2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache
*ubifs_inode_slab
;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info
= {
52 .shrink
= ubifs_shrinker
,
53 .seeks
= DEFAULT_SEEKS
,
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
66 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
69 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
71 if (inode
->i_size
> c
->max_inode_sz
) {
72 ubifs_err("inode is too large (%lld)",
73 (long long)inode
->i_size
);
77 if (ui
->compr_type
< 0 || ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
78 ubifs_err("unknown compression type %d", ui
->compr_type
);
82 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
85 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
88 if (ui
->xattr
&& (inode
->i_mode
& S_IFMT
) != S_IFREG
)
91 if (!ubifs_compr_present(ui
->compr_type
)) {
92 ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 "compiled in", inode
->i_ino
,
94 ubifs_compr_name(ui
->compr_type
));
97 err
= dbg_check_dir_size(c
, inode
);
101 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
105 struct ubifs_ino_node
*ino
;
106 struct ubifs_info
*c
= sb
->s_fs_info
;
108 struct ubifs_inode
*ui
;
110 dbg_gen("inode %lu", inum
);
112 inode
= iget_locked(sb
, inum
);
114 return ERR_PTR(-ENOMEM
);
115 if (!(inode
->i_state
& I_NEW
))
117 ui
= ubifs_inode(inode
);
119 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
125 ino_key_init(c
, &key
, inode
->i_ino
);
127 err
= ubifs_tnc_lookup(c
, &key
, ino
);
131 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
132 inode
->i_nlink
= le32_to_cpu(ino
->nlink
);
133 inode
->i_uid
= le32_to_cpu(ino
->uid
);
134 inode
->i_gid
= le32_to_cpu(ino
->gid
);
135 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
136 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
137 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
138 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
139 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
140 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
141 inode
->i_mode
= le32_to_cpu(ino
->mode
);
142 inode
->i_size
= le64_to_cpu(ino
->size
);
144 ui
->data_len
= le32_to_cpu(ino
->data_len
);
145 ui
->flags
= le32_to_cpu(ino
->flags
);
146 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
147 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
148 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
149 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
150 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
151 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
153 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
155 err
= validate_inode(c
, inode
);
159 /* Disable read-ahead */
160 inode
->i_mapping
->backing_dev_info
= &c
->bdi
;
162 switch (inode
->i_mode
& S_IFMT
) {
164 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
165 inode
->i_op
= &ubifs_file_inode_operations
;
166 inode
->i_fop
= &ubifs_file_operations
;
168 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
173 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
174 ((char *)ui
->data
)[ui
->data_len
] = '\0';
175 } else if (ui
->data_len
!= 0) {
181 inode
->i_op
= &ubifs_dir_inode_operations
;
182 inode
->i_fop
= &ubifs_dir_operations
;
183 if (ui
->data_len
!= 0) {
189 inode
->i_op
= &ubifs_symlink_inode_operations
;
190 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
194 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
199 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
200 ((char *)ui
->data
)[ui
->data_len
] = '\0';
206 union ubifs_dev_desc
*dev
;
208 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
214 dev
= (union ubifs_dev_desc
*)ino
->data
;
215 if (ui
->data_len
== sizeof(dev
->new))
216 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
217 else if (ui
->data_len
== sizeof(dev
->huge
))
218 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
223 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
224 inode
->i_op
= &ubifs_file_inode_operations
;
225 init_special_inode(inode
, inode
->i_mode
, rdev
);
230 inode
->i_op
= &ubifs_file_inode_operations
;
231 init_special_inode(inode
, inode
->i_mode
, 0);
232 if (ui
->data_len
!= 0) {
243 ubifs_set_inode_flags(inode
);
244 unlock_new_inode(inode
);
248 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
249 dbg_dump_node(c
, ino
);
250 dbg_dump_inode(c
, inode
);
255 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
260 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
262 struct ubifs_inode
*ui
;
264 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
268 memset((void *)ui
+ sizeof(struct inode
), 0,
269 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
270 mutex_init(&ui
->ui_mutex
);
271 spin_lock_init(&ui
->ui_lock
);
272 return &ui
->vfs_inode
;
275 static void ubifs_i_callback(struct rcu_head
*head
)
277 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
278 struct ubifs_inode
*ui
= ubifs_inode(inode
);
279 INIT_LIST_HEAD(&inode
->i_dentry
);
280 kmem_cache_free(ubifs_inode_slab
, ui
);
283 static void ubifs_destroy_inode(struct inode
*inode
)
285 struct ubifs_inode
*ui
= ubifs_inode(inode
);
288 call_rcu(&inode
->i_rcu
, ubifs_i_callback
);
292 * Note, Linux write-back code calls this without 'i_mutex'.
294 static int ubifs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
297 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
298 struct ubifs_inode
*ui
= ubifs_inode(inode
);
300 ubifs_assert(!ui
->xattr
);
301 if (is_bad_inode(inode
))
304 mutex_lock(&ui
->ui_mutex
);
306 * Due to races between write-back forced by budgeting
307 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
308 * have already been synchronized, do not do this again. This might
309 * also happen if it was synchronized in an VFS operation, e.g.
313 mutex_unlock(&ui
->ui_mutex
);
318 * As an optimization, do not write orphan inodes to the media just
319 * because this is not needed.
321 dbg_gen("inode %lu, mode %#x, nlink %u",
322 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
323 if (inode
->i_nlink
) {
324 err
= ubifs_jnl_write_inode(c
, inode
);
326 ubifs_err("can't write inode %lu, error %d",
329 err
= dbg_check_inode_size(c
, inode
, ui
->ui_size
);
333 mutex_unlock(&ui
->ui_mutex
);
334 ubifs_release_dirty_inode_budget(c
, ui
);
338 static void ubifs_evict_inode(struct inode
*inode
)
341 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
342 struct ubifs_inode
*ui
= ubifs_inode(inode
);
346 * Extended attribute inode deletions are fully handled in
347 * 'ubifs_removexattr()'. These inodes are special and have
348 * limited usage, so there is nothing to do here.
352 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
353 ubifs_assert(!atomic_read(&inode
->i_count
));
355 truncate_inode_pages(&inode
->i_data
, 0);
360 if (is_bad_inode(inode
))
363 ui
->ui_size
= inode
->i_size
= 0;
364 err
= ubifs_jnl_delete_inode(c
, inode
);
367 * Worst case we have a lost orphan inode wasting space, so a
368 * simple error message is OK here.
