore(&ep->lock, flags);
1203 return rc;
1207 * pxa_ep_dequeue - Dequeue one request
1208 * @_ep: usb endpoint
1209 * @_req: usb request
1211 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1213 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1215 struct pxa_ep *ep;
1216 struct udc_usb_ep *udc_usb_ep;
1217 struct pxa27x_request *req;
1218 unsigned long flags;
1219 int rc;
1221 if (!_ep)
1222 return -EINVAL;
1223 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1224 ep = udc_usb_ep->pxa_ep;
1225 if (!ep || is_ep0(ep))
1226 return -EINVAL;
1228 spin_lock_irqsave(&ep->lock, flags);
1230 /* make sure it's actually queued on this endpoint */
1231 list_for_each_entry(req, &ep->queue, queue) {
1232 if (&req->req == _req)
1233 break;
1236 rc = -EINVAL;
1237 if (&req->req != _req)
1238 goto out;
1240 rc = 0;
1241 req_done(ep, req, -ECONNRESET);
1242 out:
1243 spin_unlock_irqrestore(&ep->lock, flags);
1244 return rc;
1248 * pxa_ep_set_halt - Halts operations on one endpoint
1249 * @_ep: usb endpoint
1250 * @value:
1252 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1254 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1256 struct pxa_ep *ep;
1257 struct udc_usb_ep *udc_usb_ep;
1258 unsigned long flags;
1259 int rc;
1262 if (!_ep)
1263 return -EINVAL;
1264 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1265 ep = udc_usb_ep->pxa_ep;
1266 if (!ep || is_ep0(ep))
1267 return -EINVAL;
1269 if (value == 0) {
1271 * This path (reset toggle+halt) is needed to implement
1272 * SET_INTERFACE on normal hardware. but it can't be
1273 * done from software on the PXA UDC, and the hardware
1274 * forgets to do it as part of SET_INTERFACE automagic.
1276 ep_dbg(ep, "only host can clear halt\n");
1277 return -EROFS;
1280 spin_lock_irqsave(&ep->lock, flags);
1282 rc = -EAGAIN;
1283 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1284 goto out;
1286 /* FST, FEF bits are the same for control and non control endpoints */
1287 rc = 0;
1288 udc_ep_writel(ep, UDCCSR, UDCCSR_FST | UDCCSR_FEF);
1289 if (is_ep0(ep))
1290 set_ep0state(ep->dev, STALL);
1292 out:
1293 spin_unlock_irqrestore(&ep->lock, flags);
1294 return rc;
1298 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1299 * @_ep: usb endpoint
1301 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1303 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1305 struct pxa_ep *ep;
1306 struct udc_usb_ep *udc_usb_ep;
1308 if (!_ep)
1309 return -ENODEV;
1310 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1311 ep = udc_usb_ep->pxa_ep;
1312 if (!ep || is_ep0(ep))
1313 return -ENODEV;
1315 if (ep->dir_in)
1316 return -EOPNOTSUPP;
1317 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1318 return 0;
1319 else
1320 return ep_count_bytes_remain(ep) + 1;
1324 * pxa_ep_fifo_flush - Flushes one endpoint
1325 * @_ep: usb endpoint
1327 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1329 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1331 struct pxa_ep *ep;
1332 struct udc_usb_ep *udc_usb_ep;
1333 unsigned long flags;
1335 if (!_ep)
1336 return;
1337 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1338 ep = udc_usb_ep->pxa_ep;
1339 if (!ep || is_ep0(ep))
1340 return;
1342 spin_lock_irqsave(&ep->lock, flags);
1344 if (unlikely(!list_empty(&ep->queue)))
1345 ep_dbg(ep, "called while queue list not empty\n");
1346 ep_dbg(ep, "called\n");
1348 /* for OUT, just read and discard the FIFO contents. */
1349 if (!ep->dir_in) {
1350 while (!ep_is_empty(ep))
1351 udc_ep_readl(ep, UDCDR);
1352 } else {
1353 /* most IN status is the same, but ISO can't stall */
1354 udc_ep_writel(ep, UDCCSR,
1355 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1356 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1359 spin_unlock_irqrestore(&ep->lock, flags);
1361 return;
1365 * pxa_ep_enable - Enables usb endpoint
1366 * @_ep: usb endpoint
1367 * @desc: usb endpoint descriptor
1369 * Nothing much to do here, as ep configuration is done once and for all
1370 * before udc is enabled. After udc enable, no physical endpoint configuration
1371 * can be changed.
