kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / fs / cifs / file.c
blob0aac824371a579bd4f508f7360685b15c4ad74a4
1 /*
2 * fs/cifs/file.c
4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2007
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <asm/div64.h>
34 #include "cifsfs.h"
35 #include "cifspdu.h"
36 #include "cifsglob.h"
37 #include "cifsproto.h"
38 #include "cifs_unicode.h"
39 #include "cifs_debug.h"
40 #include "cifs_fs_sb.h"
42 static inline struct cifsFileInfo *cifs_init_private(
43 struct cifsFileInfo *private_data, struct inode *inode,
44 struct file *file, __u16 netfid)
46 memset(private_data, 0, sizeof(struct cifsFileInfo));
47 private_data->netfid = netfid;
48 private_data->pid = current->tgid;
49 init_MUTEX(&private_data->fh_sem);
50 mutex_init(&private_data->lock_mutex);
51 INIT_LIST_HEAD(&private_data->llist);
52 private_data->pfile = file; /* needed for writepage */
53 private_data->pInode = inode;
54 private_data->invalidHandle = false;
55 private_data->closePend = false;
56 /* we have to track num writers to the inode, since writepages
57 does not tell us which handle the write is for so there can
58 be a close (overlapping with write) of the filehandle that
59 cifs_writepages chose to use */
60 atomic_set(&private_data->wrtPending, 0);
62 return private_data;
65 static inline int cifs_convert_flags(unsigned int flags)
67 if ((flags & O_ACCMODE) == O_RDONLY)
68 return GENERIC_READ;
69 else if ((flags & O_ACCMODE) == O_WRONLY)
70 return GENERIC_WRITE;
71 else if ((flags & O_ACCMODE) == O_RDWR) {
72 /* GENERIC_ALL is too much permission to request
73 can cause unnecessary access denied on create */
74 /* return GENERIC_ALL; */
75 return (GENERIC_READ | GENERIC_WRITE);
78 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
79 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
80 FILE_READ_DATA);
85 static inline int cifs_get_disposition(unsigned int flags)
87 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
88 return FILE_CREATE;
89 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
90 return FILE_OVERWRITE_IF;
91 else if ((flags & O_CREAT) == O_CREAT)
92 return FILE_OPEN_IF;
93 else if ((flags & O_TRUNC) == O_TRUNC)
94 return FILE_OVERWRITE;
95 else
96 return FILE_OPEN;
99 /* all arguments to this function must be checked for validity in caller */
100 static inline int cifs_open_inode_helper(struct inode *inode, struct file *file,
101 struct cifsInodeInfo *pCifsInode, struct cifsFileInfo *pCifsFile,
102 struct cifsTconInfo *pTcon, int *oplock, FILE_ALL_INFO *buf,
103 char *full_path, int xid)
105 struct timespec temp;
106 int rc;
108 /* want handles we can use to read with first
109 in the list so we do not have to walk the
110 list to search for one in prepare_write */
111 if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
112 list_add_tail(&pCifsFile->flist,
113 &pCifsInode->openFileList);
114 } else {
115 list_add(&pCifsFile->flist,
116 &pCifsInode->openFileList);
118 write_unlock(&GlobalSMBSeslock);
119 if (pCifsInode->clientCanCacheRead) {
120 /* we have the inode open somewhere else
121 no need to discard cache data */
122 goto client_can_cache;
125 /* BB need same check in cifs_create too? */
126 /* if not oplocked, invalidate inode pages if mtime or file
127 size changed */
128 temp = cifs_NTtimeToUnix(le64_to_cpu(buf->LastWriteTime));
129 if (timespec_equal(&file->f_path.dentry->d_inode->i_mtime, &temp) &&
130 (file->f_path.dentry->d_inode->i_size ==
131 (loff_t)le64_to_cpu(buf->EndOfFile))) {
132 cFYI(1, ("inode unchanged on server"));
133 } else {
134 if (file->f_path.dentry->d_inode->i_mapping) {
135 /* BB no need to lock inode until after invalidate
136 since namei code should already have it locked? */
137 rc = filemap_write_and_wait(file->f_path.dentry->d_inode->i_mapping);
138 if (rc != 0)
139 CIFS_I(file->f_path.dentry->d_inode)->write_behind_rc = rc;
141 cFYI(1, ("invalidating remote inode since open detected it "
142 "changed"));
143 invalidate_remote_inode(file->f_path.dentry->d_inode);
146 client_can_cache:
147 if (pTcon->unix_ext)
148 rc = cifs_get_inode_info_unix(&file->f_path.dentry->d_inode,
149 full_path, inode->i_sb, xid);
150 else
151 rc = cifs_get_inode_info(&file->f_path.dentry->d_inode,
152 full_path, buf, inode->i_sb, xid, NULL);
154 if ((*oplock & 0xF) == OPLOCK_EXCLUSIVE) {
155 pCifsInode->clientCanCacheAll = true;
156 pCifsInode->clientCanCacheRead = true;
157 cFYI(1, ("Exclusive Oplock granted on inode %p",
158 file->f_path.dentry->d_inode));
159 } else if ((*oplock & 0xF) == OPLOCK_READ)
160 pCifsInode->clientCanCacheRead = true;
162 return rc;
165 int cifs_open(struct inode *inode, struct file *file)
167 int rc = -EACCES;
168 int xid, oplock;
169 struct cifs_sb_info *cifs_sb;
170 struct cifsTconInfo *pTcon;
171 struct cifsFileInfo *pCifsFile;
172 struct cifsInodeInfo *pCifsInode;
173 struct list_head *tmp;
174 char *full_path = NULL;
175 int desiredAccess;
176 int disposition;
177 __u16 netfid;
178 FILE_ALL_INFO *buf = NULL;
180 xid = GetXid();
182 cifs_sb = CIFS_SB(inode->i_sb);
183 pTcon = cifs_sb->tcon;
185 if (file->f_flags & O_CREAT) {
186 /* search inode for this file and fill in file->private_data */
187 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
188 read_lock(&GlobalSMBSeslock);
189 list_for_each(tmp, &pCifsInode->openFileList) {
190 pCifsFile = list_entry(tmp, struct cifsFileInfo,
191 flist);
192 if ((pCifsFile->pfile == NULL) &&
193 (pCifsFile->pid == current->tgid)) {
194 /* mode set in cifs_create */
196 /* needed for writepage */
197 pCifsFile->pfile = file;
199 file->private_data = pCifsFile;
200 break;
203 read_unlock(&GlobalSMBSeslock);
204 if (file->private_data != NULL) {
205 rc = 0;
206 FreeXid(xid);
207 return rc;
208 } else {
209 if (file->f_flags & O_EXCL)
210 cERROR(1, ("could not find file instance for "
211 "new file %p", file));
215 full_path = build_path_from_dentry(file->f_path.dentry);
216 if (full_path == NULL) {
217 FreeXid(xid);
218 return -ENOMEM;
221 cFYI(1, ("inode = 0x%p file flags are 0x%x for %s",
222 inode, file->f_flags, full_path));
223 desiredAccess = cifs_convert_flags(file->f_flags);
225 /*********************************************************************
226 * open flag mapping table:
228 * POSIX Flag CIFS Disposition
229 * ---------- ----------------
230 * O_CREAT FILE_OPEN_IF
231 * O_CREAT | O_EXCL FILE_CREATE
232 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
233 * O_TRUNC FILE_OVERWRITE
234 * none of the above FILE_OPEN
236 * Note that there is not a direct match between disposition
237 * FILE_SUPERSEDE (ie create whether or not file exists although
238 * O_CREAT | O_TRUNC is similar but truncates the existing
239 * file rather than creating a new file as FILE_SUPERSEDE does
240 * (which uses the attributes / metadata passed in on open call)
242 *? O_SYNC is a reasonable match to CIFS writethrough flag
243 *? and the read write flags match reasonably. O_LARGEFILE
244 *? is irrelevant because largefile support is always used
245 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
246 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
247 *********************************************************************/
249 disposition = cifs_get_disposition(file->f_flags);
251 if (oplockEnabled)
252 oplock = REQ_OPLOCK;
253 else
254 oplock = 0;
256 /* BB pass O_SYNC flag through on file attributes .. BB */
258 /* Also refresh inode by passing in file_info buf returned by SMBOpen
259 and calling get_inode_info with returned buf (at least helps
260 non-Unix server case) */
