3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
113 #include <linux/debugobjects.h>
114 #include <linux/kmemtrace.h>
116 #include <asm/cacheflush.h>
117 #include <asm/tlbflush.h>
118 #include <asm/page.h>
121 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
122 * 0 for faster, smaller code (especially in the critical paths).
124 * STATS - 1 to collect stats for /proc/slabinfo.
125 * 0 for faster, smaller code (especially in the critical paths).
127 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
130 #ifdef CONFIG_DEBUG_SLAB
133 #define FORCED_DEBUG 1
137 #define FORCED_DEBUG 0
140 /* Shouldn't this be in a header file somewhere? */
141 #define BYTES_PER_WORD sizeof(void *)
142 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
144 #ifndef ARCH_KMALLOC_MINALIGN
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than the alignment of a 64-bit integer.
151 * ARCH_KMALLOC_MINALIGN allows that.
152 * Note that increasing this value may disable some debug features.
154 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #ifndef ARCH_SLAB_MINALIGN
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
165 #define ARCH_SLAB_MINALIGN 0
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 /* Legal flag mask for kmem_cache_create(). */
174 # define CREATE_MASK (SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
192 * Bufctl's are used for linking objs within a slab
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t
;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct list_head list
;
223 unsigned long colouroff
;
224 void *s_mem
; /* including colour offset */
225 unsigned int inuse
; /* num of objs active in slab */
227 unsigned short nodeid
;
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct rcu_head head
;
248 struct kmem_cache
*cachep
;
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
267 unsigned int batchcount
;
268 unsigned int touched
;
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init
{
283 struct array_cache cache
;
284 void *entries
[BOOT_CPUCACHE_ENTRIES
];
288 * The slab lists for all objects.
291 struct list_head slabs_partial
; /* partial list first, better asm code */
292 struct list_head slabs_full
;
293 struct list_head slabs_free
;
294 unsigned long free_objects
;
295 unsigned int free_limit
;
296 unsigned int colour_next
; /* Per-node cache coloring */
297 spinlock_t list_lock
;
298 struct array_cache
*shared
; /* shared per node */
299 struct array_cache
**alien
; /* on other nodes */
300 unsigned long next_reap
; /* updated without locking */
301 int free_touched
; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache
*cache
,
314 struct kmem_list3
*l3
, int tofree
);
315 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
317 static int enable_cpucache(struct kmem_cache
*cachep
);
318 static void cache_reap(struct work_struct
*unused
);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline
int index_of(const size_t size
)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size
)) {
336 #include <linux/kmalloc_sizes.h>
344 static int slab_early_init
= 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3
*parent
)
351 INIT_LIST_HEAD(&parent
->slabs_full
);
352 INIT_LIST_HEAD(&parent
->slabs_partial
);
353 INIT_LIST_HEAD(&parent
->slabs_free
);
354 parent
->shared
= NULL
;
355 parent
->alien
= NULL
;
356 parent
->colour_next
= 0;
357 spin_lock_init(&parent
->list_lock
);
358 parent
->free_objects
= 0;
359 parent
->free_touched
= 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache
*array
[NR_CPUS
];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount
;
389 unsigned int buffer_size
;
390 u32 reciprocal_buffer_size
;
391 /* 3) touched by every alloc & free from the backend */
393 unsigned int flags
; /* constant flags */
394 unsigned int num
; /* # of objs per slab */
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder
;
400 /* force GFP flags, e.g. GFP_DMA */
403 size_t colour
; /* cache colouring range */
404 unsigned int colour_off
; /* colour offset */
405 struct kmem_cache
*slabp_cache
;
406 unsigned int slab_size
;
407 unsigned int dflags
; /* dynamic flags */
409 /* constructor func */
410 void (*ctor
)(struct kmem_cache
*, void *);
412 /* 5) cache creation/removal */
414 struct list_head next
;
418 unsigned long num_active
;
419 unsigned long num_allocations
;
420 unsigned long high_mark
;
422 unsigned long reaped
;
423 unsigned long errors
;
424 unsigned long max_freeable
;
425 unsigned long node_allocs
;
426 unsigned long node_frees
;
427 unsigned long node_overflow
;
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
450 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
452 * Do not add fields after nodelists[]
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459 #define BATCHREFILL_LIMIT 16
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
515 * memory layout of objects:
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
527 static int obj_offset(struct kmem_cache
*cachep
)
529 return cachep
->obj_offset
;
532 static int obj_size(struct kmem_cache
*cachep
)
534 return cachep
->obj_size
;
537 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
539 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
540 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
541 sizeof(unsigned long long));
544 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
546 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
547 if (cachep
->flags
& SLAB_STORE_USER
)
548 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
549 sizeof(unsigned long long) -
551 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
552 sizeof(unsigned long long));
555 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
557 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
558 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571 #ifdef CONFIG_KMEMTRACE
572 size_t slab_buffer_size(struct kmem_cache
*cachep
)
574 return cachep
->buffer_size
;
576 EXPORT_SYMBOL(slab_buffer_size
);
580 * Do not go above this order unless 0 objects fit into the slab.
582 #define BREAK_GFP_ORDER_HI 1
583 #define BREAK_GFP_ORDER_LO 0
584 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
587 * Functions for storing/retrieving the cachep and or slab from the page
588 * allocator. These are used to find the slab an obj belongs to. With kfree(),
589 * these are used to find the cache which an obj belongs to.
591 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
593 page
->lru
.next
= (struct list_head
*)cache
;
596 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
598 page
= compound_head(page
);
599 BUG_ON(!PageSlab(page
));
600 return (struct kmem_cache
*)page
->lru
.next
;
603 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
605 page
->lru
.prev
= (struct list_head
*)slab
;
608 static inline struct slab
*page_get_slab(struct page
*page
)
610 BUG_ON(!PageSlab(page
));
611 return (struct slab
*)page
->lru
.prev
;
614 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
616 struct page
*page
= virt_to_head_page(obj
);
617 return page_get_cache(page
);
620 static inline struct slab
*virt_to_slab(const void *obj
)
622 struct page
*page
= virt_to_head_page(obj
);
623 return page_get_slab(page
);
626 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
629 return slab
->s_mem
+ cache
->buffer_size
* idx
;
633 * We want to avoid an expensive divide : (offset / cache->buffer_size)
634 * Using the fact that buffer_size is a constant for a particular cache,
635 * we can replace (offset / cache->buffer_size) by
636 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
638 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
639 const struct slab
*slab
, void *obj
)
641 u32 offset
= (obj
- slab
->s_mem
);
642 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
646 * These are the default caches for kmalloc. Custom caches can have other sizes.
648 struct cache_sizes malloc_sizes
[] = {
649 #define CACHE(x) { .cs_size = (x) },
650 #include <linux/kmalloc_sizes.h>
654 EXPORT_SYMBOL(malloc_sizes
);
656 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
662 static struct cache_names __initdata cache_names
[] = {
663 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
664 #include <linux/kmalloc_sizes.h>
669 static struct arraycache_init initarray_cache __initdata
=
670 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
671 static struct arraycache_init initarray_generic
=
672 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
674 /* internal cache of cache description objs */
675 static struct kmem_cache cache_cache
= {
677 .limit
= BOOT_CPUCACHE_ENTRIES
,
679 .buffer_size
= sizeof(struct kmem_cache
),
680 .name
= "kmem_cache",
683 #define BAD_ALIEN_MAGIC 0x01020304ul
685 #ifdef CONFIG_LOCKDEP
688 * Slab sometimes uses the kmalloc slabs to store the slab headers
689 * for other slabs "off slab".
690 * The locking for this is tricky in that it nests within the locks
691 * of all other slabs in a few places; to deal with this special
692 * locking we put on-slab caches into a separate lock-class.
694 * We set lock class for alien array caches which are up during init.
695 * The lock annotation will be lost if all cpus of a node goes down and
696 * then comes back up during hotplug
698 static struct lock_class_key on_slab_l3_key
;
699 static struct lock_class_key on_slab_alc_key
;
701 static inline void init_lock_keys(void)
705 struct cache_sizes
*s
= malloc_sizes
;
707 while (s
->cs_size
!= ULONG_MAX
) {
709 struct array_cache
**alc
;
711 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
712 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
714 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
717 * FIXME: This check for BAD_ALIEN_MAGIC
718 * should go away when common slab code is taught to
719 * work even without alien caches.
720 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
721 * for alloc_alien_cache,
723 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
727 lockdep_set_class(&alc
[r
]->lock
,
735 static inline void init_lock_keys(void)
741 * Guard access to the cache-chain.
743 static DEFINE_MUTEX(cache_chain_mutex
);
744 static struct list_head cache_chain
;
747 * chicken and egg problem: delay the per-cpu array allocation
748 * until the general caches are up.
758 * used by boot code to determine if it can use slab based allocator
760 int slab_is_available(void)
762 return g_cpucache_up
== FULL
;
765 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
767 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
769 return cachep
->array
[smp_processor_id()];
772 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
775 struct cache_sizes
*csizep
= malloc_sizes
;
778 /* This happens if someone tries to call
779 * kmem_cache_create(), or __kmalloc(), before
780 * the generic caches are initialized.
782 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
785 return ZERO_SIZE_PTR
;
787 while (size
> csizep
->cs_size
)
791 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
792 * has cs_{dma,}cachep==NULL. Thus no special case
793 * for large kmalloc calls required.
795 #ifdef CONFIG_ZONE_DMA
796 if (unlikely(gfpflags
& GFP_DMA
))
797 return csizep
->cs_dmacachep
;
799 return csizep
->cs_cachep
;
802 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
804 return __find_general_cachep(size
, gfpflags
);
807 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
809 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
813 * Calculate the number of objects and left-over bytes for a given buffer size.
815 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
816 size_t align
, int flags
, size_t *left_over
,
821 size_t slab_size
= PAGE_SIZE
<< gfporder
;
824 * The slab management structure can be either off the slab or
825 * on it. For the latter case, the memory allocated for a
829 * - One kmem_bufctl_t for each object
830 * - Padding to respect alignment of @align
831 * - @buffer_size bytes for each object
833 * If the slab management structure is off the slab, then the
834 * alignment will already be calculated into the size. Because
835 * the slabs are all pages aligned, the objects will be at the
836 * correct alignment when allocated.
838 if (flags
& CFLGS_OFF_SLAB
) {
840 nr_objs
= slab_size
/ buffer_size
;
842 if (nr_objs
> SLAB_LIMIT
)
843 nr_objs
= SLAB_LIMIT
;
846 * Ignore padding for the initial guess. The padding
847 * is at most @align-1 bytes, and @buffer_size is at
848 * least @align. In the worst case, this result will
849 * be one greater than the number of objects that fit
850 * into the memory allocation when taking the padding
853 nr_objs
= (slab_size
- sizeof(struct slab
)) /
854 (buffer_size
+ sizeof(kmem_bufctl_t
));
857 * This calculated number will be either the right
858 * amount, or one greater than what we want.
860 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
864 if (nr_objs
> SLAB_LIMIT
)
865 nr_objs
= SLAB_LIMIT
;
867 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
870 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
873 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
875 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
878 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
879 function
, cachep
->name
, msg
);
884 * By default on NUMA we use alien caches to stage the freeing of
885 * objects allocated from other nodes. This causes massive memory
886 * inefficiencies when using fake NUMA setup to split memory into a
887 * large number of small nodes, so it can be disabled on the command
891 static int use_alien_caches __read_mostly
= 1;
892 static int numa_platform __read_mostly
= 1;
893 static int __init
noaliencache_setup(char *s
)
895 use_alien_caches
= 0;
898 __setup("noaliencache", noaliencache_setup
);
902 * Special reaping functions for NUMA systems called from cache_reap().