370 ubifs_err("can't delete inode %lu, error %d",
375 ubifs_release_dirty_inode_budget(c
, ui
);
377 /* We've deleted something - clean the "no space" flags */
378 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
382 end_writeback(inode
);
385 static void ubifs_dirty_inode(struct inode
*inode
, int flags
)
387 struct ubifs_inode
*ui
= ubifs_inode(inode
);
389 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
392 dbg_gen("inode %lu", inode
->i_ino
);
396 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
398 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
399 unsigned long long free
;
400 __le32
*uuid
= (__le32
*)c
->uuid
;
402 free
= ubifs_get_free_space(c
);
403 dbg_gen("free space %lld bytes (%lld blocks)",
404 free
, free
>> UBIFS_BLOCK_SHIFT
);
406 buf
->f_type
= UBIFS_SUPER_MAGIC
;
407 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
408 buf
->f_blocks
= c
->block_cnt
;
409 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
410 if (free
> c
->report_rp_size
)
411 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
416 buf
->f_namelen
= UBIFS_MAX_NLEN
;
417 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
418 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
419 ubifs_assert(buf
->f_bfree
<= c
->block_cnt
);
423 static int ubifs_show_options(struct seq_file
*s
, struct vfsmount
*mnt
)
425 struct ubifs_info
*c
= mnt
->mnt_sb
->s_fs_info
;
427 if (c
->mount_opts
.unmount_mode
== 2)
428 seq_printf(s
, ",fast_unmount");
429 else if (c
->mount_opts
.unmount_mode
== 1)
430 seq_printf(s
, ",norm_unmount");
432 if (c
->mount_opts
.bulk_read
== 2)
433 seq_printf(s
, ",bulk_read");
434 else if (c
->mount_opts
.bulk_read
== 1)
435 seq_printf(s
, ",no_bulk_read");
437 if (c
->mount_opts
.chk_data_crc
== 2)
438 seq_printf(s
, ",chk_data_crc");
439 else if (c
->mount_opts
.chk_data_crc
== 1)
440 seq_printf(s
, ",no_chk_data_crc");
442 if (c
->mount_opts
.override_compr
) {
443 seq_printf(s
, ",compr=%s",
444 ubifs_compr_name(c
->mount_opts
.compr_type
));
450 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
453 struct ubifs_info
*c
= sb
->s_fs_info
;
456 * Zero @wait is just an advisory thing to help the file system shove
457 * lots of data into the queues, and there will be the second
458 * '->sync_fs()' call, with non-zero @wait.
464 * Synchronize write buffers, because 'ubifs_run_commit()' does not
465 * do this if it waits for an already running commit.
467 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
468 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
474 * Strictly speaking, it is not necessary to commit the journal here,
475 * synchronizing write-buffers would be enough. But committing makes
476 * UBIFS free space predictions much more accurate, so we want to let
477 * the user be able to get more accurate results of 'statfs()' after
478 * they synchronize the file system.
480 err
= ubifs_run_commit(c
);
484 return ubi_sync(c
->vi
.ubi_num
);
488 * init_constants_early - initialize UBIFS constants.
489 * @c: UBIFS file-system description object
491 * This function initialize UBIFS constants which do not need the superblock to
492 * be read. It also checks that the UBI volume satisfies basic UBIFS
493 * requirements. Returns zero in case of success and a negative error code in
496 static int init_constants_early(struct ubifs_info
*c
)
498 if (c
->vi
.corrupted
) {
499 ubifs_warn("UBI volume is corrupted - read-only mode");
504 ubifs_msg("read-only UBI device");
508 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
509 ubifs_msg("static UBI volume - read-only mode");
513 c
->leb_cnt
= c
->vi
.size
;
514 c
->leb_size
= c
->vi
.usable_leb_size
;
515 c
->leb_start
= c
->di
.leb_start
;
516 c
->half_leb_size
= c
->leb_size
/ 2;
517 c
->min_io_size
= c
->di
.min_io_size
;
518 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
519 c
->max_write_size
= c
->di
.max_write_size
;
520 c
->max_write_shift
= fls(c
->max_write_size
) - 1;
522 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
523 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
524 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
528 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
529 ubifs_err("too few LEBs (%d), min. is %d",
530 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
534 if (!is_power_of_2(c
->min_io_size
)) {
535 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
540 * Maximum write size has to be greater or equivalent to min. I/O
541 * size, and be multiple of min. I/O size.
543 if (c
->max_write_size
< c
->min_io_size
||
544 c
->max_write_size
% c
->min_io_size
||
545 !is_power_of_2(c
->max_write_size
)) {
546 ubifs_err("bad write buffer size %d for %d min. I/O unit",
547 c
->max_write_size
, c
->min_io_size
);
552 * UBIFS aligns all node to 8-byte boundary, so to make function in
553 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
556 if (c
->min_io_size
< 8) {
559 if (c
->max_write_size
< c
->min_io_size
) {
560 c
->max_write_size
= c
->min_io_size
;
561 c
->max_write_shift
= c
->min_io_shift
;
565 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
566 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
569 * Initialize node length ranges which are mostly needed for node
572 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
573 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
574 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
575 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
576 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
577 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
579 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
580 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
581 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
582 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
583 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
584 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
585 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
586 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
587 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
588 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
589 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
591 * Minimum indexing node size is amended later when superblock is
592 * read and the key length is known.
594 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
596 * Maximum indexing node size is amended later when superblock is
597 * read and the fanout is known.
599 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
602 * Initialize dead and dark LEB space watermarks. See gc.c for comments
603 * about these values.
605 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
606 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
609 * Calculate how many bytes would be wasted at the end of LEB if it was
610 * fully filled with data nodes of maximum size. This is used in
611 * calculations when reporting free space.
613 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
615 /* Buffer size for bulk-reads */
616 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
617 if (c
->max_bu_buf_len
> c
->leb_size
)
618 c
->max_bu_buf_len
= c
->leb_size
;
623 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
624 * @c: UBIFS file-system description object
625 * @lnum: LEB the write-buffer was synchronized to
626 * @free: how many free bytes left in this LEB
627 * @pad: how many bytes were padded
629 * This is a callback function which is called by the I/O unit when the
630 * write-buffer is synchronized. We need this to correctly maintain space
631 * accounting in bud logical eraseblocks. This function returns zero in case of
632 * success and a negative error code in case of failure.
634 * This function actually belongs to the journal, but we keep it here because
635 * we want to keep it static.
