4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 #include "input-compat.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_DEVICES 256
36 * EV_ABS events which should not be cached are listed here.
38 static unsigned int input_abs_bypass_init_data
[] __initdata
= {
52 static unsigned long input_abs_bypass
[BITS_TO_LONGS(ABS_CNT
)];
54 static LIST_HEAD(input_dev_list
);
55 static LIST_HEAD(input_handler_list
);
58 * input_mutex protects access to both input_dev_list and input_handler_list.
59 * This also causes input_[un]register_device and input_[un]register_handler
60 * be mutually exclusive which simplifies locking in drivers implementing
63 static DEFINE_MUTEX(input_mutex
);
65 static struct input_handler
*input_table
[8];
67 static inline int is_event_supported(unsigned int code
,
68 unsigned long *bm
, unsigned int max
)
70 return code
<= max
&& test_bit(code
, bm
);
73 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
76 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
79 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
80 return (old_val
* 3 + value
) / 4;
82 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
83 return (old_val
+ value
) / 2;
90 * Pass event through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
93 static void input_pass_event(struct input_dev
*dev
,
94 unsigned int type
, unsigned int code
, int value
)
96 struct input_handle
*handle
;
100 handle
= rcu_dereference(dev
->grab
);
102 handle
->handler
->event(handle
, type
, code
, value
);
104 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
106 handle
->handler
->event(handle
,
112 * Generate software autorepeat event. Note that we take
113 * dev->event_lock here to avoid racing with input_event
114 * which may cause keys get "stuck".
116 static void input_repeat_key(unsigned long data
)
118 struct input_dev
*dev
= (void *) data
;
121 spin_lock_irqsave(&dev
->event_lock
, flags
);
123 if (test_bit(dev
->repeat_key
, dev
->key
) &&
124 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
126 input_pass_event(dev
, EV_KEY
, dev
->repeat_key
, 2);
130 * Only send SYN_REPORT if we are not in a middle
131 * of driver parsing a new hardware packet.
132 * Otherwise assume that the driver will send
133 * SYN_REPORT once it's done.
135 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
138 if (dev
->rep
[REP_PERIOD
])
139 mod_timer(&dev
->timer
, jiffies
+
140 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
143 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
146 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
148 if (test_bit(EV_REP
, dev
->evbit
) &&
149 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
151 dev
->repeat_key
= code
;
152 mod_timer(&dev
->timer
,
153 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
157 static void input_stop_autorepeat(struct input_dev
*dev
)
159 del_timer(&dev
->timer
);
162 #define INPUT_IGNORE_EVENT 0
163 #define INPUT_PASS_TO_HANDLERS 1
164 #define INPUT_PASS_TO_DEVICE 2
165 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
167 static void input_handle_event(struct input_dev
*dev
,
168 unsigned int type
, unsigned int code
, int value
)
170 int disposition
= INPUT_IGNORE_EVENT
;
177 disposition
= INPUT_PASS_TO_ALL
;
183 disposition
= INPUT_PASS_TO_HANDLERS
;
188 disposition
= INPUT_PASS_TO_HANDLERS
;
194 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
195 !!test_bit(code
, dev
->key
) != value
) {
198 __change_bit(code
, dev
->key
);
200 input_start_autorepeat(dev
, code
);
202 input_stop_autorepeat(dev
);
205 disposition
= INPUT_PASS_TO_HANDLERS
;
210 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
211 !!test_bit(code
, dev
->sw
) != value
) {
213 __change_bit(code
, dev
->sw
);
214 disposition
= INPUT_PASS_TO_HANDLERS
;
219 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
)) {
221 if (test_bit(code
, input_abs_bypass
)) {
222 disposition
= INPUT_PASS_TO_HANDLERS
;
226 value
= input_defuzz_abs_event(value
,
227 dev
->abs
[code
], dev
->absfuzz
[code
]);
229 if (dev
->abs
[code
] != value
) {
230 dev
->abs
[code
] = value
;
231 disposition
= INPUT_PASS_TO_HANDLERS
;
237 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
238 disposition
= INPUT_PASS_TO_HANDLERS
;
243 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
244 disposition
= INPUT_PASS_TO_ALL
;
249 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
250 !!test_bit(code
, dev
->led
) != value
) {
252 __change_bit(code
, dev
->led
);
253 disposition
= INPUT_PASS_TO_ALL
;
258 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
260 if (!!test_bit(code
, dev
->snd
) != !!value
)
261 __change_bit(code
, dev
->snd
);
262 disposition
= INPUT_PASS_TO_ALL
;
267 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
268 dev
->rep
[code
] = value
;
269 disposition
= INPUT_PASS_TO_ALL
;
275 disposition
= INPUT_PASS_TO_ALL
;
279 disposition
= INPUT_PASS_TO_ALL
;
283 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
286 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
287 dev
->event(dev
, type
, code
, value
);
289 if (disposition
& INPUT_PASS_TO_HANDLERS
)
290 input_pass_event(dev
, type
, code
, value
);
294 * input_event() - report new input event
295 * @dev: device that generated the event
296 * @type: type of the event
298 * @value: value of the event
300 * This function should be used by drivers implementing various input
301 * devices to report input events. See also input_inject_event().