903 * These take care of doing round robin flushing of alien caches (containing
904 * objects freed on different nodes from which they were allocated) and the
905 * flushing of remote pcps by calling drain_node_pages.
907 static DEFINE_PER_CPU(unsigned long, reap_node
);
909 static void init_reap_node(int cpu
)
913 node
= next_node(cpu_to_node(cpu
), node_online_map
);
914 if (node
== MAX_NUMNODES
)
915 node
= first_node(node_online_map
);
917 per_cpu(reap_node
, cpu
) = node
;
920 static void next_reap_node(void)
922 int node
= __get_cpu_var(reap_node
);
924 node
= next_node(node
, node_online_map
);
925 if (unlikely(node
>= MAX_NUMNODES
))
926 node
= first_node(node_online_map
);
927 __get_cpu_var(reap_node
) = node
;
931 #define init_reap_node(cpu) do { } while (0)
932 #define next_reap_node(void) do { } while (0)
936 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
937 * via the workqueue/eventd.
938 * Add the CPU number into the expiration time to minimize the possibility of
939 * the CPUs getting into lockstep and contending for the global cache chain
942 static void __cpuinit
start_cpu_timer(int cpu
)
944 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
947 * When this gets called from do_initcalls via cpucache_init(),
948 * init_workqueues() has already run, so keventd will be setup
951 if (keventd_up() && reap_work
->work
.func
== NULL
) {
953 INIT_DELAYED_WORK(reap_work
, cache_reap
);
954 schedule_delayed_work_on(cpu
, reap_work
,
955 __round_jiffies_relative(HZ
, cpu
));
959 static struct array_cache
*alloc_arraycache(int node
, int entries
,
962 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
963 struct array_cache
*nc
= NULL
;
965 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
969 nc
->batchcount
= batchcount
;
971 spin_lock_init(&nc
->lock
);
977 * Transfer objects in one arraycache to another.
978 * Locking must be handled by the caller.
980 * Return the number of entries transferred.
982 static int transfer_objects(struct array_cache
*to
,
983 struct array_cache
*from
, unsigned int max
)
985 /* Figure out how many entries to transfer */
986 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
991 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1002 #define drain_alien_cache(cachep, alien) do { } while (0)
1003 #define reap_alien(cachep, l3) do { } while (0)
1005 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1007 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1010 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1014 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1019 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1025 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1026 gfp_t flags
, int nodeid
)
1031 #else /* CONFIG_NUMA */
1033 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1034 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1036 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1038 struct array_cache
**ac_ptr
;
1039 int memsize
= sizeof(void *) * nr_node_ids
;
1044 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1047 if (i
== node
|| !node_online(i
)) {
1051 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1053 for (i
--; i
>= 0; i
--)
1063 static void free_alien_cache(struct array_cache
**ac_ptr
)
1074 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1075 struct array_cache
*ac
, int node
)
1077 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1080 spin_lock(&rl3
->list_lock
);
1082 * Stuff objects into the remote nodes shared array first.
1083 * That way we could avoid the overhead of putting the objects
1084 * into the free lists and getting them back later.
1087 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1089 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1091 spin_unlock(&rl3
->list_lock
);
1096 * Called from cache_reap() to regularly drain alien caches round robin.
1098 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1100 int node
= __get_cpu_var(reap_node
);
1103 struct array_cache
*ac
= l3
->alien
[node
];
1105 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1106 __drain_alien_cache(cachep
, ac
, node
);
1107 spin_unlock_irq(&ac
->lock
);
1112 static void drain_alien_cache(struct kmem_cache
*cachep
,
1113 struct array_cache
**alien
)
1116 struct array_cache
*ac
;
1117 unsigned long flags
;
1119 for_each_online_node(i
) {
1122 spin_lock_irqsave(&ac
->lock
, flags
);
1123 __drain_alien_cache(cachep
, ac
, i
);
1124 spin_unlock_irqrestore(&ac
->lock
, flags
);
1129 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1131 struct slab
*slabp
= virt_to_slab(objp
);
1132 int nodeid
= slabp
->nodeid
;
1133 struct kmem_list3
*l3
;
1134 struct array_cache
*alien
= NULL
;
1137 node
= numa_node_id();
1140 * Make sure we are not freeing a object from another node to the array
1141 * cache on this cpu.
1143 if (likely(slabp
->nodeid
== node
))
1146 l3
= cachep
->nodelists
[node
];
1147 STATS_INC_NODEFREES(cachep
);
1148 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1149 alien
= l3
->alien
[nodeid
];
1150 spin_lock(&alien
->lock
);
1151 if (unlikely(alien
->avail
== alien
->limit
)) {
1152 STATS_INC_ACOVERFLOW(cachep
);
1153 __drain_alien_cache(cachep
, alien
, nodeid
);
1155 alien
->entry
[alien
->avail
++] = objp
;
1156 spin_unlock(&alien
->lock
);
1158 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1159 free_block(cachep
, &objp
, 1, nodeid
);
1160 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1166 static void __cpuinit
cpuup_canceled(long cpu
)
1168 struct kmem_cache
*cachep
;
1169 struct kmem_list3
*l3
= NULL
;
1170 int node
= cpu_to_node(cpu
);
1171 node_to_cpumask_ptr(mask
, node
);
1173 list_for_each_entry(cachep
, &cache_chain
, next
) {
1174 struct array_cache
*nc
;
1175 struct array_cache
*shared
;
1176 struct array_cache
**alien
;
1178 /* cpu is dead; no one can alloc from it. */
1179 nc
= cachep
->array
[cpu
];
1180 cachep
->array
[cpu
] = NULL
;
1181 l3
= cachep
->nodelists
[node
];
1184 goto free_array_cache
;
1186 spin_lock_irq(&l3
->list_lock
);
1188 /* Free limit for this kmem_list3 */
1189 l3
->free_limit
-= cachep
->batchcount
;
1191 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1193 if (!cpus_empty(*mask
)) {
1194 spin_unlock_irq(&l3
->list_lock
);
1195 goto free_array_cache
;
1198 shared
= l3
->shared
;
1200 free_block(cachep
, shared
->entry
,
1201 shared
->avail
, node
);
1208 spin_unlock_irq(&l3
->list_lock
);
1212 drain_alien_cache(cachep
, alien
);
1213 free_alien_cache(alien
);
1219 * In the previous loop, all the objects were freed to
1220 * the respective cache's slabs, now we can go ahead and
1221 * shrink each nodelist to its limit.
1223 list_for_each_entry(cachep
, &cache_chain
, next
) {
1224 l3
= cachep
->nodelists
[node
];
1227 drain_freelist(cachep
, l3
, l3
->free_objects
);
1231 static int __cpuinit
cpuup_prepare(long cpu
)
1233 struct kmem_cache
*cachep
;
1234 struct kmem_list3
*l3
= NULL
;
1235 int node
= cpu_to_node(cpu
);
1236 const int memsize
= sizeof(struct kmem_list3
);
1239 * We need to do this right in the beginning since
1240 * alloc_arraycache's are going to use this list.
1241 * kmalloc_node allows us to add the slab to the right
1242 * kmem_list3 and not this cpu's kmem_list3
1245 list_for_each_entry(cachep
, &cache_chain
, next
) {
1247 * Set up the size64 kmemlist for cpu before we can
1248 * begin anything. Make sure some other cpu on this
1249 * node has not already allocated this
1251 if (!cachep
->nodelists
[node
]) {
1252 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1255 kmem_list3_init(l3
);
1256 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1257 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1260 * The l3s don't come and go as CPUs come and
1261 * go. cache_chain_mutex is sufficient
1264 cachep
->nodelists
[node
] = l3
;
1267 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1268 cachep
->nodelists
[node
]->free_limit
=
1269 (1 + nr_cpus_node(node
)) *
1270 cachep
->batchcount
+ cachep
->num
;
1271 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1275 * Now we can go ahead with allocating the shared arrays and
1278 list_for_each_entry(cachep
, &cache_chain
, next
) {
1279 struct array_cache
*nc
;
1280 struct array_cache
*shared
= NULL
;
1281 struct array_cache
**alien
= NULL
;
1283 nc
= alloc_arraycache(node
, cachep
->limit
,
1284 cachep
->batchcount
);
1287 if (cachep
->shared
) {
1288 shared
= alloc_arraycache(node
,
1289 cachep
->shared
* cachep
->batchcount
,
1296 if (use_alien_caches
) {
1297 alien
= alloc_alien_cache(node
, cachep
->limit
);
1304 cachep
->array
[cpu
] = nc
;
1305 l3
= cachep
->nodelists
[node
];
1308 spin_lock_irq(&l3
->list_lock
);
1311 * We are serialised from CPU_DEAD or
1312 * CPU_UP_CANCELLED by the cpucontrol lock
1314 l3
->shared
= shared
;
1323 spin_unlock_irq(&l3
->list_lock
);
1325 free_alien_cache(alien
);
1329 cpuup_canceled(cpu
);
1333 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1334 unsigned long action
, void *hcpu
)
1336 long cpu
= (long)hcpu
;
1340 case CPU_UP_PREPARE
:
1341 case CPU_UP_PREPARE_FROZEN
:
1342 mutex_lock(&cache_chain_mutex
);
1343 err
= cpuup_prepare(cpu
);
1344 mutex_unlock(&cache_chain_mutex
);
1347 case CPU_ONLINE_FROZEN
:
1348 start_cpu_timer(cpu
);
1350 #ifdef CONFIG_HOTPLUG_CPU
1351 case CPU_DOWN_PREPARE
:
1352 case CPU_DOWN_PREPARE_FROZEN
:
1354 * Shutdown cache reaper. Note that the cache_chain_mutex is
1355 * held so that if cache_reap() is invoked it cannot do
1356 * anything expensive but will only modify reap_work
1357 * and reschedule the timer.
1359 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1360 /* Now the cache_reaper is guaranteed to be not running. */
1361 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1363 case CPU_DOWN_FAILED
:
1364 case CPU_DOWN_FAILED_FROZEN
:
1365 start_cpu_timer(cpu
);
1368 case CPU_DEAD_FROZEN
:
1370 * Even if all the cpus of a node are down, we don't free the
1371 * kmem_list3 of any cache. This to avoid a race between
1372 * cpu_down, and a kmalloc allocation from another cpu for
1373 * memory from the node of the cpu going down. The list3
1374 * structure is usually allocated from kmem_cache_create() and
1375 * gets destroyed at kmem_cache_destroy().
1379 case CPU_UP_CANCELED
:
1380 case CPU_UP_CANCELED_FROZEN
:
1381 mutex_lock(&cache_chain_mutex
);
1382 cpuup_canceled(cpu
);
1383 mutex_unlock(&cache_chain_mutex
);
1386 return err
? NOTIFY_BAD
: NOTIFY_OK
;
1389 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1390 &cpuup_callback
, NULL
, 0
1394 * swap the static kmem_list3 with kmalloced memory
1396 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1399 struct kmem_list3
*ptr
;
1401 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1404 local_irq_disable();
1405 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1407 * Do not assume that spinlocks can be initialized via memcpy:
1409 spin_lock_init(&ptr
->list_lock
);
1411 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1412 cachep
->nodelists
[nodeid
] = ptr
;
1417 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1418 * size of kmem_list3.
1420 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1424 for_each_online_node(node
) {
1425 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1426 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1428 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1433 * Initialisation. Called after the page allocator have been initialised and
1434 * before smp_init().