1372 * Function makes sanity checks and flushes the endpoint.
1374 static int pxa_ep_enable(struct usb_ep *_ep,
1375 const struct usb_endpoint_descriptor *desc)
1377 struct pxa_ep *ep;
1378 struct udc_usb_ep *udc_usb_ep;
1379 struct pxa_udc *udc;
1381 if (!_ep || !desc)
1382 return -EINVAL;
1384 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1385 if (udc_usb_ep->pxa_ep) {
1386 ep = udc_usb_ep->pxa_ep;
1387 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1388 _ep->name);
1389 } else {
1390 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1393 if (!ep || is_ep0(ep)) {
1394 dev_err(udc_usb_ep->dev->dev,
1395 "unable to match pxa_ep for ep %s\n",
1396 _ep->name);
1397 return -EINVAL;
1400 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1401 || (ep->type != usb_endpoint_type(desc))) {
1402 ep_err(ep, "type mismatch\n");
1403 return -EINVAL;
1406 if (ep->fifo_size < le16_to_cpu(desc->wMaxPacketSize)) {
1407 ep_err(ep, "bad maxpacket\n");
1408 return -ERANGE;
1411 udc_usb_ep->pxa_ep = ep;
1412 udc = ep->dev;
1414 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1415 ep_err(ep, "bogus device state\n");
1416 return -ESHUTDOWN;
1419 ep->enabled = 1;
1421 /* flush fifo (mostly for OUT buffers) */
1422 pxa_ep_fifo_flush(_ep);
1424 ep_dbg(ep, "enabled\n");
1425 return 0;
1429 * pxa_ep_disable - Disable usb endpoint
1430 * @_ep: usb endpoint
1432 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1433 * changed.
1434 * Function flushes the endpoint and related requests.
1436 static int pxa_ep_disable(struct usb_ep *_ep)
1438 struct pxa_ep *ep;
1439 struct udc_usb_ep *udc_usb_ep;
1440 unsigned long flags;
1442 if (!_ep)
1443 return -EINVAL;
1445 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1446 ep = udc_usb_ep->pxa_ep;
1447 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1448 return -EINVAL;
1450 spin_lock_irqsave(&ep->lock, flags);
1451 ep->enabled = 0;
1452 nuke(ep, -ESHUTDOWN);
1453 spin_unlock_irqrestore(&ep->lock, flags);
1455 pxa_ep_fifo_flush(_ep);
1456 udc_usb_ep->pxa_ep = NULL;
1458 ep_dbg(ep, "disabled\n");
1459 return 0;
1462 static struct usb_ep_ops pxa_ep_ops = {
1463 .enable = pxa_ep_enable,
1464 .disable = pxa_ep_disable,
1466 .alloc_request = pxa_ep_alloc_request,
1467 .free_request = pxa_ep_free_request,
1469 .queue = pxa_ep_queue,
1470 .dequeue = pxa_ep_dequeue,
1472 .set_halt = pxa_ep_set_halt,
1473 .fifo_status = pxa_ep_fifo_status,
1474 .fifo_flush = pxa_ep_fifo_flush,
1479 * pxa_udc_get_frame - Returns usb frame number
1480 * @_gadget: usb gadget
1482 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1484 struct pxa_udc *udc = to_gadget_udc(_gadget);
1486 return (udc_readl(udc, UDCFNR) & 0x7ff);
1490 * pxa_udc_wakeup - Force udc device out of suspend
1491 * @_gadget: usb gadget
1493 * Returns 0 if succesfull, error code otherwise
1495 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1497 struct pxa_udc *udc = to_gadget_udc(_gadget);
1499 /* host may not have enabled remote wakeup */
1500 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1501 return -EHOSTUNREACH;
1502 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1503 return 0;
1506 static const struct usb_gadget_ops pxa_udc_ops = {
1507 .get_frame = pxa_udc_get_frame,
1508 .wakeup = pxa_udc_wakeup,
1509 /* current versions must always be self-powered */
1513 * udc_disable - disable udc device controller
1514 * @udc: udc device
1516 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1517 * interrupts.