303 * NOTE: input_event() may be safely used right after input device was
304 * allocated with input_allocate_device(), even before it is registered
305 * with input_register_device(), but the event will not reach any of the
306 * input handlers. Such early invocation of input_event() may be used
307 * to 'seed' initial state of a switch or initial position of absolute
310 void input_event(struct input_dev
*dev
,
311 unsigned int type
, unsigned int code
, int value
)
315 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
317 spin_lock_irqsave(&dev
->event_lock
, flags
);
318 add_input_randomness(type
, code
, value
);
319 input_handle_event(dev
, type
, code
, value
);
320 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
323 EXPORT_SYMBOL(input_event
);
326 * input_inject_event() - send input event from input handler
327 * @handle: input handle to send event through
328 * @type: type of the event
330 * @value: value of the event
332 * Similar to input_event() but will ignore event if device is
333 * "grabbed" and handle injecting event is not the one that owns
336 void input_inject_event(struct input_handle
*handle
,
337 unsigned int type
, unsigned int code
, int value
)
339 struct input_dev
*dev
= handle
->dev
;
340 struct input_handle
*grab
;
343 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
344 spin_lock_irqsave(&dev
->event_lock
, flags
);
347 grab
= rcu_dereference(dev
->grab
);
348 if (!grab
|| grab
== handle
)
349 input_handle_event(dev
, type
, code
, value
);
352 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
355 EXPORT_SYMBOL(input_inject_event
);
358 * input_grab_device - grabs device for exclusive use
359 * @handle: input handle that wants to own the device
361 * When a device is grabbed by an input handle all events generated by
362 * the device are delivered only to this handle. Also events injected
363 * by other input handles are ignored while device is grabbed.
365 int input_grab_device(struct input_handle
*handle
)
367 struct input_dev
*dev
= handle
->dev
;
370 retval
= mutex_lock_interruptible(&dev
->mutex
);
379 rcu_assign_pointer(dev
->grab
, handle
);
383 mutex_unlock(&dev
->mutex
);
386 EXPORT_SYMBOL(input_grab_device
);
388 static void __input_release_device(struct input_handle
*handle
)
390 struct input_dev
*dev
= handle
->dev
;
392 if (dev
->grab
== handle
) {
393 rcu_assign_pointer(dev
->grab
, NULL
);
394 /* Make sure input_pass_event() notices that grab is gone */
397 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
398 if (handle
->open
&& handle
->handler
->start
)
399 handle
->handler
->start(handle
);
404 * input_release_device - release previously grabbed device
405 * @handle: input handle that owns the device
407 * Releases previously grabbed device so that other input handles can
408 * start receiving input events. Upon release all handlers attached
409 * to the device have their start() method called so they have a change
410 * to synchronize device state with the rest of the system.