1436 void __init
kmem_cache_init(void)
1439 struct cache_sizes
*sizes
;
1440 struct cache_names
*names
;
1445 if (num_possible_nodes() == 1) {
1446 use_alien_caches
= 0;
1450 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1451 kmem_list3_init(&initkmem_list3
[i
]);
1452 if (i
< MAX_NUMNODES
)
1453 cache_cache
.nodelists
[i
] = NULL
;
1455 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1458 * Fragmentation resistance on low memory - only use bigger
1459 * page orders on machines with more than 32MB of memory.
1461 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1462 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1464 /* Bootstrap is tricky, because several objects are allocated
1465 * from caches that do not exist yet:
1466 * 1) initialize the cache_cache cache: it contains the struct
1467 * kmem_cache structures of all caches, except cache_cache itself:
1468 * cache_cache is statically allocated.
1469 * Initially an __init data area is used for the head array and the
1470 * kmem_list3 structures, it's replaced with a kmalloc allocated
1471 * array at the end of the bootstrap.
1472 * 2) Create the first kmalloc cache.
1473 * The struct kmem_cache for the new cache is allocated normally.
1474 * An __init data area is used for the head array.
1475 * 3) Create the remaining kmalloc caches, with minimally sized
1477 * 4) Replace the __init data head arrays for cache_cache and the first
1478 * kmalloc cache with kmalloc allocated arrays.
1479 * 5) Replace the __init data for kmem_list3 for cache_cache and
1480 * the other cache's with kmalloc allocated memory.
1481 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1484 node
= numa_node_id();
1486 /* 1) create the cache_cache */
1487 INIT_LIST_HEAD(&cache_chain
);
1488 list_add(&cache_cache
.next
, &cache_chain
);
1489 cache_cache
.colour_off
= cache_line_size();
1490 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1491 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1494 * struct kmem_cache size depends on nr_node_ids, which
1495 * can be less than MAX_NUMNODES.
1497 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1498 nr_node_ids
* sizeof(struct kmem_list3
*);
1500 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1502 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1504 cache_cache
.reciprocal_buffer_size
=
1505 reciprocal_value(cache_cache
.buffer_size
);
1507 for (order
= 0; order
< MAX_ORDER
; order
++) {
1508 cache_estimate(order
, cache_cache
.buffer_size
,
1509 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1510 if (cache_cache
.num
)
1513 BUG_ON(!cache_cache
.num
);
1514 cache_cache
.gfporder
= order
;
1515 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1516 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1517 sizeof(struct slab
), cache_line_size());
1519 /* 2+3) create the kmalloc caches */
1520 sizes
= malloc_sizes
;
1521 names
= cache_names
;
1524 * Initialize the caches that provide memory for the array cache and the
1525 * kmem_list3 structures first. Without this, further allocations will
1529 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1530 sizes
[INDEX_AC
].cs_size
,
1531 ARCH_KMALLOC_MINALIGN
,
1532 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1535 if (INDEX_AC
!= INDEX_L3
) {
1536 sizes
[INDEX_L3
].cs_cachep
=
1537 kmem_cache_create(names
[INDEX_L3
].name
,
1538 sizes
[INDEX_L3
].cs_size
,
1539 ARCH_KMALLOC_MINALIGN
,
1540 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1544 slab_early_init
= 0;
1546 while (sizes
->cs_size
!= ULONG_MAX
) {
1548 * For performance, all the general caches are L1 aligned.
1549 * This should be particularly beneficial on SMP boxes, as it
1550 * eliminates "false sharing".
1551 * Note for systems short on memory removing the alignment will
1552 * allow tighter packing of the smaller caches.
1554 if (!sizes
->cs_cachep
) {
1555 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1557 ARCH_KMALLOC_MINALIGN
,
1558 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1561 #ifdef CONFIG_ZONE_DMA
1562 sizes
->cs_dmacachep
= kmem_cache_create(
1565 ARCH_KMALLOC_MINALIGN
,
1566 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1573 /* 4) Replace the bootstrap head arrays */
1575 struct array_cache
*ptr
;
1577 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1579 local_irq_disable();
1580 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1581 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1582 sizeof(struct arraycache_init
));
1584 * Do not assume that spinlocks can be initialized via memcpy:
1586 spin_lock_init(&ptr
->lock
);
1588 cache_cache
.array
[smp_processor_id()] = ptr
;
1591 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1593 local_irq_disable();
1594 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1595 != &initarray_generic
.cache
);
1596 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1597 sizeof(struct arraycache_init
));
1599 * Do not assume that spinlocks can be initialized via memcpy:
1601 spin_lock_init(&ptr
->lock
);
1603 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1607 /* 5) Replace the bootstrap kmem_list3's */
1611 for_each_online_node(nid
) {
1612 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1614 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1615 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1617 if (INDEX_AC
!= INDEX_L3
) {
1618 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1619 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1624 /* 6) resize the head arrays to their final sizes */
1626 struct kmem_cache
*cachep
;
1627 mutex_lock(&cache_chain_mutex
);
1628 list_for_each_entry(cachep
, &cache_chain
, next
)
1629 if (enable_cpucache(cachep
))
1631 mutex_unlock(&cache_chain_mutex
);
1634 /* Annotate slab for lockdep -- annotate the malloc caches */
1639 g_cpucache_up
= FULL
;
1642 * Register a cpu startup notifier callback that initializes
1643 * cpu_cache_get for all new cpus
1645 register_cpu_notifier(&cpucache_notifier
);
1648 * The reap timers are started later, with a module init call: That part
1649 * of the kernel is not yet operational.
1653 static int __init
cpucache_init(void)
1658 * Register the timers that return unneeded pages to the page allocator
1660 for_each_online_cpu(cpu
)
1661 start_cpu_timer(cpu
);
1664 __initcall(cpucache_init
);
1667 * Interface to system's page allocator. No need to hold the cache-lock.
1669 * If we requested dmaable memory, we will get it. Even if we
1670 * did not request dmaable memory, we might get it, but that
1671 * would be relatively rare and ignorable.
1673 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1681 * Nommu uses slab's for process anonymous memory allocations, and thus
1682 * requires __GFP_COMP to properly refcount higher order allocations
1684 flags
|= __GFP_COMP
;
1687 flags
|= cachep
->gfpflags
;
1688 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1689 flags
|= __GFP_RECLAIMABLE
;
1691 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1695 nr_pages
= (1 << cachep
->gfporder
);
1696 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1697 add_zone_page_state(page_zone(page
),
1698 NR_SLAB_RECLAIMABLE
, nr_pages
);
1700 add_zone_page_state(page_zone(page
),
1701 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1702 for (i
= 0; i
< nr_pages
; i
++)
1703 __SetPageSlab(page
+ i
);
1704 return page_address(page
);
1708 * Interface to system's page release.
1710 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1712 unsigned long i
= (1 << cachep
->gfporder
);
1713 struct page
*page
= virt_to_page(addr
);
1714 const unsigned long nr_freed
= i
;
1716 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1717 sub_zone_page_state(page_zone(page
),
1718 NR_SLAB_RECLAIMABLE
, nr_freed
);
1720 sub_zone_page_state(page_zone(page
),
1721 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1723 BUG_ON(!PageSlab(page
));
1724 __ClearPageSlab(page
);
1727 if (current
->reclaim_state
)
1728 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1729 free_pages((unsigned long)addr
, cachep
->gfporder
);
1732 static void kmem_rcu_free(struct rcu_head
*head
)
1734 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1735 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1737 kmem_freepages(cachep
, slab_rcu
->addr
);
1738 if (OFF_SLAB(cachep
))
1739 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1744 #ifdef CONFIG_DEBUG_PAGEALLOC
1745 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1746 unsigned long caller
)
1748 int size
= obj_size(cachep
);
1750 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1752 if (size
< 5 * sizeof(unsigned long))
1755 *addr
++ = 0x12345678;
1757 *addr
++ = smp_processor_id();
1758 size
-= 3 * sizeof(unsigned long);
1760 unsigned long *sptr
= &caller
;
1761 unsigned long svalue
;
1763 while (!kstack_end(sptr
)) {
1765 if (kernel_text_address(svalue
)) {
1767 size
-= sizeof(unsigned long);
1768 if (size
<= sizeof(unsigned long))
1774 *addr
++ = 0x87654321;
1778 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1780 int size
= obj_size(cachep
);
1781 addr
= &((char *)addr
)[obj_offset(cachep
)];
1783 memset(addr
, val
, size
);
1784 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1787 static void dump_line(char *data
, int offset
, int limit
)
1790 unsigned char error
= 0;
1793 printk(KERN_ERR
"%03x:", offset
);
1794 for (i
= 0; i
< limit
; i
++) {
1795 if (data
[offset
+ i
] != POISON_FREE
) {
1796 error
= data
[offset
+ i
];
1799 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1803 if (bad_count
== 1) {
1804 error
^= POISON_FREE
;
1805 if (!(error
& (error
- 1))) {
1806 printk(KERN_ERR
"Single bit error detected. Probably "
1809 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1812 printk(KERN_ERR
"Run a memory test tool.\n");
1821 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1826 if (cachep
->flags
& SLAB_RED_ZONE
) {
1827 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1828 *dbg_redzone1(cachep
, objp
),
1829 *dbg_redzone2(cachep
, objp
));
1832 if (cachep
->flags
& SLAB_STORE_USER
) {
1833 printk(KERN_ERR
"Last user: [<%p>]",
1834 *dbg_userword(cachep
, objp
));
1835 print_symbol("(%s)",
1836 (unsigned long)*dbg_userword(cachep
, objp
));
1839 realobj
= (char *)objp
+ obj_offset(cachep
);
1840 size
= obj_size(cachep
);
1841 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1844 if (i
+ limit
> size
)
1846 dump_line(realobj
, i
, limit
);
1850 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1856 realobj
= (char *)objp
+ obj_offset(cachep
);
1857 size
= obj_size(cachep
);
1859 for (i
= 0; i
< size
; i
++) {
1860 char exp
= POISON_FREE
;
1863 if (realobj
[i
] != exp
) {
1869 "Slab corruption: %s start=%p, len=%d\n",
1870 cachep
->name
, realobj
, size
);
1871 print_objinfo(cachep
, objp
, 0);
1873 /* Hexdump the affected line */
1876 if (i
+ limit
> size
)
1878 dump_line(realobj
, i
, limit
);
1881 /* Limit to 5 lines */
1887 /* Print some data about the neighboring objects, if they
1890 struct slab
*slabp
= virt_to_slab(objp
);
1893 objnr
= obj_to_index(cachep
, slabp
, objp
);
1895 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1896 realobj
= (char *)objp
+ obj_offset(cachep
);
1897 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1899 print_objinfo(cachep
, objp
, 2);
1901 if (objnr
+ 1 < cachep
->num
) {
1902 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1903 realobj
= (char *)objp
+ obj_offset(cachep
);
1904 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1906 print_objinfo(cachep
, objp
, 2);
1914 * slab_destroy_objs - destroy a slab and its objects
1915 * @cachep: cache pointer being destroyed
1916 * @slabp: slab pointer being destroyed
1918 * Call the registered destructor for each object in a slab that is being
1921 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1924 for (i
= 0; i
< cachep
->num
; i
++) {
1925 void *objp
= index_to_obj(cachep
, slabp
, i
);
1927 if (cachep
->flags
& SLAB_POISON
) {
1928 #ifdef CONFIG_DEBUG_PAGEALLOC
1929 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1931 kernel_map_pages(virt_to_page(objp
),
1932 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1934 check_poison_obj(cachep
, objp
);
1936 check_poison_obj(cachep
, objp
);
1939 if (cachep
->flags
& SLAB_RED_ZONE
) {
1940 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1941 slab_error(cachep
, "start of a freed object "
1943 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1944 slab_error(cachep
, "end of a freed object "
1950 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1956 * slab_destroy - destroy and release all objects in a slab
1957 * @cachep: cache pointer being destroyed
1958 * @slabp: slab pointer being destroyed
1960 * Destroy all the objs in a slab, and release the mem back to the system.