262 /* BB we can not do this if this is the second open of a file
263 and the first handle has writebehind data, we might be
264 able to simply do a filemap_fdatawrite/filemap_fdatawait first */
265 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
266 if (!buf) {
267 rc = -ENOMEM;
268 goto out;
271 if (cifs_sb->tcon->ses->capabilities & CAP_NT_SMBS)
272 rc = CIFSSMBOpen(xid, pTcon, full_path, disposition,
273 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
274 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
275 & CIFS_MOUNT_MAP_SPECIAL_CHR);
276 else
277 rc = -EIO; /* no NT SMB support fall into legacy open below */
279 if (rc == -EIO) {
280 /* Old server, try legacy style OpenX */
281 rc = SMBLegacyOpen(xid, pTcon, full_path, disposition,
282 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
283 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
284 & CIFS_MOUNT_MAP_SPECIAL_CHR);
286 if (rc) {
287 cFYI(1, ("cifs_open returned 0x%x", rc));
288 goto out;
290 file->private_data =
291 kmalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
292 if (file->private_data == NULL) {
293 rc = -ENOMEM;
294 goto out;
296 pCifsFile = cifs_init_private(file->private_data, inode, file, netfid);
297 write_lock(&GlobalSMBSeslock);
298 list_add(&pCifsFile->tlist, &pTcon->openFileList);
300 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
301 if (pCifsInode) {
302 rc = cifs_open_inode_helper(inode, file, pCifsInode,
303 pCifsFile, pTcon,
304 &oplock, buf, full_path, xid);
305 } else {
306 write_unlock(&GlobalSMBSeslock);
309 if (oplock & CIFS_CREATE_ACTION) {
310 /* time to set mode which we can not set earlier due to
311 problems creating new read-only files */
312 if (pTcon->unix_ext) {
313 CIFSSMBUnixSetPerms(xid, pTcon, full_path,
314 inode->i_mode,
315 (__u64)-1, (__u64)-1, 0 /* dev */,
316 cifs_sb->local_nls,
317 cifs_sb->mnt_cifs_flags &
318 CIFS_MOUNT_MAP_SPECIAL_CHR);
319 } else {
320 /* BB implement via Windows security descriptors eg
321 CIFSSMBWinSetPerms(xid, pTcon, full_path, mode,
322 -1, -1, local_nls);
323 in the meantime could set r/o dos attribute when
324 perms are eg: mode & 0222 == 0 */
328 out:
329 kfree(buf);
330 kfree(full_path);
331 FreeXid(xid);
332 return rc;
335 /* Try to reacquire byte range locks that were released when session */
336 /* to server was lost */
337 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
339 int rc = 0;
341 /* BB list all locks open on this file and relock */
343 return rc;
346 static int cifs_reopen_file(struct file *file, bool can_flush)
348 int rc = -EACCES;
349 int xid, oplock;
350 struct cifs_sb_info *cifs_sb;
351 struct cifsTconInfo *pTcon;
352 struct cifsFileInfo *pCifsFile;
353 struct cifsInodeInfo *pCifsInode;
354 struct inode *inode;
355 char *full_path = NULL;
356 int desiredAccess;
357 int disposition = FILE_OPEN;
358 __u16 netfid;
360 if (file->private_data)
361 pCifsFile = (struct cifsFileInfo *)file->private_data;
362 else
363 return -EBADF;
365 xid = GetXid();
366 down(&pCifsFile->fh_sem);
367 if (!pCifsFile->invalidHandle) {
368 up(&pCifsFile->fh_sem);
369 FreeXid(xid);
370 return 0;
373 if (file->f_path.dentry == NULL) {
374 cERROR(1, ("no valid name if dentry freed"));
375 dump_stack();
376 rc = -EBADF;
377 goto reopen_error_exit;
380 inode = file->f_path.dentry->d_inode;
381 if (inode == NULL) {
382 cERROR(1, ("inode not valid"));
383 dump_stack();
384 rc = -EBADF;
385 goto reopen_error_exit;
388 cifs_sb = CIFS_SB(inode->i_sb);
389 pTcon = cifs_sb->tcon;
391 /* can not grab rename sem here because various ops, including
392 those that already have the rename sem can end up causing writepage
393 to get called and if the server was down that means we end up here,
394 and we can never tell if the caller already has the rename_sem */
395 full_path = build_path_from_dentry(file->f_path.dentry);
396 if (full_path == NULL) {
397 rc = -ENOMEM;
398 reopen_error_exit:
399 up(&pCifsFile->fh_sem);
400 FreeXid(xid);
401 return rc;
404 cFYI(1, ("inode = 0x%p file flags 0x%x for %s",
405 inode, file->f_flags, full_path));
406 desiredAccess = cifs_convert_flags(file->f_flags);
408 if (oplockEnabled)
409 oplock = REQ_OPLOCK;
410 else
411 oplock = 0;
413 /* Can not refresh inode by passing in file_info buf to be returned
414 by SMBOpen and then calling get_inode_info with returned buf
415 since file might have write behind data that needs to be flushed
416 and server version of file size can be stale. If we knew for sure
417 that inode was not dirty locally we could do this */
419 rc = CIFSSMBOpen(xid, pTcon, full_path, disposition, desiredAccess,
420 CREATE_NOT_DIR, &netfid, &oplock, NULL,
421 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
422 CIFS_MOUNT_MAP_SPECIAL_CHR);
423 if (rc) {
424 up(&pCifsFile->fh_sem);
425 cFYI(1, ("cifs_open returned 0x%x", rc));
426 cFYI(1, ("oplock: %d", oplock));
427 } else {
428 pCifsFile->netfid = netfid;
429 pCifsFile->invalidHandle = false;
430 up(&pCifsFile->fh_sem);
431 pCifsInode = CIFS_I(inode);
432 if (pCifsInode) {
433 if (can_flush) {
434 rc = filemap_write_and_wait(inode->i_mapping);
435 if (rc != 0)
436 CIFS_I(inode)->write_behind_rc = rc;
437 /* temporarily disable caching while we
438 go to server to get inode info */
439 pCifsInode->clientCanCacheAll = false;
440 pCifsInode->clientCanCacheRead = false;
441 if (pTcon->unix_ext)
442 rc = cifs_get_inode_info_unix(&inode,
443 full_path, inode->i_sb, xid);
444 else
445 rc = cifs_get_inode_info(&inode,
446 full_path, NULL, inode->i_sb,
447 xid, NULL);
448 } /* else we are writing out data to server already
449 and could deadlock if we tried to flush data, and
450 since we do not know if we have data that would
451 invalidate the current end of file on the server
452 we can not go to the server to get the new inod
453 info */
454 if ((oplock & 0xF) == OPLOCK_EXCLUSIVE) {
455 pCifsInode->clientCanCacheAll = true;
456 pCifsInode->clientCanCacheRead = true;
457 cFYI(1, ("Exclusive Oplock granted on inode %p",
458 file->f_path.dentry->d_inode));
459 } else if ((oplock & 0xF) == OPLOCK_READ) {
460 pCifsInode->clientCanCacheRead = true;
461 pCifsInode->clientCanCacheAll = false;
462 } else {
463 pCifsInode->clientCanCacheRead = false;
464 pCifsInode->clientCanCacheAll = false;
466 cifs_relock_file(pCifsFile);
470 kfree(full_path);
471 FreeXid(xid);
472 return rc;
475 int cifs_close(struct inode *inode, struct file *file)
477 int rc = 0;
478 int xid, timeout;
479 struct cifs_sb_info *cifs_sb;
480 struct cifsTconInfo *pTcon;
481 struct cifsFileInfo *pSMBFile =
482 (struct cifsFileInfo *)file->private_data;
484 xid = GetXid();
486 cifs_sb = CIFS_SB(inode->i_sb);
487 pTcon = cifs_sb->tcon;
488 if (pSMBFile) {
489 struct cifsLockInfo *li, *tmp;
491 pSMBFile->closePend = true;
492 if (pTcon) {
493 /* no sense reconnecting to close a file that is
494 already closed */
495 if (pTcon->tidStatus != CifsNeedReconnect) {
496 timeout = 2;
497 while ((atomic_read(&pSMBFile->wrtPending) != 0)
498 && (timeout <= 2048)) {
499 /* Give write a better chance to get to
500 server ahead of the close. We do not
501 want to add a wait_q here as it would
502 increase the memory utilization as
503 the struct would be in each open file,
504 but this should give enough time to
505 clear the socket */
506 cFYI(DBG2,
507 ("close delay, write pending"));
508 msleep(timeout);
509 timeout *= 4;
511 if (atomic_read(&pSMBFile->wrtPending))
512 cERROR(1,
513 ("close with pending writes"));
514 rc = CIFSSMBClose(xid, pTcon,
515 pSMBFile->netfid);
519 /* Delete any outstanding lock records.