1519 static void udc_disable(struct pxa_udc *udc)
1521 udc_writel(udc, UDCICR0, 0);
1522 udc_writel(udc, UDCICR1, 0);
1524 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1525 clk_disable(udc->clk);
1527 ep0_idle(udc);
1528 udc->gadget.speed = USB_SPEED_UNKNOWN;
1529 if (udc->mach->udc_command)
1530 udc->mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1534 * udc_init_data - Initialize udc device data structures
1535 * @dev: udc device
1537 * Initializes gadget endpoint list, endpoints locks. No action is taken
1538 * on the hardware.
1540 static __init void udc_init_data(struct pxa_udc *dev)
1542 int i;
1543 struct pxa_ep *ep;
1545 /* device/ep0 records init */
1546 INIT_LIST_HEAD(&dev->gadget.ep_list);
1547 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1548 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1549 ep0_idle(dev);
1551 /* PXA endpoints init */
1552 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1553 ep = &dev->pxa_ep[i];
1555 ep->enabled = is_ep0(ep);
1556 INIT_LIST_HEAD(&ep->queue);
1557 spin_lock_init(&ep->lock);
1560 /* USB endpoints init */
1561 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1562 if (i != 0)
1563 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1564 &dev->gadget.ep_list);
1568 * udc_enable - Enables the udc device
1569 * @dev: udc device
1571 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1572 * interrupts, sets usb as UDC client and setups endpoints.
1574 static void udc_enable(struct pxa_udc *udc)
1576 udc_writel(udc, UDCICR0, 0);
1577 udc_writel(udc, UDCICR1, 0);
1578 udc_writel(udc, UP2OCR, UP2OCR_HXOE);
1579 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1581 clk_enable(udc->clk);
1583 ep0_idle(udc);
1584 udc->gadget.speed = USB_SPEED_FULL;
1585 memset(&udc->stats, 0, sizeof(udc->stats));
1587 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1588 udelay(2);
1589 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1590 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1593 * Caller must be able to sleep in order to cope with startup transients
1595 msleep(100);
1597 /* enable suspend/resume and reset irqs */
1598 udc_writel(udc, UDCICR1,
1599 UDCICR1_IECC | UDCICR1_IERU
1600 | UDCICR1_IESU | UDCICR1_IERS);
1602 /* enable ep0 irqs */
1603 pio_irq_enable(&udc->pxa_ep[0]);
1605 dev_info(udc->dev, "UDC connecting\n");
1606 if (udc->mach->udc_command)
1607 udc->mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
1611 * usb_gadget_register_driver - Register gadget driver
1612 * @driver: gadget driver
1614 * When a driver is successfully registered, it will receive control requests
1615 * including set_configuration(), which enables non-control requests. Then
1616 * usb traffic follows until a disconnect is reported. Then a host may connect
1617 * again, or the driver might get unbound.
1619 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1621 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1623 struct pxa_udc *udc = the_controller;
1624 int retval;
1626 if (!driver || driver->speed != USB_SPEED_FULL || !driver->bind
1627 || !driver->disconnect || !driver->setup)
1628 return -EINVAL;
1629 if (!udc)
1630 return -ENODEV;
1631 if (udc->driver)
1632 return -EBUSY;
1634 /* first hook up the driver ... */
1635 udc->driver = driver;
1636 udc->gadget.dev.driver = &driver->driver;
1638 retval = device_add(&udc->gadget.dev);
1639 if (retval) {
1640 dev_err(udc->dev, "device_add error %d\n", retval);
1641 goto add_fail;
1643 retval = driver->bind(&udc->gadget);
1644 if (retval) {
1645 dev_err(udc->dev, "bind to driver %s --> error %d\n",
1646 driver->driver.name, retval);
1647 goto bind_fail;
1649 dev_dbg(udc->dev, "registered gadget driver '%s'\n",
1650 driver->driver.name);
1652 udc_enable(udc);
1653 return 0;
1655 bind_fail:
1656 device_del(&udc->gadget.dev);
1657 add_fail:
1658 udc->driver = NULL;
1659 udc->gadget.dev.driver = NULL;
1660 return retval;
1662 EXPORT_SYMBOL(usb_gadget_register_driver);
1666 * stop_activity - Stops udc endpoints
1667 * @udc: udc device
1668 * @driver: gadget driver
1670 * Disables all udc endpoints (even control endpoint), report disconnect to
1671 * the gadget user.