1961 * Before calling the slab must have been unlinked from the cache. The
1962 * cache-lock is not held/needed.
1964 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1966 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1968 slab_destroy_objs(cachep
, slabp
);
1969 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1970 struct slab_rcu
*slab_rcu
;
1972 slab_rcu
= (struct slab_rcu
*)slabp
;
1973 slab_rcu
->cachep
= cachep
;
1974 slab_rcu
->addr
= addr
;
1975 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1977 kmem_freepages(cachep
, addr
);
1978 if (OFF_SLAB(cachep
))
1979 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1983 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1986 struct kmem_list3
*l3
;
1988 for_each_online_cpu(i
)
1989 kfree(cachep
->array
[i
]);
1991 /* NUMA: free the list3 structures */
1992 for_each_online_node(i
) {
1993 l3
= cachep
->nodelists
[i
];
1996 free_alien_cache(l3
->alien
);
2000 kmem_cache_free(&cache_cache
, cachep
);
2005 * calculate_slab_order - calculate size (page order) of slabs
2006 * @cachep: pointer to the cache that is being created
2007 * @size: size of objects to be created in this cache.
2008 * @align: required alignment for the objects.
2009 * @flags: slab allocation flags
2011 * Also calculates the number of objects per slab.
2013 * This could be made much more intelligent. For now, try to avoid using
2014 * high order pages for slabs. When the gfp() functions are more friendly
2015 * towards high-order requests, this should be changed.
2017 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2018 size_t size
, size_t align
, unsigned long flags
)
2020 unsigned long offslab_limit
;
2021 size_t left_over
= 0;
2024 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2028 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2032 if (flags
& CFLGS_OFF_SLAB
) {
2034 * Max number of objs-per-slab for caches which
2035 * use off-slab slabs. Needed to avoid a possible
2036 * looping condition in cache_grow().
2038 offslab_limit
= size
- sizeof(struct slab
);
2039 offslab_limit
/= sizeof(kmem_bufctl_t
);
2041 if (num
> offslab_limit
)
2045 /* Found something acceptable - save it away */
2047 cachep
->gfporder
= gfporder
;
2048 left_over
= remainder
;
2051 * A VFS-reclaimable slab tends to have most allocations
2052 * as GFP_NOFS and we really don't want to have to be allocating
2053 * higher-order pages when we are unable to shrink dcache.
2055 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2059 * Large number of objects is good, but very large slabs are
2060 * currently bad for the gfp()s.
2062 if (gfporder
>= slab_break_gfp_order
)
2066 * Acceptable internal fragmentation?
2068 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2074 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
)
2076 if (g_cpucache_up
== FULL
)
2077 return enable_cpucache(cachep
);
2079 if (g_cpucache_up
== NONE
) {
2081 * Note: the first kmem_cache_create must create the cache
2082 * that's used by kmalloc(24), otherwise the creation of
2083 * further caches will BUG().
2085 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2088 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2089 * the first cache, then we need to set up all its list3s,
2090 * otherwise the creation of further caches will BUG().
2092 set_up_list3s(cachep
, SIZE_AC
);
2093 if (INDEX_AC
== INDEX_L3
)
2094 g_cpucache_up
= PARTIAL_L3
;
2096 g_cpucache_up
= PARTIAL_AC
;
2098 cachep
->array
[smp_processor_id()] =
2099 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2101 if (g_cpucache_up
== PARTIAL_AC
) {
2102 set_up_list3s(cachep
, SIZE_L3
);
2103 g_cpucache_up
= PARTIAL_L3
;
2106 for_each_online_node(node
) {
2107 cachep
->nodelists
[node
] =
2108 kmalloc_node(sizeof(struct kmem_list3
),
2110 BUG_ON(!cachep
->nodelists
[node
]);
2111 kmem_list3_init(cachep
->nodelists
[node
]);
2115 cachep
->nodelists
[numa_node_id()]->next_reap
=
2116 jiffies
+ REAPTIMEOUT_LIST3
+
2117 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2119 cpu_cache_get(cachep
)->avail
= 0;
2120 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2121 cpu_cache_get(cachep
)->batchcount
= 1;
2122 cpu_cache_get(cachep
)->touched
= 0;
2123 cachep
->batchcount
= 1;
2124 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2129 * kmem_cache_create - Create a cache.
2130 * @name: A string which is used in /proc/slabinfo to identify this cache.
2131 * @size: The size of objects to be created in this cache.
2132 * @align: The required alignment for the objects.
2133 * @flags: SLAB flags
2134 * @ctor: A constructor for the objects.
2136 * Returns a ptr to the cache on success, NULL on failure.
2137 * Cannot be called within a int, but can be interrupted.
2138 * The @ctor is run when new pages are allocated by the cache.
2140 * @name must be valid until the cache is destroyed. This implies that
2141 * the module calling this has to destroy the cache before getting unloaded.
2145 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2146 * to catch references to uninitialised memory.
2148 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2149 * for buffer overruns.
2151 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2152 * cacheline. This can be beneficial if you're counting cycles as closely
2156 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2157 unsigned long flags
,
2158 void (*ctor
)(struct kmem_cache
*, void *))
2160 size_t left_over
, slab_size
, ralign
;
2161 struct kmem_cache
*cachep
= NULL
, *pc
;
2164 * Sanity checks... these are all serious usage bugs.
2166 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2167 size
> KMALLOC_MAX_SIZE
) {
2168 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2174 * We use cache_chain_mutex to ensure a consistent view of
2175 * cpu_online_map as well. Please see cpuup_callback
2178 mutex_lock(&cache_chain_mutex
);
2180 list_for_each_entry(pc
, &cache_chain
, next
) {
2185 * This happens when the module gets unloaded and doesn't
2186 * destroy its slab cache and no-one else reuses the vmalloc
2187 * area of the module. Print a warning.
2189 res
= probe_kernel_address(pc
->name
, tmp
);
2192 "SLAB: cache with size %d has lost its name\n",
2197 if (!strcmp(pc
->name
, name
)) {
2199 "kmem_cache_create: duplicate cache %s\n", name
);
2206 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2209 * Enable redzoning and last user accounting, except for caches with
2210 * large objects, if the increased size would increase the object size
2211 * above the next power of two: caches with object sizes just above a
2212 * power of two have a significant amount of internal fragmentation.
2214 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2215 2 * sizeof(unsigned long long)))
2216 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2217 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2218 flags
|= SLAB_POISON
;
2220 if (flags
& SLAB_DESTROY_BY_RCU
)
2221 BUG_ON(flags
& SLAB_POISON
);
2224 * Always checks flags, a caller might be expecting debug support which
2227 BUG_ON(flags
& ~CREATE_MASK
);
2230 * Check that size is in terms of words. This is needed to avoid
2231 * unaligned accesses for some archs when redzoning is used, and makes
2232 * sure any on-slab bufctl's are also correctly aligned.
2234 if (size
& (BYTES_PER_WORD
- 1)) {
2235 size
+= (BYTES_PER_WORD
- 1);
2236 size
&= ~(BYTES_PER_WORD
- 1);
2239 /* calculate the final buffer alignment: */
2241 /* 1) arch recommendation: can be overridden for debug */
2242 if (flags
& SLAB_HWCACHE_ALIGN
) {
2244 * Default alignment: as specified by the arch code. Except if
2245 * an object is really small, then squeeze multiple objects into
2248 ralign
= cache_line_size();
2249 while (size
<= ralign
/ 2)
2252 ralign
= BYTES_PER_WORD
;
2256 * Redzoning and user store require word alignment or possibly larger.
2257 * Note this will be overridden by architecture or caller mandated
2258 * alignment if either is greater than BYTES_PER_WORD.
2260 if (flags
& SLAB_STORE_USER
)
2261 ralign
= BYTES_PER_WORD
;
2263 if (flags
& SLAB_RED_ZONE
) {
2264 ralign
= REDZONE_ALIGN
;
2265 /* If redzoning, ensure that the second redzone is suitably
2266 * aligned, by adjusting the object size accordingly. */
2267 size
+= REDZONE_ALIGN
- 1;
2268 size
&= ~(REDZONE_ALIGN
- 1);
2271 /* 2) arch mandated alignment */
2272 if (ralign
< ARCH_SLAB_MINALIGN
) {
2273 ralign
= ARCH_SLAB_MINALIGN
;
2275 /* 3) caller mandated alignment */
2276 if (ralign
< align
) {
2279 /* disable debug if necessary */
2280 if (ralign
> __alignof__(unsigned long long))
2281 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2287 /* Get cache's description obj. */
2288 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2293 cachep
->obj_size
= size
;
2296 * Both debugging options require word-alignment which is calculated
2299 if (flags
& SLAB_RED_ZONE
) {
2300 /* add space for red zone words */
2301 cachep
->obj_offset
+= sizeof(unsigned long long);
2302 size
+= 2 * sizeof(unsigned long long);
2304 if (flags
& SLAB_STORE_USER
) {
2305 /* user store requires one word storage behind the end of
2306 * the real object. But if the second red zone needs to be
2307 * aligned to 64 bits, we must allow that much space.
2309 if (flags
& SLAB_RED_ZONE
)
2310 size
+= REDZONE_ALIGN
;
2312 size
+= BYTES_PER_WORD
;
2314 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2315 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2316 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2317 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2324 * Determine if the slab management is 'on' or 'off' slab.
2325 * (bootstrapping cannot cope with offslab caches so don't do
2328 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2330 * Size is large, assume best to place the slab management obj
2331 * off-slab (should allow better packing of objs).
2333 flags
|= CFLGS_OFF_SLAB
;
2335 size
= ALIGN(size
, align
);
2337 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2341 "kmem_cache_create: couldn't create cache %s.\n", name
);
2342 kmem_cache_free(&cache_cache
, cachep
);
2346 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2347 + sizeof(struct slab
), align
);
2350 * If the slab has been placed off-slab, and we have enough space then
2351 * move it on-slab. This is at the expense of any extra colouring.
2353 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2354 flags
&= ~CFLGS_OFF_SLAB
;
2355 left_over
-= slab_size
;
2358 if (flags
& CFLGS_OFF_SLAB
) {
2359 /* really off slab. No need for manual alignment */
2361 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2364 cachep
->colour_off
= cache_line_size();
2365 /* Offset must be a multiple of the alignment. */
2366 if (cachep
->colour_off
< align
)
2367 cachep
->colour_off
= align
;
2368 cachep
->colour
= left_over
/ cachep
->colour_off
;
2369 cachep
->slab_size
= slab_size
;
2370 cachep
->flags
= flags
;
2371 cachep
->gfpflags
= 0;
2372 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2373 cachep
->gfpflags
|= GFP_DMA
;
2374 cachep
->buffer_size
= size
;
2375 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2377 if (flags
& CFLGS_OFF_SLAB
) {
2378 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2380 * This is a possibility for one of the malloc_sizes caches.
2381 * But since we go off slab only for object size greater than
2382 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2383 * this should not happen at all.
2384 * But leave a BUG_ON for some lucky dude.