520 We'll lose them when the file is closed anyway. */
521 mutex_lock(&pSMBFile->lock_mutex);
522 list_for_each_entry_safe(li, tmp, &pSMBFile->llist, llist) {
523 list_del(&li->llist);
524 kfree(li);
526 mutex_unlock(&pSMBFile->lock_mutex);
528 write_lock(&GlobalSMBSeslock);
529 list_del(&pSMBFile->flist);
530 list_del(&pSMBFile->tlist);
531 write_unlock(&GlobalSMBSeslock);
532 timeout = 10;
533 /* We waited above to give the SMBWrite a chance to issue
534 on the wire (so we do not get SMBWrite returning EBADF
535 if writepages is racing with close. Note that writepages
536 does not specify a file handle, so it is possible for a file
537 to be opened twice, and the application close the "wrong"
538 file handle - in these cases we delay long enough to allow
539 the SMBWrite to get on the wire before the SMB Close.
540 We allow total wait here over 45 seconds, more than
541 oplock break time, and more than enough to allow any write
542 to complete on the server, or to time out on the client */
543 while ((atomic_read(&pSMBFile->wrtPending) != 0)
544 && (timeout <= 50000)) {
545 cERROR(1, ("writes pending, delay free of handle"));
546 msleep(timeout);
547 timeout *= 8;
549 kfree(file->private_data);
550 file->private_data = NULL;
551 } else
552 rc = -EBADF;
554 read_lock(&GlobalSMBSeslock);
555 if (list_empty(&(CIFS_I(inode)->openFileList))) {
556 cFYI(1, ("closing last open instance for inode %p", inode));
557 /* if the file is not open we do not know if we can cache info
558 on this inode, much less write behind and read ahead */
559 CIFS_I(inode)->clientCanCacheRead = false;
560 CIFS_I(inode)->clientCanCacheAll = false;
562 read_unlock(&GlobalSMBSeslock);
563 if ((rc == 0) && CIFS_I(inode)->write_behind_rc)
564 rc = CIFS_I(inode)->write_behind_rc;
565 FreeXid(xid);
566 return rc;
569 int cifs_closedir(struct inode *inode, struct file *file)
571 int rc = 0;
572 int xid;
573 struct cifsFileInfo *pCFileStruct =
574 (struct cifsFileInfo *)file->private_data;
575 char *ptmp;
577 cFYI(1, ("Closedir inode = 0x%p", inode));
579 xid = GetXid();
581 if (pCFileStruct) {
582 struct cifsTconInfo *pTcon;
583 struct cifs_sb_info *cifs_sb =
584 CIFS_SB(file->f_path.dentry->d_sb);
586 pTcon = cifs_sb->tcon;
588 cFYI(1, ("Freeing private data in close dir"));
589 if (!pCFileStruct->srch_inf.endOfSearch &&
590 !pCFileStruct->invalidHandle) {
591 pCFileStruct->invalidHandle = true;
592 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
593 cFYI(1, ("Closing uncompleted readdir with rc %d",
594 rc));
595 /* not much we can do if it fails anyway, ignore rc */
596 rc = 0;
598 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
599 if (ptmp) {
600 cFYI(1, ("closedir free smb buf in srch struct"));
601 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
602 if (pCFileStruct->srch_inf.smallBuf)
603 cifs_small_buf_release(ptmp);
604 else
605 cifs_buf_release(ptmp);
607 kfree(file->private_data);
608 file->private_data = NULL;
610 /* BB can we lock the filestruct while this is going on? */
611 FreeXid(xid);
612 return rc;
615 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
616 __u64 offset, __u8 lockType)
618 struct cifsLockInfo *li =
619 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
620 if (li == NULL)
621 return -ENOMEM;
622 li->offset = offset;
623 li->length = len;
624 li->type = lockType;
625 mutex_lock(&fid->lock_mutex);
626 list_add(&li->llist, &fid->llist);
627 mutex_unlock(&fid->lock_mutex);
628 return 0;
631 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
633 int rc, xid;
634 __u32 numLock = 0;
635 __u32 numUnlock = 0;
636 __u64 length;
637 bool wait_flag = false;
638 struct cifs_sb_info *cifs_sb;
639 struct cifsTconInfo *pTcon;
640 __u16 netfid;
641 __u8 lockType = LOCKING_ANDX_LARGE_FILES;
642 bool posix_locking;
644 length = 1 + pfLock->fl_end - pfLock->fl_start;
645 rc = -EACCES;
646 xid = GetXid();
648 cFYI(1, ("Lock parm: 0x%x flockflags: "
649 "0x%x flocktype: 0x%x start: %lld end: %lld",
650 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
651 pfLock->fl_end));
653 if (pfLock->fl_flags & FL_POSIX)
654 cFYI(1, ("Posix"));
655 if (pfLock->fl_flags & FL_FLOCK)
656 cFYI(1, ("Flock"));
657 if (pfLock->fl_flags & FL_SLEEP) {
658 cFYI(1, ("Blocking lock"));
659 wait_flag = true;
661 if (pfLock->fl_flags & FL_ACCESS)
662 cFYI(1, ("Process suspended by mandatory locking - "
663 "not implemented yet"));
664 if (pfLock->fl_flags & FL_LEASE)
665 cFYI(1, ("Lease on file - not implemented yet"));
666 if (pfLock->fl_flags &
667 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
668 cFYI(1, ("Unknown lock flags 0x%x", pfLock->fl_flags));
670 if (pfLock->fl_type == F_WRLCK) {
671 cFYI(1, ("F_WRLCK "));
672 numLock = 1;
673 } else if (pfLock->fl_type == F_UNLCK) {
674 cFYI(1, ("F_UNLCK"));
675 numUnlock = 1;
676 /* Check if unlock includes more than
677 one lock range */
678 } else if (pfLock->fl_type == F_RDLCK) {
679 cFYI(1, ("F_RDLCK"));
680 lockType |= LOCKING_ANDX_SHARED_LOCK;
681 numLock = 1;
682 } else if (pfLock->fl_type == F_EXLCK) {
683 cFYI(1, ("F_EXLCK"));
684 numLock = 1;
685 } else if (pfLock->fl_type == F_SHLCK) {
686 cFYI(1, ("F_SHLCK"));
687 lockType |= LOCKING_ANDX_SHARED_LOCK;
688 numLock = 1;
689 } else
690 cFYI(1, ("Unknown type of lock"));
692 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
693 pTcon = cifs_sb->tcon;
695 if (file->private_data == NULL) {
696 FreeXid(xid);
697 return -EBADF;
699 netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
701 posix_locking = (cifs_sb->tcon->ses->capabilities & CAP_UNIX) &&
702 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(cifs_sb->tcon->fsUnixInfo.Capability));
704 /* BB add code here to normalize offset and length to
705 account for negative length which we can not accept over the
706 wire */
707 if (IS_GETLK(cmd)) {
708 if (posix_locking) {
709 int posix_lock_type;
710 if (lockType & LOCKING_ANDX_SHARED_LOCK)
711 posix_lock_type = CIFS_RDLCK;
712 else
713 posix_lock_type = CIFS_WRLCK;
714 rc = CIFSSMBPosixLock(xid, pTcon, netfid, 1 /* get */,
715 length, pfLock,
716 posix_lock_type, wait_flag);
717 FreeXid(xid);
718 return rc;
721 /* BB we could chain these into one lock request BB */
722 rc = CIFSSMBLock(xid, pTcon, netfid, length, pfLock->fl_start,
723 0, 1, lockType, 0 /* wait flag */ );
724 if (rc == 0) {
725 rc = CIFSSMBLock(xid, pTcon, netfid, length,
726 pfLock->fl_start, 1 /* numUnlock */ ,
727 0 /* numLock */ , lockType,
728 0 /* wait flag */ );
729 pfLock->fl_type = F_UNLCK;
730 if (rc != 0)
731 cERROR(1, ("Error unlocking previously locked "
732 "range %d during test of lock", rc));
733 rc = 0;
735 } else {
736 /* if rc == ERR_SHARING_VIOLATION ? */
737 rc = 0; /* do not change lock type to unlock
738 since range in use */
741 FreeXid(xid);
742 return rc;
745 if (!numLock && !numUnlock) {
746 /* if no lock or unlock then nothing
747 to do since we do not know what it is */
748 FreeXid(xid);
749 return -EOPNOTSUPP;
752 if (posix_locking) {
753 int posix_lock_type;
754 if (lockType & LOCKING_ANDX_SHARED_LOCK)
755 posix_lock_type = CIFS_RDLCK;
756 else
757 posix_lock_type = CIFS_WRLCK;
759 if (numUnlock == 1)
760 posix_lock_type = CIFS_UNLCK;
762 rc = CIFSSMBPosixLock(xid, pTcon, netfid, 0 /* set */,
763 length, pfLock,
764 posix_lock_type, wait_flag);
765 } else {
766 struct cifsFileInfo *fid =
767 (struct cifsFileInfo *)file->private_data;
769 if (numLock) {
770 rc = CIFSSMBLock(xid, pTcon, netfid, length,
771 pfLock->fl_start,
772 0, numLock, lockType, wait_flag);
774 if (rc == 0) {
