Merge with master of Avi's kvm.git
[linux-2.6/kvm-ia64.git] / fs / ntfs / super.c
blobb52706da4645267675241e8fc6a69cc80c48ace1
1 /*
2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2001,2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/bitmap.h>
35 #include "sysctl.h"
36 #include "logfile.h"
37 #include "quota.h"
38 #include "usnjrnl.h"
39 #include "dir.h"
40 #include "debug.h"
41 #include "index.h"
42 #include "inode.h"
43 #include "aops.h"
44 #include "layout.h"
45 #include "malloc.h"
46 #include "ntfs.h"
48 /* Number of mounted filesystems which have compression enabled. */
49 static unsigned long ntfs_nr_compression_users;
51 /* A global default upcase table and a corresponding reference count. */
52 static ntfschar *default_upcase = NULL;
53 static unsigned long ntfs_nr_upcase_users = 0;
55 /* Error constants/strings used in inode.c::ntfs_show_options(). */
56 typedef enum {
57 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
58 ON_ERRORS_PANIC = 0x01,
59 ON_ERRORS_REMOUNT_RO = 0x02,
60 ON_ERRORS_CONTINUE = 0x04,
61 /* Optional, can be combined with any of the above. */
62 ON_ERRORS_RECOVER = 0x10,
63 } ON_ERRORS_ACTIONS;
65 const option_t on_errors_arr[] = {
66 { ON_ERRORS_PANIC, "panic" },
67 { ON_ERRORS_REMOUNT_RO, "remount-ro", },
68 { ON_ERRORS_CONTINUE, "continue", },
69 { ON_ERRORS_RECOVER, "recover" },
70 { 0, NULL }
73 /**
74 * simple_getbool -
76 * Copied from old ntfs driver (which copied from vfat driver).
78 static int simple_getbool(char *s, bool *setval)
80 if (s) {
81 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
82 *setval = true;
83 else if (!strcmp(s, "0") || !strcmp(s, "no") ||
84 !strcmp(s, "false"))
85 *setval = false;
86 else
87 return 0;
88 } else
89 *setval = true;
90 return 1;
93 /**
94 * parse_options - parse the (re)mount options
95 * @vol: ntfs volume
96 * @opt: string containing the (re)mount options
98 * Parse the recognized options in @opt for the ntfs volume described by @vol.
100 static bool parse_options(ntfs_volume *vol, char *opt)
102 char *p, *v, *ov;
103 static char *utf8 = "utf8";
104 int errors = 0, sloppy = 0;
105 uid_t uid = (uid_t)-1;
106 gid_t gid = (gid_t)-1;
107 mode_t fmask = (mode_t)-1, dmask = (mode_t)-1;
108 int mft_zone_multiplier = -1, on_errors = -1;
109 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
110 struct nls_table *nls_map = NULL, *old_nls;
112 /* I am lazy... (-8 */
113 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
114 if (!strcmp(p, option)) { \
115 if (!v || !*v) \
116 variable = default_value; \
117 else { \
118 variable = simple_strtoul(ov = v, &v, 0); \
119 if (*v) \
120 goto needs_val; \
123 #define NTFS_GETOPT(option, variable) \
124 if (!strcmp(p, option)) { \
125 if (!v || !*v) \
126 goto needs_arg; \
127 variable = simple_strtoul(ov = v, &v, 0); \
128 if (*v) \
129 goto needs_val; \
131 #define NTFS_GETOPT_OCTAL(option, variable) \
132 if (!strcmp(p, option)) { \
133 if (!v || !*v) \
134 goto needs_arg; \
135 variable = simple_strtoul(ov = v, &v, 8); \
136 if (*v) \
137 goto needs_val; \
139 #define NTFS_GETOPT_BOOL(option, variable) \
140 if (!strcmp(p, option)) { \
141 bool val; \
142 if (!simple_getbool(v, &val)) \
143 goto needs_bool; \
144 variable = val; \
146 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
147 if (!strcmp(p, option)) { \
148 int _i; \
149 if (!v || !*v) \
150 goto needs_arg; \
151 ov = v; \
152 if (variable == -1) \
153 variable = 0; \
154 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
155 if (!strcmp(opt_array[_i].str, v)) { \
156 variable |= opt_array[_i].val; \
157 break; \
159 if (!opt_array[_i].str || !*opt_array[_i].str) \
160 goto needs_val; \
162 if (!opt || !*opt)
163 goto no_mount_options;
164 ntfs_debug("Entering with mount options string: %s", opt);
165 while ((p = strsep(&opt, ","))) {
166 if ((v = strchr(p, '=')))
167 *v++ = 0;
168 NTFS_GETOPT("uid", uid)
169 else NTFS_GETOPT("gid", gid)
170 else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
171 else NTFS_GETOPT_OCTAL("fmask", fmask)
172 else NTFS_GETOPT_OCTAL("dmask", dmask)
173 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
174 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
175 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
176 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
177 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
178 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
179 on_errors_arr)
180 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
181 ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
183 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
184 if (!strcmp(p, "iocharset"))
185 ntfs_warning(vol->sb, "Option iocharset is "
186 "deprecated. Please use "
187 "option nls=<charsetname> in "
188 "the future.");
189 if (!v || !*v)
190 goto needs_arg;
191 use_utf8:
192 old_nls = nls_map;
193 nls_map = load_nls(v);
194 if (!nls_map) {
195 if (!old_nls) {
196 ntfs_error(vol->sb, "NLS character set "
197 "%s not found.", v);
198 return false;
200 ntfs_error(vol->sb, "NLS character set %s not "
201 "found. Using previous one %s.",
202 v, old_nls->charset);
203 nls_map = old_nls;
204 } else /* nls_map */ {
205 unload_nls(old_nls);
207 } else if (!strcmp(p, "utf8")) {
208 bool val = false;
209 ntfs_warning(vol->sb, "Option utf8 is no longer "
210 "supported, using option nls=utf8. Please "
211 "use option nls=utf8 in the future and "
212 "make sure utf8 is compiled either as a "
213 "module or into the kernel.");
214 if (!v || !*v)
215 val = true;
216 else if (!simple_getbool(v, &val))
217 goto needs_bool;
218 if (val) {
219 v = utf8;
220 goto use_utf8;
222 } else {
223 ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
224 if (errors < INT_MAX)
225 errors++;
227 #undef NTFS_GETOPT_OPTIONS_ARRAY
228 #undef NTFS_GETOPT_BOOL
229 #undef NTFS_GETOPT
230 #undef NTFS_GETOPT_WITH_DEFAULT
232 no_mount_options:
233 if (errors && !sloppy)
234 return false;
235 if (sloppy)
236 ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
237 "unrecognized mount option(s) and continuing.");
238 /* Keep this first! */
239 if (on_errors != -1) {
240 if (!on_errors) {
241 ntfs_error(vol->sb, "Invalid errors option argument "
242 "or bug in options parser.");
243 return false;
246 if (nls_map) {
247 if (vol->nls_map && vol->nls_map != nls_map) {
248 ntfs_error(vol->sb, "Cannot change NLS character set "
249 "on remount.");
250 return false;
251 } /* else (!vol->nls_map) */
252 ntfs_debug("Using NLS character set %s.", nls_map->charset);
253 vol->nls_map = nls_map;
254 } else /* (!nls_map) */ {
255 if (!vol->nls_map) {
256 vol->nls_map = load_nls_default();
257 if (!vol->nls_map) {
258 ntfs_error(vol->sb, "Failed to load default "
259 "NLS character set.");
260 return false;
262 ntfs_debug("Using default NLS character set (%s).",
263 vol->nls_map->charset);
266 if (mft_zone_multiplier != -1) {
267 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
268 mft_zone_multiplier) {
269 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
270 "on remount.");
271 return false;
273 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
274 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
275 "Using default value, i.e. 1.");
276 mft_zone_multiplier = 1;
278 vol->mft_zone_multiplier = mft_zone_multiplier;
280 if (!vol->mft_zone_multiplier)
281 vol->mft_zone_multiplier = 1;
282 if (on_errors != -1)
283 vol->on_errors = on_errors;
284 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
285 vol->on_errors |= ON_ERRORS_CONTINUE;
286 if (uid != (uid_t)-1)
287 vol->uid = uid;
288 if (gid != (gid_t)-1)
289 vol->gid = gid;
290 if (fmask != (mode_t)-1)
291 vol->fmask = fmask;
292 if (dmask != (mode_t)-1)
293 vol->dmask = dmask;
294 if (show_sys_files != -1) {
295 if (show_sys_files)
296 NVolSetShowSystemFiles(vol);
297 else
298 NVolClearShowSystemFiles(vol);
300 if (case_sensitive != -1) {
301 if (case_sensitive)
302 NVolSetCaseSensitive(vol);
303 else
304 NVolClearCaseSensitive(vol);
306 if (disable_sparse != -1) {
307 if (disable_sparse)
308 NVolClearSparseEnabled(vol);
309 else {
310 if (!NVolSparseEnabled(vol) &&
311 vol->major_ver && vol->major_ver < 3)
312 ntfs_warning(vol->sb, "Not enabling sparse "
313 "support due to NTFS volume "
314 "version %i.%i (need at least "
315 "version 3.0).", vol->major_ver,
316 vol->minor_ver);
317 else
318 NVolSetSparseEnabled(vol);
321 return true;
322 needs_arg:
323 ntfs_error(vol->sb, "The %s option requires an argument.", p);
324 return false;
325 needs_bool:
326 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
327 return false;
328 needs_val:
329 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
330 return false;
333 #ifdef NTFS_RW
336 * ntfs_write_volume_flags - write new flags to the volume information flags
337 * @vol: ntfs volume on which to modify the flags
338 * @flags: new flags value for the volume information flags
340 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
341 * instead (see below).
343 * Replace the volume information flags on the volume @vol with the value
344 * supplied in @flags. Note, this overwrites the volume information flags, so
345 * make sure to combine the flags you want to modify with the old flags and use
346 * the result when calling ntfs_write_volume_flags().
348 * Return 0 on success and -errno on error.
350 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
352 ntfs_inode *ni = NTFS_I(vol->vol_ino);
353 MFT_RECORD *m;
354 VOLUME_INFORMATION *vi;
355 ntfs_attr_search_ctx *ctx;
356 int err;
358 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
359 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
360 if (vol->vol_flags == flags)
361 goto done;
362 BUG_ON(!ni);
363 m = map_mft_record(ni);
364 if (IS_ERR(m)) {
365 err = PTR_ERR(m);
366 goto err_out;
368 ctx = ntfs_attr_get_search_ctx(ni, m);
369 if (!ctx) {
370 err = -ENOMEM;
371 goto put_unm_err_out;
373 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
374 ctx);
375 if (err)
376 goto put_unm_err_out;
377 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
378 le16_to_cpu(ctx->attr->data.resident.value_offset));
379 vol->vol_flags = vi->flags = flags;
380 flush_dcache_mft_record_page(ctx->ntfs_ino);
381 mark_mft_record_dirty(ctx->ntfs_ino);
382 ntfs_attr_put_search_ctx(ctx);
383 unmap_mft_record(ni);
384 done:
385 ntfs_debug("Done.");
386 return 0;
387 put_unm_err_out:
388 if (ctx)
389 ntfs_attr_put_search_ctx(ctx);
390 unmap_mft_record(ni);
391 err_out:
392 ntfs_error(vol->sb, "Failed with error code %i.", -err);
393 return err;
397 * ntfs_set_volume_flags - set bits in the volume information flags
398 * @vol: ntfs volume on which to modify the flags
399 * @flags: flags to set on the volume
401 * Set the bits in @flags in the volume information flags on the volume @vol.
403 * Return 0 on success and -errno on error.
405 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
407 flags &= VOLUME_FLAGS_MASK;
408 return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
412 * ntfs_clear_volume_flags - clear bits in the volume information flags
413 * @vol: ntfs volume on which to modify the flags
414 * @flags: flags to clear on the volume
416 * Clear the bits in @flags in the volume information flags on the volume @vol.
418 * Return 0 on success and -errno on error.
420 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
422 flags &= VOLUME_FLAGS_MASK;
423 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
424 return ntfs_write_volume_flags(vol, flags);
427 #endif /* NTFS_RW */
430 * ntfs_remount - change the mount options of a mounted ntfs filesystem
431 * @sb: superblock of mounted ntfs filesystem
432 * @flags: remount flags
433 * @opt: remount options string
435 * Change the mount options of an already mounted ntfs filesystem.
437 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
438 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
439 * @sb->s_flags are not changed.
441 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
443 ntfs_volume *vol = NTFS_SB(sb);
445 ntfs_debug("Entering with remount options string: %s", opt);
447 #ifndef NTFS_RW
448 /* For read-only compiled driver, enforce read-only flag. */
449 *flags |= MS_RDONLY;
450 #else /* NTFS_RW */
452 * For the read-write compiled driver, if we are remounting read-write,
453 * make sure there are no volume errors and that no unsupported volume
454 * flags are set. Also, empty the logfile journal as it would become
455 * stale as soon as something is written to the volume and mark the
456 * volume dirty so that chkdsk is run if the volume is not umounted
457 * cleanly. Finally, mark the quotas out of date so Windows rescans
458 * the volume on boot and updates them.
460 * When remounting read-only, mark the volume clean if no volume errors
461 * have occurred.