637 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
639 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
643 * init_constants_sb - initialize UBIFS constants.
644 * @c: UBIFS file-system description object
646 * This is a helper function which initializes various UBIFS constants after
647 * the superblock has been read. It also checks various UBIFS parameters and
648 * makes sure they are all right. Returns zero in case of success and a
649 * negative error code in case of failure.
651 static int init_constants_sb(struct ubifs_info
*c
)
656 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
657 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
658 c
->fanout
* sizeof(struct ubifs_zbranch
);
660 tmp
= ubifs_idx_node_sz(c
, 1);
661 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
662 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
664 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
665 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
666 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
668 /* Make sure LEB size is large enough to fit full commit */
669 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
670 tmp
= ALIGN(tmp
, c
->min_io_size
);
671 if (tmp
> c
->leb_size
) {
672 dbg_err("too small LEB size %d, at least %d needed",
678 * Make sure that the log is large enough to fit reference nodes for
679 * all buds plus one reserved LEB.
681 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
682 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
683 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
686 if (c
->log_lebs
< tmp
) {
687 dbg_err("too small log %d LEBs, required min. %d LEBs",
693 * When budgeting we assume worst-case scenarios when the pages are not
694 * be compressed and direntries are of the maximum size.
696 * Note, data, which may be stored in inodes is budgeted separately, so
697 * it is not included into 'c->bi.inode_budget'.
699 c
->bi
.page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
700 c
->bi
.inode_budget
= UBIFS_INO_NODE_SZ
;
701 c
->bi
.dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
704 * When the amount of flash space used by buds becomes
705 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
706 * The writers are unblocked when the commit is finished. To avoid
707 * writers to be blocked UBIFS initiates background commit in advance,
708 * when number of bud bytes becomes above the limit defined below.
710 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
713 * Ensure minimum journal size. All the bytes in the journal heads are
714 * considered to be used, when calculating the current journal usage.
715 * Consequently, if the journal is too small, UBIFS will treat it as
718 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
719 if (c
->bg_bud_bytes
< tmp64
)
720 c
->bg_bud_bytes
= tmp64
;
721 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
722 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
724 err
= ubifs_calc_lpt_geom(c
);
728 /* Initialize effective LEB size used in budgeting calculations */
729 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
734 * init_constants_master - initialize UBIFS constants.
735 * @c: UBIFS file-system description object
737 * This is a helper function which initializes various UBIFS constants after
738 * the master node has been read. It also checks various UBIFS parameters and
739 * makes sure they are all right.
741 static void init_constants_master(struct ubifs_info
*c
)
745 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
746 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
749 * Calculate total amount of FS blocks. This number is not used
750 * internally because it does not make much sense for UBIFS, but it is
751 * necessary to report something for the 'statfs()' call.
753 * Subtract the LEB reserved for GC, the LEB which is reserved for
754 * deletions, minimum LEBs for the index, and assume only one journal
757 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
758 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
759 tmp64
= ubifs_reported_space(c
, tmp64
);
760 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
764 * take_gc_lnum - reserve GC LEB.
765 * @c: UBIFS file-system description object
767 * This function ensures that the LEB reserved for garbage collection is marked
768 * as "taken" in lprops. We also have to set free space to LEB size and dirty
769 * space to zero, because lprops may contain out-of-date information if the
770 * file-system was un-mounted before it has been committed. This function
771 * returns zero in case of success and a negative error code in case of
774 static int take_gc_lnum(struct ubifs_info
*c
)
778 if (c
->gc_lnum
== -1) {
779 ubifs_err("no LEB for GC");
783 /* And we have to tell lprops that this LEB is taken */
784 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
790 * alloc_wbufs - allocate write-buffers.
791 * @c: UBIFS file-system description object
793 * This helper function allocates and initializes UBIFS write-buffers. Returns
794 * zero in case of success and %-ENOMEM in case of failure.
796 static int alloc_wbufs(struct ubifs_info
*c
)
800 c
->jheads
= kzalloc(c
->jhead_cnt
* sizeof(struct ubifs_jhead
),
805 /* Initialize journal heads */
806 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
807 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
808 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
812 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
813 c
->jheads
[i
].wbuf
.jhead
= i
;
814 c
->jheads
[i
].grouped
= 1;
817 c
->jheads
[BASEHD
].wbuf
.dtype
= UBI_SHORTTERM
;
819 * Garbage Collector head likely contains long-term data and
820 * does not need to be synchronized by timer. Also GC head nodes are
823 c
->jheads
[GCHD
].wbuf
.dtype
= UBI_LONGTERM
;
824 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
825 c
->jheads
[GCHD
].grouped
= 0;
831 * free_wbufs - free write-buffers.
832 * @c: UBIFS file-system description object
834 static void free_wbufs(struct ubifs_info
*c
)
839 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
840 kfree(c
->jheads
[i
].wbuf
.buf
);
841 kfree(c
->jheads
[i
].wbuf
.inodes
);
849 * free_orphans - free orphans.
850 * @c: UBIFS file-system description object
852 static void free_orphans(struct ubifs_info
*c
)
854 struct ubifs_orphan
*orph
;
856 while (c
->orph_dnext
) {
857 orph
= c
->orph_dnext
;
858 c
->orph_dnext
= orph
->dnext
;
859 list_del(&orph
->list
);
863 while (!list_empty(&c
->orph_list
)) {
864 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
865 list_del(&orph
->list
);
867 dbg_err("orphan list not empty at unmount");
875 * free_buds - free per-bud objects.
876 * @c: UBIFS file-system description object
878 static void free_buds(struct ubifs_info
*c
)
880 struct rb_node
*this = c
->buds
.rb_node
;
881 struct ubifs_bud
*bud
;
885 this = this->rb_left
;
886 else if (this->rb_right
)
887 this = this->rb_right
;
889 bud
= rb_entry(this, struct ubifs_bud
, rb
);
890 this = rb_parent(this);
892 if (this->rb_left
== &bud
->rb
)
893 this->rb_left
= NULL
;
895 this->rb_right
= NULL
;
903 * check_volume_empty - check if the UBI volume is empty.
904 * @c: UBIFS file-system description object
906 * This function checks if the UBIFS volume is empty by looking if its LEBs are
907 * mapped or not. The result of checking is stored in the @c->empty variable.
908 * Returns zero in case of success and a negative error code in case of
911 static int check_volume_empty(struct ubifs_info
*c
)
916 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
917 err
= ubi_is_mapped(c
->ubi
, lnum
);
918 if (unlikely(err
< 0))
932 * UBIFS mount options.