775 /* For Windows locks we must store them. */
776 rc = store_file_lock(fid, length,
777 pfLock->fl_start, lockType);
779 } else if (numUnlock) {
780 /* For each stored lock that this unlock overlaps
781 completely, unlock it. */
782 int stored_rc = 0;
783 struct cifsLockInfo *li, *tmp;
785 rc = 0;
786 mutex_lock(&fid->lock_mutex);
787 list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
788 if (pfLock->fl_start <= li->offset &&
789 (pfLock->fl_start + length) >=
790 (li->offset + li->length)) {
791 stored_rc = CIFSSMBLock(xid, pTcon,
792 netfid,
793 li->length, li->offset,
794 1, 0, li->type, false);
795 if (stored_rc)
796 rc = stored_rc;
798 list_del(&li->llist);
799 kfree(li);
802 mutex_unlock(&fid->lock_mutex);
806 if (pfLock->fl_flags & FL_POSIX)
807 posix_lock_file_wait(file, pfLock);
808 FreeXid(xid);
809 return rc;
812 ssize_t cifs_user_write(struct file *file, const char __user *write_data,
813 size_t write_size, loff_t *poffset)
815 int rc = 0;
816 unsigned int bytes_written = 0;
817 unsigned int total_written;
818 struct cifs_sb_info *cifs_sb;
819 struct cifsTconInfo *pTcon;
820 int xid, long_op;
821 struct cifsFileInfo *open_file;
823 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
825 pTcon = cifs_sb->tcon;
827 /* cFYI(1,
828 (" write %d bytes to offset %lld of %s", write_size,
829 *poffset, file->f_path.dentry->d_name.name)); */
831 if (file->private_data == NULL)
832 return -EBADF;
833 open_file = (struct cifsFileInfo *) file->private_data;
835 xid = GetXid();
837 if (*poffset > file->f_path.dentry->d_inode->i_size)
838 long_op = CIFS_VLONG_OP; /* writes past EOF take long time */
839 else
840 long_op = CIFS_LONG_OP;
842 for (total_written = 0; write_size > total_written;
843 total_written += bytes_written) {
844 rc = -EAGAIN;
845 while (rc == -EAGAIN) {
846 if (file->private_data == NULL) {
847 /* file has been closed on us */
848 FreeXid(xid);
849 /* if we have gotten here we have written some data
850 and blocked, and the file has been freed on us while
851 we blocked so return what we managed to write */
852 return total_written;
854 if (open_file->closePend) {
855 FreeXid(xid);
856 if (total_written)
857 return total_written;
858 else
859 return -EBADF;
861 if (open_file->invalidHandle) {
862 /* we could deadlock if we called
863 filemap_fdatawait from here so tell
864 reopen_file not to flush data to server
865 now */
866 rc = cifs_reopen_file(file, false);
867 if (rc != 0)
868 break;
871 rc = CIFSSMBWrite(xid, pTcon,
872 open_file->netfid,
873 min_t(const int, cifs_sb->wsize,
874 write_size - total_written),
875 *poffset, &bytes_written,
876 NULL, write_data + total_written, long_op);
878 if (rc || (bytes_written == 0)) {
879 if (total_written)
880 break;
881 else {
882 FreeXid(xid);
883 return rc;
885 } else
886 *poffset += bytes_written;
887 long_op = CIFS_STD_OP; /* subsequent writes fast -
888 15 seconds is plenty */
891 cifs_stats_bytes_written(pTcon, total_written);
893 /* since the write may have blocked check these pointers again */
894 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
895 struct inode *inode = file->f_path.dentry->d_inode;
896 /* Do not update local mtime - server will set its actual value on write
897 * inode->i_ctime = inode->i_mtime =
898 * current_fs_time(inode->i_sb);*/
899 if (total_written > 0) {
900 spin_lock(&inode->i_lock);
901 if (*poffset > file->f_path.dentry->d_inode->i_size)
902 i_size_write(file->f_path.dentry->d_inode,
903 *poffset);
904 spin_unlock(&inode->i_lock);
906 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
908 FreeXid(xid);
909 return total_written;
912 static ssize_t cifs_write(struct file *file, const char *write_data,
913 size_t write_size, loff_t *poffset)
915 int rc = 0;
916 unsigned int bytes_written = 0;
917 unsigned int total_written;
918 struct cifs_sb_info *cifs_sb;
919 struct cifsTconInfo *pTcon;
920 int xid, long_op;
921 struct cifsFileInfo *open_file;
923 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
925 pTcon = cifs_sb->tcon;
927 cFYI(1, ("write %zd bytes to offset %lld of %s", write_size,
928 *poffset, file->f_path.dentry->d_name.name));
930 if (file->private_data == NULL)
931 return -EBADF;
932 open_file = (struct cifsFileInfo *)file->private_data;
934 xid = GetXid();
936 if (*poffset > file->f_path.dentry->d_inode->i_size)
937 long_op = CIFS_VLONG_OP; /* writes past EOF can be slow */
938 else
939 long_op = CIFS_LONG_OP;
941 for (total_written = 0; write_size > total_written;
942 total_written += bytes_written) {
943 rc = -EAGAIN;
944 while (rc == -EAGAIN) {
945 if (file->private_data == NULL) {
946 /* file has been closed on us */
947 FreeXid(xid);
948 /* if we have gotten here we have written some data
949 and blocked, and the file has been freed on us
950 while we blocked so return what we managed to
951 write */
952 return total_written;
954 if (open_file->closePend) {
955 FreeXid(xid);
956 if (total_written)
957 return total_written;
958 else
959 return -EBADF;
961 if (open_file->invalidHandle) {
962 /* we could deadlock if we called
963 filemap_fdatawait from here so tell
964 reopen_file not to flush data to
965 server now */
966 rc = cifs_reopen_file(file, false);
967 if (rc != 0)
968 break;
970 if (experimEnabled || (pTcon->ses->server &&
971 ((pTcon->ses->server->secMode &
972 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
973 == 0))) {
974 struct kvec iov[2];
975 unsigned int len;
977 len = min((size_t)cifs_sb->wsize,
978 write_size - total_written);
979 /* iov[0] is reserved for smb header */
980 iov[1].iov_base = (char *)write_data +
981 total_written;
982 iov[1].iov_len = len;
983 rc = CIFSSMBWrite2(xid, pTcon,
984 open_file->netfid, len,
985 *poffset, &bytes_written,
986 iov, 1, long_op);
987 } else
988 rc = CIFSSMBWrite(xid, pTcon,
989 open_file->netfid,
990 min_t(const int, cifs_sb->wsize,
991 write_size - total_written),
992 *poffset, &bytes_written,
993 write_data + total_written,
994 NULL, long_op);
996 if (rc || (bytes_written == 0)) {
997 if (total_written)
998 break;
999 else {
1000 FreeXid(xid);
1001 return rc;
1003 } else
1004 *poffset += bytes_written;
1005 long_op = CIFS_STD_OP; /* subsequent writes fast -
1006 15 seconds is plenty */
1009 cifs_stats_bytes_written(pTcon, total_written);
1011 /* since the write may have blocked check these pointers again */
1012 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
1013 /*BB We could make this contingent on superblock ATIME flag too */
1014 /* file->f_path.dentry->d_inode->i_ctime =
1015 file->f_path.dentry->d_inode->i_mtime = CURRENT_TIME;*/
1016 if (total_written > 0) {
1017 spin_lock(&file->f_path.dentry->d_inode->i_lock);
1018 if (*poffset > file->f_path.dentry->d_inode->i_size)
1019 i_size_write(file->f_path.dentry->d_inode,
1020 *poffset);
1021 spin_unlock(&file->f_path.dentry->d_inode->i_lock);
1023 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
1025 FreeXid(xid);
1026 return total_written;
1029 #ifdef CONFIG_CIFS_EXPERIMENTAL
1030 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode)
1032 struct cifsFileInfo *open_file = NULL;
1034 read_lock(&GlobalSMBSeslock);
1035 /* we could simply get the first_list_entry since write-only entries
1036 are always at the end of the list but since the first entry might
1037 have a close pending, we go through the whole list */
1038 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1039 if (open_file->closePend)
1040 continue;
1041 if (open_file->pfile && ((open_file->pfile->f_flags & O_RDWR) ||
1042 (open_file->pfile->f_flags & O_RDONLY))) {
1043 if (!open_file->invalidHandle) {