2386 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2388 cachep
->ctor
= ctor
;
2389 cachep
->name
= name
;
2391 if (setup_cpu_cache(cachep
)) {
2392 __kmem_cache_destroy(cachep
);
2397 /* cache setup completed, link it into the list */
2398 list_add(&cachep
->next
, &cache_chain
);
2400 if (!cachep
&& (flags
& SLAB_PANIC
))
2401 panic("kmem_cache_create(): failed to create slab `%s'\n",
2403 mutex_unlock(&cache_chain_mutex
);
2407 EXPORT_SYMBOL(kmem_cache_create
);
2410 static void check_irq_off(void)
2412 BUG_ON(!irqs_disabled());
2415 static void check_irq_on(void)
2417 BUG_ON(irqs_disabled());
2420 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2424 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2428 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2432 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2437 #define check_irq_off() do { } while(0)
2438 #define check_irq_on() do { } while(0)
2439 #define check_spinlock_acquired(x) do { } while(0)
2440 #define check_spinlock_acquired_node(x, y) do { } while(0)
2443 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2444 struct array_cache
*ac
,
2445 int force
, int node
);
2447 static void do_drain(void *arg
)
2449 struct kmem_cache
*cachep
= arg
;
2450 struct array_cache
*ac
;
2451 int node
= numa_node_id();
2454 ac
= cpu_cache_get(cachep
);
2455 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2456 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2457 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2461 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2463 struct kmem_list3
*l3
;
2466 on_each_cpu(do_drain
, cachep
, 1, 1);
2468 for_each_online_node(node
) {
2469 l3
= cachep
->nodelists
[node
];
2470 if (l3
&& l3
->alien
)
2471 drain_alien_cache(cachep
, l3
->alien
);
2474 for_each_online_node(node
) {
2475 l3
= cachep
->nodelists
[node
];
2477 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2482 * Remove slabs from the list of free slabs.
2483 * Specify the number of slabs to drain in tofree.
2485 * Returns the actual number of slabs released.
2487 static int drain_freelist(struct kmem_cache
*cache
,
2488 struct kmem_list3
*l3
, int tofree
)
2490 struct list_head
*p
;
2495 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2497 spin_lock_irq(&l3
->list_lock
);
2498 p
= l3
->slabs_free
.prev
;
2499 if (p
== &l3
->slabs_free
) {
2500 spin_unlock_irq(&l3
->list_lock
);
2504 slabp
= list_entry(p
, struct slab
, list
);
2506 BUG_ON(slabp
->inuse
);
2508 list_del(&slabp
->list
);
2510 * Safe to drop the lock. The slab is no longer linked
2513 l3
->free_objects
-= cache
->num
;
2514 spin_unlock_irq(&l3
->list_lock
);
2515 slab_destroy(cache
, slabp
);
2522 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2523 static int __cache_shrink(struct kmem_cache
*cachep
)
2526 struct kmem_list3
*l3
;
2528 drain_cpu_caches(cachep
);
2531 for_each_online_node(i
) {
2532 l3
= cachep
->nodelists
[i
];
2536 drain_freelist(cachep
, l3
, l3
->free_objects
);
2538 ret
+= !list_empty(&l3
->slabs_full
) ||
2539 !list_empty(&l3
->slabs_partial
);
2541 return (ret
? 1 : 0);
2545 * kmem_cache_shrink - Shrink a cache.
2546 * @cachep: The cache to shrink.
2548 * Releases as many slabs as possible for a cache.
2549 * To help debugging, a zero exit status indicates all slabs were released.
2551 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2554 BUG_ON(!cachep
|| in_interrupt());
2557 mutex_lock(&cache_chain_mutex
);
2558 ret
= __cache_shrink(cachep
);
2559 mutex_unlock(&cache_chain_mutex
);
2563 EXPORT_SYMBOL(kmem_cache_shrink
);
2566 * kmem_cache_destroy - delete a cache
2567 * @cachep: the cache to destroy
2569 * Remove a &struct kmem_cache object from the slab cache.
2571 * It is expected this function will be called by a module when it is
2572 * unloaded. This will remove the cache completely, and avoid a duplicate
2573 * cache being allocated each time a module is loaded and unloaded, if the
2574 * module doesn't have persistent in-kernel storage across loads and unloads.
2576 * The cache must be empty before calling this function.
2578 * The caller must guarantee that noone will allocate memory from the cache
2579 * during the kmem_cache_destroy().
2581 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2583 BUG_ON(!cachep
|| in_interrupt());
2585 /* Find the cache in the chain of caches. */
2587 mutex_lock(&cache_chain_mutex
);
2589 * the chain is never empty, cache_cache is never destroyed
2591 list_del(&cachep
->next
);
2592 if (__cache_shrink(cachep
)) {
2593 slab_error(cachep
, "Can't free all objects");
2594 list_add(&cachep
->next
, &cache_chain
);
2595 mutex_unlock(&cache_chain_mutex
);
2600 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2603 __kmem_cache_destroy(cachep
);
2604 mutex_unlock(&cache_chain_mutex
);
2607 EXPORT_SYMBOL(kmem_cache_destroy
);
2610 * Get the memory for a slab management obj.
2611 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2612 * always come from malloc_sizes caches. The slab descriptor cannot
2613 * come from the same cache which is getting created because,
2614 * when we are searching for an appropriate cache for these
2615 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2616 * If we are creating a malloc_sizes cache here it would not be visible to
2617 * kmem_find_general_cachep till the initialization is complete.
2618 * Hence we cannot have slabp_cache same as the original cache.
2620 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2621 int colour_off
, gfp_t local_flags
,
2626 if (OFF_SLAB(cachep
)) {
2627 /* Slab management obj is off-slab. */
2628 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2629 local_flags
& ~GFP_THISNODE
, nodeid
);
2633 slabp
= objp
+ colour_off
;
2634 colour_off
+= cachep
->slab_size
;
2637 slabp
->colouroff
= colour_off
;
2638 slabp
->s_mem
= objp
+ colour_off
;
2639 slabp
->nodeid
= nodeid
;
2644 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2646 return (kmem_bufctl_t
*) (slabp
+ 1);
2649 static void cache_init_objs(struct kmem_cache
*cachep
,
2654 for (i
= 0; i
< cachep
->num
; i
++) {
2655 void *objp
= index_to_obj(cachep
, slabp
, i
);
2657 /* need to poison the objs? */
2658 if (cachep
->flags
& SLAB_POISON
)
2659 poison_obj(cachep
, objp
, POISON_FREE
);
2660 if (cachep
->flags
& SLAB_STORE_USER
)
2661 *dbg_userword(cachep
, objp
) = NULL
;
2663 if (cachep
->flags
& SLAB_RED_ZONE
) {
2664 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2665 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2668 * Constructors are not allowed to allocate memory from the same
2669 * cache which they are a constructor for. Otherwise, deadlock.
2670 * They must also be threaded.
2672 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2673 cachep
->ctor(cachep
, objp
+ obj_offset(cachep
));
2675 if (cachep
->flags
& SLAB_RED_ZONE
) {
2676 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2677 slab_error(cachep
, "constructor overwrote the"
2678 " end of an object");
2679 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2680 slab_error(cachep
, "constructor overwrote the"
2681 " start of an object");
2683 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2684 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2685 kernel_map_pages(virt_to_page(objp
),
2686 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2689 cachep
->ctor(cachep
, objp
);
2691 slab_bufctl(slabp
)[i
] = i
+ 1;
2693 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2696 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2698 if (CONFIG_ZONE_DMA_FLAG
) {
2699 if (flags
& GFP_DMA
)
2700 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2702 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2706 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2709 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2713 next
= slab_bufctl(slabp
)[slabp
->free
];
2715 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2716 WARN_ON(slabp
->nodeid
!= nodeid
);
2723 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2724 void *objp
, int nodeid
)
2726 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2729 /* Verify that the slab belongs to the intended node */
2730 WARN_ON(slabp
->nodeid
!= nodeid
);
2732 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2733 printk(KERN_ERR
"slab: double free detected in cache "
2734 "'%s', objp %p\n", cachep
->name
, objp
);
2738 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2739 slabp
->free
= objnr
;
2744 * Map pages beginning at addr to the given cache and slab. This is required
2745 * for the slab allocator to be able to lookup the cache and slab of a
2746 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2748 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2754 page
= virt_to_page(addr
);
2757 if (likely(!PageCompound(page
)))
2758 nr_pages
<<= cache
->gfporder
;
2761 page_set_cache(page
, cache
);
2762 page_set_slab(page
, slab
);
2764 } while (--nr_pages
);
2768 * Grow (by 1) the number of slabs within a cache. This is called by
2769 * kmem_cache_alloc() when there are no active objs left in a cache.
2771 static int cache_grow(struct kmem_cache
*cachep
,
2772 gfp_t flags
, int nodeid
, void *objp
)
2777 struct kmem_list3
*l3
;
2780 * Be lazy and only check for valid flags here, keeping it out of the
2781 * critical path in kmem_cache_alloc().
2783 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2784 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2786 /* Take the l3 list lock to change the colour_next on this node */
2788 l3
= cachep
->nodelists
[nodeid
];
2789 spin_lock(&l3
->list_lock
);
2791 /* Get colour for the slab, and cal the next value. */
2792 offset
= l3
->colour_next
;
2794 if (l3
->colour_next
>= cachep
->colour
)
2795 l3
->colour_next
= 0;
2796 spin_unlock(&l3
->list_lock
);
2798 offset
*= cachep
->colour_off
;
2800 if (local_flags
& __GFP_WAIT
)
2804 * The test for missing atomic flag is performed here, rather than
2805 * the more obvious place, simply to reduce the critical path length
2806 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2807 * will eventually be caught here (where it matters).
2809 kmem_flagcheck(cachep
, flags
);
2812 * Get mem for the objs. Attempt to allocate a physical page from
2816 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2820 /* Get slab management. */
2821 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2822 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2826 slab_map_pages(cachep
, slabp
, objp
);
2828 cache_init_objs(cachep
, slabp
);
2830 if (local_flags
& __GFP_WAIT
)
2831 local_irq_disable();
2833 spin_lock(&l3
->list_lock
);
2835 /* Make slab active. */
2836 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2837 STATS_INC_GROWN(cachep
);
2838 l3
->free_objects
+= cachep
->num
;
2839 spin_unlock(&l3
->list_lock
);
2842 kmem_freepages(cachep
, objp
);
2844 if (local_flags
& __GFP_WAIT
)
2845 local_irq_disable();
2852 * Perform extra freeing checks:
2853 * - detect bad pointers.