934 * Opt_fast_unmount: do not run a journal commit before un-mounting
935 * Opt_norm_unmount: run a journal commit before un-mounting
936 * Opt_bulk_read: enable bulk-reads
937 * Opt_no_bulk_read: disable bulk-reads
938 * Opt_chk_data_crc: check CRCs when reading data nodes
939 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
940 * Opt_override_compr: override default compressor
941 * Opt_err: just end of array marker
954 static const match_table_t tokens
= {
955 {Opt_fast_unmount
, "fast_unmount"},
956 {Opt_norm_unmount
, "norm_unmount"},
957 {Opt_bulk_read
, "bulk_read"},
958 {Opt_no_bulk_read
, "no_bulk_read"},
959 {Opt_chk_data_crc
, "chk_data_crc"},
960 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
961 {Opt_override_compr
, "compr=%s"},
966 * parse_standard_option - parse a standard mount option.
967 * @option: the option to parse
969 * Normally, standard mount options like "sync" are passed to file-systems as
970 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
971 * be present in the options string. This function tries to deal with this
972 * situation and parse standard options. Returns 0 if the option was not
973 * recognized, and the corresponding integer flag if it was.
975 * UBIFS is only interested in the "sync" option, so do not check for anything
978 static int parse_standard_option(const char *option
)
980 ubifs_msg("parse %s", option
);
981 if (!strcmp(option
, "sync"))
982 return MS_SYNCHRONOUS
;
987 * ubifs_parse_options - parse mount parameters.
988 * @c: UBIFS file-system description object
989 * @options: parameters to parse
990 * @is_remount: non-zero if this is FS re-mount
992 * This function parses UBIFS mount options and returns zero in case success
993 * and a negative error code in case of failure.
995 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
999 substring_t args
[MAX_OPT_ARGS
];
1004 while ((p
= strsep(&options
, ","))) {
1010 token
= match_token(p
, tokens
, args
);
1013 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1014 * We accept them in order to be backward-compatible. But this
1015 * should be removed at some point.
1017 case Opt_fast_unmount
:
1018 c
->mount_opts
.unmount_mode
= 2;
1020 case Opt_norm_unmount
:
1021 c
->mount_opts
.unmount_mode
= 1;
1024 c
->mount_opts
.bulk_read
= 2;
1027 case Opt_no_bulk_read
:
1028 c
->mount_opts
.bulk_read
= 1;
1031 case Opt_chk_data_crc
:
1032 c
->mount_opts
.chk_data_crc
= 2;
1033 c
->no_chk_data_crc
= 0;
1035 case Opt_no_chk_data_crc
:
1036 c
->mount_opts
.chk_data_crc
= 1;
1037 c
->no_chk_data_crc
= 1;
1039 case Opt_override_compr
:
1041 char *name
= match_strdup(&args
[0]);
1045 if (!strcmp(name
, "none"))
1046 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
1047 else if (!strcmp(name
, "lzo"))
1048 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1049 else if (!strcmp(name
, "zlib"))
1050 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1052 ubifs_err("unknown compressor \"%s\"", name
);
1057 c
->mount_opts
.override_compr
= 1;
1058 c
->default_compr
= c
->mount_opts
.compr_type
;
1064 struct super_block
*sb
= c
->vfs_sb
;
1066 flag
= parse_standard_option(p
);
1068 ubifs_err("unrecognized mount option \"%s\" "
1069 "or missing value", p
);
1072 sb
->s_flags
|= flag
;
1082 * destroy_journal - destroy journal data structures.
1083 * @c: UBIFS file-system description object
1085 * This function destroys journal data structures including those that may have
1086 * been created by recovery functions.
1088 static void destroy_journal(struct ubifs_info
*c
)
1090 while (!list_empty(&c
->unclean_leb_list
)) {
1091 struct ubifs_unclean_leb
*ucleb
;
1093 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1094 struct ubifs_unclean_leb
, list
);
1095 list_del(&ucleb
->list
);
1098 while (!list_empty(&c
->old_buds
)) {
1099 struct ubifs_bud
*bud
;
1101 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1102 list_del(&bud
->list
);
1105 ubifs_destroy_idx_gc(c
);
1106 ubifs_destroy_size_tree(c
);
1112 * bu_init - initialize bulk-read information.
1113 * @c: UBIFS file-system description object
1115 static void bu_init(struct ubifs_info
*c
)
1117 ubifs_assert(c
->bulk_read
== 1);
1120 return; /* Already initialized */
1123 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1125 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1126 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1130 /* Just disable bulk-read */
1131 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1132 "disabling it", c
->max_bu_buf_len
);
1133 c
->mount_opts
.bulk_read
= 1;
1140 * check_free_space - check if there is enough free space to mount.
1141 * @c: UBIFS file-system description object
1143 * This function makes sure UBIFS has enough free space to be mounted in
1144 * read/write mode. UBIFS must always have some free space to allow deletions.
1146 static int check_free_space(struct ubifs_info
*c
)
1148 ubifs_assert(c
->dark_wm
> 0);
1149 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1150 ubifs_err("insufficient free space to mount in R/W mode");
1151 dbg_dump_budg(c
, &c
->bi
);
1159 * mount_ubifs - mount UBIFS file-system.
1160 * @c: UBIFS file-system description object
1162 * This function mounts UBIFS file system. Returns zero in case of success and
1163 * a negative error code in case of failure.
1165 * Note, the function does not de-allocate resources it it fails half way
1166 * through, and the caller has to do this instead.
1168 static int mount_ubifs(struct ubifs_info
*c
)
1174 c
->ro_mount
= !!(c
->vfs_sb
->s_flags
& MS_RDONLY
);
1175 err
= init_constants_early(c
);
1179 err
= ubifs_debugging_init(c
);
1183 err
= check_volume_empty(c
);
1187 if (c
->empty
&& (c
->ro_mount
|| c
->ro_media
)) {
1189 * This UBI volume is empty, and read-only, or the file system
1190 * is mounted read-only - we cannot format it.