1673 static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver)
1675 int i;
1677 /* don't disconnect drivers more than once */
1678 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1679 driver = NULL;
1680 udc->gadget.speed = USB_SPEED_UNKNOWN;
1682 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1683 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1685 if (driver)
1686 driver->disconnect(&udc->gadget);
1690 * usb_gadget_unregister_driver - Unregister the gadget driver
1691 * @driver: gadget driver
1693 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1695 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1697 struct pxa_udc *udc = the_controller;
1699 if (!udc)
1700 return -ENODEV;
1701 if (!driver || driver != udc->driver || !driver->unbind)
1702 return -EINVAL;
1704 stop_activity(udc, driver);
1705 udc_disable(udc);
1707 driver->unbind(&udc->gadget);
1708 udc->driver = NULL;
1710 device_del(&udc->gadget.dev);
1712 dev_info(udc->dev, "unregistered gadget driver '%s'\n",
1713 driver->driver.name);
1714 return 0;
1716 EXPORT_SYMBOL(usb_gadget_unregister_driver);
1719 * handle_ep0_ctrl_req - handle control endpoint control request
1720 * @udc: udc device
1721 * @req: control request
1723 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1724 struct pxa27x_request *req)
1726 struct pxa_ep *ep = &udc->pxa_ep[0];
1727 union {
1728 struct usb_ctrlrequest r;
1729 u32 word[2];
1730 } u;
1731 int i;
1732 int have_extrabytes = 0;
1734 nuke(ep, -EPROTO);
1736 /* read SETUP packet */
1737 for (i = 0; i < 2; i++) {
1738 if (unlikely(ep_is_empty(ep)))
1739 goto stall;
1740 u.word[i] = udc_ep_readl(ep, UDCDR);
1743 have_extrabytes = !ep_is_empty(ep);
1744 while (!ep_is_empty(ep)) {
1745 i = udc_ep_readl(ep, UDCDR);
1746 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1749 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1750 u.r.bRequestType, u.r.bRequest,
1751 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1752 le16_to_cpu(u.r.wLength));
1753 if (unlikely(have_extrabytes))
1754 goto stall;
1756 if (u.r.bRequestType & USB_DIR_IN)
1757 set_ep0state(udc, IN_DATA_STAGE);
1758 else
1759 set_ep0state(udc, OUT_DATA_STAGE);
1761 /* Tell UDC to enter Data Stage */
1762 udc_ep_writel(ep, UDCCSR, UDCCSR0_SA | UDCCSR0_OPC);
1764 i = udc->driver->setup(&udc->gadget, &u.r);
1765 if (i < 0)
1766 goto stall;
1767 out:
1768 return;
1769 stall:
1770 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1771 udc_ep_readl(ep, UDCCSR), i);
1772 udc_ep_writel(ep, UDCCSR, UDCCSR0_FST | UDCCSR0_FTF);
1773 set_ep0state(udc, STALL);
1774 goto out;
1778 * handle_ep0 - Handle control endpoint data transfers
1779 * @udc: udc device
1780 * @fifo_irq: 1 if triggered by fifo service type irq
1781 * @opc_irq: 1 if triggered by output packet complete type irq
1783 * Context : when in_interrupt() or with ep->lock held
1785 * Tries to transfer all pending request data into the endpoint and/or
1786 * transfer all pending data in the endpoint into usb requests.
1787 * Handles states of ep0 automata.
1789 * PXA27x hardware handles several standard usb control requests without
1790 * driver notification. The requests fully handled by hardware are :
1791 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1792 * GET_STATUS
1793 * The requests handled by hardware, but with irq notification are :
1794 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1795 * The remaining standard requests really handled by handle_ep0 are :
1796 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1797 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1798 * uniformly, by gadget drivers.
1800 * The control endpoint state machine is _not_ USB spec compliant, it's even
1801 * hardly compliant with Intel PXA270 developers guide.
1802 * The key points which inferred this state machine are :
1803 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1804 * software.
1805 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1806 * cleared by software.
1807 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1808 * before reading ep0.
1809 * - irq can be called on a "packet complete" event (opc_irq=1), while
1810 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1811 * from experimentation).