2854 * - POISON/RED_ZONE checking
2856 static void kfree_debugcheck(const void *objp
)
2858 if (!virt_addr_valid(objp
)) {
2859 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2860 (unsigned long)objp
);
2865 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2867 unsigned long long redzone1
, redzone2
;
2869 redzone1
= *dbg_redzone1(cache
, obj
);
2870 redzone2
= *dbg_redzone2(cache
, obj
);
2875 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2878 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2879 slab_error(cache
, "double free detected");
2881 slab_error(cache
, "memory outside object was overwritten");
2883 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2884 obj
, redzone1
, redzone2
);
2887 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2894 BUG_ON(virt_to_cache(objp
) != cachep
);
2896 objp
-= obj_offset(cachep
);
2897 kfree_debugcheck(objp
);
2898 page
= virt_to_head_page(objp
);
2900 slabp
= page_get_slab(page
);
2902 if (cachep
->flags
& SLAB_RED_ZONE
) {
2903 verify_redzone_free(cachep
, objp
);
2904 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2905 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2907 if (cachep
->flags
& SLAB_STORE_USER
)
2908 *dbg_userword(cachep
, objp
) = caller
;
2910 objnr
= obj_to_index(cachep
, slabp
, objp
);
2912 BUG_ON(objnr
>= cachep
->num
);
2913 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2915 #ifdef CONFIG_DEBUG_SLAB_LEAK
2916 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2918 if (cachep
->flags
& SLAB_POISON
) {
2919 #ifdef CONFIG_DEBUG_PAGEALLOC
2920 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2921 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2922 kernel_map_pages(virt_to_page(objp
),
2923 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2925 poison_obj(cachep
, objp
, POISON_FREE
);
2928 poison_obj(cachep
, objp
, POISON_FREE
);
2934 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2939 /* Check slab's freelist to see if this obj is there. */
2940 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2942 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2945 if (entries
!= cachep
->num
- slabp
->inuse
) {
2947 printk(KERN_ERR
"slab: Internal list corruption detected in "
2948 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2949 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2951 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2954 printk("\n%03x:", i
);
2955 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2962 #define kfree_debugcheck(x) do { } while(0)
2963 #define cache_free_debugcheck(x,objp,z) (objp)
2964 #define check_slabp(x,y) do { } while(0)
2967 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2970 struct kmem_list3
*l3
;
2971 struct array_cache
*ac
;
2976 node
= numa_node_id();
2977 ac
= cpu_cache_get(cachep
);
2978 batchcount
= ac
->batchcount
;
2979 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2981 * If there was little recent activity on this cache, then
2982 * perform only a partial refill. Otherwise we could generate
2985 batchcount
= BATCHREFILL_LIMIT
;
2987 l3
= cachep
->nodelists
[node
];
2989 BUG_ON(ac
->avail
> 0 || !l3
);
2990 spin_lock(&l3
->list_lock
);
2992 /* See if we can refill from the shared array */
2993 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2996 while (batchcount
> 0) {
2997 struct list_head
*entry
;
2999 /* Get slab alloc is to come from. */
3000 entry
= l3
->slabs_partial
.next
;
3001 if (entry
== &l3
->slabs_partial
) {
3002 l3
->free_touched
= 1;
3003 entry
= l3
->slabs_free
.next
;
3004 if (entry
== &l3
->slabs_free
)
3008 slabp
= list_entry(entry
, struct slab
, list
);
3009 check_slabp(cachep
, slabp
);
3010 check_spinlock_acquired(cachep
);
3013 * The slab was either on partial or free list so
3014 * there must be at least one object available for
3017 BUG_ON(slabp
->inuse
< 0 || slabp
->inuse
>= cachep
->num
);
3019 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3020 STATS_INC_ALLOCED(cachep
);
3021 STATS_INC_ACTIVE(cachep
);
3022 STATS_SET_HIGH(cachep
);
3024 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3027 check_slabp(cachep
, slabp
);
3029 /* move slabp to correct slabp list: */
3030 list_del(&slabp
->list
);
3031 if (slabp
->free
== BUFCTL_END
)
3032 list_add(&slabp
->list
, &l3
->slabs_full
);
3034 list_add(&slabp
->list
, &l3
->slabs_partial
);
3038 l3
->free_objects
-= ac
->avail
;
3040 spin_unlock(&l3
->list_lock
);
3042 if (unlikely(!ac
->avail
)) {
3044 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3046 /* cache_grow can reenable interrupts, then ac could change. */
3047 ac
= cpu_cache_get(cachep
);
3048 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3051 if (!ac
->avail
) /* objects refilled by interrupt? */
3055 return ac
->entry
[--ac
->avail
];
3058 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3061 might_sleep_if(flags
& __GFP_WAIT
);
3063 kmem_flagcheck(cachep
, flags
);
3068 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3069 gfp_t flags
, void *objp
, void *caller
)
3073 if (cachep
->flags
& SLAB_POISON
) {
3074 #ifdef CONFIG_DEBUG_PAGEALLOC
3075 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3076 kernel_map_pages(virt_to_page(objp
),
3077 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3079 check_poison_obj(cachep
, objp
);
3081 check_poison_obj(cachep
, objp
);
3083 poison_obj(cachep
, objp
, POISON_INUSE
);
3085 if (cachep
->flags
& SLAB_STORE_USER
)
3086 *dbg_userword(cachep
, objp
) = caller
;
3088 if (cachep
->flags
& SLAB_RED_ZONE
) {
3089 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3090 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3091 slab_error(cachep
, "double free, or memory outside"
3092 " object was overwritten");
3094 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3095 objp
, *dbg_redzone1(cachep
, objp
),
3096 *dbg_redzone2(cachep
, objp
));
3098 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3099 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3101 #ifdef CONFIG_DEBUG_SLAB_LEAK
3106 slabp
= page_get_slab(virt_to_head_page(objp
));
3107 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3108 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3111 objp
+= obj_offset(cachep
);
3112 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3113 cachep
->ctor(cachep
, objp
);
3114 #if ARCH_SLAB_MINALIGN
3115 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3116 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3117 objp
, ARCH_SLAB_MINALIGN
);
3123 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3126 #ifdef CONFIG_FAILSLAB
3128 static struct failslab_attr
{
3130 struct fault_attr attr
;
3132 u32 ignore_gfp_wait
;
3133 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3134 struct dentry
*ignore_gfp_wait_file
;
3138 .attr
= FAULT_ATTR_INITIALIZER
,
3139 .ignore_gfp_wait
= 1,
3142 static int __init
setup_failslab(char *str
)
3144 return setup_fault_attr(&failslab
.attr
, str
);
3146 __setup("failslab=", setup_failslab
);
3148 static int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3150 if (cachep
== &cache_cache
)
3152 if (flags
& __GFP_NOFAIL
)
3154 if (failslab
.ignore_gfp_wait
&& (flags
& __GFP_WAIT
))
3157 return should_fail(&failslab
.attr
, obj_size(cachep
));
3160 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3162 static int __init
failslab_debugfs(void)
3164 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
3168 err
= init_fault_attr_dentries(&failslab
.attr
, "failslab");
3171 dir
= failslab
.attr
.dentries
.dir
;
3173 failslab
.ignore_gfp_wait_file
=
3174 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3175 &failslab
.ignore_gfp_wait
);
3177 if (!failslab
.ignore_gfp_wait_file
) {
3179 debugfs_remove(failslab
.ignore_gfp_wait_file
);
3180 cleanup_fault_attr_dentries(&failslab
.attr
);
3186 late_initcall(failslab_debugfs
);
3188 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3190 #else /* CONFIG_FAILSLAB */
3192 static inline int should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3197 #endif /* CONFIG_FAILSLAB */
3199 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3202 struct array_cache
*ac
;
3206 ac
= cpu_cache_get(cachep
);
3207 if (likely(ac
->avail
)) {
3208 STATS_INC_ALLOCHIT(cachep
);
3210 objp
= ac
->entry
[--ac
->avail
];
3212 STATS_INC_ALLOCMISS(cachep
);
3213 objp
= cache_alloc_refill(cachep
, flags
);
3220 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3222 * If we are in_interrupt, then process context, including cpusets and
3223 * mempolicy, may not apply and should not be used for allocation policy.
3225 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3227 int nid_alloc
, nid_here
;
3229 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3231 nid_alloc
= nid_here
= numa_node_id();
3232 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3233 nid_alloc
= cpuset_mem_spread_node();
3234 else if (current
->mempolicy
)
3235 nid_alloc
= slab_node(current
->mempolicy
);
3236 if (nid_alloc
!= nid_here
)
3237 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3242 * Fallback function if there was no memory available and no objects on a
3243 * certain node and fall back is permitted. First we scan all the
3244 * available nodelists for available objects. If that fails then we
3245 * perform an allocation without specifying a node. This allows the page
3246 * allocator to do its reclaim / fallback magic. We then insert the
3247 * slab into the proper nodelist and then allocate from it.
3249 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3251 struct zonelist
*zonelist
;
3255 enum zone_type high_zoneidx
= gfp_zone(flags
);
3259 if (flags
& __GFP_THISNODE
)
3262 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3263 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3267 * Look through allowed nodes for objects available
3268 * from existing per node queues.
3270 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3271 nid
= zone_to_nid(zone
);
3273 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3274 cache
->nodelists
[nid
] &&
3275 cache
->nodelists
[nid
]->free_objects
) {
3276 obj
= ____cache_alloc_node(cache
,
3277 flags
| GFP_THISNODE
, nid
);
3285 * This allocation will be performed within the constraints
3286 * of the current cpuset / memory policy requirements.
3287 * We may trigger various forms of reclaim on the allowed
3288 * set and go into memory reserves if necessary.
3290 if (local_flags
& __GFP_WAIT
)
3292 kmem_flagcheck(cache
, flags
);
3293 obj
= kmem_getpages(cache
, local_flags
, -1);
3294 if (local_flags
& __GFP_WAIT
)
3295 local_irq_disable();
3298 * Insert into the appropriate per node queues
3300 nid
= page_to_nid(virt_to_page(obj
));
3301 if (cache_grow(cache
, flags
, nid
, obj
)) {
3302 obj
= ____cache_alloc_node(cache
,
3303 flags
| GFP_THISNODE
, nid
);
3306 * Another processor may allocate the
3307 * objects in the slab since we are
3308 * not holding any locks.
3312 /* cache_grow already freed obj */
3321 * A interface to enable slab creation on nodeid
3323 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3326 struct list_head
*entry
;
3328 struct kmem_list3
*l3
;
3332 l3
= cachep
->nodelists
[nodeid
];
3337 spin_lock(&l3
->list_lock
);
3338 entry
= l3
->slabs_partial
.next
;
3339 if (entry
== &l3
->slabs_partial
) {
3340 l3
->free_touched
= 1;
3341 entry
= l3
->slabs_free
.next
;
3342 if (entry
== &l3
->slabs_free
)
3346 slabp
= list_entry(entry
, struct slab
, list
);
3347 check_spinlock_acquired_node(cachep
, nodeid
);
3348 check_slabp(cachep
, slabp
);
3350 STATS_INC_NODEALLOCS(cachep
);
3351 STATS_INC_ACTIVE(cachep
);
3352 STATS_SET_HIGH(cachep
);
3354 BUG_ON(slabp
->inuse
== cachep
->num
);
3356 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3357 check_slabp(cachep
, slabp
);
3359 /* move slabp to correct slabp list: */
3360 list_del(&slabp
->list
);
3362 if (slabp
->free
== BUFCTL_END
)
3363 list_add(&slabp
->list
, &l3
->slabs_full
);
3365 list_add(&slabp
->list
, &l3
->slabs_partial
);
3367 spin_unlock(&l3
->list_lock
);
3371 spin_unlock(&l3
->list_lock
);
3372 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3376 return fallback_alloc(cachep
, flags
);
3383 * kmem_cache_alloc_node - Allocate an object on the specified node
3384 * @cachep: The cache to allocate from.
3385 * @flags: See kmalloc().
3386 * @nodeid: node number of the target node.
3387 * @caller: return address of caller, used for debug information
3389 * Identical to kmem_cache_alloc but it will allocate memory on the given
3390 * node, which can improve the performance for cpu bound structures.
3392 * Fallback to other node is possible if __GFP_THISNODE is not set.
3394 static __always_inline
void *
3395 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3398 unsigned long save_flags
;
3401 if (should_failslab(cachep
, flags
))
3404 cache_alloc_debugcheck_before(cachep
, flags
);
3405 local_irq_save(save_flags
);
3407 if (unlikely(nodeid
== -1))
3408 nodeid
= numa_node_id();
3410 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3411 /* Node not bootstrapped yet */
3412 ptr
= fallback_alloc(cachep
, flags
);
3416 if (nodeid
== numa_node_id()) {
3418 * Use the locally cached objects if possible.
3419 * However ____cache_alloc does not allow fallback
3420 * to other nodes. It may fail while we still have
3421 * objects on other nodes available.