1192 ubifs_err("can't format empty UBI volume: read-only %s",
1193 c
->ro_media
? "UBI volume" : "mount");
1198 if (c
->ro_media
&& !c
->ro_mount
) {
1199 ubifs_err("cannot mount read-write - read-only media");
1205 * The requirement for the buffer is that it should fit indexing B-tree
1206 * height amount of integers. We assume the height if the TNC tree will
1210 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
1211 if (!c
->bottom_up_buf
)
1214 c
->sbuf
= vmalloc(c
->leb_size
);
1219 c
->ileb_buf
= vmalloc(c
->leb_size
);
1224 if (c
->bulk_read
== 1)
1228 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
,
1230 if (!c
->write_reserve_buf
)
1236 err
= ubifs_read_superblock(c
);
1241 * Make sure the compressor which is set as default in the superblock
1242 * or overridden by mount options is actually compiled in.
1244 if (!ubifs_compr_present(c
->default_compr
)) {
1245 ubifs_err("'compressor \"%s\" is not compiled in",
1246 ubifs_compr_name(c
->default_compr
));
1251 err
= init_constants_sb(c
);
1255 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1256 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1257 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1263 err
= alloc_wbufs(c
);
1267 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1269 /* Create background thread */
1270 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1271 if (IS_ERR(c
->bgt
)) {
1272 err
= PTR_ERR(c
->bgt
);
1274 ubifs_err("cannot spawn \"%s\", error %d",
1278 wake_up_process(c
->bgt
);
1281 err
= ubifs_read_master(c
);
1285 init_constants_master(c
);
1287 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1288 ubifs_msg("recovery needed");
1289 c
->need_recovery
= 1;
1292 if (c
->need_recovery
&& !c
->ro_mount
) {
1293 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1298 err
= ubifs_lpt_init(c
, 1, !c
->ro_mount
);
1302 if (!c
->ro_mount
&& c
->space_fixup
) {
1303 err
= ubifs_fixup_free_space(c
);
1310 * Set the "dirty" flag so that if we reboot uncleanly we
1311 * will notice this immediately on the next mount.
1313 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1314 err
= ubifs_write_master(c
);
1319 err
= dbg_check_idx_size(c
, c
->bi
.old_idx_sz
);
1323 err
= ubifs_replay_journal(c
);
1327 /* Calculate 'min_idx_lebs' after journal replay */
1328 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1330 err
= ubifs_mount_orphans(c
, c
->need_recovery
, c
->ro_mount
);
1337 err
= check_free_space(c
);
1341 /* Check for enough log space */
1342 lnum
= c
->lhead_lnum
+ 1;
1343 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1344 lnum
= UBIFS_LOG_LNUM
;
1345 if (lnum
== c
->ltail_lnum
) {
1346 err
= ubifs_consolidate_log(c
);
1351 if (c
->need_recovery
) {
1352 err
= ubifs_recover_size(c
);
1355 err
= ubifs_rcvry_gc_commit(c
);
1359 err
= take_gc_lnum(c
);
1364 * GC LEB may contain garbage if there was an unclean
1365 * reboot, and it should be un-mapped.
1367 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1372 err
= dbg_check_lprops(c
);
1375 } else if (c
->need_recovery
) {
1376 err
= ubifs_recover_size(c
);
1381 * Even if we mount read-only, we have to set space in GC LEB
1382 * to proper value because this affects UBIFS free space
1383 * reporting. We do not want to have a situation when
1384 * re-mounting from R/O to R/W changes amount of free space.
1386 err
= take_gc_lnum(c
);
1391 spin_lock(&ubifs_infos_lock
);
1392 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1393 spin_unlock(&ubifs_infos_lock
);
1395 if (c
->need_recovery
) {
1397 ubifs_msg("recovery deferred");
1399 c
->need_recovery
= 0;
1400 ubifs_msg("recovery completed");
1402 * GC LEB has to be empty and taken at this point. But
1403 * the journal head LEBs may also be accounted as
1404 * "empty taken" if they are empty.
1406 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1409 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1411 err
= dbg_check_filesystem(c
);
1415 err
= dbg_debugfs_init_fs(c
);
1421 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1422 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
);
1424 ubifs_msg("mounted read-only");
1425 x
= (long long)c
->main_lebs
* c
->leb_size
;
1426 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1427 "LEBs)", x
, x
>> 10, x
>> 20, c
->main_lebs
);
1428 x
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1429 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1430 "LEBs)", x
, x
>> 10, x
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1431 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)",
1432 c
->fmt_version
, c
->ro_compat_version
,
1433 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1434 ubifs_msg("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1435 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1436 c
->report_rp_size
, c
->report_rp_size
>> 10);
1438 dbg_msg("compiled on: " __DATE__
" at " __TIME__
);
1439 dbg_msg("min. I/O unit size: %d bytes", c
->min_io_size
);
1440 dbg_msg("max. write size: %d bytes", c
->max_write_size
);
1441 dbg_msg("LEB size: %d bytes (%d KiB)",
1442 c
->leb_size
, c
->leb_size
>> 10);
1443 dbg_msg("data journal heads: %d",
1444 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1445 dbg_msg("UUID: %pUB", c
->uuid
);
1446 dbg_msg("big_lpt %d", c
->big_lpt
);
1447 dbg_msg("log LEBs: %d (%d - %d)",
1448 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1449 dbg_msg("LPT area LEBs: %d (%d - %d)",
1450 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1451 dbg_msg("orphan area LEBs: %d (%d - %d)",
1452 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1453 dbg_msg("main area LEBs: %d (%d - %d)",
1454 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1455 dbg_msg("index LEBs: %d", c
->lst
.idx_lebs
);
1456 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1457 c
->bi
.old_idx_sz
, c
->bi
.old_idx_sz
>> 10,
1458 c
->bi
.old_idx_sz
>> 20);
1459 dbg_msg("key hash type: %d", c
->key_hash_type
);
1460 dbg_msg("tree fanout: %d", c
->fanout
);
1461 dbg_msg("reserved GC LEB: %d", c
->gc_lnum
);
1462 dbg_msg("first main LEB: %d", c
->main_first
);
1463 dbg_msg("max. znode size %d", c
->max_znode_sz
);
1464 dbg_msg("max. index node size %d", c
->max_idx_node_sz
);
1465 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
1466 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1467 dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
1468 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1469 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
1470 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1471 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1472 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1473 UBIFS_MAX_DENT_NODE_SZ
, ubifs_idx_node_sz(c
, c
->fanout
));
1474 dbg_msg("dead watermark: %d", c
->dead_wm
);
1475 dbg_msg("dark watermark: %d", c
->dark_wm
);
1476 dbg_msg("LEB overhead: %d", c
->leb_overhead
);
1477 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1478 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1479 x
, x
>> 10, x
>> 20);
1480 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1481 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1482 c
->max_bud_bytes
>> 20);
1483 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1484 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1485 c
->bg_bud_bytes
>> 20);
1486 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1487 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1488 dbg_msg("max. seq. number: %llu", c
->max_sqnum
);
1489 dbg_msg("commit number: %llu", c
->cmt_no
);
1494 spin_lock(&ubifs_infos_lock
);
1495 list_del(&c
->infos_list
);
1496 spin_unlock(&ubifs_infos_lock
);
1502 ubifs_lpt_free(c
, 0);
1505 kfree(c
->rcvrd_mst_node
);
1507 kthread_stop(c
->bgt
);
1513 kfree(c
->write_reserve_buf
);
1517 kfree(c
->bottom_up_buf
);
1518 ubifs_debugging_exit(c
);
1523 * ubifs_umount - un-mount UBIFS file-system.