463 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
464 static const char *es = ". Cannot remount read-write.";
466 /* Remounting read-write. */
467 if (NVolErrors(vol)) {
468 ntfs_error(sb, "Volume has errors and is read-only%s",
469 es);
470 return -EROFS;
472 if (vol->vol_flags & VOLUME_IS_DIRTY) {
473 ntfs_error(sb, "Volume is dirty and read-only%s", es);
474 return -EROFS;
476 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
477 ntfs_error(sb, "Volume has been modified by chkdsk "
478 "and is read-only%s", es);
479 return -EROFS;
481 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
482 ntfs_error(sb, "Volume has unsupported flags set "
483 "(0x%x) and is read-only%s",
484 (unsigned)le16_to_cpu(vol->vol_flags),
485 es);
486 return -EROFS;
488 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
489 ntfs_error(sb, "Failed to set dirty bit in volume "
490 "information flags%s", es);
491 return -EROFS;
493 #if 0
494 // TODO: Enable this code once we start modifying anything that
495 // is different between NTFS 1.2 and 3.x...
496 /* Set NT4 compatibility flag on newer NTFS version volumes. */
497 if ((vol->major_ver > 1)) {
498 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
499 ntfs_error(sb, "Failed to set NT4 "
500 "compatibility flag%s", es);
501 NVolSetErrors(vol);
502 return -EROFS;
505 #endif
506 if (!ntfs_empty_logfile(vol->logfile_ino)) {
507 ntfs_error(sb, "Failed to empty journal $LogFile%s",
508 es);
509 NVolSetErrors(vol);
510 return -EROFS;
512 if (!ntfs_mark_quotas_out_of_date(vol)) {
513 ntfs_error(sb, "Failed to mark quotas out of date%s",
514 es);
515 NVolSetErrors(vol);
516 return -EROFS;
518 if (!ntfs_stamp_usnjrnl(vol)) {
519 ntfs_error(sb, "Failed to stamp transation log "
520 "($UsnJrnl)%s", es);
521 NVolSetErrors(vol);
522 return -EROFS;
524 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
525 /* Remounting read-only. */
526 if (!NVolErrors(vol)) {
527 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
528 ntfs_warning(sb, "Failed to clear dirty bit "
529 "in volume information "
530 "flags. Run chkdsk.");
533 #endif /* NTFS_RW */
535 // TODO: Deal with *flags.
537 if (!parse_options(vol, opt))
538 return -EINVAL;
540 ntfs_debug("Done.");
541 return 0;
545 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
546 * @sb: Super block of the device to which @b belongs.
547 * @b: Boot sector of device @sb to check.
548 * @silent: If 'true', all output will be silenced.
550 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
551 * sector. Returns 'true' if it is valid and 'false' if not.
553 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
554 * is 'true'.
556 static bool is_boot_sector_ntfs(const struct super_block *sb,
557 const NTFS_BOOT_SECTOR *b, const bool silent)
560 * Check that checksum == sum of u32 values from b to the checksum
561 * field. If checksum is zero, no checking is done. We will work when
562 * the checksum test fails, since some utilities update the boot sector
563 * ignoring the checksum which leaves the checksum out-of-date. We
564 * report a warning if this is the case.
566 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
567 le32 *u;
568 u32 i;
570 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
571 i += le32_to_cpup(u);
572 if (le32_to_cpu(b->checksum) != i)
573 ntfs_warning(sb, "Invalid boot sector checksum.");
575 /* Check OEMidentifier is "NTFS " */
576 if (b->oem_id != magicNTFS)
577 goto not_ntfs;
578 /* Check bytes per sector value is between 256 and 4096. */
579 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
580 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
581 goto not_ntfs;
582 /* Check sectors per cluster value is valid. */
583 switch (b->bpb.sectors_per_cluster) {
584 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
585 break;
586 default:
587 goto not_ntfs;
589 /* Check the cluster size is not above the maximum (64kiB). */
590 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
591 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
592 goto not_ntfs;
593 /* Check reserved/unused fields are really zero. */
594 if (le16_to_cpu(b->bpb.reserved_sectors) ||
595 le16_to_cpu(b->bpb.root_entries) ||
596 le16_to_cpu(b->bpb.sectors) ||
597 le16_to_cpu(b->bpb.sectors_per_fat) ||
598 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
599 goto not_ntfs;
600 /* Check clusters per file mft record value is valid. */
601 if ((u8)b->clusters_per_mft_record < 0xe1 ||
602 (u8)b->clusters_per_mft_record > 0xf7)
603 switch (b->clusters_per_mft_record) {
604 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
605 break;
606 default:
607 goto not_ntfs;
609 /* Check clusters per index block value is valid. */
610 if ((u8)b->clusters_per_index_record < 0xe1 ||
611 (u8)b->clusters_per_index_record > 0xf7)
612 switch (b->clusters_per_index_record) {
613 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
614 break;
615 default:
616 goto not_ntfs;
619 * Check for valid end of sector marker. We will work without it, but
620 * many BIOSes will refuse to boot from a bootsector if the magic is
621 * incorrect, so we emit a warning.
623 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
624 ntfs_warning(sb, "Invalid end of sector marker.");
625 return true;
626 not_ntfs:
627 return false;
631 * read_ntfs_boot_sector - read the NTFS boot sector of a device
632 * @sb: super block of device to read the boot sector from
633 * @silent: if true, suppress all output
635 * Reads the boot sector from the device and validates it. If that fails, tries
636 * to read the backup boot sector, first from the end of the device a-la NT4 and
637 * later and then from the middle of the device a-la NT3.51 and before.
639 * If a valid boot sector is found but it is not the primary boot sector, we
640 * repair the primary boot sector silently (unless the device is read-only or
641 * the primary boot sector is not accessible).
643 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
644 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
645 * to their respective values.
647 * Return the unlocked buffer head containing the boot sector or NULL on error.
649 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
650 const int silent)
652 const char *read_err_str = "Unable to read %s boot sector.";
653 struct buffer_head *bh_primary, *bh_backup;
654 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
656 /* Try to read primary boot sector. */
657 if ((bh_primary = sb_bread(sb, 0))) {
658 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
659 bh_primary->b_data, silent))
660 return bh_primary;
661 if (!silent)
662 ntfs_error(sb, "Primary boot sector is invalid.");
663 } else if (!silent)
664 ntfs_error(sb, read_err_str, "primary");
665 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
666 if (bh_primary)
667 brelse(bh_primary);
668 if (!silent)
669 ntfs_error(sb, "Mount option errors=recover not used. "
670 "Aborting without trying to recover.");
671 return NULL;
673 /* Try to read NT4+ backup boot sector. */
674 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
675 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
676 bh_backup->b_data, silent))
677 goto hotfix_primary_boot_sector;
678 brelse(bh_backup);
679 } else if (!silent)
680 ntfs_error(sb, read_err_str, "backup");
681 /* Try to read NT3.51- backup boot sector. */
682 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
683 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
684 bh_backup->b_data, silent))
685 goto hotfix_primary_boot_sector;
686 if (!silent)
687 ntfs_error(sb, "Could not find a valid backup boot "
688 "sector.");
689 brelse(bh_backup);
690 } else if (!silent)
691 ntfs_error(sb, read_err_str, "backup");
692 /* We failed. Cleanup and return. */
693 if (bh_primary)
694 brelse(bh_primary);
695 return NULL;
696 hotfix_primary_boot_sector:
697 if (bh_primary) {
699 * If we managed to read sector zero and the volume is not
700 * read-only, copy the found, valid backup boot sector to the
701 * primary boot sector. Note we only copy the actual boot
702 * sector structure, not the actual whole device sector as that
703 * may be bigger and would potentially damage the $Boot system
704 * file (FIXME: Would be nice to know if the backup boot sector
705 * on a large sector device contains the whole boot loader or
706 * just the first 512 bytes).
708 if (!(sb->s_flags & MS_RDONLY)) {
709 ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
710 "boot sector from backup copy.");
711 memcpy(bh_primary->b_data, bh_backup->b_data,
712 NTFS_BLOCK_SIZE);
713 mark_buffer_dirty(bh_primary);
714 sync_dirty_buffer(bh_primary);
715 if (buffer_uptodate(bh_primary)) {
716 brelse(bh_backup);
717 return bh_primary;
719 ntfs_error(sb, "Hot-fix: Device write error while "
720 "recovering primary boot sector.");
721 } else {
722 ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
723 "sector failed: Read-only mount.");
725 brelse(bh_primary);
727 ntfs_warning(sb, "Using backup boot sector.");
728 return bh_backup;
732 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
733 * @vol: volume structure to initialise with data from boot sector
734 * @b: boot sector to parse
736 * Parse the ntfs boot sector @b and store all imporant information therein in
737 * the ntfs super block @vol. Return 'true' on success and 'false' on error.
739 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
741 unsigned int sectors_per_cluster_bits, nr_hidden_sects;
742 int clusters_per_mft_record, clusters_per_index_record;
743 s64 ll;
745 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
746 vol->sector_size_bits = ffs(vol->sector_size) - 1;
747 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
748 vol->sector_size);
749 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
750 vol->sector_size_bits);
751 if (vol->sector_size < vol->sb->s_blocksize) {
752 ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
753 "device block size (%lu). This is not "
754 "supported. Sorry.", vol->sector_size,
755 vol->sb->s_blocksize);
756 return false;
758 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
759 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
760 ntfs_debug("sectors_per_cluster_bits = 0x%x",
761 sectors_per_cluster_bits);
762 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
763 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
764 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
765 vol->cluster_size_mask = vol->cluster_size - 1;
766 vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
767 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
768 vol->cluster_size);
769 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
770 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
771 if (vol->cluster_size < vol->sector_size) {
772 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
773 "sector size (%i). This is not supported. "
774 "Sorry.", vol->cluster_size, vol->sector_size);
775 return false;
777 clusters_per_mft_record = b->clusters_per_mft_record;
778 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
779 clusters_per_mft_record, clusters_per_mft_record);
780 if (clusters_per_mft_record > 0)
781 vol->mft_record_size = vol->cluster_size <<
782 (ffs(clusters_per_mft_record) - 1);
783 else
785 * When mft_record_size < cluster_size, clusters_per_mft_record
786 * = -log2(mft_record_size) bytes. mft_record_size normaly is
787 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
789 vol->mft_record_size = 1 << -clusters_per_mft_record;
790 vol->mft_record_size_mask = vol->mft_record_size - 1;
791 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
792 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
793 vol->mft_record_size);
794 ntfs_debug("vol->mft_record_size_mask = 0x%x",
795 vol->mft_record_size_mask);
796 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
797 vol->mft_record_size_bits, vol->mft_record_size_bits);
799 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
800 * we store $MFT/$DATA, the table of mft records in the page cache.
802 if (vol->mft_record_size > PAGE_CACHE_SIZE) {
803 ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
804 "PAGE_CACHE_SIZE on your system (%lu). "
805 "This is not supported. Sorry.",
806 vol->mft_record_size, PAGE_CACHE_SIZE);
807 return false;
809 /* We cannot support mft record sizes below the sector size. */
810 if (vol->mft_record_size < vol->sector_size) {
811 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
812 "sector size (%i). This is not supported. "
813 "Sorry.", vol->mft_record_size,
814 vol->sector_size);
815 return false;
817 clusters_per_index_record = b->clusters_per_index_record;
818 ntfs_debug("clusters_per_index_record = %i (0x%x)",
819 clusters_per_index_record, clusters_per_index_record);
820 if (clusters_per_index_record > 0)
821 vol->index_record_size = vol->cluster_size <<
822 (ffs(clusters_per_index_record) - 1);
823 else
825 * When index_record_size < cluster_size,
826 * clusters_per_index_record = -log2(index_record_size) bytes.
827 * index_record_size normaly equals 4096 bytes, which is
828 * encoded as 0xF4 (-12 in decimal).
830 vol->index_record_size = 1 << -clusters_per_index_record;
831 vol->index_record_size_mask = vol->index_record_size - 1;
832 vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
833 ntfs_debug("vol->index_record_size = %i (0x%x)",
834 vol->index_record_size, vol->index_record_size);
835 ntfs_debug("vol->index_record_size_mask = 0x%x",
836 vol->index_record_size_mask);
837 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
838 vol->index_record_size_bits,
839 vol->index_record_size_bits);
840 /* We cannot support index record sizes below the sector size. */
841 if (vol->index_record_size < vol->sector_size) {
842 ntfs_error(vol->sb, "Index record size (%i) is smaller than "
843 "the sector size (%i). This is not "
844 "supported. Sorry.", vol->index_record_size,
845 vol->sector_size);
846 return false;
849 * Get the size of the volume in clusters and check for 64-bit-ness.
850 * Windows currently only uses 32 bits to save the clusters so we do
851 * the same as it is much faster on 32-bit CPUs.
853 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
854 if ((u64)ll >= 1ULL << 32) {
855 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
856 return false;
858 vol->nr_clusters = ll;
859 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
861 * On an architecture where unsigned long is 32-bits, we restrict the
862 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
863 * will hopefully optimize the whole check away.