1812 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
1813 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1814 * => we never actually read the "status stage" packet of an IN data stage
1815 * => this is not documented in Intel documentation
1816 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1817 * STAGE. The driver add STATUS STAGE to send last zero length packet in
1818 * OUT_STATUS_STAGE.
1819 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
1820 * event is detected, we terminate the status stage without ackowledging the
1821 * packet (not to risk to loose a potential SETUP packet)
1823 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
1825 u32 udccsr0;
1826 struct pxa_ep *ep = &udc->pxa_ep[0];
1827 struct pxa27x_request *req = NULL;
1828 int completed = 0;
1830 udccsr0 = udc_ep_readl(ep, UDCCSR);
1831 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
1832 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
1833 (fifo_irq << 1 | opc_irq));
1835 if (!list_empty(&ep->queue))
1836 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
1838 if (udccsr0 & UDCCSR0_SST) {
1839 ep_dbg(ep, "clearing stall status\n");
1840 nuke(ep, -EPIPE);
1841 udc_ep_writel(ep, UDCCSR, UDCCSR0_SST);
1842 ep0_idle(udc);
1845 if (udccsr0 & UDCCSR0_SA) {
1846 nuke(ep, 0);
1847 set_ep0state(udc, SETUP_STAGE);
1850 switch (udc->ep0state) {
1851 case WAIT_FOR_SETUP:
1853 * Hardware bug : beware, we cannot clear OPC, since we would
1854 * miss a potential OPC irq for a setup packet.
1855 * So, we only do ... nothing, and hope for a next irq with
1856 * UDCCSR0_SA set.
1858 break;
1859 case SETUP_STAGE:
1860 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
1861 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
1862 handle_ep0_ctrl_req(udc, req);
1863 break;
1864 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
1865 if (epout_has_pkt(ep))
1866 udc_ep_writel(ep, UDCCSR, UDCCSR0_OPC);
1867 if (req && !ep_is_full(ep))
1868 completed = write_ep0_fifo(ep, req);
1869 if (completed)
1870 ep0_end_in_req(ep, req);
1871 break;
1872 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
1873 if (epout_has_pkt(ep) && req)
1874 completed = read_ep0_fifo(ep, req);
1875 if (completed)
1876 ep0_end_out_req(ep, req);
1877 break;
1878 case STALL:
1879 udc_ep_writel(ep, UDCCSR, UDCCSR0_FST);
1880 break;
1881 case IN_STATUS_STAGE:
1883 * Hardware bug : beware, we cannot clear OPC, since we would
1884 * miss a potential PC irq for a setup packet.
1885 * So, we only put the ep0 into WAIT_FOR_SETUP state.
1887 if (opc_irq)
1888 ep0_idle(udc);
1889 break;
1890 case OUT_STATUS_STAGE:
1891 case WAIT_ACK_SET_CONF_INTERF:
1892 ep_warn(ep, "should never get in %s state here!!!\n",
1893 EP0_STNAME(ep->dev));
1894 ep0_idle(udc);
1895 break;
1900 * handle_ep - Handle endpoint data tranfers
1901 * @ep: pxa physical endpoint
1903 * Tries to transfer all pending request data into the endpoint and/or
1904 * transfer all pending data in the endpoint into usb requests.
1906 * Is always called when in_interrupt() or with ep->lock held.
1908 static void handle_ep(struct pxa_ep *ep)
1910 struct pxa27x_request *req;
1911 int completed;
1912 u32 udccsr;
1913 int is_in = ep->dir_in;
1914 int loop = 0;
1916 do {
1917 completed = 0;
1918 udccsr = udc_ep_readl(ep, UDCCSR);
1919 if (likely(!list_empty(&ep->queue)))
1920 req = list_entry(ep->queue.next,
1921 struct pxa27x_request, queue);
1922 else
1923 req = NULL;
1925 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
1926 req, udccsr, loop++);
1928 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
1929 udc_ep_writel(ep, UDCCSR,
1930 udccsr & (UDCCSR_SST | UDCCSR_TRN));
1931 if (!req)
1932 break;
1934 if (unlikely(is_in)) {
1935 if (likely(!ep_is_full(ep)))
1936 completed = write_fifo(ep, req);
1937 if (completed)
1938 ep_end_in_req(ep, req);
1939 } else {
1940 if (likely(epout_has_pkt(ep)))
1941 completed = read_fifo(ep, req);
1942 if (completed)
1943 ep_end_out_req(ep, req);
1945 } while (completed);
1949 * pxa27x_change_configuration - Handle SET_CONF usb request notification
1950 * @udc: udc device
1951 * @config: usb configuration
1953 * Post the request to upper level.