1524 * @c: UBIFS file-system description object
1526 * Note, this function is called to free allocated resourced when un-mounting,
1527 * as well as free resources when an error occurred while we were half way
1528 * through mounting (error path cleanup function). So it has to make sure the
1529 * resource was actually allocated before freeing it.
1531 static void ubifs_umount(struct ubifs_info
*c
)
1533 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1536 dbg_debugfs_exit_fs(c
);
1537 spin_lock(&ubifs_infos_lock
);
1538 list_del(&c
->infos_list
);
1539 spin_unlock(&ubifs_infos_lock
);
1542 kthread_stop(c
->bgt
);
1547 ubifs_lpt_free(c
, 0);
1550 kfree(c
->rcvrd_mst_node
);
1552 kfree(c
->write_reserve_buf
);
1556 kfree(c
->bottom_up_buf
);
1557 ubifs_debugging_exit(c
);
1561 * ubifs_remount_rw - re-mount in read-write mode.
1562 * @c: UBIFS file-system description object
1564 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1565 * mode. This function allocates the needed resources and re-mounts UBIFS in
1568 static int ubifs_remount_rw(struct ubifs_info
*c
)
1572 if (c
->rw_incompat
) {
1573 ubifs_err("the file-system is not R/W-compatible");
1574 ubifs_msg("on-flash format version is w%d/r%d, but software "
1575 "only supports up to version w%d/r%d", c
->fmt_version
,
1576 c
->ro_compat_version
, UBIFS_FORMAT_VERSION
,
1577 UBIFS_RO_COMPAT_VERSION
);
1581 mutex_lock(&c
->umount_mutex
);
1582 dbg_save_space_info(c
);
1583 c
->remounting_rw
= 1;
1586 err
= check_free_space(c
);
1590 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1591 struct ubifs_sb_node
*sup
;
1593 sup
= ubifs_read_sb_node(c
);
1598 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1599 err
= ubifs_write_sb_node(c
, sup
);
1605 if (c
->need_recovery
) {
1606 ubifs_msg("completing deferred recovery");
1607 err
= ubifs_write_rcvrd_mst_node(c
);
1610 err
= ubifs_recover_size(c
);
1613 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1616 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1620 /* A readonly mount is not allowed to have orphans */
1621 ubifs_assert(c
->tot_orphans
== 0);
1622 err
= ubifs_clear_orphans(c
);
1627 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1628 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1629 err
= ubifs_write_master(c
);
1634 c
->ileb_buf
= vmalloc(c
->leb_size
);
1640 c
->write_reserve_buf
= kmalloc(COMPRESSED_DATA_NODE_BUF_SZ
, GFP_KERNEL
);
1641 if (!c
->write_reserve_buf
)
1644 err
= ubifs_lpt_init(c
, 0, 1);
1648 /* Create background thread */
1649 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1650 if (IS_ERR(c
->bgt
)) {
1651 err
= PTR_ERR(c
->bgt
);
1653 ubifs_err("cannot spawn \"%s\", error %d",
1657 wake_up_process(c
->bgt
);
1659 c
->orph_buf
= vmalloc(c
->leb_size
);
1665 /* Check for enough log space */
1666 lnum
= c
->lhead_lnum
+ 1;
1667 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1668 lnum
= UBIFS_LOG_LNUM
;
1669 if (lnum
== c
->ltail_lnum
) {
1670 err
= ubifs_consolidate_log(c
);
1675 if (c
->need_recovery
)
1676 err
= ubifs_rcvry_gc_commit(c
);
1678 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1682 dbg_gen("re-mounted read-write");
1683 c
->remounting_rw
= 0;
1685 if (c
->need_recovery
) {
1686 c
->need_recovery
= 0;
1687 ubifs_msg("deferred recovery completed");
1690 * Do not run the debugging space check if the were doing
1691 * recovery, because when we saved the information we had the
1692 * file-system in a state where the TNC and lprops has been
1693 * modified in memory, but all the I/O operations (including a
1694 * commit) were deferred. So the file-system was in
1695 * "non-committed" state. Now the file-system is in committed
1696 * state, and of course the amount of free space will change
1697 * because, for example, the old index size was imprecise.
1699 err
= dbg_check_space_info(c
);
1702 if (c
->space_fixup
) {
1703 err
= ubifs_fixup_free_space(c
);
1708 mutex_unlock(&c
->umount_mutex
);
1716 kthread_stop(c
->bgt
);
1720 kfree(c
->write_reserve_buf
);
1721 c
->write_reserve_buf
= NULL
;
1724 ubifs_lpt_free(c
, 1);
1725 c
->remounting_rw
= 0;
1726 mutex_unlock(&c
->umount_mutex
);
1731 * ubifs_remount_ro - re-mount in read-only mode.
1732 * @c: UBIFS file-system description object
1734 * We assume VFS has stopped writing. Possibly the background thread could be
1735 * running a commit, however kthread_stop will wait in that case.
1737 static void ubifs_remount_ro(struct ubifs_info
*c
)
1741 ubifs_assert(!c
->need_recovery
);
1742 ubifs_assert(!c
->ro_mount
);
1744 mutex_lock(&c
->umount_mutex
);
1746 kthread_stop(c
->bgt
);
1750 dbg_save_space_info(c
);
1752 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1753 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1755 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1756 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1757 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1758 err
= ubifs_write_master(c
);
1760 ubifs_ro_mode(c
, err
);
1764 kfree(c
->write_reserve_buf
);
1765 c
->write_reserve_buf
= NULL
;
1768 ubifs_lpt_free(c
, 1);
1770 err
= dbg_check_space_info(c
);
1772 ubifs_ro_mode(c
, err
);
1773 mutex_unlock(&c
->umount_mutex
);
1776 static void ubifs_put_super(struct super_block
*sb
)
1779 struct ubifs_info
*c
= sb
->s_fs_info
;
1781 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1785 * The following asserts are only valid if there has not been a failure
1786 * of the media. For example, there will be dirty inodes if we failed
1787 * to write them back because of I/O errors.