865 if (sizeof(unsigned long) < 8) {
866 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
867 ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
868 "large for this architecture. "
869 "Maximum supported is 2TiB. Sorry.",
870 (unsigned long long)ll >> (40 -
871 vol->cluster_size_bits));
872 return false;
875 ll = sle64_to_cpu(b->mft_lcn);
876 if (ll >= vol->nr_clusters) {
877 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
878 "volume. Weird.", (unsigned long long)ll,
879 (unsigned long long)ll);
880 return false;
882 vol->mft_lcn = ll;
883 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
884 ll = sle64_to_cpu(b->mftmirr_lcn);
885 if (ll >= vol->nr_clusters) {
886 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
887 "of volume. Weird.", (unsigned long long)ll,
888 (unsigned long long)ll);
889 return false;
891 vol->mftmirr_lcn = ll;
892 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
893 #ifdef NTFS_RW
895 * Work out the size of the mft mirror in number of mft records. If the
896 * cluster size is less than or equal to the size taken by four mft
897 * records, the mft mirror stores the first four mft records. If the
898 * cluster size is bigger than the size taken by four mft records, the
899 * mft mirror contains as many mft records as will fit into one
900 * cluster.
902 if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
903 vol->mftmirr_size = 4;
904 else
905 vol->mftmirr_size = vol->cluster_size >>
906 vol->mft_record_size_bits;
907 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
908 #endif /* NTFS_RW */
909 vol->serial_no = le64_to_cpu(b->volume_serial_number);
910 ntfs_debug("vol->serial_no = 0x%llx",
911 (unsigned long long)vol->serial_no);
912 return true;
916 * ntfs_setup_allocators - initialize the cluster and mft allocators
917 * @vol: volume structure for which to setup the allocators
919 * Setup the cluster (lcn) and mft allocators to the starting values.
921 static void ntfs_setup_allocators(ntfs_volume *vol)
923 #ifdef NTFS_RW
924 LCN mft_zone_size, mft_lcn;
925 #endif /* NTFS_RW */
927 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
928 vol->mft_zone_multiplier);
929 #ifdef NTFS_RW
930 /* Determine the size of the MFT zone. */
931 mft_zone_size = vol->nr_clusters;
932 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
933 case 4:
934 mft_zone_size >>= 1; /* 50% */
935 break;
936 case 3:
937 mft_zone_size = (mft_zone_size +
938 (mft_zone_size >> 1)) >> 2; /* 37.5% */
939 break;
940 case 2:
941 mft_zone_size >>= 2; /* 25% */
942 break;
943 /* case 1: */
944 default:
945 mft_zone_size >>= 3; /* 12.5% */
946 break;
948 /* Setup the mft zone. */
949 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
950 ntfs_debug("vol->mft_zone_pos = 0x%llx",
951 (unsigned long long)vol->mft_zone_pos);
953 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
954 * source) and if the actual mft_lcn is in the expected place or even
955 * further to the front of the volume, extend the mft_zone to cover the
956 * beginning of the volume as well. This is in order to protect the
957 * area reserved for the mft bitmap as well within the mft_zone itself.
958 * On non-standard volumes we do not protect it as the overhead would
959 * be higher than the speed increase we would get by doing it.
961 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
962 if (mft_lcn * vol->cluster_size < 16 * 1024)
963 mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
964 vol->cluster_size;
965 if (vol->mft_zone_start <= mft_lcn)
966 vol->mft_zone_start = 0;
967 ntfs_debug("vol->mft_zone_start = 0x%llx",
968 (unsigned long long)vol->mft_zone_start);
970 * Need to cap the mft zone on non-standard volumes so that it does
971 * not point outside the boundaries of the volume. We do this by
972 * halving the zone size until we are inside the volume.
974 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
975 while (vol->mft_zone_end >= vol->nr_clusters) {
976 mft_zone_size >>= 1;
977 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
979 ntfs_debug("vol->mft_zone_end = 0x%llx",
980 (unsigned long long)vol->mft_zone_end);
982 * Set the current position within each data zone to the start of the
983 * respective zone.
985 vol->data1_zone_pos = vol->mft_zone_end;
986 ntfs_debug("vol->data1_zone_pos = 0x%llx",
987 (unsigned long long)vol->data1_zone_pos);
988 vol->data2_zone_pos = 0;
989 ntfs_debug("vol->data2_zone_pos = 0x%llx",
990 (unsigned long long)vol->data2_zone_pos);
992 /* Set the mft data allocation position to mft record 24. */
993 vol->mft_data_pos = 24;
994 ntfs_debug("vol->mft_data_pos = 0x%llx",
995 (unsigned long long)vol->mft_data_pos);
996 #endif /* NTFS_RW */
999 #ifdef NTFS_RW
1002 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1003 * @vol: ntfs super block describing device whose mft mirror to load
1005 * Return 'true' on success or 'false' on error.
1007 static bool load_and_init_mft_mirror(ntfs_volume *vol)
1009 struct inode *tmp_ino;
1010 ntfs_inode *tmp_ni;
1012 ntfs_debug("Entering.");
1013 /* Get mft mirror inode. */
1014 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1015 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1016 if (!IS_ERR(tmp_ino))
1017 iput(tmp_ino);
1018 /* Caller will display error message. */
1019 return false;
1022 * Re-initialize some specifics about $MFTMirr's inode as
1023 * ntfs_read_inode() will have set up the default ones.
1025 /* Set uid and gid to root. */
1026 tmp_ino->i_uid = tmp_ino->i_gid = 0;
1027 /* Regular file. No access for anyone. */
1028 tmp_ino->i_mode = S_IFREG;
1029 /* No VFS initiated operations allowed for $MFTMirr. */
1030 tmp_ino->i_op = &ntfs_empty_inode_ops;
1031 tmp_ino->i_fop = &ntfs_empty_file_ops;
1032 /* Put in our special address space operations. */
1033 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1034 tmp_ni = NTFS_I(tmp_ino);
1035 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1036 NInoSetMstProtected(tmp_ni);
1037 NInoSetSparseDisabled(tmp_ni);
1039 * Set up our little cheat allowing us to reuse the async read io
1040 * completion handler for directories.
1042 tmp_ni->itype.index.block_size = vol->mft_record_size;
1043 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1044 vol->mftmirr_ino = tmp_ino;
1045 ntfs_debug("Done.");
1046 return true;
1050 * check_mft_mirror - compare contents of the mft mirror with the mft
1051 * @vol: ntfs super block describing device whose mft mirror to check
1053 * Return 'true' on success or 'false' on error.
1055 * Note, this function also results in the mft mirror runlist being completely
1056 * mapped into memory. The mft mirror write code requires this and will BUG()
1057 * should it find an unmapped runlist element.
1059 static bool check_mft_mirror(ntfs_volume *vol)
1061 struct super_block *sb = vol->sb;
1062 ntfs_inode *mirr_ni;
1063 struct page *mft_page, *mirr_page;
1064 u8 *kmft, *kmirr;
1065 runlist_element *rl, rl2[2];
1066 pgoff_t index;
1067 int mrecs_per_page, i;
1069 ntfs_debug("Entering.");
1070 /* Compare contents of $MFT and $MFTMirr. */
1071 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1072 BUG_ON(!mrecs_per_page);
1073 BUG_ON(!vol->mftmirr_size);
1074 mft_page = mirr_page = NULL;
1075 kmft = kmirr = NULL;
1076 index = i = 0;
1077 do {
1078 u32 bytes;
1080 /* Switch pages if necessary. */
1081 if (!(i % mrecs_per_page)) {
1082 if (index) {
1083 ntfs_unmap_page(mft_page);
1084 ntfs_unmap_page(mirr_page);
1086 /* Get the $MFT page. */
1087 mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1088 index);
1089 if (IS_ERR(mft_page)) {
1090 ntfs_error(sb, "Failed to read $MFT.");
1091 return false;
1093 kmft = page_address(mft_page);
1094 /* Get the $MFTMirr page. */
1095 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1096 index);
1097 if (IS_ERR(mirr_page)) {
1098 ntfs_error(sb, "Failed to read $MFTMirr.");
1099 goto mft_unmap_out;
1101 kmirr = page_address(mirr_page);
1102 ++index;
1104 /* Do not check the record if it is not in use. */
1105 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1106 /* Make sure the record is ok. */
1107 if (ntfs_is_baad_recordp((le32*)kmft)) {
1108 ntfs_error(sb, "Incomplete multi sector "
1109 "transfer detected in mft "
1110 "record %i.", i);
1111 mm_unmap_out:
1112 ntfs_unmap_page(mirr_page);
1113 mft_unmap_out:
1114 ntfs_unmap_page(mft_page);
1115 return false;
1118 /* Do not check the mirror record if it is not in use. */
1119 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1120 if (ntfs_is_baad_recordp((le32*)kmirr)) {
1121 ntfs_error(sb, "Incomplete multi sector "
1122 "transfer detected in mft "
1123 "mirror record %i.", i);
1124 goto mm_unmap_out;
1127 /* Get the amount of data in the current record. */
1128 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1129 if (bytes < sizeof(MFT_RECORD_OLD) ||
1130 bytes > vol->mft_record_size ||
1131 ntfs_is_baad_recordp((le32*)kmft)) {
1132 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1133 if (bytes < sizeof(MFT_RECORD_OLD) ||
1134 bytes > vol->mft_record_size ||
1135 ntfs_is_baad_recordp((le32*)kmirr))
1136 bytes = vol->mft_record_size;
1138 /* Compare the two records. */
1139 if (memcmp(kmft, kmirr, bytes)) {
1140 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1141 "match. Run ntfsfix or chkdsk.", i);
1142 goto mm_unmap_out;
1144 kmft += vol->mft_record_size;
1145 kmirr += vol->mft_record_size;
1146 } while (++i < vol->mftmirr_size);
1147 /* Release the last pages. */
1148 ntfs_unmap_page(mft_page);
1149 ntfs_unmap_page(mirr_page);
1151 /* Construct the mft mirror runlist by hand. */
1152 rl2[0].vcn = 0;
1153 rl2[0].lcn = vol->mftmirr_lcn;
1154 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1155 vol->cluster_size - 1) / vol->cluster_size;
1156 rl2[1].vcn = rl2[0].length;
1157 rl2[1].lcn = LCN_ENOENT;
1158 rl2[1].length = 0;
1160 * Because we have just read all of the mft mirror, we know we have
1161 * mapped the full runlist for it.
1163 mirr_ni = NTFS_I(vol->mftmirr_ino);
1164 down_read(&mirr_ni->runlist.lock);
1165 rl = mirr_ni->runlist.rl;
1166 /* Compare the two runlists. They must be identical. */
1167 i = 0;
1168 do {
1169 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1170 rl2[i].length != rl[i].length) {
1171 ntfs_error(sb, "$MFTMirr location mismatch. "
1172 "Run chkdsk.");
1173 up_read(&mirr_ni->runlist.lock);
1174 return false;
1176 } while (rl2[i++].length);
1177 up_read(&mirr_ni->runlist.lock);
1178 ntfs_debug("Done.");
1179 return true;
1183 * load_and_check_logfile - load and check the logfile inode for a volume
1184 * @vol: ntfs super block describing device whose logfile to load
1186 * Return 'true' on success or 'false' on error.
1188 static bool load_and_check_logfile(ntfs_volume *vol,
1189 RESTART_PAGE_HEADER **rp)
1191 struct inode *tmp_ino;
1193 ntfs_debug("Entering.");
1194 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1195 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1196 if (!IS_ERR(tmp_ino))
1197 iput(tmp_ino);
1198 /* Caller will display error message. */
1199 return false;
1201 if (!ntfs_check_logfile(tmp_ino, rp)) {
1202 iput(tmp_ino);
1203 /* ntfs_check_logfile() will have displayed error output. */
1204 return false;
1206 NInoSetSparseDisabled(NTFS_I(tmp_ino));
1207 vol->logfile_ino = tmp_ino;
1208 ntfs_debug("Done.");
1209 return true;
1212 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1215 * check_windows_hibernation_status - check if Windows is suspended on a volume
1216 * @vol: ntfs super block of device to check
1218 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1219 * looking for the file hiberfil.sys in the root directory of the volume. If
1220 * the file is not present Windows is definitely not suspended.
1222 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1223 * definitely suspended (this volume is not the system volume). Caveat: on a
1224 * system with many volumes it is possible that the < 4kiB check is bogus but
1225 * for now this should do fine.
1227 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1228 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1229 * Windows is definitely suspended. If it is completely full of zeroes,
1230 * Windows is definitely not hibernated. Any other case is treated as if
1231 * Windows is suspended. This caters for the above mentioned caveat of a
1232 * system with many volumes where no "hibr" magic would be present and there is
1233 * no zero header.
1235 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1236 * hibernated on the volume, and -errno on error.
1238 static int check_windows_hibernation_status(ntfs_volume *vol)
1240 MFT_REF mref;
1241 struct inode *vi;
1242 ntfs_inode *ni;
1243 struct page *page;
1244 u32 *kaddr, *kend;
1245 ntfs_name *name = NULL;
1246 int ret = 1;
1247 static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1248 cpu_to_le16('i'), cpu_to_le16('b'),
1249 cpu_to_le16('e'), cpu_to_le16('r'),
1250 cpu_to_le16('f'), cpu_to_le16('i'),
1251 cpu_to_le16('l'), cpu_to_le16('.'),
1252 cpu_to_le16('s'), cpu_to_le16('y'),
1253 cpu_to_le16('s'), 0 };
1255 ntfs_debug("Entering.");
1257 * Find the inode number for the hibernation file by looking up the
1258 * filename hiberfil.sys in the root directory.