3423 ptr
= ____cache_alloc(cachep
, flags
);
3427 /* ___cache_alloc_node can fall back to other nodes */
3428 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3430 local_irq_restore(save_flags
);
3431 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3433 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3434 memset(ptr
, 0, obj_size(cachep
));
3439 static __always_inline
void *
3440 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3444 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3445 objp
= alternate_node_alloc(cache
, flags
);
3449 objp
= ____cache_alloc(cache
, flags
);
3452 * We may just have run out of memory on the local node.
3453 * ____cache_alloc_node() knows how to locate memory on other nodes
3456 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3463 static __always_inline
void *
3464 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3466 return ____cache_alloc(cachep
, flags
);
3469 #endif /* CONFIG_NUMA */
3471 static __always_inline
void *
3472 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3474 unsigned long save_flags
;
3477 if (should_failslab(cachep
, flags
))
3480 cache_alloc_debugcheck_before(cachep
, flags
);
3481 local_irq_save(save_flags
);
3482 objp
= __do_cache_alloc(cachep
, flags
);
3483 local_irq_restore(save_flags
);
3484 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3487 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3488 memset(objp
, 0, obj_size(cachep
));
3494 * Caller needs to acquire correct kmem_list's list_lock
3496 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3500 struct kmem_list3
*l3
;
3502 for (i
= 0; i
< nr_objects
; i
++) {
3503 void *objp
= objpp
[i
];
3506 slabp
= virt_to_slab(objp
);
3507 l3
= cachep
->nodelists
[node
];
3508 list_del(&slabp
->list
);
3509 check_spinlock_acquired_node(cachep
, node
);
3510 check_slabp(cachep
, slabp
);
3511 slab_put_obj(cachep
, slabp
, objp
, node
);
3512 STATS_DEC_ACTIVE(cachep
);
3514 check_slabp(cachep
, slabp
);
3516 /* fixup slab chains */
3517 if (slabp
->inuse
== 0) {
3518 if (l3
->free_objects
> l3
->free_limit
) {
3519 l3
->free_objects
-= cachep
->num
;
3520 /* No need to drop any previously held
3521 * lock here, even if we have a off-slab slab
3522 * descriptor it is guaranteed to come from
3523 * a different cache, refer to comments before
3526 slab_destroy(cachep
, slabp
);
3528 list_add(&slabp
->list
, &l3
->slabs_free
);
3531 /* Unconditionally move a slab to the end of the
3532 * partial list on free - maximum time for the
3533 * other objects to be freed, too.
3535 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3540 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3543 struct kmem_list3
*l3
;
3544 int node
= numa_node_id();
3546 batchcount
= ac
->batchcount
;
3548 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3551 l3
= cachep
->nodelists
[node
];
3552 spin_lock(&l3
->list_lock
);
3554 struct array_cache
*shared_array
= l3
->shared
;
3555 int max
= shared_array
->limit
- shared_array
->avail
;
3557 if (batchcount
> max
)
3559 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3560 ac
->entry
, sizeof(void *) * batchcount
);
3561 shared_array
->avail
+= batchcount
;
3566 free_block(cachep
, ac
->entry
, batchcount
, node
);
3571 struct list_head
*p
;
3573 p
= l3
->slabs_free
.next
;
3574 while (p
!= &(l3
->slabs_free
)) {
3577 slabp
= list_entry(p
, struct slab
, list
);
3578 BUG_ON(slabp
->inuse
);
3583 STATS_SET_FREEABLE(cachep
, i
);
3586 spin_unlock(&l3
->list_lock
);
3587 ac
->avail
-= batchcount
;
3588 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3592 * Release an obj back to its cache. If the obj has a constructed state, it must
3593 * be in this state _before_ it is released. Called with disabled ints.
3595 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3597 struct array_cache
*ac
= cpu_cache_get(cachep
);
3600 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3603 * Skip calling cache_free_alien() when the platform is not numa.
3604 * This will avoid cache misses that happen while accessing slabp (which
3605 * is per page memory reference) to get nodeid. Instead use a global
3606 * variable to skip the call, which is mostly likely to be present in
3609 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3612 if (likely(ac
->avail
< ac
->limit
)) {
3613 STATS_INC_FREEHIT(cachep
);
3614 ac
->entry
[ac
->avail
++] = objp
;
3617 STATS_INC_FREEMISS(cachep
);
3618 cache_flusharray(cachep
, ac
);
3619 ac
->entry
[ac
->avail
++] = objp
;
3624 * kmem_cache_alloc - Allocate an object
3625 * @cachep: The cache to allocate from.
3626 * @flags: See kmalloc().
3628 * Allocate an object from this cache. The flags are only relevant
3629 * if the cache has no available objects.
3631 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3633 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3635 kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, ret
,
3636 obj_size(cachep
), cachep
->buffer_size
, flags
);
3640 EXPORT_SYMBOL(kmem_cache_alloc
);
3642 #ifdef CONFIG_KMEMTRACE
3643 void *kmem_cache_alloc_notrace(struct kmem_cache
*cachep
, gfp_t flags
)
3645 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3647 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
3651 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3652 * @cachep: the cache we're checking against
3653 * @ptr: pointer to validate
3655 * This verifies that the untrusted pointer looks sane;
3656 * it is _not_ a guarantee that the pointer is actually
3657 * part of the slab cache in question, but it at least
3658 * validates that the pointer can be dereferenced and
3659 * looks half-way sane.
3661 * Currently only used for dentry validation.
3663 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3665 unsigned long addr
= (unsigned long)ptr
;
3666 unsigned long min_addr
= PAGE_OFFSET
;
3667 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3668 unsigned long size
= cachep
->buffer_size
;
3671 if (unlikely(addr
< min_addr
))
3673 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3675 if (unlikely(addr
& align_mask
))
3677 if (unlikely(!kern_addr_valid(addr
)))
3679 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3681 page
= virt_to_page(ptr
);
3682 if (unlikely(!PageSlab(page
)))
3684 if (unlikely(page_get_cache(page
) != cachep
))
3692 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3694 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3695 __builtin_return_address(0));
3697 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, ret
,
3698 obj_size(cachep
), cachep
->buffer_size
,
3703 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3705 #ifdef CONFIG_KMEMTRACE
3706 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*cachep
,
3710 return __cache_alloc_node(cachep
, flags
, nodeid
,
3711 __builtin_return_address(0));
3713 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
3716 static __always_inline
void *
3717 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3719 struct kmem_cache
*cachep
;
3722 cachep
= kmem_find_general_cachep(size
, flags
);
3723 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3725 ret
= kmem_cache_alloc_node_notrace(cachep
, flags
, node
);
3727 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC
,
3728 (unsigned long) caller
, ret
,
3729 size
, cachep
->buffer_size
, flags
, node
);
3734 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3735 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3737 return __do_kmalloc_node(size
, flags
, node
,
3738 __builtin_return_address(0));
3740 EXPORT_SYMBOL(__kmalloc_node
);
3742 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3743 int node
, void *caller
)
3745 return __do_kmalloc_node(size
, flags
, node
, caller
);
3747 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3749 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3751 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3753 EXPORT_SYMBOL(__kmalloc_node
);
3754 #endif /* CONFIG_DEBUG_SLAB */
3755 #endif /* CONFIG_NUMA */
3758 * __do_kmalloc - allocate memory
3759 * @size: how many bytes of memory are required.
3760 * @flags: the type of memory to allocate (see kmalloc).
3761 * @caller: function caller for debug tracking of the caller
3763 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3766 struct kmem_cache
*cachep
;
3769 /* If you want to save a few bytes .text space: replace
3771 * Then kmalloc uses the uninlined functions instead of the inline
3774 cachep
= __find_general_cachep(size
, flags
);
3775 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3777 ret
= __cache_alloc(cachep
, flags
, caller
);
3779 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC
,
3780 (unsigned long) caller
, ret
,
3781 size
, cachep
->buffer_size
, flags
);
3787 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3788 void *__kmalloc(size_t size
, gfp_t flags
)
3790 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3792 EXPORT_SYMBOL(__kmalloc
);
3794 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3796 return __do_kmalloc(size
, flags
, caller
);
3798 EXPORT_SYMBOL(__kmalloc_track_caller
);
3801 void *__kmalloc(size_t size
, gfp_t flags
)
3803 return __do_kmalloc(size
, flags
, NULL
);
3805 EXPORT_SYMBOL(__kmalloc
);
3809 * kmem_cache_free - Deallocate an object
3810 * @cachep: The cache the allocation was from.
3811 * @objp: The previously allocated object.
3813 * Free an object which was previously allocated from this
3816 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3818 unsigned long flags
;
3820 local_irq_save(flags
);
3821 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3822 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3823 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3824 __cache_free(cachep
, objp
);
3825 local_irq_restore(flags
);
3827 kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, objp
);
3829 EXPORT_SYMBOL(kmem_cache_free
);
3832 * kfree - free previously allocated memory
3833 * @objp: pointer returned by kmalloc.
3835 * If @objp is NULL, no operation is performed.
3837 * Don't free memory not originally allocated by kmalloc()
3838 * or you will run into trouble.
3840 void kfree(const void *objp
)
3842 struct kmem_cache
*c
;
3843 unsigned long flags
;
3845 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3847 local_irq_save(flags
);
3848 kfree_debugcheck(objp
);
3849 c
= virt_to_cache(objp
);
3850 debug_check_no_locks_freed(objp
, obj_size(c
));
3851 debug_check_no_obj_freed(objp
, obj_size(c
));
3852 __cache_free(c
, (void *)objp
);
3853 local_irq_restore(flags
);
3855 kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC
, _RET_IP_
, objp
);
3857 EXPORT_SYMBOL(kfree
);
3859 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3861 return obj_size(cachep
);
3863 EXPORT_SYMBOL(kmem_cache_size
);
3865 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3867 return cachep
->name
;
3869 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3872 * This initializes kmem_list3 or resizes various caches for all nodes.
3874 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3877 struct kmem_list3
*l3
;
3878 struct array_cache
*new_shared
;
3879 struct array_cache
**new_alien
= NULL
;
3881 for_each_online_node(node
) {
3883 if (use_alien_caches
) {
3884 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3890 if (cachep
->shared
) {
3891 new_shared
= alloc_arraycache(node
,
3892 cachep
->shared
*cachep
->batchcount
,
3895 free_alien_cache(new_alien
);
3900 l3
= cachep
->nodelists
[node
];
3902 struct array_cache
*shared
= l3
->shared
;
3904 spin_lock_irq(&l3
->list_lock
);
3907 free_block(cachep
, shared
->entry
,
3908 shared
->avail
, node
);
3910 l3
->shared
= new_shared
;
3912 l3
->alien
= new_alien
;
3915 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3916 cachep
->batchcount
+ cachep
->num
;
3917 spin_unlock_irq(&l3
->list_lock
);
3919 free_alien_cache(new_alien
);
3922 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3924 free_alien_cache(new_alien
);
3929 kmem_list3_init(l3
);
3930 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3931 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3932 l3
->shared
= new_shared
;
3933 l3
->alien
= new_alien
;
3934 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3935 cachep
->batchcount
+ cachep
->num
;
3936 cachep
->nodelists
[node
] = l3
;
3941 if (!cachep
->next
.next
) {
3942 /* Cache is not active yet. Roll back what we did */
3945 if (cachep
->nodelists
[node
]) {
3946 l3
= cachep
->nodelists
[node
];
3949 free_alien_cache(l3
->alien
);
3951 cachep
->nodelists
[node
] = NULL
;
3959 struct ccupdate_struct
{
3960 struct kmem_cache
*cachep
;
3961 struct array_cache
*new[NR_CPUS
];
3964 static void do_ccupdate_local(void *info
)
3966 struct ccupdate_struct
*new = info
;
3967 struct array_cache
*old
;
3970 old
= cpu_cache_get(new->cachep
);
3972 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3973 new->new[smp_processor_id()] = old
;
3976 /* Always called with the cache_chain_mutex held */
3977 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3978 int batchcount
, int shared
)
3980 struct ccupdate_struct
*new;
3983 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3987 for_each_online_cpu(i
) {
3988 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3991 for (i
--; i
>= 0; i
--)
3997 new->cachep
= cachep
;
3999 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
4002 cachep
->batchcount
= batchcount
;
4003 cachep
->limit
= limit
;
4004 cachep
->shared
= shared
;
4006 for_each_online_cpu(i
) {
4007 struct array_cache
*ccold
= new->new[i
];
4010 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
4011 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
4012 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
4016 return alloc_kmemlist(cachep
);
4019 /* Called with cache_chain_mutex held always */
4020 static int enable_cpucache(struct kmem_cache
*cachep
)
4026 * The head array serves three purposes:
4027 * - create a LIFO ordering, i.e. return objects that are cache-warm
4028 * - reduce the number of spinlock operations.