1790 ubifs_assert(c
->bi
.idx_growth
== 0);
1791 ubifs_assert(c
->bi
.dd_growth
== 0);
1792 ubifs_assert(c
->bi
.data_growth
== 0);
1796 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1797 * and file system un-mount. Namely, it prevents the shrinker from
1798 * picking this superblock for shrinking - it will be just skipped if
1799 * the mutex is locked.
1801 mutex_lock(&c
->umount_mutex
);
1804 * First of all kill the background thread to make sure it does
1805 * not interfere with un-mounting and freeing resources.
1808 kthread_stop(c
->bgt
);
1813 * On fatal errors c->ro_error is set to 1, in which case we do
1814 * not write the master node.
1819 /* Synchronize write-buffers */
1820 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1821 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1824 * We are being cleanly unmounted which means the
1825 * orphans were killed - indicate this in the master
1826 * node. Also save the reserved GC LEB number.
1828 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1829 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1830 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1831 err
= ubifs_write_master(c
);
1834 * Recovery will attempt to fix the master area
1835 * next mount, so we just print a message and
1836 * continue to unmount normally.
1838 ubifs_err("failed to write master node, "
1841 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1842 /* Make sure write-buffer timers are canceled */
1843 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1848 bdi_destroy(&c
->bdi
);
1849 ubi_close_volume(c
->ubi
);
1850 mutex_unlock(&c
->umount_mutex
);
1854 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1857 struct ubifs_info
*c
= sb
->s_fs_info
;
1859 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1861 err
= ubifs_parse_options(c
, data
, 1);
1863 ubifs_err("invalid or unknown remount parameter");
1867 if (c
->ro_mount
&& !(*flags
& MS_RDONLY
)) {
1869 ubifs_msg("cannot re-mount R/W due to prior errors");
1873 ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1876 err
= ubifs_remount_rw(c
);
1879 } else if (!c
->ro_mount
&& (*flags
& MS_RDONLY
)) {
1881 ubifs_msg("cannot re-mount R/O due to prior errors");
1884 ubifs_remount_ro(c
);
1887 if (c
->bulk_read
== 1)
1890 dbg_gen("disable bulk-read");
1895 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1899 const struct super_operations ubifs_super_operations
= {
1900 .alloc_inode
= ubifs_alloc_inode
,
1901 .destroy_inode
= ubifs_destroy_inode
,
1902 .put_super
= ubifs_put_super
,
1903 .write_inode
= ubifs_write_inode
,
1904 .evict_inode
= ubifs_evict_inode
,
1905 .statfs
= ubifs_statfs
,
1906 .dirty_inode
= ubifs_dirty_inode
,
1907 .remount_fs
= ubifs_remount_fs
,
1908 .show_options
= ubifs_show_options
,
1909 .sync_fs
= ubifs_sync_fs
,
1913 * open_ubi - parse UBI device name string and open the UBI device.
1914 * @name: UBI volume name
1915 * @mode: UBI volume open mode
1917 * The primary method of mounting UBIFS is by specifying the UBI volume
1918 * character device node path. However, UBIFS may also be mounted withoug any
1919 * character device node using one of the following methods:
1921 * o ubiX_Y - mount UBI device number X, volume Y;
1922 * o ubiY - mount UBI device number 0, volume Y;
1923 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1924 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1926 * Alternative '!' separator may be used instead of ':' (because some shells
1927 * like busybox may interpret ':' as an NFS host name separator). This function
1928 * returns UBI volume description object in case of success and a negative
1929 * error code in case of failure.
1931 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1933 struct ubi_volume_desc
*ubi
;
1937 /* First, try to open using the device node path method */
1938 ubi
= ubi_open_volume_path(name
, mode
);
1942 /* Try the "nodev" method */
1943 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1944 return ERR_PTR(-EINVAL
);
1946 /* ubi:NAME method */
1947 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1948 return ubi_open_volume_nm(0, name
+ 4, mode
);
1950 if (!isdigit(name
[3]))
1951 return ERR_PTR(-EINVAL
);
1953 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1956 if (*endptr
== '\0')
1957 return ubi_open_volume(0, dev
, mode
);
1960 if (*endptr
== '_' && isdigit(endptr
[1])) {
1961 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1962 if (*endptr
!= '\0')
1963 return ERR_PTR(-EINVAL
);
1964 return ubi_open_volume(dev
, vol
, mode
);
1967 /* ubiX:NAME method */
1968 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1969 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1971 return ERR_PTR(-EINVAL
);
1974 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1976 struct ubi_volume_desc
*ubi
= sb
->s_fs_info
;
1977 struct ubifs_info
*c
;
1981 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1985 spin_lock_init(&c
->cnt_lock
);
1986 spin_lock_init(&c
->cs_lock
);
1987 spin_lock_init(&c
->buds_lock
);
1988 spin_lock_init(&c
->space_lock
);
1989 spin_lock_init(&c
->orphan_lock
);
1990 init_rwsem(&c
->commit_sem
);
1991 mutex_init(&c
->lp_mutex
);
1992 mutex_init(&c
->tnc_mutex
);
1993 mutex_init(&c
->log_mutex
);
1994 mutex_init(&c
->mst_mutex
);
1995 mutex_init(&c
->umount_mutex
);
1996 mutex_init(&c
->bu_mutex
);
1997 mutex_init(&c
->write_reserve_mutex
);
1998 init_waitqueue_head(&c
->cmt_wq
);
2000 c
->old_idx
= RB_ROOT
;
2001 c
->size_tree
= RB_ROOT
;
2002 c
->orph_tree
= RB_ROOT
;
2003 INIT_LIST_HEAD(&c
->infos_list
);
2004 INIT_LIST_HEAD(&c
->idx_gc
);
2005 INIT_LIST_HEAD(&c
->replay_list
);
2006 INIT_LIST_HEAD(&c
->replay_buds
);
2007 INIT_LIST_HEAD(&c
->uncat_list
);
2008 INIT_LIST_HEAD(&c
->empty_list
);
2009 INIT_LIST_HEAD(&c
->freeable_list
);
2010 INIT_LIST_HEAD(&c
->frdi_idx_list
);
2011 INIT_LIST_HEAD(&c
->unclean_leb_list
);
2012 INIT_LIST_HEAD(&c
->old_buds
);
2013 INIT_LIST_HEAD(&c
->orph_list
);
2014 INIT_LIST_HEAD(&c
->orph_new
);
2015 c
->no_chk_data_crc
= 1;
2018 c
->highest_inum
= UBIFS_FIRST_INO
;
2019 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
2021 ubi_get_volume_info(ubi
, &c
->vi
);
2022 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
2024 /* Re-open the UBI device in read-write mode */
2025 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
2026 if (IS_ERR(c
->ubi
)) {
2027 err
= PTR_ERR(c
->ubi
);
2032 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2033 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2034 * which means the user would have to wait not just for their own I/O
2035 * but the read-ahead I/O as well i.e. completely pointless.