1044 /* found a good file */
1045 /* lock it so it will not be closed on us */
1046 atomic_inc(&open_file->wrtPending);
1047 read_unlock(&GlobalSMBSeslock);
1048 return open_file;
1049 } /* else might as well continue, and look for
1050 another, or simply have the caller reopen it
1051 again rather than trying to fix this handle */
1052 } else /* write only file */
1053 break; /* write only files are last so must be done */
1055 read_unlock(&GlobalSMBSeslock);
1056 return NULL;
1058 #endif
1060 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode)
1062 struct cifsFileInfo *open_file;
1063 int rc;
1065 /* Having a null inode here (because mapping->host was set to zero by
1066 the VFS or MM) should not happen but we had reports of on oops (due to
1067 it being zero) during stress testcases so we need to check for it */
1069 if (cifs_inode == NULL) {
1070 cERROR(1, ("Null inode passed to cifs_writeable_file"));
1071 dump_stack();
1072 return NULL;
1075 read_lock(&GlobalSMBSeslock);
1076 refind_writable:
1077 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1078 if (open_file->closePend)
1079 continue;
1080 if (open_file->pfile &&
1081 ((open_file->pfile->f_flags & O_RDWR) ||
1082 (open_file->pfile->f_flags & O_WRONLY))) {
1083 atomic_inc(&open_file->wrtPending);
1085 if (!open_file->invalidHandle) {
1086 /* found a good writable file */
1087 read_unlock(&GlobalSMBSeslock);
1088 return open_file;
1091 read_unlock(&GlobalSMBSeslock);
1092 /* Had to unlock since following call can block */
1093 rc = cifs_reopen_file(open_file->pfile, false);
1094 if (!rc) {
1095 if (!open_file->closePend)
1096 return open_file;
1097 else { /* start over in case this was deleted */
1098 /* since the list could be modified */
1099 read_lock(&GlobalSMBSeslock);
1100 atomic_dec(&open_file->wrtPending);
1101 goto refind_writable;
1105 /* if it fails, try another handle if possible -
1106 (we can not do this if closePending since
1107 loop could be modified - in which case we
1108 have to start at the beginning of the list
1109 again. Note that it would be bad
1110 to hold up writepages here (rather than
1111 in caller) with continuous retries */
1112 cFYI(1, ("wp failed on reopen file"));
1113 read_lock(&GlobalSMBSeslock);
1114 /* can not use this handle, no write
1115 pending on this one after all */
1116 atomic_dec(&open_file->wrtPending);
1118 if (open_file->closePend) /* list could have changed */
1119 goto refind_writable;
1120 /* else we simply continue to the next entry. Thus
1121 we do not loop on reopen errors. If we
1122 can not reopen the file, for example if we
1123 reconnected to a server with another client
1124 racing to delete or lock the file we would not
1125 make progress if we restarted before the beginning
1126 of the loop here. */
1129 read_unlock(&GlobalSMBSeslock);
1130 return NULL;
1133 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1135 struct address_space *mapping = page->mapping;
1136 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1137 char *write_data;
1138 int rc = -EFAULT;
1139 int bytes_written = 0;
1140 struct cifs_sb_info *cifs_sb;
1141 struct cifsTconInfo *pTcon;
1142 struct inode *inode;
1143 struct cifsFileInfo *open_file;
1145 if (!mapping || !mapping->host)
1146 return -EFAULT;
1148 inode = page->mapping->host;
1149 cifs_sb = CIFS_SB(inode->i_sb);
1150 pTcon = cifs_sb->tcon;
1152 offset += (loff_t)from;
1153 write_data = kmap(page);
1154 write_data += from;
1156 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1157 kunmap(page);
1158 return -EIO;
1161 /* racing with truncate? */
1162 if (offset > mapping->host->i_size) {
1163 kunmap(page);
1164 return 0; /* don't care */
1167 /* check to make sure that we are not extending the file */
1168 if (mapping->host->i_size - offset < (loff_t)to)
1169 to = (unsigned)(mapping->host->i_size - offset);
1171 open_file = find_writable_file(CIFS_I(mapping->host));
1172 if (open_file) {
1173 bytes_written = cifs_write(open_file->pfile, write_data,
1174 to-from, &offset);
1175 atomic_dec(&open_file->wrtPending);
1176 /* Does mm or vfs already set times? */
1177 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1178 if ((bytes_written > 0) && (offset))
1179 rc = 0;
1180 else if (bytes_written < 0)
1181 rc = bytes_written;
1182 } else {
1183 cFYI(1, ("No writeable filehandles for inode"));
1184 rc = -EIO;
1187 kunmap(page);
1188 return rc;
1191 static int cifs_writepages(struct address_space *mapping,
1192 struct writeback_control *wbc)
1194 struct backing_dev_info *bdi = mapping->backing_dev_info;
1195 unsigned int bytes_to_write;
1196 unsigned int bytes_written;
1197 struct cifs_sb_info *cifs_sb;
1198 int done = 0;
1199 pgoff_t end;
1200 pgoff_t index;
1201 int range_whole = 0;
1202 struct kvec *iov;
1203 int len;
1204 int n_iov = 0;
1205 pgoff_t next;
1206 int nr_pages;
1207 __u64 offset = 0;
1208 struct cifsFileInfo *open_file;
1209 struct page *page;
1210 struct pagevec pvec;
1211 int rc = 0;
1212 int scanned = 0;
1213 int xid;
1215 cifs_sb = CIFS_SB(mapping->host->i_sb);
1218 * If wsize is smaller that the page cache size, default to writing
1219 * one page at a time via cifs_writepage
1221 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1222 return generic_writepages(mapping, wbc);
1224 if ((cifs_sb->tcon->ses) && (cifs_sb->tcon->ses->server))
1225 if (cifs_sb->tcon->ses->server->secMode &
1226 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
1227 if (!experimEnabled)
1228 return generic_writepages(mapping, wbc);
1230 iov = kmalloc(32 * sizeof(struct kvec), GFP_KERNEL);
1231 if (iov == NULL)
1232 return generic_writepages(mapping, wbc);
1236 * BB: Is this meaningful for a non-block-device file system?
1237 * If it is, we should test it again after we do I/O
1239 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1240 wbc->encountered_congestion = 1;
1241 kfree(iov);
1242 return 0;
1245 xid = GetXid();
1247 pagevec_init(&pvec, 0);
1248 if (wbc->range_cyclic) {
1249 index = mapping->writeback_index; /* Start from prev offset */
1250 end = -1;
1251 } else {
1252 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1253 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1254 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1255 range_whole = 1;
1256 scanned = 1;
1258 retry:
1259 while (!done && (index <= end) &&
1260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1261 PAGECACHE_TAG_DIRTY,
1262 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1))) {
1263 int first;
1264 unsigned int i;
1266 first = -1;
1267 next = 0;
1268 n_iov = 0;
1269 bytes_to_write = 0;
1271 for (i = 0; i < nr_pages; i++) {
1272 page = pvec.pages[i];
1274 * At this point we hold neither mapping->tree_lock nor
1275 * lock on the page itself: the page may be truncated or
1276 * invalidated (changing page->mapping to NULL), or even
1277 * swizzled back from swapper_space to tmpfs file
1278 * mapping
1281 if (first < 0)
1282 lock_page(page);
1283 else if (TestSetPageLocked(page))
1284 break;
1286 if (unlikely(page->mapping != mapping)) {
1287 unlock_page(page);
1288 break;
1291 if (!wbc->range_cyclic && page->index > end) {
1292 done = 1;
1293 unlock_page(page);
1294 break;
1297 if (next && (page->index != next)) {
1298 /* Not next consecutive page */
1299 unlock_page(page);
1300 break;
1303 if (wbc->sync_mode != WB_SYNC_NONE)
1304 wait_on_page_writeback(page);
1306 if (PageWriteback(page) ||
1307 !clear_page_dirty_for_io(page)) {
1308 unlock_page(page);
1309 break;
1313 * This actually clears the dirty bit in the radix tree.