412 void input_release_device(struct input_handle
*handle
)
414 struct input_dev
*dev
= handle
->dev
;
416 mutex_lock(&dev
->mutex
);
417 __input_release_device(handle
);
418 mutex_unlock(&dev
->mutex
);
420 EXPORT_SYMBOL(input_release_device
);
423 * input_open_device - open input device
424 * @handle: handle through which device is being accessed
426 * This function should be called by input handlers when they
427 * want to start receive events from given input device.
429 int input_open_device(struct input_handle
*handle
)
431 struct input_dev
*dev
= handle
->dev
;
434 retval
= mutex_lock_interruptible(&dev
->mutex
);
438 if (dev
->going_away
) {
445 if (!dev
->users
++ && dev
->open
)
446 retval
= dev
->open(dev
);
450 if (!--handle
->open
) {
452 * Make sure we are not delivering any more events
453 * through this handle
460 mutex_unlock(&dev
->mutex
);
463 EXPORT_SYMBOL(input_open_device
);
465 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
467 struct input_dev
*dev
= handle
->dev
;
470 retval
= mutex_lock_interruptible(&dev
->mutex
);
475 retval
= dev
->flush(dev
, file
);
477 mutex_unlock(&dev
->mutex
);
480 EXPORT_SYMBOL(input_flush_device
);
483 * input_close_device - close input device
484 * @handle: handle through which device is being accessed
486 * This function should be called by input handlers when they
487 * want to stop receive events from given input device.
489 void input_close_device(struct input_handle
*handle
)
491 struct input_dev
*dev
= handle
->dev
;
493 mutex_lock(&dev
->mutex
);
495 __input_release_device(handle
);
497 if (!--dev
->users
&& dev
->close
)
500 if (!--handle
->open
) {
502 * synchronize_rcu() makes sure that input_pass_event()
503 * completed and that no more input events are delivered
504 * through this handle
509 mutex_unlock(&dev
->mutex
);
511 EXPORT_SYMBOL(input_close_device
);
514 * Prepare device for unregistering
516 static void input_disconnect_device(struct input_dev
*dev
)
518 struct input_handle
*handle
;
522 * Mark device as going away. Note that we take dev->mutex here
523 * not to protect access to dev->going_away but rather to ensure
524 * that there are no threads in the middle of input_open_device()
526 mutex_lock(&dev
->mutex
);
527 dev
->going_away
= true;
528 mutex_unlock(&dev
->mutex
);
530 spin_lock_irq(&dev
->event_lock
);
533 * Simulate keyup events for all pressed keys so that handlers
534 * are not left with "stuck" keys. The driver may continue
535 * generate events even after we done here but they will not
536 * reach any handlers.
538 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
539 for (code
= 0; code
<= KEY_MAX
; code
++) {
540 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
541 __test_and_clear_bit(code
, dev
->key
)) {
542 input_pass_event(dev
, EV_KEY
, code
, 0);
545 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
548 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
551 spin_unlock_irq(&dev
->event_lock
);
554 static int input_fetch_keycode(struct input_dev
*dev
, int scancode
)
556 switch (dev
->keycodesize
) {
558 return ((u8
*)dev
->keycode
)[scancode
];
561 return ((u16
*)dev
->keycode
)[scancode
];
564 return ((u32
*)dev
->keycode
)[scancode
];
568 static int input_default_getkeycode(struct input_dev
*dev
,
569 int scancode
, int *keycode
)
571 if (!dev
->keycodesize
)
574 if (scancode
>= dev
->keycodemax
)
577 *keycode
= input_fetch_keycode(dev
, scancode
);
582 static int input_default_setkeycode(struct input_dev
*dev
,
583 int scancode
, int keycode
)
588 if (scancode
>= dev
->keycodemax
)
591 if (!dev
->keycodesize
)
594 if (dev
->keycodesize
< sizeof(keycode
) && (keycode
>> (dev
->keycodesize
* 8)))
597 switch (dev
->keycodesize
) {
599 u8
*k
= (u8
*)dev
->keycode
;
600 old_keycode
= k
[scancode
];
601 k
[scancode
] = keycode
;
605 u16
*k
= (u16
*)dev
->keycode
;
606 old_keycode
= k
[scancode
];
607 k
[scancode
] = keycode
;
611 u32
*k
= (u32
*)dev
->keycode
;
612 old_keycode
= k
[scancode
];
613 k
[scancode
] = keycode
;
618 clear_bit(old_keycode
, dev
->keybit
);
619 set_bit(keycode
, dev
->keybit
);
621 for (i
= 0; i
< dev
->keycodemax
; i
++) {
622 if (input_fetch_keycode(dev
, i
) == old_keycode
) {
623 set_bit(old_keycode
, dev
->keybit
);
624 break; /* Setting the bit twice is useless, so break */
632 * input_get_keycode - retrieve keycode currently mapped to a given scancode
633 * @dev: input device which keymap is being queried
634 * @scancode: scancode (or its equivalent for device in question) for which
638 * This function should be called by anyone interested in retrieving current
639 * keymap. Presently keyboard and evdev handlers use it.