1954 * Don't use any pxa specific harware configuration capabilities
1956 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
1958 struct usb_ctrlrequest req ;
1960 dev_dbg(udc->dev, "config=%d\n", config);
1962 udc->config = config;
1963 udc->last_interface = 0;
1964 udc->last_alternate = 0;
1966 req.bRequestType = 0;
1967 req.bRequest = USB_REQ_SET_CONFIGURATION;
1968 req.wValue = config;
1969 req.wIndex = 0;
1970 req.wLength = 0;
1972 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
1973 udc->driver->setup(&udc->gadget, &req);
1977 * pxa27x_change_interface - Handle SET_INTERF usb request notification
1978 * @udc: udc device
1979 * @iface: interface number
1980 * @alt: alternate setting number
1982 * Post the request to upper level.
1983 * Don't use any pxa specific harware configuration capabilities
1985 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
1987 struct usb_ctrlrequest req;
1989 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
1991 udc->last_interface = iface;
1992 udc->last_alternate = alt;
1994 req.bRequestType = USB_RECIP_INTERFACE;
1995 req.bRequest = USB_REQ_SET_INTERFACE;
1996 req.wValue = alt;
1997 req.wIndex = iface;
1998 req.wLength = 0;
2000 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2001 udc->driver->setup(&udc->gadget, &req);
2005 * irq_handle_data - Handle data transfer
2006 * @irq: irq IRQ number
2007 * @udc: dev pxa_udc device structure
2009 * Called from irq handler, transferts data to or from endpoint to queue
2011 static void irq_handle_data(int irq, struct pxa_udc *udc)
2013 int i;
2014 struct pxa_ep *ep;
2015 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2016 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2018 if (udcisr0 & UDCISR_INT_MASK) {
2019 udc->pxa_ep[0].stats.irqs++;
2020 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2021 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2022 !!(udcisr0 & UDCICR_PKTCOMPL));
2025 udcisr0 >>= 2;
2026 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2027 if (!(udcisr0 & UDCISR_INT_MASK))
2028 continue;
2030 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2031 ep = &udc->pxa_ep[i];
2032 ep->stats.irqs++;
2033 handle_ep(ep);
2036 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2037 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2038 if (!(udcisr1 & UDCISR_INT_MASK))
2039 continue;
2041 ep = &udc->pxa_ep[i];
2042 ep->stats.irqs++;
2043 handle_ep(ep);
2049 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2050 * @udc: udc device
2052 static void irq_udc_suspend(struct pxa_udc *udc)
2054 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2055 udc->stats.irqs_suspend++;
2057 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2058 && udc->driver && udc->driver->suspend)
2059 udc->driver->suspend(&udc->gadget);
2060 ep0_idle(udc);
2064 * irq_udc_resume - Handle IRQ "UDC Resume"
2065 * @udc: udc device
2067 static void irq_udc_resume(struct pxa_udc *udc)
2069 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2070 udc->stats.irqs_resume++;
2072 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2073 && udc->driver && udc->driver->resume)
2074 udc->driver->resume(&udc->gadget);
2078 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2079 * @udc: udc device
2081 static void irq_udc_reconfig(struct pxa_udc *udc)
2083 unsigned config, interface, alternate, config_change;
2084 u32 udccr = udc_readl(udc, UDCCR);
2086 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2087 udc->stats.irqs_reconfig++;
2089 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2090 config_change = (config != udc->config);
2091 pxa27x_change_configuration(udc, config);
2093 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2094 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2095 pxa27x_change_interface(udc, interface, alternate);
2097 if (config_change)
2098 update_pxa_ep_matches(udc);
2099 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2103 * irq_udc_reset - Handle IRQ "UDC Reset"