1314 * See cifs_writepage() for more commentary.
1316 set_page_writeback(page);
1318 if (page_offset(page) >= mapping->host->i_size) {
1319 done = 1;
1320 unlock_page(page);
1321 end_page_writeback(page);
1322 break;
1326 * BB can we get rid of this? pages are held by pvec
1328 page_cache_get(page);
1330 len = min(mapping->host->i_size - page_offset(page),
1331 (loff_t)PAGE_CACHE_SIZE);
1333 /* reserve iov[0] for the smb header */
1334 n_iov++;
1335 iov[n_iov].iov_base = kmap(page);
1336 iov[n_iov].iov_len = len;
1337 bytes_to_write += len;
1339 if (first < 0) {
1340 first = i;
1341 offset = page_offset(page);
1343 next = page->index + 1;
1344 if (bytes_to_write + PAGE_CACHE_SIZE > cifs_sb->wsize)
1345 break;
1347 if (n_iov) {
1348 /* Search for a writable handle every time we call
1349 * CIFSSMBWrite2. We can't rely on the last handle
1350 * we used to still be valid
1352 open_file = find_writable_file(CIFS_I(mapping->host));
1353 if (!open_file) {
1354 cERROR(1, ("No writable handles for inode"));
1355 rc = -EBADF;
1356 } else {
1357 rc = CIFSSMBWrite2(xid, cifs_sb->tcon,
1358 open_file->netfid,
1359 bytes_to_write, offset,
1360 &bytes_written, iov, n_iov,
1361 CIFS_LONG_OP);
1362 atomic_dec(&open_file->wrtPending);
1363 if (rc || bytes_written < bytes_to_write) {
1364 cERROR(1, ("Write2 ret %d, wrote %d",
1365 rc, bytes_written));
1366 /* BB what if continued retry is
1367 requested via mount flags? */
1368 if (rc == -ENOSPC)
1369 set_bit(AS_ENOSPC, &mapping->flags);
1370 else
1371 set_bit(AS_EIO, &mapping->flags);
1372 } else {
1373 cifs_stats_bytes_written(cifs_sb->tcon,
1374 bytes_written);
1377 for (i = 0; i < n_iov; i++) {
1378 page = pvec.pages[first + i];
1379 /* Should we also set page error on
1380 success rc but too little data written? */
1381 /* BB investigate retry logic on temporary
1382 server crash cases and how recovery works
1383 when page marked as error */
1384 if (rc)
1385 SetPageError(page);
1386 kunmap(page);
1387 unlock_page(page);
1388 end_page_writeback(page);
1389 page_cache_release(page);
1391 if ((wbc->nr_to_write -= n_iov) <= 0)
1392 done = 1;
1393 index = next;
1395 pagevec_release(&pvec);
1397 if (!scanned && !done) {
1399 * We hit the last page and there is more work to be done: wrap
1400 * back to the start of the file
1402 scanned = 1;
1403 index = 0;
1404 goto retry;
1406 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1407 mapping->writeback_index = index;
1409 FreeXid(xid);
1410 kfree(iov);
1411 return rc;
1414 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1416 int rc = -EFAULT;
1417 int xid;
1419 xid = GetXid();
1420 /* BB add check for wbc flags */
1421 page_cache_get(page);
1422 if (!PageUptodate(page))
1423 cFYI(1, ("ppw - page not up to date"));
1426 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1428 * A writepage() implementation always needs to do either this,
1429 * or re-dirty the page with "redirty_page_for_writepage()" in
1430 * the case of a failure.
1432 * Just unlocking the page will cause the radix tree tag-bits
1433 * to fail to update with the state of the page correctly.
1435 set_page_writeback(page);
1436 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1437 SetPageUptodate(page); /* BB add check for error and Clearuptodate? */
1438 unlock_page(page);
1439 end_page_writeback(page);
1440 page_cache_release(page);
1441 FreeXid(xid);
1442 return rc;
1445 static int cifs_commit_write(struct file *file, struct page *page,
1446 unsigned offset, unsigned to)
1448 int xid;
1449 int rc = 0;
1450 struct inode *inode = page->mapping->host;
1451 loff_t position = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1452 char *page_data;
1454 xid = GetXid();
1455 cFYI(1, ("commit write for page %p up to position %lld for %d",
1456 page, position, to));
1457 spin_lock(&inode->i_lock);
1458 if (position > inode->i_size)
1459 i_size_write(inode, position);
1461 spin_unlock(&inode->i_lock);
1462 if (!PageUptodate(page)) {
1463 position = ((loff_t)page->index << PAGE_CACHE_SHIFT) + offset;
1464 /* can not rely on (or let) writepage write this data */
1465 if (to < offset) {
1466 cFYI(1, ("Illegal offsets, can not copy from %d to %d",
1467 offset, to));
1468 FreeXid(xid);
1469 return rc;
1471 /* this is probably better than directly calling
1472 partialpage_write since in this function the file handle is
1473 known which we might as well leverage */
1474 /* BB check if anything else missing out of ppw
1475 such as updating last write time */
1476 page_data = kmap(page);
1477 rc = cifs_write(file, page_data + offset, to-offset,
1478 &position);
1479 if (rc > 0)
1480 rc = 0;
1481 /* else if (rc < 0) should we set writebehind rc? */
1482 kunmap(page);
1483 } else {
1484 set_page_dirty(page);
1487 FreeXid(xid);
1488 return rc;
1491 int cifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1493 int xid;
1494 int rc = 0;
1495 struct inode *inode = file->f_path.dentry->d_inode;
1497 xid = GetXid();
1499 cFYI(1, ("Sync file - name: %s datasync: 0x%x",
1500 dentry->d_name.name, datasync));
1502 rc = filemap_write_and_wait(inode->i_mapping);
1503 if (rc == 0) {
1504 rc = CIFS_I(inode)->write_behind_rc;
1505 CIFS_I(inode)->write_behind_rc = 0;
1507 FreeXid(xid);
1508 return rc;
1511 /* static void cifs_sync_page(struct page *page)
1513 struct address_space *mapping;
1514 struct inode *inode;
1515 unsigned long index = page->index;
1516 unsigned int rpages = 0;
1517 int rc = 0;
1519 cFYI(1, ("sync page %p",page));
1520 mapping = page->mapping;
1521 if (!mapping)
1522 return 0;
1523 inode = mapping->host;
1524 if (!inode)
1525 return; */
1527 /* fill in rpages then
1528 result = cifs_pagein_inode(inode, index, rpages); */ /* BB finish */
1530 /* cFYI(1, ("rpages is %d for sync page of Index %ld", rpages, index));
1532 #if 0
1533 if (rc < 0)
1534 return rc;
1535 return 0;
1536 #endif
1537 } */
1540 * As file closes, flush all cached write data for this inode checking
1541 * for write behind errors.