641 int input_get_keycode(struct input_dev
*dev
, int scancode
, int *keycode
)
646 return dev
->getkeycode(dev
, scancode
, keycode
);
648 EXPORT_SYMBOL(input_get_keycode
);
651 * input_get_keycode - assign new keycode to a given scancode
652 * @dev: input device which keymap is being updated
653 * @scancode: scancode (or its equivalent for device in question)
654 * @keycode: new keycode to be assigned to the scancode
656 * This function should be called by anyone needing to update current
657 * keymap. Presently keyboard and evdev handlers use it.
659 int input_set_keycode(struct input_dev
*dev
, int scancode
, int keycode
)
668 if (keycode
< 0 || keycode
> KEY_MAX
)
671 spin_lock_irqsave(&dev
->event_lock
, flags
);
673 retval
= dev
->getkeycode(dev
, scancode
, &old_keycode
);
677 retval
= dev
->setkeycode(dev
, scancode
, keycode
);
682 * Simulate keyup event if keycode is not present
683 * in the keymap anymore
685 if (test_bit(EV_KEY
, dev
->evbit
) &&
686 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
687 __test_and_clear_bit(old_keycode
, dev
->key
)) {
689 input_pass_event(dev
, EV_KEY
, old_keycode
, 0);
691 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
695 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
699 EXPORT_SYMBOL(input_set_keycode
);
701 #define MATCH_BIT(bit, max) \
702 for (i = 0; i < BITS_TO_LONGS(max); i++) \
703 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
705 if (i != BITS_TO_LONGS(max)) \
708 static const struct input_device_id
*input_match_device(const struct input_device_id
*id
,
709 struct input_dev
*dev
)
713 for (; id
->flags
|| id
->driver_info
; id
++) {
715 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
716 if (id
->bustype
!= dev
->id
.bustype
)
719 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
720 if (id
->vendor
!= dev
->id
.vendor
)
723 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
724 if (id
->product
!= dev
->id
.product
)
727 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
728 if (id
->version
!= dev
->id
.version
)
731 MATCH_BIT(evbit
, EV_MAX
);
732 MATCH_BIT(keybit
, KEY_MAX
);
733 MATCH_BIT(relbit
, REL_MAX
);
734 MATCH_BIT(absbit
, ABS_MAX
);
735 MATCH_BIT(mscbit
, MSC_MAX
);
736 MATCH_BIT(ledbit
, LED_MAX
);
737 MATCH_BIT(sndbit
, SND_MAX
);
738 MATCH_BIT(ffbit
, FF_MAX
);
739 MATCH_BIT(swbit
, SW_MAX
);
747 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
749 const struct input_device_id
*id
;
752 if (handler
->blacklist
&& input_match_device(handler
->blacklist
, dev
))
755 id
= input_match_device(handler
->id_table
, dev
);
759 error
= handler
->connect(handler
, dev
, id
);
760 if (error
&& error
!= -ENODEV
)
762 "input: failed to attach handler %s to device %s, "
764 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
771 static int input_bits_to_string(char *buf
, int buf_size
,
772 unsigned long bits
, bool skip_empty
)
776 if (INPUT_COMPAT_TEST
) {
777 u32 dword
= bits
>> 32;
778 if (dword
|| !skip_empty
)
779 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
781 dword
= bits
& 0xffffffffUL
;
782 if (dword
|| !skip_empty
|| len
)
783 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
786 if (bits
|| !skip_empty
)
787 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
793 #else /* !CONFIG_COMPAT */
795 static int input_bits_to_string(char *buf
, int buf_size
,
796 unsigned long bits
, bool skip_empty
)
798 return bits
|| !skip_empty
?