1260 mutex_lock(&vol->root_ino->i_mutex);
1261 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1262 &name);
1263 mutex_unlock(&vol->root_ino->i_mutex);
1264 if (IS_ERR_MREF(mref)) {
1265 ret = MREF_ERR(mref);
1266 /* If the file does not exist, Windows is not hibernated. */
1267 if (ret == -ENOENT) {
1268 ntfs_debug("hiberfil.sys not present. Windows is not "
1269 "hibernated on the volume.");
1270 return 0;
1272 /* A real error occurred. */
1273 ntfs_error(vol->sb, "Failed to find inode number for "
1274 "hiberfil.sys.");
1275 return ret;
1277 /* We do not care for the type of match that was found. */
1278 kfree(name);
1279 /* Get the inode. */
1280 vi = ntfs_iget(vol->sb, MREF(mref));
1281 if (IS_ERR(vi) || is_bad_inode(vi)) {
1282 if (!IS_ERR(vi))
1283 iput(vi);
1284 ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1285 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1287 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1288 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1289 "Windows is hibernated on the volume. This "
1290 "is not the system volume.", i_size_read(vi));
1291 goto iput_out;
1293 ni = NTFS_I(vi);
1294 page = ntfs_map_page(vi->i_mapping, 0);
1295 if (IS_ERR(page)) {
1296 ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1297 ret = PTR_ERR(page);
1298 goto iput_out;
1300 kaddr = (u32*)page_address(page);
1301 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1302 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1303 "hibernated on the volume. This is the "
1304 "system volume.");
1305 goto unm_iput_out;
1307 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1308 do {
1309 if (unlikely(*kaddr)) {
1310 ntfs_debug("hiberfil.sys is larger than 4kiB "
1311 "(0x%llx), does not contain the "
1312 "\"hibr\" magic, and does not have a "
1313 "zero header. Windows is hibernated "
1314 "on the volume. This is not the "
1315 "system volume.", i_size_read(vi));
1316 goto unm_iput_out;
1318 } while (++kaddr < kend);
1319 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1320 "hibernated on the volume. This is the system "
1321 "volume.");
1322 ret = 0;
1323 unm_iput_out:
1324 ntfs_unmap_page(page);
1325 iput_out:
1326 iput(vi);
1327 return ret;
1331 * load_and_init_quota - load and setup the quota file for a volume if present
1332 * @vol: ntfs super block describing device whose quota file to load
1334 * Return 'true' on success or 'false' on error. If $Quota is not present, we
1335 * leave vol->quota_ino as NULL and return success.
1337 static bool load_and_init_quota(ntfs_volume *vol)
1339 MFT_REF mref;
1340 struct inode *tmp_ino;
1341 ntfs_name *name = NULL;
1342 static const ntfschar Quota[7] = { cpu_to_le16('$'),
1343 cpu_to_le16('Q'), cpu_to_le16('u'),
1344 cpu_to_le16('o'), cpu_to_le16('t'),
1345 cpu_to_le16('a'), 0 };
1346 static ntfschar Q[3] = { cpu_to_le16('$'),
1347 cpu_to_le16('Q'), 0 };
1349 ntfs_debug("Entering.");
1351 * Find the inode number for the quota file by looking up the filename
1352 * $Quota in the extended system files directory $Extend.
1354 mutex_lock(&vol->extend_ino->i_mutex);
1355 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1356 &name);
1357 mutex_unlock(&vol->extend_ino->i_mutex);
1358 if (IS_ERR_MREF(mref)) {
1360 * If the file does not exist, quotas are disabled and have
1361 * never been enabled on this volume, just return success.
1363 if (MREF_ERR(mref) == -ENOENT) {
1364 ntfs_debug("$Quota not present. Volume does not have "
1365 "quotas enabled.");
1367 * No need to try to set quotas out of date if they are
1368 * not enabled.
1370 NVolSetQuotaOutOfDate(vol);
1371 return true;
1373 /* A real error occurred. */
1374 ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1375 return false;
1377 /* We do not care for the type of match that was found. */
1378 kfree(name);
1379 /* Get the inode. */
1380 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1381 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1382 if (!IS_ERR(tmp_ino))
1383 iput(tmp_ino);
1384 ntfs_error(vol->sb, "Failed to load $Quota.");
1385 return false;
1387 vol->quota_ino = tmp_ino;
1388 /* Get the $Q index allocation attribute. */
1389 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1390 if (IS_ERR(tmp_ino)) {
1391 ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1392 return false;
1394 vol->quota_q_ino = tmp_ino;
1395 ntfs_debug("Done.");
1396 return true;
1400 * load_and_init_usnjrnl - load and setup the transaction log if present
1401 * @vol: ntfs super block describing device whose usnjrnl file to load
1403 * Return 'true' on success or 'false' on error.
1405 * If $UsnJrnl is not present or in the process of being disabled, we set
1406 * NVolUsnJrnlStamped() and return success.
1408 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1409 * i.e. transaction logging has only just been enabled or the journal has been
1410 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1411 * and return success.
1413 static bool load_and_init_usnjrnl(ntfs_volume *vol)
1415 MFT_REF mref;
1416 struct inode *tmp_ino;
1417 ntfs_inode *tmp_ni;
1418 struct page *page;
1419 ntfs_name *name = NULL;
1420 USN_HEADER *uh;
1421 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1422 cpu_to_le16('U'), cpu_to_le16('s'),
1423 cpu_to_le16('n'), cpu_to_le16('J'),
1424 cpu_to_le16('r'), cpu_to_le16('n'),
1425 cpu_to_le16('l'), 0 };
1426 static ntfschar Max[5] = { cpu_to_le16('$'),
1427 cpu_to_le16('M'), cpu_to_le16('a'),
1428 cpu_to_le16('x'), 0 };
1429 static ntfschar J[3] = { cpu_to_le16('$'),
1430 cpu_to_le16('J'), 0 };
1432 ntfs_debug("Entering.");
1434 * Find the inode number for the transaction log file by looking up the
1435 * filename $UsnJrnl in the extended system files directory $Extend.
1437 mutex_lock(&vol->extend_ino->i_mutex);
1438 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1439 &name);
1440 mutex_unlock(&vol->extend_ino->i_mutex);
1441 if (IS_ERR_MREF(mref)) {
1443 * If the file does not exist, transaction logging is disabled,
1444 * just return success.
1446 if (MREF_ERR(mref) == -ENOENT) {
1447 ntfs_debug("$UsnJrnl not present. Volume does not "
1448 "have transaction logging enabled.");
1449 not_enabled:
1451 * No need to try to stamp the transaction log if
1452 * transaction logging is not enabled.
1454 NVolSetUsnJrnlStamped(vol);
1455 return true;
1457 /* A real error occurred. */
1458 ntfs_error(vol->sb, "Failed to find inode number for "
1459 "$UsnJrnl.");
1460 return false;
1462 /* We do not care for the type of match that was found. */
1463 kfree(name);
1464 /* Get the inode. */
1465 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1466 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1467 if (!IS_ERR(tmp_ino))
1468 iput(tmp_ino);
1469 ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1470 return false;
1472 vol->usnjrnl_ino = tmp_ino;
1474 * If the transaction log is in the process of being deleted, we can
1475 * ignore it.
1477 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1478 ntfs_debug("$UsnJrnl in the process of being disabled. "
1479 "Volume does not have transaction logging "
1480 "enabled.");
1481 goto not_enabled;
1483 /* Get the $DATA/$Max attribute. */
1484 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1485 if (IS_ERR(tmp_ino)) {
1486 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1487 "attribute.");
1488 return false;
1490 vol->usnjrnl_max_ino = tmp_ino;
1491 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1492 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1493 "attribute (size is 0x%llx but should be at "
1494 "least 0x%zx bytes).", i_size_read(tmp_ino),
1495 sizeof(USN_HEADER));
1496 return false;
1498 /* Get the $DATA/$J attribute. */
1499 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1500 if (IS_ERR(tmp_ino)) {
1501 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1502 "attribute.");
1503 return false;
1505 vol->usnjrnl_j_ino = tmp_ino;
1506 /* Verify $J is non-resident and sparse. */
1507 tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1508 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1509 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1510 "and/or not sparse.");
1511 return false;
1513 /* Read the USN_HEADER from $DATA/$Max. */
1514 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1515 if (IS_ERR(page)) {
1516 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1517 "attribute.");
1518 return false;
1520 uh = (USN_HEADER*)page_address(page);
1521 /* Sanity check the $Max. */
1522 if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1523 sle64_to_cpu(uh->maximum_size))) {
1524 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1525 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1526 (long long)sle64_to_cpu(uh->allocation_delta),
1527 (long long)sle64_to_cpu(uh->maximum_size));
1528 ntfs_unmap_page(page);
1529 return false;
1532 * If the transaction log has been stamped and nothing has been written
1533 * to it since, we do not need to stamp it.
1535 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1536 i_size_read(vol->usnjrnl_j_ino))) {
1537 if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1538 i_size_read(vol->usnjrnl_j_ino))) {
1539 ntfs_unmap_page(page);
1540 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1541 "logged since it was last stamped. "
1542 "Treating this as if the volume does "
1543 "not have transaction logging "
1544 "enabled.");
1545 goto not_enabled;
1547 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1548 "which is out of bounds (0x%llx). $UsnJrnl "
1549 "is corrupt.",
1550 (long long)sle64_to_cpu(uh->lowest_valid_usn),
1551 i_size_read(vol->usnjrnl_j_ino));
1552 ntfs_unmap_page(page);
1553 return false;
1555 ntfs_unmap_page(page);
1556 ntfs_debug("Done.");
1557 return true;
1561 * load_and_init_attrdef - load the attribute definitions table for a volume
1562 * @vol: ntfs super block describing device whose attrdef to load
1564 * Return 'true' on success or 'false' on error.
1566 static bool load_and_init_attrdef(ntfs_volume *vol)
1568 loff_t i_size;
1569 struct super_block *sb = vol->sb;
1570 struct inode *ino;
1571 struct page *page;
1572 pgoff_t index, max_index;
1573 unsigned int size;
1575 ntfs_debug("Entering.");
1576 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1577 ino = ntfs_iget(sb, FILE_AttrDef);
1578 if (IS_ERR(ino) || is_bad_inode(ino)) {
1579 if (!IS_ERR(ino))
1580 iput(ino);
1581 goto failed;
1583 NInoSetSparseDisabled(NTFS_I(ino));
1584 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1585 i_size = i_size_read(ino);
1586 if (i_size <= 0 || i_size > 0x7fffffff)
1587 goto iput_failed;
1588 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1589 if (!vol->attrdef)
1590 goto iput_failed;
1591 index = 0;
1592 max_index = i_size >> PAGE_CACHE_SHIFT;
1593 size = PAGE_CACHE_SIZE;
1594 while (index < max_index) {
1595 /* Read the attrdef table and copy it into the linear buffer. */
1596 read_partial_attrdef_page:
1597 page = ntfs_map_page(ino->i_mapping, index);
1598 if (IS_ERR(page))
1599 goto free_iput_failed;
1600 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1601 page_address(page), size);
1602 ntfs_unmap_page(page);
1604 if (size == PAGE_CACHE_SIZE) {
1605 size = i_size & ~PAGE_CACHE_MASK;
1606 if (size)
1607 goto read_partial_attrdef_page;
1609 vol->attrdef_size = i_size;
1610 ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1611 iput(ino);
1612 return true;
1613 free_iput_failed:
1614 ntfs_free(vol->attrdef);
1615 vol->attrdef = NULL;
1616 iput_failed:
1617 iput(ino);
1618 failed:
1619 ntfs_error(sb, "Failed to initialize attribute definition table.");
1620 return false;
1623 #endif /* NTFS_RW */
1626 * load_and_init_upcase - load the upcase table for an ntfs volume
1627 * @vol: ntfs super block describing device whose upcase to load
1629 * Return 'true' on success or 'false' on error.
1631 static bool load_and_init_upcase(ntfs_volume *vol)
1633 loff_t i_size;
1634 struct super_block *sb = vol->sb;
1635 struct inode *ino;
1636 struct page *page;
1637 pgoff_t index, max_index;
1638 unsigned int size;
1639 int i, max;
1641 ntfs_debug("Entering.");
1642 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1643 ino = ntfs_iget(sb, FILE_UpCase);
1644 if (IS_ERR(ino) || is_bad_inode(ino)) {
1645 if (!IS_ERR(ino))
1646 iput(ino);
1647 goto upcase_failed;
1650 * The upcase size must not be above 64k Unicode characters, must not
1651 * be zero and must be a multiple of sizeof(ntfschar).