1543 int cifs_flush(struct file *file, fl_owner_t id)
1545 struct inode *inode = file->f_path.dentry->d_inode;
1546 int rc = 0;
1548 /* Rather than do the steps manually:
1549 lock the inode for writing
1550 loop through pages looking for write behind data (dirty pages)
1551 coalesce into contiguous 16K (or smaller) chunks to write to server
1552 send to server (prefer in parallel)
1553 deal with writebehind errors
1554 unlock inode for writing
1555 filemapfdatawrite appears easier for the time being */
1557 rc = filemap_fdatawrite(inode->i_mapping);
1558 /* reset wb rc if we were able to write out dirty pages */
1559 if (!rc) {
1560 rc = CIFS_I(inode)->write_behind_rc;
1561 CIFS_I(inode)->write_behind_rc = 0;
1564 cFYI(1, ("Flush inode %p file %p rc %d", inode, file, rc));
1566 return rc;
1569 ssize_t cifs_user_read(struct file *file, char __user *read_data,
1570 size_t read_size, loff_t *poffset)
1572 int rc = -EACCES;
1573 unsigned int bytes_read = 0;
1574 unsigned int total_read = 0;
1575 unsigned int current_read_size;
1576 struct cifs_sb_info *cifs_sb;
1577 struct cifsTconInfo *pTcon;
1578 int xid;
1579 struct cifsFileInfo *open_file;
1580 char *smb_read_data;
1581 char __user *current_offset;
1582 struct smb_com_read_rsp *pSMBr;
1584 xid = GetXid();
1585 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1586 pTcon = cifs_sb->tcon;
1588 if (file->private_data == NULL) {
1589 FreeXid(xid);
1590 return -EBADF;
1592 open_file = (struct cifsFileInfo *)file->private_data;
1594 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1595 cFYI(1, ("attempting read on write only file instance"));
1597 for (total_read = 0, current_offset = read_data;
1598 read_size > total_read;
1599 total_read += bytes_read, current_offset += bytes_read) {
1600 current_read_size = min_t(const int, read_size - total_read,
1601 cifs_sb->rsize);
1602 rc = -EAGAIN;
1603 smb_read_data = NULL;
1604 while (rc == -EAGAIN) {
1605 int buf_type = CIFS_NO_BUFFER;
1606 if ((open_file->invalidHandle) &&
1607 (!open_file->closePend)) {
1608 rc = cifs_reopen_file(file, true);
1609 if (rc != 0)
1610 break;
1612 rc = CIFSSMBRead(xid, pTcon,
1613 open_file->netfid,
1614 current_read_size, *poffset,
1615 &bytes_read, &smb_read_data,
1616 &buf_type);
1617 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1618 if (smb_read_data) {
1619 if (copy_to_user(current_offset,
1620 smb_read_data +
1621 4 /* RFC1001 length field */ +
1622 le16_to_cpu(pSMBr->DataOffset),
1623 bytes_read))
1624 rc = -EFAULT;
1626 if (buf_type == CIFS_SMALL_BUFFER)
1627 cifs_small_buf_release(smb_read_data);
1628 else if (buf_type == CIFS_LARGE_BUFFER)
1629 cifs_buf_release(smb_read_data);
1630 smb_read_data = NULL;
1633 if (rc || (bytes_read == 0)) {
1634 if (total_read) {
1635 break;
1636 } else {
1637 FreeXid(xid);
1638 return rc;
1640 } else {
1641 cifs_stats_bytes_read(pTcon, bytes_read);
1642 *poffset += bytes_read;
1645 FreeXid(xid);
1646 return total_read;
1650 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1651 loff_t *poffset)
1653 int rc = -EACCES;
1654 unsigned int bytes_read = 0;
1655 unsigned int total_read;
1656 unsigned int current_read_size;
1657 struct cifs_sb_info *cifs_sb;
1658 struct cifsTconInfo *pTcon;
1659 int xid;
1660 char *current_offset;
1661 struct cifsFileInfo *open_file;
1662 int buf_type = CIFS_NO_BUFFER;
1664 xid = GetXid();
1665 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1666 pTcon = cifs_sb->tcon;
1668 if (file->private_data == NULL) {
1669 FreeXid(xid);
1670 return -EBADF;
1672 open_file = (struct cifsFileInfo *)file->private_data;
1674 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1675 cFYI(1, ("attempting read on write only file instance"));
1677 for (total_read = 0, current_offset = read_data;
1678 read_size > total_read;
1679 total_read += bytes_read, current_offset += bytes_read) {
1680 current_read_size = min_t(const int, read_size - total_read,
1681 cifs_sb->rsize);
1682 /* For windows me and 9x we do not want to request more
1683 than it negotiated since it will refuse the read then */
1684 if ((pTcon->ses) &&
1685 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1686 current_read_size = min_t(const int, current_read_size,
1687 pTcon->ses->server->maxBuf - 128);
1689 rc = -EAGAIN;
1690 while (rc == -EAGAIN) {
1691 if ((open_file->invalidHandle) &&
1692 (!open_file->closePend)) {
1693 rc = cifs_reopen_file(file, true);
1694 if (rc != 0)
1695 break;
1697 rc = CIFSSMBRead(xid, pTcon,
1698 open_file->netfid,
1699 current_read_size, *poffset,
1700 &bytes_read, &current_offset,
1701 &buf_type);
1703 if (rc || (bytes_read == 0)) {
1704 if (total_read) {
1705 break;
1706 } else {
1707 FreeXid(xid);
1708 return rc;
1710 } else {
1711 cifs_stats_bytes_read(pTcon, total_read);
1712 *poffset += bytes_read;
1715 FreeXid(xid);
1716 return total_read;
1719 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1721 struct dentry *dentry = file->f_path.dentry;
1722 int rc, xid;
1724 xid = GetXid();
1725 rc = cifs_revalidate(dentry);
1726 if (rc) {
1727 cFYI(1, ("Validation prior to mmap failed, error=%d", rc));
1728 FreeXid(xid);
1729 return rc;
1731 rc = generic_file_mmap(file, vma);
1732 FreeXid(xid);
1733 return rc;
1737 static void cifs_copy_cache_pages(struct address_space *mapping,
1738 struct list_head *pages, int bytes_read, char *data,
1739 struct pagevec *plru_pvec)
1741 struct page *page;
1742 char *target;
1744 while (bytes_read > 0) {
1745 if (list_empty(pages))
1746 break;
1748 page = list_entry(pages->prev, struct page, lru);
1749 list_del(&page->lru);
1751 if (add_to_page_cache(page, mapping, page->index,
1752 GFP_KERNEL)) {
1753 page_cache_release(page);
1754 cFYI(1, ("Add page cache failed"));
1755 data += PAGE_CACHE_SIZE;
1756 bytes_read -= PAGE_CACHE_SIZE;
1757 continue;
1760 target = kmap_atomic(page, KM_USER0);
1762 if (PAGE_CACHE_SIZE > bytes_read) {
1763 memcpy(target, data, bytes_read);
1764 /* zero the tail end of this partial page */
1765 memset(target + bytes_read, 0,
1766 PAGE_CACHE_SIZE - bytes_read);
1767 bytes_read = 0;
1768 } else {
1769 memcpy(target, data, PAGE_CACHE_SIZE);
1770 bytes_read -= PAGE_CACHE_SIZE;
1772 kunmap_atomic(target, KM_USER0);
1774 flush_dcache_page(page);
1775 SetPageUptodate(page);
1776 unlock_page(page);
1777 if (!pagevec_add(plru_pvec, page))
1778 __pagevec_lru_add(plru_pvec);
1779 data += PAGE_CACHE_SIZE;
1781 return;
1784 static int cifs_readpages(struct file *file, struct address_space *mapping,
1785 struct list_head *page_list, unsigned num_pages)
1787 int rc = -EACCES;
1788 int xid;
1789 loff_t offset;
1790 struct page *page;
1791 struct cifs_sb_info *cifs_sb;
1792 struct cifsTconInfo *pTcon;
1793 unsigned int bytes_read = 0;
1794 unsigned int read_size, i;
1795 char *smb_read_data = NULL;
1796 struct smb_com_read_rsp *pSMBr;
1797 struct pagevec lru_pvec;
1798 struct cifsFileInfo *open_file;
1799 int buf_type = CIFS_NO_BUFFER;
1801 xid = GetXid();
1802 if (file->private_data == NULL) {
1803 FreeXid(xid);
1804 return -EBADF;
1806 open_file = (struct cifsFileInfo *)file->private_data;
1807 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1808 pTcon = cifs_sb->tcon;
1810 pagevec_init(&lru_pvec, 0);
1811 cFYI(DBG2, ("rpages: num pages %d", num_pages));
1812 for (i = 0; i < num_pages; ) {
1813 unsigned contig_pages;
1814 struct page *tmp_page;
1815 unsigned long expected_index;
1817 if (list_empty(page_list))
1818 break;
1820 page = list_entry(page_list->prev, struct page, lru);
1821 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1823 /* count adjacent pages that we will read into */
1824 contig_pages = 0;
1825 expected_index =
1826 list_entry(page_list->prev, struct page, lru)->index;
1827 list_for_each_entry_reverse(tmp_page, page_list, lru) {
1828 if (tmp_page->index == expected_index) {
1829 contig_pages++;
1830 expected_index++;
1831 } else
1832 break;
1834 if (contig_pages + i > num_pages)
1835 contig_pages = num_pages - i;
1837 /* for reads over a certain size could initiate async
1838 read ahead */
1840 read_size = contig_pages * PAGE_CACHE_SIZE;
1841 /* Read size needs to be in multiples of one page */
1842 read_size = min_t(const unsigned int, read_size,
1843 cifs_sb->rsize & PAGE_CACHE_MASK);
1844 cFYI(DBG2, ("rpages: read size 0x%x contiguous pages %d",
1845 read_size, contig_pages));
1846 rc = -EAGAIN;
1847 while (rc == -EAGAIN) {
1848 if ((open_file->invalidHandle) &&
1849 (!open_file->closePend)) {
1850 rc = cifs_reopen_file(file, true);
1851 if (rc != 0)
1852 break;
1855 rc = CIFSSMBRead(xid, pTcon,
1856 open_file->netfid,
1857 read_size, offset,
1858 &bytes_read, &smb_read_data,
1859 &buf_type);
1860 /* BB more RC checks ? */
1861 if (rc == -EAGAIN) {
1862 if (smb_read_data) {
1863 if (buf_type == CIFS_SMALL_BUFFER)
1864 cifs_small_buf_release(smb_read_data);
1865 else if (buf_type == CIFS_LARGE_BUFFER)
1866 cifs_buf_release(smb_read_data);
1867 smb_read_data = NULL;
1871 if ((rc < 0) || (smb_read_data == NULL)) {
1872 cFYI(1, ("Read error in readpages: %d", rc));
1873 break;
1874 } else if (bytes_read > 0) {
1875 task_io_account_read(bytes_read);
1876 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1877 cifs_copy_cache_pages(mapping, page_list, bytes_read,
1878 smb_read_data + 4 /* RFC1001 hdr */ +
1879 le16_to_cpu(pSMBr->DataOffset), &lru_pvec);
1881 i += bytes_read >> PAGE_CACHE_SHIFT;
1882 cifs_stats_bytes_read(pTcon, bytes_read);
1883 if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
1884 i++; /* account for partial page */
1886 /* server copy of file can have smaller size
1887 than client */
1888 /* BB do we need to verify this common case ?