2037 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2039 c
->bdi
.name
= "ubifs",
2040 c
->bdi
.capabilities
= BDI_CAP_MAP_COPY
;
2041 err
= bdi_init(&c
->bdi
);
2044 err
= bdi_register(&c
->bdi
, NULL
, "ubifs_%d_%d",
2045 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2049 err
= ubifs_parse_options(c
, data
, 0);
2053 sb
->s_bdi
= &c
->bdi
;
2055 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
2056 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
2057 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
2058 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
2059 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
2060 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
2061 sb
->s_op
= &ubifs_super_operations
;
2063 mutex_lock(&c
->umount_mutex
);
2064 err
= mount_ubifs(c
);
2066 ubifs_assert(err
< 0);
2070 /* Read the root inode */
2071 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2073 err
= PTR_ERR(root
);
2077 sb
->s_root
= d_alloc_root(root
);
2081 mutex_unlock(&c
->umount_mutex
);
2089 mutex_unlock(&c
->umount_mutex
);
2091 bdi_destroy(&c
->bdi
);
2093 ubi_close_volume(c
->ubi
);
2099 static int sb_test(struct super_block
*sb
, void *data
)
2102 struct ubifs_info
*c
= sb
->s_fs_info
;
2104 return c
->vi
.cdev
== *dev
;
2107 static struct dentry
*ubifs_mount(struct file_system_type
*fs_type
, int flags
,
2108 const char *name
, void *data
)
2110 struct ubi_volume_desc
*ubi
;
2111 struct ubi_volume_info vi
;
2112 struct super_block
*sb
;
2115 dbg_gen("name %s, flags %#x", name
, flags
);
2118 * Get UBI device number and volume ID. Mount it read-only so far
2119 * because this might be a new mount point, and UBI allows only one
2120 * read-write user at a time.
2122 ubi
= open_ubi(name
, UBI_READONLY
);
2124 dbg_err("cannot open \"%s\", error %d",
2125 name
, (int)PTR_ERR(ubi
));
2126 return ERR_CAST(ubi
);
2128 ubi_get_volume_info(ubi
, &vi
);
2130 dbg_gen("opened ubi%d_%d", vi
.ubi_num
, vi
.vol_id
);
2132 sb
= sget(fs_type
, &sb_test
, &set_anon_super
, &vi
.cdev
);
2139 struct ubifs_info
*c1
= sb
->s_fs_info
;
2141 /* A new mount point for already mounted UBIFS */
2142 dbg_gen("this ubi volume is already mounted");
2143 if (!!(flags
& MS_RDONLY
) != c1
->ro_mount
) {
2148 sb
->s_flags
= flags
;
2150 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2153 sb
->s_fs_info
= ubi
;
2154 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
2157 /* We do not support atime */
2158 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
2161 /* 'fill_super()' opens ubi again so we must close it here */
2162 ubi_close_volume(ubi
);
2164 return dget(sb
->s_root
);
2167 deactivate_locked_super(sb
);
2169 ubi_close_volume(ubi
);
2170 return ERR_PTR(err
);
2173 static struct file_system_type ubifs_fs_type
= {
2175 .owner
= THIS_MODULE
,
2176 .mount
= ubifs_mount
,
2177 .kill_sb
= kill_anon_super
,
2181 * Inode slab cache constructor.
2183 static void inode_slab_ctor(void *obj
)
2185 struct ubifs_inode
*ui
= obj
;
2186 inode_init_once(&ui
->vfs_inode
);
2189 static int __init
ubifs_init(void)
2193 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2195 /* Make sure node sizes are 8-byte aligned */
2196 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2197 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2198 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2199 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2200 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2201 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2202 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2203 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2204 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2205 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2206 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2208 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2209 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2210 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2211 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2212 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2213 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2215 /* Check min. node size */
2216 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2217 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2218 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2219 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2221 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2222 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2223 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2224 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2226 /* Defined node sizes */
2227 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2228 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2229 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2230 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2233 * We use 2 bit wide bit-fields to store compression type, which should
2234 * be amended if more compressors are added. The bit-fields are:
2235 * @compr_type in 'struct ubifs_inode', @default_compr in
2236 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2238 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2241 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2242 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2244 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
2245 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2246 " at least 4096 bytes",
2247 (unsigned int)PAGE_CACHE_SIZE
);
2251 err
= register_filesystem(&ubifs_fs_type
);
2253 ubifs_err("cannot register file system, error %d", err
);
2258 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2259 sizeof(struct ubifs_inode
), 0,
2260 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
2262 if (!ubifs_inode_slab
)
2265 register_shrinker(&ubifs_shrinker_info
);
2267 err
= ubifs_compressors_init();
2271 err
= dbg_debugfs_init();
2278 ubifs_compressors_exit();
2280 unregister_shrinker(&ubifs_shrinker_info
);
2281 kmem_cache_destroy(ubifs_inode_slab
);
2283 unregister_filesystem(&ubifs_fs_type
);
2286 /* late_initcall to let compressors initialize first */
2287 late_initcall(ubifs_init
);
2289 static void __exit
ubifs_exit(void)
2291 ubifs_assert(list_empty(&ubifs_infos
));
2292 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2295 ubifs_compressors_exit();
2296 unregister_shrinker(&ubifs_shrinker_info
);
2297 kmem_cache_destroy(ubifs_inode_slab
);
2298 unregister_filesystem(&ubifs_fs_type
);
2300 module_exit(ubifs_exit
);
2302 MODULE_LICENSE("GPL");
2303 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2304 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2305 MODULE_DESCRIPTION("UBIFS - UBI File System");