1653 i_size = i_size_read(ino);
1654 if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1655 i_size > 64ULL * 1024 * sizeof(ntfschar))
1656 goto iput_upcase_failed;
1657 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1658 if (!vol->upcase)
1659 goto iput_upcase_failed;
1660 index = 0;
1661 max_index = i_size >> PAGE_CACHE_SHIFT;
1662 size = PAGE_CACHE_SIZE;
1663 while (index < max_index) {
1664 /* Read the upcase table and copy it into the linear buffer. */
1665 read_partial_upcase_page:
1666 page = ntfs_map_page(ino->i_mapping, index);
1667 if (IS_ERR(page))
1668 goto iput_upcase_failed;
1669 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1670 page_address(page), size);
1671 ntfs_unmap_page(page);
1673 if (size == PAGE_CACHE_SIZE) {
1674 size = i_size & ~PAGE_CACHE_MASK;
1675 if (size)
1676 goto read_partial_upcase_page;
1678 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1679 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1680 i_size, 64 * 1024 * sizeof(ntfschar));
1681 iput(ino);
1682 mutex_lock(&ntfs_lock);
1683 if (!default_upcase) {
1684 ntfs_debug("Using volume specified $UpCase since default is "
1685 "not present.");
1686 mutex_unlock(&ntfs_lock);
1687 return true;
1689 max = default_upcase_len;
1690 if (max > vol->upcase_len)
1691 max = vol->upcase_len;
1692 for (i = 0; i < max; i++)
1693 if (vol->upcase[i] != default_upcase[i])
1694 break;
1695 if (i == max) {
1696 ntfs_free(vol->upcase);
1697 vol->upcase = default_upcase;
1698 vol->upcase_len = max;
1699 ntfs_nr_upcase_users++;
1700 mutex_unlock(&ntfs_lock);
1701 ntfs_debug("Volume specified $UpCase matches default. Using "
1702 "default.");
1703 return true;
1705 mutex_unlock(&ntfs_lock);
1706 ntfs_debug("Using volume specified $UpCase since it does not match "
1707 "the default.");
1708 return true;
1709 iput_upcase_failed:
1710 iput(ino);
1711 ntfs_free(vol->upcase);
1712 vol->upcase = NULL;
1713 upcase_failed:
1714 mutex_lock(&ntfs_lock);
1715 if (default_upcase) {
1716 vol->upcase = default_upcase;
1717 vol->upcase_len = default_upcase_len;
1718 ntfs_nr_upcase_users++;
1719 mutex_unlock(&ntfs_lock);
1720 ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1721 "default.");
1722 return true;
1724 mutex_unlock(&ntfs_lock);
1725 ntfs_error(sb, "Failed to initialize upcase table.");
1726 return false;
1730 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1731 * their own special locking rules:
1733 static struct lock_class_key
1734 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1735 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1738 * load_system_files - open the system files using normal functions
1739 * @vol: ntfs super block describing device whose system files to load
1741 * Open the system files with normal access functions and complete setting up
1742 * the ntfs super block @vol.
1744 * Return 'true' on success or 'false' on error.
1746 static bool load_system_files(ntfs_volume *vol)
1748 struct super_block *sb = vol->sb;
1749 MFT_RECORD *m;
1750 VOLUME_INFORMATION *vi;
1751 ntfs_attr_search_ctx *ctx;
1752 #ifdef NTFS_RW
1753 RESTART_PAGE_HEADER *rp;
1754 int err;
1755 #endif /* NTFS_RW */
1757 ntfs_debug("Entering.");
1758 #ifdef NTFS_RW
1759 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1760 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1761 static const char *es1 = "Failed to load $MFTMirr";
1762 static const char *es2 = "$MFTMirr does not match $MFT";
1763 static const char *es3 = ". Run ntfsfix and/or chkdsk.";
1765 /* If a read-write mount, convert it to a read-only mount. */
1766 if (!(sb->s_flags & MS_RDONLY)) {
1767 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1768 ON_ERRORS_CONTINUE))) {
1769 ntfs_error(sb, "%s and neither on_errors="
1770 "continue nor on_errors="
1771 "remount-ro was specified%s",
1772 !vol->mftmirr_ino ? es1 : es2,
1773 es3);
1774 goto iput_mirr_err_out;
1776 sb->s_flags |= MS_RDONLY;
1777 ntfs_error(sb, "%s. Mounting read-only%s",
1778 !vol->mftmirr_ino ? es1 : es2, es3);
1779 } else
1780 ntfs_warning(sb, "%s. Will not be able to remount "
1781 "read-write%s",
1782 !vol->mftmirr_ino ? es1 : es2, es3);
1783 /* This will prevent a read-write remount. */
1784 NVolSetErrors(vol);
1786 #endif /* NTFS_RW */
1787 /* Get mft bitmap attribute inode. */
1788 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1789 if (IS_ERR(vol->mftbmp_ino)) {
1790 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1791 goto iput_mirr_err_out;
1793 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1794 &mftbmp_runlist_lock_key);
1795 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1796 &mftbmp_mrec_lock_key);
1797 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1798 if (!load_and_init_upcase(vol))
1799 goto iput_mftbmp_err_out;
1800 #ifdef NTFS_RW
1802 * Read attribute definitions table and setup @vol->attrdef and
1803 * @vol->attrdef_size.
1805 if (!load_and_init_attrdef(vol))
1806 goto iput_upcase_err_out;
1807 #endif /* NTFS_RW */
1809 * Get the cluster allocation bitmap inode and verify the size, no
1810 * need for any locking at this stage as we are already running
1811 * exclusively as we are mount in progress task.
1813 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1814 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1815 if (!IS_ERR(vol->lcnbmp_ino))
1816 iput(vol->lcnbmp_ino);
1817 goto bitmap_failed;
1819 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1820 &lcnbmp_runlist_lock_key);
1821 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1822 &lcnbmp_mrec_lock_key);
1824 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1825 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1826 iput(vol->lcnbmp_ino);
1827 bitmap_failed:
1828 ntfs_error(sb, "Failed to load $Bitmap.");
1829 goto iput_attrdef_err_out;
1832 * Get the volume inode and setup our cache of the volume flags and
1833 * version.
1835 vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1836 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1837 if (!IS_ERR(vol->vol_ino))
1838 iput(vol->vol_ino);
1839 volume_failed:
1840 ntfs_error(sb, "Failed to load $Volume.");
1841 goto iput_lcnbmp_err_out;
1843 m = map_mft_record(NTFS_I(vol->vol_ino));
1844 if (IS_ERR(m)) {
1845 iput_volume_failed:
1846 iput(vol->vol_ino);
1847 goto volume_failed;
1849 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1850 ntfs_error(sb, "Failed to get attribute search context.");
1851 goto get_ctx_vol_failed;
1853 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1854 ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1855 err_put_vol:
1856 ntfs_attr_put_search_ctx(ctx);
1857 get_ctx_vol_failed:
1858 unmap_mft_record(NTFS_I(vol->vol_ino));
1859 goto iput_volume_failed;
1861 vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1862 le16_to_cpu(ctx->attr->data.resident.value_offset));
1863 /* Some bounds checks. */
1864 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1865 le32_to_cpu(ctx->attr->data.resident.value_length) >
1866 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1867 goto err_put_vol;
1868 /* Copy the volume flags and version to the ntfs_volume structure. */
1869 vol->vol_flags = vi->flags;
1870 vol->major_ver = vi->major_ver;
1871 vol->minor_ver = vi->minor_ver;
1872 ntfs_attr_put_search_ctx(ctx);
1873 unmap_mft_record(NTFS_I(vol->vol_ino));
1874 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1875 vol->minor_ver);
1876 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1877 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1878 "volume version %i.%i (need at least version "
1879 "3.0).", vol->major_ver, vol->minor_ver);
1880 NVolClearSparseEnabled(vol);
1882 #ifdef NTFS_RW
1883 /* Make sure that no unsupported volume flags are set. */
1884 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1885 static const char *es1a = "Volume is dirty";
1886 static const char *es1b = "Volume has been modified by chkdsk";
1887 static const char *es1c = "Volume has unsupported flags set";
1888 static const char *es2a = ". Run chkdsk and mount in Windows.";
1889 static const char *es2b = ". Mount in Windows.";
1890 const char *es1, *es2;
1892 es2 = es2a;
1893 if (vol->vol_flags & VOLUME_IS_DIRTY)
1894 es1 = es1a;
1895 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1896 es1 = es1b;
1897 es2 = es2b;
1898 } else {
1899 es1 = es1c;
1900 ntfs_warning(sb, "Unsupported volume flags 0x%x "
1901 "encountered.",
1902 (unsigned)le16_to_cpu(vol->vol_flags));
1904 /* If a read-write mount, convert it to a read-only mount. */
1905 if (!(sb->s_flags & MS_RDONLY)) {
1906 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1907 ON_ERRORS_CONTINUE))) {
1908 ntfs_error(sb, "%s and neither on_errors="
1909 "continue nor on_errors="
1910 "remount-ro was specified%s",
1911 es1, es2);
1912 goto iput_vol_err_out;
1914 sb->s_flags |= MS_RDONLY;
1915 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1916 } else
1917 ntfs_warning(sb, "%s. Will not be able to remount "
1918 "read-write%s", es1, es2);
1920 * Do not set NVolErrors() because ntfs_remount() re-checks the
1921 * flags which we need to do in case any flags have changed.
1925 * Get the inode for the logfile, check it and determine if the volume
1926 * was shutdown cleanly.
1928 rp = NULL;
1929 if (!load_and_check_logfile(vol, &rp) ||
1930 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1931 static const char *es1a = "Failed to load $LogFile";
1932 static const char *es1b = "$LogFile is not clean";
1933 static const char *es2 = ". Mount in Windows.";
1934 const char *es1;
1936 es1 = !vol->logfile_ino ? es1a : es1b;
1937 /* If a read-write mount, convert it to a read-only mount. */
1938 if (!(sb->s_flags & MS_RDONLY)) {
1939 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1940 ON_ERRORS_CONTINUE))) {
1941 ntfs_error(sb, "%s and neither on_errors="
1942 "continue nor on_errors="
1943 "remount-ro was specified%s",
1944 es1, es2);
1945 if (vol->logfile_ino) {
1946 BUG_ON(!rp);
1947 ntfs_free(rp);
1949 goto iput_logfile_err_out;
1951 sb->s_flags |= MS_RDONLY;
1952 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1953 } else
1954 ntfs_warning(sb, "%s. Will not be able to remount "
1955 "read-write%s", es1, es2);
1956 /* This will prevent a read-write remount. */
1957 NVolSetErrors(vol);
1959 ntfs_free(rp);
1960 #endif /* NTFS_RW */
1961 /* Get the root directory inode so we can do path lookups. */
1962 vol->root_ino = ntfs_iget(sb, FILE_root);
1963 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1964 if (!IS_ERR(vol->root_ino))
1965 iput(vol->root_ino);
1966 ntfs_error(sb, "Failed to load root directory.");
1967 goto iput_logfile_err_out;
1969 #ifdef NTFS_RW
1971 * Check if Windows is suspended to disk on the target volume. If it
1972 * is hibernated, we must not write *anything* to the disk so set
1973 * NVolErrors() without setting the dirty volume flag and mount
1974 * read-only. This will prevent read-write remounting and it will also
1975 * prevent all writes.
1977 err = check_windows_hibernation_status(vol);
1978 if (unlikely(err)) {
1979 static const char *es1a = "Failed to determine if Windows is "
1980 "hibernated";
1981 static const char *es1b = "Windows is hibernated";
1982 static const char *es2 = ". Run chkdsk.";
1983 const char *es1;
1985 es1 = err < 0 ? es1a : es1b;
1986 /* If a read-write mount, convert it to a read-only mount. */
1987 if (!(sb->s_flags & MS_RDONLY)) {
1988 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1989 ON_ERRORS_CONTINUE))) {
1990 ntfs_error(sb, "%s and neither on_errors="
1991 "continue nor on_errors="
1992 "remount-ro was specified%s",
1993 es1, es2);
1994 goto iput_root_err_out;
1996 sb->s_flags |= MS_RDONLY;
1997 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1998 } else
1999 ntfs_warning(sb, "%s. Will not be able to remount "
2000 "read-write%s", es1, es2);
2001 /* This will prevent a read-write remount. */
2002 NVolSetErrors(vol);
2004 /* If (still) a read-write mount, mark the volume dirty. */
2005 if (!(sb->s_flags & MS_RDONLY) &&
2006 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2007 static const char *es1 = "Failed to set dirty bit in volume "
2008 "information flags";
2009 static const char *es2 = ". Run chkdsk.";
2011 /* Convert to a read-only mount. */
2012 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2013 ON_ERRORS_CONTINUE))) {
2014 ntfs_error(sb, "%s and neither on_errors=continue nor "
2015 "on_errors=remount-ro was specified%s",
2016 es1, es2);
2017 goto iput_root_err_out;
2019 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2020 sb->s_flags |= MS_RDONLY;
2022 * Do not set NVolErrors() because ntfs_remount() might manage
2023 * to set the dirty flag in which case all would be well.
2026 #if 0
2027 // TODO: Enable this code once we start modifying anything that is
2028 // different between NTFS 1.2 and 3.x...
2030 * If (still) a read-write mount, set the NT4 compatibility flag on
2031 * newer NTFS version volumes.