1889 this case is ok - if we are at server EOF
1890 we will hit it on next read */
1892 /* break; */
1894 } else {
1895 cFYI(1, ("No bytes read (%d) at offset %lld . "
1896 "Cleaning remaining pages from readahead list",
1897 bytes_read, offset));
1898 /* BB turn off caching and do new lookup on
1899 file size at server? */
1900 break;
1902 if (smb_read_data) {
1903 if (buf_type == CIFS_SMALL_BUFFER)
1904 cifs_small_buf_release(smb_read_data);
1905 else if (buf_type == CIFS_LARGE_BUFFER)
1906 cifs_buf_release(smb_read_data);
1907 smb_read_data = NULL;
1909 bytes_read = 0;
1912 pagevec_lru_add(&lru_pvec);
1914 /* need to free smb_read_data buf before exit */
1915 if (smb_read_data) {
1916 if (buf_type == CIFS_SMALL_BUFFER)
1917 cifs_small_buf_release(smb_read_data);
1918 else if (buf_type == CIFS_LARGE_BUFFER)
1919 cifs_buf_release(smb_read_data);
1920 smb_read_data = NULL;
1923 FreeXid(xid);
1924 return rc;
1927 static int cifs_readpage_worker(struct file *file, struct page *page,
1928 loff_t *poffset)
1930 char *read_data;
1931 int rc;
1933 page_cache_get(page);
1934 read_data = kmap(page);
1935 /* for reads over a certain size could initiate async read ahead */
1937 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
1939 if (rc < 0)
1940 goto io_error;
1941 else
1942 cFYI(1, ("Bytes read %d", rc));
1944 file->f_path.dentry->d_inode->i_atime =
1945 current_fs_time(file->f_path.dentry->d_inode->i_sb);
1947 if (PAGE_CACHE_SIZE > rc)
1948 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
1950 flush_dcache_page(page);
1951 SetPageUptodate(page);
1952 rc = 0;
1954 io_error:
1955 kunmap(page);
1956 page_cache_release(page);
1957 return rc;
1960 static int cifs_readpage(struct file *file, struct page *page)
1962 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1963 int rc = -EACCES;
1964 int xid;
1966 xid = GetXid();
1968 if (file->private_data == NULL) {
1969 FreeXid(xid);
1970 return -EBADF;
1973 cFYI(1, ("readpage %p at offset %d 0x%x\n",
1974 page, (int)offset, (int)offset));
1976 rc = cifs_readpage_worker(file, page, &offset);
1978 unlock_page(page);
1980 FreeXid(xid);
1981 return rc;
1984 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
1986 struct cifsFileInfo *open_file;
1988 read_lock(&GlobalSMBSeslock);
1989 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1990 if (open_file->closePend)
1991 continue;
1992 if (open_file->pfile &&
1993 ((open_file->pfile->f_flags & O_RDWR) ||
1994 (open_file->pfile->f_flags & O_WRONLY))) {
1995 read_unlock(&GlobalSMBSeslock);
1996 return 1;
1999 read_unlock(&GlobalSMBSeslock);
2000 return 0;
2003 /* We do not want to update the file size from server for inodes
2004 open for write - to avoid races with writepage extending
2005 the file - in the future we could consider allowing
2006 refreshing the inode only on increases in the file size
2007 but this is tricky to do without racing with writebehind
2008 page caching in the current Linux kernel design */
2009 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2011 if (!cifsInode)
2012 return true;
2014 if (is_inode_writable(cifsInode)) {
2015 /* This inode is open for write at least once */
2016 struct cifs_sb_info *cifs_sb;
2018 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2019 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2020 /* since no page cache to corrupt on directio
2021 we can change size safely */
2022 return true;
2025 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2026 return true;
2028 return false;
2029 } else
2030 return true;
2033 static int cifs_prepare_write(struct file *file, struct page *page,
2034 unsigned from, unsigned to)
2036 int rc = 0;
2037 loff_t i_size;
2038 loff_t offset;
2040 cFYI(1, ("prepare write for page %p from %d to %d", page, from, to));
2041 if (PageUptodate(page))
2042 return 0;
2044 /* If we are writing a full page it will be up to date,
2045 no need to read from the server */
2046 if ((to == PAGE_CACHE_SIZE) && (from == 0)) {
2047 SetPageUptodate(page);
2048 return 0;
2051 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2052 i_size = i_size_read(page->mapping->host);
2054 if ((offset >= i_size) ||
2055 ((from == 0) && (offset + to) >= i_size)) {
2057 * We don't need to read data beyond the end of the file.
2058 * zero it, and set the page uptodate
2060 simple_prepare_write(file, page, from, to);
2061 SetPageUptodate(page);
2062 } else if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2063 /* might as well read a page, it is fast enough */
2064 rc = cifs_readpage_worker(file, page, &offset);
2065 } else {
2066 /* we could try using another file handle if there is one -
2067 but how would we lock it to prevent close of that handle
2068 racing with this read? In any case
2069 this will be written out by commit_write so is fine */
2072 /* we do not need to pass errors back
2073 e.g. if we do not have read access to the file
2074 because cifs_commit_write will do the right thing. -- shaggy */
2076 return 0;
2079 const struct address_space_operations cifs_addr_ops = {
2080 .readpage = cifs_readpage,
2081 .readpages = cifs_readpages,
2082 .writepage = cifs_writepage,
2083 .writepages = cifs_writepages,
2084 .prepare_write = cifs_prepare_write,
2085 .commit_write = cifs_commit_write,
2086 .set_page_dirty = __set_page_dirty_nobuffers,
2087 /* .sync_page = cifs_sync_page, */
2088 /* .direct_IO = */
2092 * cifs_readpages requires the server to support a buffer large enough to
2093 * contain the header plus one complete page of data. Otherwise, we need
2094 * to leave cifs_readpages out of the address space operations.
2096 const struct address_space_operations cifs_addr_ops_smallbuf = {
2097 .readpage = cifs_readpage,
2098 .writepage = cifs_writepage,
2099 .writepages = cifs_writepages,
2100 .prepare_write = cifs_prepare_write,
2101 .commit_write = cifs_commit_write,
2102 .set_page_dirty = __set_page_dirty_nobuffers,
2103 /* .sync_page = cifs_sync_page, */
2104 /* .direct_IO = */