2104 * @udc: udc device
2106 static void irq_udc_reset(struct pxa_udc *udc)
2108 u32 udccr = udc_readl(udc, UDCCR);
2109 struct pxa_ep *ep = &udc->pxa_ep[0];
2111 dev_info(udc->dev, "USB reset\n");
2112 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2113 udc->stats.irqs_reset++;
2115 if ((udccr & UDCCR_UDA) == 0) {
2116 dev_dbg(udc->dev, "USB reset start\n");
2117 stop_activity(udc, udc->driver);
2119 udc->gadget.speed = USB_SPEED_FULL;
2120 memset(&udc->stats, 0, sizeof udc->stats);
2122 nuke(ep, -EPROTO);
2123 udc_ep_writel(ep, UDCCSR, UDCCSR0_FTF | UDCCSR0_OPC);
2124 ep0_idle(udc);
2128 * pxa_udc_irq - Main irq handler
2129 * @irq: irq number
2130 * @_dev: udc device
2132 * Handles all udc interrupts
2134 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2136 struct pxa_udc *udc = _dev;
2137 u32 udcisr0 = udc_readl(udc, UDCISR0);
2138 u32 udcisr1 = udc_readl(udc, UDCISR1);
2139 u32 udccr = udc_readl(udc, UDCCR);
2140 u32 udcisr1_spec;
2142 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2143 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2145 udcisr1_spec = udcisr1 & 0xf8000000;
2146 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2147 irq_udc_suspend(udc);
2148 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2149 irq_udc_resume(udc);
2150 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2151 irq_udc_reconfig(udc);
2152 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2153 irq_udc_reset(udc);
2155 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2156 irq_handle_data(irq, udc);
2158 return IRQ_HANDLED;
2161 static struct pxa_udc memory = {
2162 .gadget = {
2163 .ops = &pxa_udc_ops,
2164 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2165 .name = driver_name,
2166 .dev = {
2167 .bus_id = "gadget",
2171 .udc_usb_ep = {
2172 USB_EP_CTRL,
2173 USB_EP_OUT_BULK(1),
2174 USB_EP_IN_BULK(2),
2175 USB_EP_IN_ISO(3),
2176 USB_EP_OUT_ISO(4),
2177 USB_EP_IN_INT(5),
2180 .pxa_ep = {
2181 PXA_EP_CTRL,
2182 /* Endpoints for gadget zero */
2183 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2184 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2185 /* Endpoints for ether gadget, file storage gadget */
2186 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2187 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2188 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2189 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2190 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2191 /* Endpoints for RNDIS, serial */
2192 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2193 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2194 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2196 * All the following endpoints are only for completion. They
2197 * won't never work, as multiple interfaces are really broken on
2198 * the pxa.
2200 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2201 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2202 /* Endpoint for CDC Ether */
2203 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2204 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2209 * pxa_udc_probe - probes the udc device
2210 * @_dev: platform device
2212 * Perform basic init : allocates udc clock, creates sysfs files, requests
2213 * irq.
2215 static int __init pxa_udc_probe(struct platform_device *pdev)
2217 struct resource *regs;
2218 struct pxa_udc *udc = &memory;
2219 int retval;
2221 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2222 if (!regs)
2223 return -ENXIO;
2224 udc->irq = platform_get_irq(pdev, 0);
2225 if (udc->irq < 0)
2226 return udc->irq;
2228 udc->dev = &pdev->dev;
2229 udc->mach = pdev->dev.platform_data;
2231 udc->clk = clk_get(&pdev->dev, "UDCCLK");
2232 if (IS_ERR(udc->clk)) {
2233 retval = PTR_ERR(udc->clk);
2234 goto err_clk;
2237 retval = -ENOMEM;
2238 udc->regs = ioremap(regs->start, regs->end - regs->start + 1);
2239 if (!udc->regs) {
2240 dev_err(&pdev->dev, "Unable to map UDC I/O memory\n");