799 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
804 #ifdef CONFIG_PROC_FS
806 static struct proc_dir_entry
*proc_bus_input_dir
;
807 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
808 static int input_devices_state
;
810 static inline void input_wakeup_procfs_readers(void)
812 input_devices_state
++;
813 wake_up(&input_devices_poll_wait
);
816 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
818 poll_wait(file
, &input_devices_poll_wait
, wait
);
819 if (file
->f_version
!= input_devices_state
) {
820 file
->f_version
= input_devices_state
;
821 return POLLIN
| POLLRDNORM
;
827 union input_seq_state
{
835 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
837 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
840 /* We need to fit into seq->private pointer */
841 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
843 error
= mutex_lock_interruptible(&input_mutex
);
845 state
->mutex_acquired
= false;
846 return ERR_PTR(error
);
849 state
->mutex_acquired
= true;
851 return seq_list_start(&input_dev_list
, *pos
);
854 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
856 return seq_list_next(v
, &input_dev_list
, pos
);
859 static void input_seq_stop(struct seq_file
*seq
, void *v
)
861 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
863 if (state
->mutex_acquired
)
864 mutex_unlock(&input_mutex
);
867 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
868 unsigned long *bitmap
, int max
)
871 bool skip_empty
= true;
874 seq_printf(seq
, "B: %s=", name
);
876 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
877 if (input_bits_to_string(buf
, sizeof(buf
),
878 bitmap
[i
], skip_empty
)) {
880 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
885 * If no output was produced print a single 0.
893 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
895 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
896 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
897 struct input_handle
*handle
;
899 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
900 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
902 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
903 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
904 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
905 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
906 seq_printf(seq
, "H: Handlers=");
908 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
909 seq_printf(seq
, "%s ", handle
->name
);
912 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
913 if (test_bit(EV_KEY
, dev
->evbit
))
914 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
915 if (test_bit(EV_REL
, dev
->evbit
))
916 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
917 if (test_bit(EV_ABS
, dev
->evbit
))
918 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
919 if (test_bit(EV_MSC
, dev
->evbit
))
920 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
921 if (test_bit(EV_LED
, dev
->evbit
))
922 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
923 if (test_bit(EV_SND
, dev
->evbit
))
924 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
925 if (test_bit(EV_FF
, dev
->evbit
))
926 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
927 if (test_bit(EV_SW
, dev
->evbit
))
928 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
936 static const struct seq_operations input_devices_seq_ops
= {
937 .start
= input_devices_seq_start
,
938 .next
= input_devices_seq_next
,
939 .stop
= input_seq_stop
,
940 .show
= input_devices_seq_show
,
943 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
945 return seq_open(file
, &input_devices_seq_ops
);
948 static const struct file_operations input_devices_fileops
= {
949 .owner
= THIS_MODULE
,
950 .open
= input_proc_devices_open
,
951 .poll
= input_proc_devices_poll
,
954 .release
= seq_release
,
957 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
959 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
962 /* We need to fit into seq->private pointer */
963 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
965 error
= mutex_lock_interruptible(&input_mutex
);
967 state
->mutex_acquired
= false;
968 return ERR_PTR(error
);
971 state
->mutex_acquired
= true;
974 return seq_list_start(&input_handler_list
, *pos
);
977 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
979 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
981 state
->pos
= *pos
+ 1;
982 return seq_list_next(v
, &input_handler_list
, pos
);
985 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
987 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