2033 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2034 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2035 static const char *es1 = "Failed to set NT4 compatibility flag";
2036 static const char *es2 = ". Run chkdsk.";
2038 /* Convert to a read-only mount. */
2039 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2040 ON_ERRORS_CONTINUE))) {
2041 ntfs_error(sb, "%s and neither on_errors=continue nor "
2042 "on_errors=remount-ro was specified%s",
2043 es1, es2);
2044 goto iput_root_err_out;
2046 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2047 sb->s_flags |= MS_RDONLY;
2048 NVolSetErrors(vol);
2050 #endif
2051 /* If (still) a read-write mount, empty the logfile. */
2052 if (!(sb->s_flags & MS_RDONLY) &&
2053 !ntfs_empty_logfile(vol->logfile_ino)) {
2054 static const char *es1 = "Failed to empty $LogFile";
2055 static const char *es2 = ". Mount in Windows.";
2057 /* Convert to a read-only mount. */
2058 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2059 ON_ERRORS_CONTINUE))) {
2060 ntfs_error(sb, "%s and neither on_errors=continue nor "
2061 "on_errors=remount-ro was specified%s",
2062 es1, es2);
2063 goto iput_root_err_out;
2065 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2066 sb->s_flags |= MS_RDONLY;
2067 NVolSetErrors(vol);
2069 #endif /* NTFS_RW */
2070 /* If on NTFS versions before 3.0, we are done. */
2071 if (unlikely(vol->major_ver < 3))
2072 return true;
2073 /* NTFS 3.0+ specific initialization. */
2074 /* Get the security descriptors inode. */
2075 vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2076 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2077 if (!IS_ERR(vol->secure_ino))
2078 iput(vol->secure_ino);
2079 ntfs_error(sb, "Failed to load $Secure.");
2080 goto iput_root_err_out;
2082 // TODO: Initialize security.
2083 /* Get the extended system files' directory inode. */
2084 vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2085 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2086 if (!IS_ERR(vol->extend_ino))
2087 iput(vol->extend_ino);
2088 ntfs_error(sb, "Failed to load $Extend.");
2089 goto iput_sec_err_out;
2091 #ifdef NTFS_RW
2092 /* Find the quota file, load it if present, and set it up. */
2093 if (!load_and_init_quota(vol)) {
2094 static const char *es1 = "Failed to load $Quota";
2095 static const char *es2 = ". Run chkdsk.";
2097 /* If a read-write mount, convert it to a read-only mount. */
2098 if (!(sb->s_flags & MS_RDONLY)) {
2099 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2100 ON_ERRORS_CONTINUE))) {
2101 ntfs_error(sb, "%s and neither on_errors="
2102 "continue nor on_errors="
2103 "remount-ro was specified%s",
2104 es1, es2);
2105 goto iput_quota_err_out;
2107 sb->s_flags |= MS_RDONLY;
2108 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2109 } else
2110 ntfs_warning(sb, "%s. Will not be able to remount "
2111 "read-write%s", es1, es2);
2112 /* This will prevent a read-write remount. */
2113 NVolSetErrors(vol);
2115 /* If (still) a read-write mount, mark the quotas out of date. */
2116 if (!(sb->s_flags & MS_RDONLY) &&
2117 !ntfs_mark_quotas_out_of_date(vol)) {
2118 static const char *es1 = "Failed to mark quotas out of date";
2119 static const char *es2 = ". Run chkdsk.";
2121 /* Convert to a read-only mount. */
2122 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2123 ON_ERRORS_CONTINUE))) {
2124 ntfs_error(sb, "%s and neither on_errors=continue nor "
2125 "on_errors=remount-ro was specified%s",
2126 es1, es2);
2127 goto iput_quota_err_out;
2129 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2130 sb->s_flags |= MS_RDONLY;
2131 NVolSetErrors(vol);
2134 * Find the transaction log file ($UsnJrnl), load it if present, check
2135 * it, and set it up.
2137 if (!load_and_init_usnjrnl(vol)) {
2138 static const char *es1 = "Failed to load $UsnJrnl";
2139 static const char *es2 = ". Run chkdsk.";
2141 /* If a read-write mount, convert it to a read-only mount. */
2142 if (!(sb->s_flags & MS_RDONLY)) {
2143 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2144 ON_ERRORS_CONTINUE))) {
2145 ntfs_error(sb, "%s and neither on_errors="
2146 "continue nor on_errors="
2147 "remount-ro was specified%s",
2148 es1, es2);
2149 goto iput_usnjrnl_err_out;
2151 sb->s_flags |= MS_RDONLY;
2152 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2153 } else
2154 ntfs_warning(sb, "%s. Will not be able to remount "
2155 "read-write%s", es1, es2);
2156 /* This will prevent a read-write remount. */
2157 NVolSetErrors(vol);
2159 /* If (still) a read-write mount, stamp the transaction log. */
2160 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2161 static const char *es1 = "Failed to stamp transaction log "
2162 "($UsnJrnl)";
2163 static const char *es2 = ". Run chkdsk.";
2165 /* Convert to a read-only mount. */
2166 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2167 ON_ERRORS_CONTINUE))) {
2168 ntfs_error(sb, "%s and neither on_errors=continue nor "
2169 "on_errors=remount-ro was specified%s",
2170 es1, es2);
2171 goto iput_usnjrnl_err_out;
2173 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2174 sb->s_flags |= MS_RDONLY;
2175 NVolSetErrors(vol);
2177 #endif /* NTFS_RW */
2178 return true;
2179 #ifdef NTFS_RW
2180 iput_usnjrnl_err_out:
2181 if (vol->usnjrnl_j_ino)
2182 iput(vol->usnjrnl_j_ino);
2183 if (vol->usnjrnl_max_ino)
2184 iput(vol->usnjrnl_max_ino);
2185 if (vol->usnjrnl_ino)
2186 iput(vol->usnjrnl_ino);
2187 iput_quota_err_out:
2188 if (vol->quota_q_ino)
2189 iput(vol->quota_q_ino);
2190 if (vol->quota_ino)
2191 iput(vol->quota_ino);
2192 iput(vol->extend_ino);
2193 #endif /* NTFS_RW */
2194 iput_sec_err_out:
2195 iput(vol->secure_ino);
2196 iput_root_err_out:
2197 iput(vol->root_ino);
2198 iput_logfile_err_out:
2199 #ifdef NTFS_RW
2200 if (vol->logfile_ino)
2201 iput(vol->logfile_ino);
2202 iput_vol_err_out:
2203 #endif /* NTFS_RW */
2204 iput(vol->vol_ino);
2205 iput_lcnbmp_err_out:
2206 iput(vol->lcnbmp_ino);
2207 iput_attrdef_err_out:
2208 vol->attrdef_size = 0;
2209 if (vol->attrdef) {
2210 ntfs_free(vol->attrdef);
2211 vol->attrdef = NULL;
2213 #ifdef NTFS_RW
2214 iput_upcase_err_out:
2215 #endif /* NTFS_RW */
2216 vol->upcase_len = 0;
2217 mutex_lock(&ntfs_lock);
2218 if (vol->upcase == default_upcase) {
2219 ntfs_nr_upcase_users--;
2220 vol->upcase = NULL;
2222 mutex_unlock(&ntfs_lock);
2223 if (vol->upcase) {
2224 ntfs_free(vol->upcase);
2225 vol->upcase = NULL;
2227 iput_mftbmp_err_out:
2228 iput(vol->mftbmp_ino);
2229 iput_mirr_err_out:
2230 #ifdef NTFS_RW
2231 if (vol->mftmirr_ino)
2232 iput(vol->mftmirr_ino);
2233 #endif /* NTFS_RW */
2234 return false;
2238 * ntfs_put_super - called by the vfs to unmount a volume
2239 * @sb: vfs superblock of volume to unmount
2241 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2242 * the volume is being unmounted (umount system call has been invoked) and it
2243 * releases all inodes and memory belonging to the NTFS specific part of the
2244 * super block.
2246 static void ntfs_put_super(struct super_block *sb)
2248 ntfs_volume *vol = NTFS_SB(sb);
2250 ntfs_debug("Entering.");
2252 #ifdef NTFS_RW
2254 * Commit all inodes while they are still open in case some of them
2255 * cause others to be dirtied.
2257 ntfs_commit_inode(vol->vol_ino);
2259 /* NTFS 3.0+ specific. */
2260 if (vol->major_ver >= 3) {
2261 if (vol->usnjrnl_j_ino)
2262 ntfs_commit_inode(vol->usnjrnl_j_ino);
2263 if (vol->usnjrnl_max_ino)
2264 ntfs_commit_inode(vol->usnjrnl_max_ino);
2265 if (vol->usnjrnl_ino)
2266 ntfs_commit_inode(vol->usnjrnl_ino);
2267 if (vol->quota_q_ino)
2268 ntfs_commit_inode(vol->quota_q_ino);
2269 if (vol->quota_ino)
2270 ntfs_commit_inode(vol->quota_ino);
2271 if (vol->extend_ino)
2272 ntfs_commit_inode(vol->extend_ino);
2273 if (vol->secure_ino)
2274 ntfs_commit_inode(vol->secure_ino);
2277 ntfs_commit_inode(vol->root_ino);
2279 down_write(&vol->lcnbmp_lock);
2280 ntfs_commit_inode(vol->lcnbmp_ino);
2281 up_write(&vol->lcnbmp_lock);
2283 down_write(&vol->mftbmp_lock);
2284 ntfs_commit_inode(vol->mftbmp_ino);
2285 up_write(&vol->mftbmp_lock);
2287 if (vol->logfile_ino)
2288 ntfs_commit_inode(vol->logfile_ino);
2290 if (vol->mftmirr_ino)
2291 ntfs_commit_inode(vol->mftmirr_ino);
2292 ntfs_commit_inode(vol->mft_ino);
2295 * If a read-write mount and no volume errors have occurred, mark the
2296 * volume clean. Also, re-commit all affected inodes.
2298 if (!(sb->s_flags & MS_RDONLY)) {
2299 if (!NVolErrors(vol)) {
2300 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2301 ntfs_warning(sb, "Failed to clear dirty bit "
2302 "in volume information "
2303 "flags. Run chkdsk.");
2304 ntfs_commit_inode(vol->vol_ino);
2305 ntfs_commit_inode(vol->root_ino);
2306 if (vol->mftmirr_ino)
2307 ntfs_commit_inode(vol->mftmirr_ino);
2308 ntfs_commit_inode(vol->mft_ino);
2309 } else {
2310 ntfs_warning(sb, "Volume has errors. Leaving volume "
2311 "marked dirty. Run chkdsk.");
2314 #endif /* NTFS_RW */
2316 iput(vol->vol_ino);
2317 vol->vol_ino = NULL;
2319 /* NTFS 3.0+ specific clean up. */
2320 if (vol->major_ver >= 3) {
2321 #ifdef NTFS_RW
2322 if (vol->usnjrnl_j_ino) {
2323 iput(vol->usnjrnl_j_ino);
2324 vol->usnjrnl_j_ino = NULL;
2326 if (vol->usnjrnl_max_ino) {
2327 iput(vol->usnjrnl_max_ino);
2328 vol->usnjrnl_max_ino = NULL;
2330 if (vol->usnjrnl_ino) {
2331 iput(vol->usnjrnl_ino);
2332 vol->usnjrnl_ino = NULL;
2334 if (vol->quota_q_ino) {
2335 iput(vol->quota_q_ino);
2336 vol->quota_q_ino = NULL;
2338 if (vol->quota_ino) {
2339 iput(vol->quota_ino);
2340 vol->quota_ino = NULL;
2342 #endif /* NTFS_RW */
2343 if (vol->extend_ino) {
2344 iput(vol->extend_ino);
2345 vol->extend_ino = NULL;
2347 if (vol->secure_ino) {
2348 iput(vol->secure_ino);
2349 vol->secure_ino = NULL;
2353 iput(vol->root_ino);
2354 vol->root_ino = NULL;
2356 down_write(&vol->lcnbmp_lock);
2357 iput(vol->lcnbmp_ino);
2358 vol->lcnbmp_ino = NULL;
2359 up_write(&vol->lcnbmp_lock);
2361 down_write(&vol->mftbmp_lock);
2362 iput(vol->mftbmp_ino);
2363 vol->mftbmp_ino = NULL;
2364 up_write(&vol->mftbmp_lock);
2366 #ifdef NTFS_RW
2367 if (vol->logfile_ino) {
2368 iput(vol->logfile_ino);
2369 vol->logfile_ino = NULL;
2371 if (vol->mftmirr_ino) {
2372 /* Re-commit the mft mirror and mft just in case. */
2373 ntfs_commit_inode(vol->mftmirr_ino);
2374 ntfs_commit_inode(vol->mft_ino);
2375 iput(vol->mftmirr_ino);
2376 vol->mftmirr_ino = NULL;
2379 * We should have no dirty inodes left, due to
2380 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2381 * the underlying mft records are written out and cleaned.
2383 ntfs_commit_inode(vol->mft_ino);
2384 write_inode_now(vol->mft_ino, 1);
2385 #endif /* NTFS_RW */
2387 iput(vol->mft_ino);
2388 vol->mft_ino = NULL;
2390 /* Throw away the table of attribute definitions. */
2391 vol->attrdef_size = 0;
2392 if (vol->attrdef) {
2393 ntfs_free(vol->attrdef);
2394 vol->attrdef = NULL;
2396 vol->upcase_len = 0;
2398 * Destroy the global default upcase table if necessary. Also decrease
2399 * the number of upcase users if we are a user.