2241 goto err_map;
2244 device_initialize(&udc->gadget.dev);
2245 udc->gadget.dev.parent = &pdev->dev;
2246 udc->gadget.dev.dma_mask = NULL;
2248 the_controller = udc;
2249 platform_set_drvdata(pdev, udc);
2250 udc_init_data(udc);
2251 pxa_eps_setup(udc);
2253 /* irq setup after old hardware state is cleaned up */
2254 retval = request_irq(udc->irq, pxa_udc_irq,
2255 IRQF_SHARED, driver_name, udc);
2256 if (retval != 0) {
2257 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2258 driver_name, IRQ_USB, retval);
2259 goto err_irq;
2262 pxa_init_debugfs(udc);
2263 return 0;
2264 err_irq:
2265 iounmap(udc->regs);
2266 err_map:
2267 clk_put(udc->clk);
2268 udc->clk = NULL;
2269 err_clk:
2270 return retval;
2274 * pxa_udc_remove - removes the udc device driver
2275 * @_dev: platform device
2277 static int __exit pxa_udc_remove(struct platform_device *_dev)
2279 struct pxa_udc *udc = platform_get_drvdata(_dev);
2281 usb_gadget_unregister_driver(udc->driver);
2282 free_irq(udc->irq, udc);
2283 pxa_cleanup_debugfs(udc);
2285 platform_set_drvdata(_dev, NULL);
2286 the_controller = NULL;
2287 clk_put(udc->clk);
2289 return 0;
2292 static void pxa_udc_shutdown(struct platform_device *_dev)
2294 struct pxa_udc *udc = platform_get_drvdata(_dev);
2296 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2297 udc_disable(udc);
2300 #ifdef CONFIG_PM
2302 * pxa_udc_suspend - Suspend udc device
2303 * @_dev: platform device
2304 * @state: suspend state
2306 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2307 * device.
2309 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2311 int i;
2312 struct pxa_udc *udc = platform_get_drvdata(_dev);
2313 struct pxa_ep *ep;
2315 ep = &udc->pxa_ep[0];
2316 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2317 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
2318 ep = &udc->pxa_ep[i];
2319 ep->udccsr_value = udc_ep_readl(ep, UDCCSR);
2320 ep->udccr_value = udc_ep_readl(ep, UDCCR);
2321 ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n",
2322 ep->udccsr_value, ep->udccr_value);
2325 udc_disable(udc);
2327 return 0;
2331 * pxa_udc_resume - Resume udc device
2332 * @_dev: platform device
2334 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2335 * device.
2337 static int pxa_udc_resume(struct platform_device *_dev)
2339 int i;
2340 struct pxa_udc *udc = platform_get_drvdata(_dev);
2341 struct pxa_ep *ep;
2343 ep = &udc->pxa_ep[0];
2344 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2345 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
2346 ep = &udc->pxa_ep[i];
2347 udc_ep_writel(ep, UDCCSR, ep->udccsr_value);
2348 udc_ep_writel(ep, UDCCR, ep->udccr_value);
2349 ep_dbg(ep, "udccsr:0x%03x, udccr:0x%x\n",
2350 ep->udccsr_value, ep->udccr_value);
2353 udc_enable(udc);
2355 * We do not handle OTG yet.
2357 * OTGPH bit is set when sleep mode is entered.
2358 * it indicates that OTG pad is retaining its state.
2359 * Upon exit from sleep mode and before clearing OTGPH,
2360 * Software must configure the USB OTG pad, UDC, and UHC
2361 * to the state they were in before entering sleep mode.
2363 PSSR |= PSSR_OTGPH;
2365 return 0;
2367 #endif
2369 /* work with hotplug and coldplug */
2370 MODULE_ALIAS("platform:pxa2xx-udc");
2372 static struct platform_driver udc_driver = {
2373 .driver = {
2374 .name = "pxa2xx-udc",
2375 .owner = THIS_MODULE,
2377 .remove = __exit_p(pxa_udc_remove),
2378 .shutdown = pxa_udc_shutdown,
2379 #ifdef CONFIG_PM
2380 .suspend = pxa_udc_suspend,
2381 .resume = pxa_udc_resume
2382 #endif
2385 static int __init udc_init(void)
2387 if (!cpu_is_pxa27x())
2388 return -ENODEV;
2390 printk(KERN_INFO "%s: version %s\n", driver_name, DRIVER_VERSION);
2391 return platform_driver_probe(&udc_driver, pxa_udc_probe);
2393 module_init(udc_init);
2396 static void __exit udc_exit(void)
2398 platform_driver_unregister(&udc_driver);
2400 module_exit(udc_exit);
2402 MODULE_DESCRIPTION(DRIVER_DESC);
2403 MODULE_AUTHOR("Robert Jarzmik");
2404 MODULE_LICENSE("GPL");