4029 * - reduce the number of linked list operations on the slab and
4030 * bufctl chains: array operations are cheaper.
4031 * The numbers are guessed, we should auto-tune as described by
4034 if (cachep
->buffer_size
> 131072)
4036 else if (cachep
->buffer_size
> PAGE_SIZE
)
4038 else if (cachep
->buffer_size
> 1024)
4040 else if (cachep
->buffer_size
> 256)
4046 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4047 * allocation behaviour: Most allocs on one cpu, most free operations
4048 * on another cpu. For these cases, an efficient object passing between
4049 * cpus is necessary. This is provided by a shared array. The array
4050 * replaces Bonwick's magazine layer.
4051 * On uniprocessor, it's functionally equivalent (but less efficient)
4052 * to a larger limit. Thus disabled by default.
4055 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4060 * With debugging enabled, large batchcount lead to excessively long
4061 * periods with disabled local interrupts. Limit the batchcount
4066 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
4068 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4069 cachep
->name
, -err
);
4074 * Drain an array if it contains any elements taking the l3 lock only if
4075 * necessary. Note that the l3 listlock also protects the array_cache
4076 * if drain_array() is used on the shared array.
4078 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4079 struct array_cache
*ac
, int force
, int node
)
4083 if (!ac
|| !ac
->avail
)
4085 if (ac
->touched
&& !force
) {
4088 spin_lock_irq(&l3
->list_lock
);
4090 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4091 if (tofree
> ac
->avail
)
4092 tofree
= (ac
->avail
+ 1) / 2;
4093 free_block(cachep
, ac
->entry
, tofree
, node
);
4094 ac
->avail
-= tofree
;
4095 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4096 sizeof(void *) * ac
->avail
);
4098 spin_unlock_irq(&l3
->list_lock
);
4103 * cache_reap - Reclaim memory from caches.
4104 * @w: work descriptor
4106 * Called from workqueue/eventd every few seconds.
4108 * - clear the per-cpu caches for this CPU.
4109 * - return freeable pages to the main free memory pool.
4111 * If we cannot acquire the cache chain mutex then just give up - we'll try
4112 * again on the next iteration.
4114 static void cache_reap(struct work_struct
*w
)
4116 struct kmem_cache
*searchp
;
4117 struct kmem_list3
*l3
;
4118 int node
= numa_node_id();
4119 struct delayed_work
*work
=
4120 container_of(w
, struct delayed_work
, work
);
4122 if (!mutex_trylock(&cache_chain_mutex
))
4123 /* Give up. Setup the next iteration. */
4126 list_for_each_entry(searchp
, &cache_chain
, next
) {
4130 * We only take the l3 lock if absolutely necessary and we
4131 * have established with reasonable certainty that
4132 * we can do some work if the lock was obtained.
4134 l3
= searchp
->nodelists
[node
];
4136 reap_alien(searchp
, l3
);
4138 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4141 * These are racy checks but it does not matter
4142 * if we skip one check or scan twice.
4144 if (time_after(l3
->next_reap
, jiffies
))
4147 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4149 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4151 if (l3
->free_touched
)
4152 l3
->free_touched
= 0;
4156 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4157 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4158 STATS_ADD_REAPED(searchp
, freed
);
4164 mutex_unlock(&cache_chain_mutex
);
4167 /* Set up the next iteration */
4168 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4171 #ifdef CONFIG_SLABINFO
4173 static void print_slabinfo_header(struct seq_file
*m
)
4176 * Output format version, so at least we can change it
4177 * without _too_ many complaints.
4180 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4182 seq_puts(m
, "slabinfo - version: 2.1\n");
4184 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4185 "<objperslab> <pagesperslab>");
4186 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4187 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4189 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4190 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4191 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4196 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4200 mutex_lock(&cache_chain_mutex
);
4202 print_slabinfo_header(m
);
4204 return seq_list_start(&cache_chain
, *pos
);
4207 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4209 return seq_list_next(p
, &cache_chain
, pos
);
4212 static void s_stop(struct seq_file
*m
, void *p
)
4214 mutex_unlock(&cache_chain_mutex
);
4217 static int s_show(struct seq_file
*m
, void *p
)
4219 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4221 unsigned long active_objs
;
4222 unsigned long num_objs
;
4223 unsigned long active_slabs
= 0;
4224 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4228 struct kmem_list3
*l3
;
4232 for_each_online_node(node
) {
4233 l3
= cachep
->nodelists
[node
];
4238 spin_lock_irq(&l3
->list_lock
);
4240 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4241 if (slabp
->inuse
!= cachep
->num
&& !error
)
4242 error
= "slabs_full accounting error";
4243 active_objs
+= cachep
->num
;
4246 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4247 if (slabp
->inuse
== cachep
->num
&& !error
)
4248 error
= "slabs_partial inuse accounting error";
4249 if (!slabp
->inuse
&& !error
)
4250 error
= "slabs_partial/inuse accounting error";
4251 active_objs
+= slabp
->inuse
;
4254 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4255 if (slabp
->inuse
&& !error
)
4256 error
= "slabs_free/inuse accounting error";
4259 free_objects
+= l3
->free_objects
;
4261 shared_avail
+= l3
->shared
->avail
;
4263 spin_unlock_irq(&l3
->list_lock
);
4265 num_slabs
+= active_slabs
;
4266 num_objs
= num_slabs
* cachep
->num
;
4267 if (num_objs
- active_objs
!= free_objects
&& !error
)
4268 error
= "free_objects accounting error";
4270 name
= cachep
->name
;
4272 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4274 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4275 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4276 cachep
->num
, (1 << cachep
->gfporder
));
4277 seq_printf(m
, " : tunables %4u %4u %4u",
4278 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4279 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4280 active_slabs
, num_slabs
, shared_avail
);
4283 unsigned long high
= cachep
->high_mark
;
4284 unsigned long allocs
= cachep
->num_allocations
;
4285 unsigned long grown
= cachep
->grown
;
4286 unsigned long reaped
= cachep
->reaped
;
4287 unsigned long errors
= cachep
->errors
;
4288 unsigned long max_freeable
= cachep
->max_freeable
;
4289 unsigned long node_allocs
= cachep
->node_allocs
;
4290 unsigned long node_frees
= cachep
->node_frees
;
4291 unsigned long overflows
= cachep
->node_overflow
;
4293 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4294 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4295 reaped
, errors
, max_freeable
, node_allocs
,
4296 node_frees
, overflows
);
4300 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4301 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4302 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4303 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4305 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4306 allochit
, allocmiss
, freehit
, freemiss
);
4314 * slabinfo_op - iterator that generates /proc/slabinfo
4323 * num-pages-per-slab
4324 * + further values on SMP and with statistics enabled
4327 const struct seq_operations slabinfo_op
= {
4334 #define MAX_SLABINFO_WRITE 128
4336 * slabinfo_write - Tuning for the slab allocator
4338 * @buffer: user buffer
4339 * @count: data length
4342 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4343 size_t count
, loff_t
*ppos
)
4345 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4346 int limit
, batchcount
, shared
, res
;
4347 struct kmem_cache
*cachep
;
4349 if (count
> MAX_SLABINFO_WRITE
)
4351 if (copy_from_user(&kbuf
, buffer
, count
))
4353 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4355 tmp
= strchr(kbuf
, ' ');
4360 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4363 /* Find the cache in the chain of caches. */
4364 mutex_lock(&cache_chain_mutex
);
4366 list_for_each_entry(cachep
, &cache_chain
, next
) {
4367 if (!strcmp(cachep
->name
, kbuf
)) {
4368 if (limit
< 1 || batchcount
< 1 ||
4369 batchcount
> limit
|| shared
< 0) {
4372 res
= do_tune_cpucache(cachep
, limit
,
4373 batchcount
, shared
);
4378 mutex_unlock(&cache_chain_mutex
);
4384 #ifdef CONFIG_DEBUG_SLAB_LEAK
4386 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4388 mutex_lock(&cache_chain_mutex
);
4389 return seq_list_start(&cache_chain
, *pos
);
4392 static inline int add_caller(unsigned long *n
, unsigned long v
)
4402 unsigned long *q
= p
+ 2 * i
;
4416 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4422 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4428 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4429 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4431 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4436 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4438 #ifdef CONFIG_KALLSYMS
4439 unsigned long offset
, size
;
4440 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4442 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4443 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4445 seq_printf(m
, " [%s]", modname
);
4449 seq_printf(m
, "%p", (void *)address
);
4452 static int leaks_show(struct seq_file
*m
, void *p
)
4454 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4456 struct kmem_list3
*l3
;
4458 unsigned long *n
= m
->private;
4462 if (!(cachep
->flags
& SLAB_STORE_USER
))
4464 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4467 /* OK, we can do it */
4471 for_each_online_node(node
) {
4472 l3
= cachep
->nodelists
[node
];
4477 spin_lock_irq(&l3
->list_lock
);
4479 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4480 handle_slab(n
, cachep
, slabp
);
4481 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4482 handle_slab(n
, cachep
, slabp
);
4483 spin_unlock_irq(&l3
->list_lock
);
4485 name
= cachep
->name
;
4487 /* Increase the buffer size */
4488 mutex_unlock(&cache_chain_mutex
);
4489 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4491 /* Too bad, we are really out */
4493 mutex_lock(&cache_chain_mutex
);
4496 *(unsigned long *)m
->private = n
[0] * 2;
4498 mutex_lock(&cache_chain_mutex
);
4499 /* Now make sure this entry will be retried */
4503 for (i
= 0; i
< n
[1]; i
++) {
4504 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4505 show_symbol(m
, n
[2*i
+2]);
4512 const struct seq_operations slabstats_op
= {
4513 .start
= leaks_start
,
4522 * ksize - get the actual amount of memory allocated for a given object
4523 * @objp: Pointer to the object
4525 * kmalloc may internally round up allocations and return more memory
4526 * than requested. ksize() can be used to determine the actual amount of
4527 * memory allocated. The caller may use this additional memory, even though
4528 * a smaller amount of memory was initially specified with the kmalloc call.
4529 * The caller must guarantee that objp points to a valid object previously
4530 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4531 * must not be freed during the duration of the call.
4533 size_t ksize(const void *objp
)
4536 if (unlikely(objp
== ZERO_SIZE_PTR
))
4539 return obj_size(virt_to_cache(objp
));
4541 EXPORT_SYMBOL(ksize
);