2401 mutex_lock(&ntfs_lock);
2402 if (vol->upcase == default_upcase) {
2403 ntfs_nr_upcase_users--;
2404 vol->upcase = NULL;
2406 if (!ntfs_nr_upcase_users && default_upcase) {
2407 ntfs_free(default_upcase);
2408 default_upcase = NULL;
2410 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2411 free_compression_buffers();
2412 mutex_unlock(&ntfs_lock);
2413 if (vol->upcase) {
2414 ntfs_free(vol->upcase);
2415 vol->upcase = NULL;
2418 unload_nls(vol->nls_map);
2420 sb->s_fs_info = NULL;
2421 kfree(vol);
2425 * get_nr_free_clusters - return the number of free clusters on a volume
2426 * @vol: ntfs volume for which to obtain free cluster count
2428 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2429 * actually calculate the number of clusters in use instead because this
2430 * allows us to not care about partial pages as these will be just zero filled
2431 * and hence not be counted as allocated clusters.
2433 * The only particularity is that clusters beyond the end of the logical ntfs
2434 * volume will be marked as allocated to prevent errors which means we have to
2435 * discount those at the end. This is important as the cluster bitmap always
2436 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2437 * the logical volume and marked in use when they are not as they do not exist.
2439 * If any pages cannot be read we assume all clusters in the erroring pages are
2440 * in use. This means we return an underestimate on errors which is better than
2441 * an overestimate.
2443 static s64 get_nr_free_clusters(ntfs_volume *vol)
2445 s64 nr_free = vol->nr_clusters;
2446 struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2447 struct page *page;
2448 pgoff_t index, max_index;
2450 ntfs_debug("Entering.");
2451 /* Serialize accesses to the cluster bitmap. */
2452 down_read(&vol->lcnbmp_lock);
2454 * Convert the number of bits into bytes rounded up, then convert into
2455 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2456 * full and one partial page max_index = 2.
2458 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2459 PAGE_CACHE_SHIFT;
2460 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2461 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2462 max_index, PAGE_CACHE_SIZE / 4);
2463 for (index = 0; index < max_index; index++) {
2464 unsigned long *kaddr;
2467 * Read the page from page cache, getting it from backing store
2468 * if necessary, and increment the use count.
2470 page = read_mapping_page(mapping, index, NULL);
2471 /* Ignore pages which errored synchronously. */
2472 if (IS_ERR(page)) {
2473 ntfs_debug("read_mapping_page() error. Skipping "
2474 "page (index 0x%lx).", index);
2475 nr_free -= PAGE_CACHE_SIZE * 8;
2476 continue;
2478 kaddr = kmap_atomic(page, KM_USER0);
2480 * Subtract the number of set bits. If this
2481 * is the last page and it is partial we don't really care as
2482 * it just means we do a little extra work but it won't affect
2483 * the result as all out of range bytes are set to zero by
2484 * ntfs_readpage().
2486 nr_free -= bitmap_weight(kaddr,
2487 PAGE_CACHE_SIZE * BITS_PER_BYTE);
2488 kunmap_atomic(kaddr, KM_USER0);
2489 page_cache_release(page);
2491 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2493 * Fixup for eventual bits outside logical ntfs volume (see function
2494 * description above).
2496 if (vol->nr_clusters & 63)
2497 nr_free += 64 - (vol->nr_clusters & 63);
2498 up_read(&vol->lcnbmp_lock);
2499 /* If errors occurred we may well have gone below zero, fix this. */
2500 if (nr_free < 0)
2501 nr_free = 0;
2502 ntfs_debug("Exiting.");
2503 return nr_free;
2507 * __get_nr_free_mft_records - return the number of free inodes on a volume
2508 * @vol: ntfs volume for which to obtain free inode count
2509 * @nr_free: number of mft records in filesystem
2510 * @max_index: maximum number of pages containing set bits
2512 * Calculate the number of free mft records (inodes) on the mounted NTFS
2513 * volume @vol. We actually calculate the number of mft records in use instead
2514 * because this allows us to not care about partial pages as these will be just
2515 * zero filled and hence not be counted as allocated mft record.
2517 * If any pages cannot be read we assume all mft records in the erroring pages
2518 * are in use. This means we return an underestimate on errors which is better
2519 * than an overestimate.
2521 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2523 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2524 s64 nr_free, const pgoff_t max_index)
2526 struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2527 struct page *page;
2528 pgoff_t index;
2530 ntfs_debug("Entering.");
2531 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2532 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2533 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2534 for (index = 0; index < max_index; index++) {
2535 unsigned long *kaddr;
2538 * Read the page from page cache, getting it from backing store
2539 * if necessary, and increment the use count.
2541 page = read_mapping_page(mapping, index, NULL);
2542 /* Ignore pages which errored synchronously. */
2543 if (IS_ERR(page)) {
2544 ntfs_debug("read_mapping_page() error. Skipping "
2545 "page (index 0x%lx).", index);
2546 nr_free -= PAGE_CACHE_SIZE * 8;
2547 continue;
2549 kaddr = kmap_atomic(page, KM_USER0);
2551 * Subtract the number of set bits. If this
2552 * is the last page and it is partial we don't really care as
2553 * it just means we do a little extra work but it won't affect
2554 * the result as all out of range bytes are set to zero by
2555 * ntfs_readpage().
2557 nr_free -= bitmap_weight(kaddr,
2558 PAGE_CACHE_SIZE * BITS_PER_BYTE);
2559 kunmap_atomic(kaddr, KM_USER0);
2560 page_cache_release(page);
2562 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2563 index - 1);
2564 /* If errors occurred we may well have gone below zero, fix this. */
2565 if (nr_free < 0)
2566 nr_free = 0;
2567 ntfs_debug("Exiting.");
2568 return nr_free;
2572 * ntfs_statfs - return information about mounted NTFS volume
2573 * @dentry: dentry from mounted volume
2574 * @sfs: statfs structure in which to return the information
2576 * Return information about the mounted NTFS volume @dentry in the statfs structure
2577 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2578 * called). We interpret the values to be correct of the moment in time at
2579 * which we are called. Most values are variable otherwise and this isn't just
2580 * the free values but the totals as well. For example we can increase the
2581 * total number of file nodes if we run out and we can keep doing this until
2582 * there is no more space on the volume left at all.
2584 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2585 * ustat system calls.
2587 * Return 0 on success or -errno on error.
2589 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2591 struct super_block *sb = dentry->d_sb;
2592 s64 size;
2593 ntfs_volume *vol = NTFS_SB(sb);
2594 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2595 pgoff_t max_index;
2596 unsigned long flags;
2598 ntfs_debug("Entering.");
2599 /* Type of filesystem. */
2600 sfs->f_type = NTFS_SB_MAGIC;
2601 /* Optimal transfer block size. */
2602 sfs->f_bsize = PAGE_CACHE_SIZE;
2604 * Total data blocks in filesystem in units of f_bsize and since
2605 * inodes are also stored in data blocs ($MFT is a file) this is just
2606 * the total clusters.
2608 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2609 PAGE_CACHE_SHIFT;
2610 /* Free data blocks in filesystem in units of f_bsize. */
2611 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2612 PAGE_CACHE_SHIFT;
2613 if (size < 0LL)
2614 size = 0LL;
2615 /* Free blocks avail to non-superuser, same as above on NTFS. */
2616 sfs->f_bavail = sfs->f_bfree = size;
2617 /* Serialize accesses to the inode bitmap. */
2618 down_read(&vol->mftbmp_lock);
2619 read_lock_irqsave(&mft_ni->size_lock, flags);
2620 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2622 * Convert the maximum number of set bits into bytes rounded up, then
2623 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2624 * have one full and one partial page max_index = 2.
2626 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2627 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2628 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2629 /* Number of inodes in filesystem (at this point in time). */
2630 sfs->f_files = size;
2631 /* Free inodes in fs (based on current total count). */
2632 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2633 up_read(&vol->mftbmp_lock);
2635 * File system id. This is extremely *nix flavour dependent and even
2636 * within Linux itself all fs do their own thing. I interpret this to
2637 * mean a unique id associated with the mounted fs and not the id
2638 * associated with the filesystem driver, the latter is already given
2639 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2640 * volume serial number splitting it into two 32-bit parts. We enter
2641 * the least significant 32-bits in f_fsid[0] and the most significant
2642 * 32-bits in f_fsid[1].
2644 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2645 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2646 /* Maximum length of filenames. */
2647 sfs->f_namelen = NTFS_MAX_NAME_LEN;
2648 return 0;
2651 #ifdef NTFS_RW
2652 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2654 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2656 #endif
2659 * The complete super operations.
2661 static const struct super_operations ntfs_sops = {
2662 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
2663 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2664 #ifdef NTFS_RW
2665 //.dirty_inode = NULL, /* VFS: Called from
2666 // __mark_inode_dirty(). */
2667 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
2668 disk. */
2669 //.drop_inode = NULL, /* VFS: Called just after the
2670 // inode reference count has
2671 // been decreased to zero.
2672 // NOTE: The inode lock is
2673 // held. See fs/inode.c::
2674 // generic_drop_inode(). */
2675 //.delete_inode = NULL, /* VFS: Delete inode from disk.
2676 // Called when i_count becomes
2677 // 0 and i_nlink is also 0. */
2678 //.write_super = NULL, /* Flush dirty super block to
2679 // disk. */
2680 //.sync_fs = NULL, /* ? */
2681 //.write_super_lockfs = NULL, /* ? */
2682 //.unlockfs = NULL, /* ? */
2683 #endif /* NTFS_RW */
2684 .put_super = ntfs_put_super, /* Syscall: umount. */
2685 .statfs = ntfs_statfs, /* Syscall: statfs */
2686 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
2687 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is
2688 removed from memory. */
2689 //.umount_begin = NULL, /* Forced umount. */
2690 .show_options = ntfs_show_options, /* Show mount options in
2691 proc. */
2695 * ntfs_fill_super - mount an ntfs filesystem
2696 * @sb: super block of ntfs filesystem to mount
2697 * @opt: string containing the mount options
2698 * @silent: silence error output
2700 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2701 * with the mount otions in @data with the NTFS filesystem.
2703 * If @silent is true, remain silent even if errors are detected. This is used
2704 * during bootup, when the kernel tries to mount the root filesystem with all
2705 * registered filesystems one after the other until one succeeds. This implies
2706 * that all filesystems except the correct one will quite correctly and
2707 * expectedly return an error, but nobody wants to see error messages when in
2708 * fact this is what is supposed to happen.
2710 * NOTE: @sb->s_flags contains the mount options flags.
2712 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2714 ntfs_volume *vol;
2715 struct buffer_head *bh;
2716 struct inode *tmp_ino;
2717 int blocksize, result;
2720 * We do a pretty difficult piece of bootstrap by reading the
2721 * MFT (and other metadata) from disk into memory. We'll only
2722 * release this metadata during umount, so the locking patterns
2723 * observed during bootstrap do not count. So turn off the
2724 * observation of locking patterns (strictly for this context
2725 * only) while mounting NTFS. [The validator is still active
2726 * otherwise, even for this context: it will for example record
2727 * lock class registrations.]
2729 lockdep_off();
2730 ntfs_debug("Entering.");
2731 #ifndef NTFS_RW
2732 sb->s_flags |= MS_RDONLY;
2733 #endif /* ! NTFS_RW */
2734 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2735 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2736 vol = NTFS_SB(sb);
2737 if (!vol) {
2738 if (!silent)
2739 ntfs_error(sb, "Allocation of NTFS volume structure "
2740 "failed. Aborting mount...");
2741 lockdep_on();
2742 return -ENOMEM;
2744 /* Initialize ntfs_volume structure. */
2745 *vol = (ntfs_volume) {
2746 .sb = sb,
2748 * Default is group and other don't have any access to files or
2749 * directories while owner has full access. Further, files by
2750 * default are not executable but directories are of course
2751 * browseable.
2753 .fmask = 0177,
2754 .dmask = 0077,
2756 init_rwsem(&vol->mftbmp_lock);
2757 init_rwsem(&vol->lcnbmp_lock);
2759 /* By default, enable sparse support. */
2760 NVolSetSparseEnabled(vol);
2762 /* Important to get the mount options dealt with now. */
2763 if (!parse_options(vol, (char*)opt))
2764 goto err_out_now;
2766 /* We support sector sizes up to the PAGE_CACHE_SIZE. */
2767 if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2768 if (!silent)
2769 ntfs_error(sb, "Device has unsupported sector size "
2770 "(%i). The maximum supported sector "
2771 "size on this architecture is %lu "
2772 "bytes.",
2773 bdev_logical_block_size(sb->s_bdev),
2774 PAGE_CACHE_SIZE);
2775 goto err_out_now;
2778 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2779 * sector size, whichever is bigger.
2781 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2782 if (blocksize < NTFS_BLOCK_SIZE) {
2783 if (!silent)
2784 ntfs_error(sb, "Unable to set device block size.");
2785 goto err_out_now;
2787 BUG_ON(blocksize != sb->s_blocksize);
2788 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2789 blocksize, sb->s_blocksize_bits);
2790 /* Determine the size of the device in units of block_size bytes. */
2791 if (!i_size_read(sb->s_bdev->bd_inode)) {
2792 if (!silent)
2793 ntfs_error(sb, "Unable to determine device size.");
2794 goto err_out_now;
2796 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2797 sb->s_blocksize_bits;
2798 /* Read the boot sector and return unlocked buffer head to it. */
2799 if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2800 if (!silent)
2801 ntfs_error(sb, "Not an NTFS volume.");
2802 goto err_out_now;
2805 * Extract the data from the boot sector and setup the ntfs volume
2806 * using it.
2808 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2809 brelse(bh);
2810 if (!result) {
2811 if (!silent)
2812 ntfs_error(sb, "Unsupported NTFS filesystem.");
2813 goto err_out_now;
2816 * If the boot sector indicates a sector size bigger than the current
2817 * device block size, switch the device block size to the sector size.
2818 * TODO: It may be possible to support this case even when the set
2819 * below fails, we would just be breaking up the i/o for each sector
2820 * into multiple blocks for i/o purposes but otherwise it should just
2821 * work. However it is safer to leave disabled until someone hits this
2822 * error message and then we can get them to try it without the setting
2823 * so we know for sure that it works.
2825 if (vol->sector_size > blocksize) {
2826 blocksize = sb_set_blocksize(sb, vol->sector_size);
2827 if (blocksize != vol->sector_size) {
2828 if (!silent)
2829 ntfs_error(sb, "Unable to set device block "
2830 "size to sector size (%i).",
2831 vol->sector_size);
2832 goto err_out_now;
2834 BUG_ON(blocksize != sb->s_blocksize);
2835 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2836 sb->s_blocksize_bits;
2837 ntfs_debug("Changed device block size to %i bytes (block size "
2838 "bits %i) to match volume sector size.",
2839 blocksize, sb->s_blocksize_bits);
2841 /* Initialize the cluster and mft allocators. */
2842 ntfs_setup_allocators(vol);
2843 /* Setup remaining fields in the super block. */
2844 sb->s_magic = NTFS_SB_MAGIC;
2846 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2847 * sb->s_maxbytes = ~0ULL >> 1;
2848 * But the kernel uses a long as the page cache page index which on
2849 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2850 * defined to the maximum the page cache page index can cope with
2851 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2853 sb->s_maxbytes = MAX_LFS_FILESIZE;
2854 /* Ntfs measures time in 100ns intervals. */
2855 sb->s_time_gran = 100;
2857 * Now load the metadata required for the page cache and our address
2858 * space operations to function. We do this by setting up a specialised
2859 * read_inode method and then just calling the normal iget() to obtain
2860 * the inode for $MFT which is sufficient to allow our normal inode
2861 * operations and associated address space operations to function.
2863 sb->s_op = &ntfs_sops;
2864 tmp_ino = new_inode(sb);
2865 if (!tmp_ino) {
2866 if (!silent)
2867 ntfs_error(sb, "Failed to load essential metadata.");
2868 goto err_out_now;
2870 tmp_ino->i_ino = FILE_MFT;
2871 insert_inode_hash(tmp_ino);
2872 if (ntfs_read_inode_mount(tmp_ino) < 0) {
2873 if (!silent)
2874 ntfs_error(sb, "Failed to load essential metadata.");
2875 goto iput_tmp_ino_err_out_now;
2877 mutex_lock(&ntfs_lock);
2879 * The current mount is a compression user if the cluster size is
2880 * less than or equal 4kiB.
2882 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2883 result = allocate_compression_buffers();
2884 if (result) {
2885 ntfs_error(NULL, "Failed to allocate buffers "
2886 "for compression engine.");
2887 ntfs_nr_compression_users--;
2888 mutex_unlock(&ntfs_lock);
2889 goto iput_tmp_ino_err_out_now;
2893 * Generate the global default upcase table if necessary. Also
2894 * temporarily increment the number of upcase users to avoid race
2895 * conditions with concurrent (u)mounts.
2897 if (!default_upcase)
2898 default_upcase = generate_default_upcase();
2899 ntfs_nr_upcase_users++;
2900 mutex_unlock(&ntfs_lock);
2902 * From now on, ignore @silent parameter. If we fail below this line,
2903 * it will be due to a corrupt fs or a system error, so we report it.
2906 * Open the system files with normal access functions and complete
2907 * setting up the ntfs super block.
2909 if (!load_system_files(vol)) {
2910 ntfs_error(sb, "Failed to load system files.");
2911 goto unl_upcase_iput_tmp_ino_err_out_now;
2913 if ((sb->s_root = d_alloc_root(vol->root_ino))) {
2914 /* We grab a reference, simulating an ntfs_iget(). */
2915 ihold(vol->root_ino);
2916 ntfs_debug("Exiting, status successful.");
2917 /* Release the default upcase if it has no users. */
2918 mutex_lock(&ntfs_lock);
2919 if (!--ntfs_nr_upcase_users && default_upcase) {
2920 ntfs_free(default_upcase);
2921 default_upcase = NULL;
2923 mutex_unlock(&ntfs_lock);
2924 sb->s_export_op = &ntfs_export_ops;
2925 lockdep_on();
2926 return 0;
2928 ntfs_error(sb, "Failed to allocate root directory.");
2929 /* Clean up after the successful load_system_files() call from above. */
2930 // TODO: Use ntfs_put_super() instead of repeating all this code...
2931 // FIXME: Should mark the volume clean as the error is most likely
2932 // -ENOMEM.
2933 iput(vol->vol_ino);
2934 vol->vol_ino = NULL;
2935 /* NTFS 3.0+ specific clean up. */
2936 if (vol->major_ver >= 3) {
2937 #ifdef NTFS_RW
2938 if (vol->usnjrnl_j_ino) {
2939 iput(vol->usnjrnl_j_ino);
2940 vol->usnjrnl_j_ino = NULL;
2942 if (vol->usnjrnl_max_ino) {
2943 iput(vol->usnjrnl_max_ino);
2944 vol->usnjrnl_max_ino = NULL;
2946 if (vol->usnjrnl_ino) {
2947 iput(vol->usnjrnl_ino);
2948 vol->usnjrnl_ino = NULL;
2950 if (vol->quota_q_ino) {
2951 iput(vol->quota_q_ino);
2952 vol->quota_q_ino = NULL;
2954 if (vol->quota_ino) {
2955 iput(vol->quota_ino);
2956 vol->quota_ino = NULL;
2958 #endif /* NTFS_RW */
2959 if (vol->extend_ino) {
2960 iput(vol->extend_ino);
2961 vol->extend_ino = NULL;
2963 if (vol->secure_ino) {
2964 iput(vol->secure_ino);
2965 vol->secure_ino = NULL;
2968 iput(vol->root_ino);
2969 vol->root_ino = NULL;
2970 iput(vol->lcnbmp_ino);
2971 vol->lcnbmp_ino = NULL;
2972 iput(vol->mftbmp_ino);
2973 vol->mftbmp_ino = NULL;
2974 #ifdef NTFS_RW
2975 if (vol->logfile_ino) {
2976 iput(vol->logfile_ino);
2977 vol->logfile_ino = NULL;
2979 if (vol->mftmirr_ino) {
2980 iput(vol->mftmirr_ino);
2981 vol->mftmirr_ino = NULL;
2983 #endif /* NTFS_RW */
2984 /* Throw away the table of attribute definitions. */
2985 vol->attrdef_size = 0;
2986 if (vol->attrdef) {
2987 ntfs_free(vol->attrdef);
2988 vol->attrdef = NULL;
2990 vol->upcase_len = 0;
2991 mutex_lock(&ntfs_lock);
2992 if (vol->upcase == default_upcase) {
2993 ntfs_nr_upcase_users--;
2994 vol->upcase = NULL;
2996 mutex_unlock(&ntfs_lock);
2997 if (vol->upcase) {
2998 ntfs_free(vol->upcase);
2999 vol->upcase = NULL;
3001 if (vol->nls_map) {
3002 unload_nls(vol->nls_map);
3003 vol->nls_map = NULL;
3005 /* Error exit code path. */
3006 unl_upcase_iput_tmp_ino_err_out_now:
3008 * Decrease the number of upcase users and destroy the global default
3009 * upcase table if necessary.
3011 mutex_lock(&ntfs_lock);
3012 if (!--ntfs_nr_upcase_users && default_upcase) {
3013 ntfs_free(default_upcase);
3014 default_upcase = NULL;
3016 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3017 free_compression_buffers();
3018 mutex_unlock(&ntfs_lock);
3019 iput_tmp_ino_err_out_now:
3020 iput(tmp_ino);
3021 if (vol->mft_ino && vol->mft_ino != tmp_ino)
3022 iput(vol->mft_ino);
3023 vol->mft_ino = NULL;
3024 /* Errors at this stage are irrelevant. */
3025 err_out_now:
3026 sb->s_fs_info = NULL;
3027 kfree(vol);
3028 ntfs_debug("Failed, returning -EINVAL.");
3029 lockdep_on();
3030 return -EINVAL;
3034 * This is a slab cache to optimize allocations and deallocations of Unicode
3035 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3036 * (255) Unicode characters + a terminating NULL Unicode character.
3038 struct kmem_cache *ntfs_name_cache;
3040 /* Slab caches for efficient allocation/deallocation of inodes. */
3041 struct kmem_cache *ntfs_inode_cache;
3042 struct kmem_cache *ntfs_big_inode_cache;
3044 /* Init once constructor for the inode slab cache. */
3045 static void ntfs_big_inode_init_once(void *foo)
3047 ntfs_inode *ni = (ntfs_inode *)foo;
3049 inode_init_once(VFS_I(ni));
3053 * Slab caches to optimize allocations and deallocations of attribute search
3054 * contexts and index contexts, respectively.
3056 struct kmem_cache *ntfs_attr_ctx_cache;
3057 struct kmem_cache *ntfs_index_ctx_cache;
3059 /* Driver wide mutex. */
3060 DEFINE_MUTEX(ntfs_lock);
3062 static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3063 int flags, const char *dev_name, void *data)
3065 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3068 static struct file_system_type ntfs_fs_type = {
3069 .owner = THIS_MODULE,
3070 .name = "ntfs",
3071 .mount = ntfs_mount,
3072 .kill_sb = kill_block_super,
3073 .fs_flags = FS_REQUIRES_DEV,
3076 /* Stable names for the slab caches. */
3077 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3078 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3079 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3080 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3081 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3083 static int __init init_ntfs_fs(void)
3085 int err = 0;
3087 /* This may be ugly but it results in pretty output so who cares. (-8 */
3088 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3089 #ifdef NTFS_RW
3091 #else
3093 #endif
3094 #ifdef DEBUG
3095 " DEBUG"
3096 #endif
3097 #ifdef MODULE
3098 " MODULE"
3099 #endif
3100 "].\n");
3102 ntfs_debug("Debug messages are enabled.");
3104 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3105 sizeof(ntfs_index_context), 0 /* offset */,
3106 SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3107 if (!ntfs_index_ctx_cache) {
3108 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3109 ntfs_index_ctx_cache_name);
3110 goto ictx_err_out;
3112 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3113 sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3114 SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3115 if (!ntfs_attr_ctx_cache) {
3116 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3117 ntfs_attr_ctx_cache_name);
3118 goto actx_err_out;
3121 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3122 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3123 SLAB_HWCACHE_ALIGN, NULL);
3124 if (!ntfs_name_cache) {
3125 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3126 ntfs_name_cache_name);
3127 goto name_err_out;
3130 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3131 sizeof(ntfs_inode), 0,
3132 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3133 if (!ntfs_inode_cache) {
3134 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3135 ntfs_inode_cache_name);
3136 goto inode_err_out;
3139 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3140 sizeof(big_ntfs_inode), 0,
3141 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
3142 ntfs_big_inode_init_once);
3143 if (!ntfs_big_inode_cache) {
3144 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3145 ntfs_big_inode_cache_name);
3146 goto big_inode_err_out;
3149 /* Register the ntfs sysctls. */
3150 err = ntfs_sysctl(1);
3151 if (err) {
3152 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3153 goto sysctl_err_out;
3156 err = register_filesystem(&ntfs_fs_type);
3157 if (!err) {
3158 ntfs_debug("NTFS driver registered successfully.");
3159 return 0; /* Success! */
3161 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3163 sysctl_err_out:
3164 kmem_cache_destroy(ntfs_big_inode_cache);
3165 big_inode_err_out:
3166 kmem_cache_destroy(ntfs_inode_cache);
3167 inode_err_out:
3168 kmem_cache_destroy(ntfs_name_cache);
3169 name_err_out:
3170 kmem_cache_destroy(ntfs_attr_ctx_cache);
3171 actx_err_out:
3172 kmem_cache_destroy(ntfs_index_ctx_cache);
3173 ictx_err_out:
3174 if (!err) {
3175 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3176 "registration...\n");
3177 err = -ENOMEM;
3179 return err;
3182 static void __exit exit_ntfs_fs(void)
3184 ntfs_debug("Unregistering NTFS driver.");
3186 unregister_filesystem(&ntfs_fs_type);
3187 kmem_cache_destroy(ntfs_big_inode_cache);
3188 kmem_cache_destroy(ntfs_inode_cache);
3189 kmem_cache_destroy(ntfs_name_cache);
3190 kmem_cache_destroy(ntfs_attr_ctx_cache);
3191 kmem_cache_destroy(ntfs_index_ctx_cache);
3192 /* Unregister the ntfs sysctls. */
3193 ntfs_sysctl(0);
3196 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3197 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.");
3198 MODULE_VERSION(NTFS_VERSION);
3199 MODULE_LICENSE("GPL");
3200 #ifdef DEBUG
3201 module_param(debug_msgs, bool, 0);
3202 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3203 #endif
3205 module_init(init_ntfs_fs)
3206 module_exit(exit_ntfs_fs)