988 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
990 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
992 seq_printf(seq
, " Minor=%d", handler
->minor
);
998 static const struct seq_operations input_handlers_seq_ops
= {
999 .start
= input_handlers_seq_start
,
1000 .next
= input_handlers_seq_next
,
1001 .stop
= input_seq_stop
,
1002 .show
= input_handlers_seq_show
,
1005 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1007 return seq_open(file
, &input_handlers_seq_ops
);
1010 static const struct file_operations input_handlers_fileops
= {
1011 .owner
= THIS_MODULE
,
1012 .open
= input_proc_handlers_open
,
1014 .llseek
= seq_lseek
,
1015 .release
= seq_release
,
1018 static int __init
input_proc_init(void)
1020 struct proc_dir_entry
*entry
;
1022 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1023 if (!proc_bus_input_dir
)
1026 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1027 &input_devices_fileops
);
1031 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1032 &input_handlers_fileops
);
1038 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1039 fail1
: remove_proc_entry("bus/input", NULL
);
1043 static void input_proc_exit(void)
1045 remove_proc_entry("devices", proc_bus_input_dir
);
1046 remove_proc_entry("handlers", proc_bus_input_dir
);
1047 remove_proc_entry("bus/input", NULL
);
1050 #else /* !CONFIG_PROC_FS */
1051 static inline void input_wakeup_procfs_readers(void) { }
1052 static inline int input_proc_init(void) { return 0; }
1053 static inline void input_proc_exit(void) { }
1056 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1057 static ssize_t input_dev_show_##name(struct device *dev, \
1058 struct device_attribute *attr, \
1061 struct input_dev *input_dev = to_input_dev(dev); \
1063 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1064 input_dev->name ? input_dev->name : ""); \
1066 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1068 INPUT_DEV_STRING_ATTR_SHOW(name
);
1069 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1070 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1072 static int input_print_modalias_bits(char *buf
, int size
,
1073 char name
, unsigned long *bm
,
1074 unsigned int min_bit
, unsigned int max_bit
)
1078 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1079 for (i
= min_bit
; i
< max_bit
; i
++)
1080 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1081 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1085 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1090 len
= snprintf(buf
, max(size
, 0),
1091 "input:b%04Xv%04Xp%04Xe%04X-",
1092 id
->id
.bustype
, id
->id
.vendor
,
1093 id
->id
.product
, id
->id
.version
);
1095 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1096 'e', id
->evbit
, 0, EV_MAX
);
1097 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1098 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1099 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1100 'r', id
->relbit
, 0, REL_MAX
);
1101 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1102 'a', id
->absbit
, 0, ABS_MAX
);
1103 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1104 'm', id
->mscbit
, 0, MSC_MAX
);
1105 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1106 'l', id
->ledbit
, 0, LED_MAX
);
1107 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1108 's', id
->sndbit
, 0, SND_MAX
);
1109 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1110 'f', id
->ffbit
, 0, FF_MAX
);
1111 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1112 'w', id
->swbit
, 0, SW_MAX
);
1115 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1120 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1121 struct device_attribute
*attr
,
1124 struct input_dev
*id
= to_input_dev(dev
);
1127 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1129 return min_t(int, len
, PAGE_SIZE
);
1131 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1133 static struct attribute
*input_dev_attrs
[] = {
1134 &dev_attr_name
.attr
,
1135 &dev_attr_phys
.attr
,
1136 &dev_attr_uniq
.attr
,
1137 &dev_attr_modalias
.attr
,
1141 static struct attribute_group input_dev_attr_group
= {
1142 .attrs
= input_dev_attrs
,
1145 #define INPUT_DEV_ID_ATTR(name) \
1146 static ssize_t input_dev_show_id_##name(struct device *dev, \
1147 struct device_attribute *attr, \
1150 struct input_dev *input_dev = to_input_dev(dev); \
1151 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1153 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1155 INPUT_DEV_ID_ATTR(bustype
);
1156 INPUT_DEV_ID_ATTR(vendor
);
1157 INPUT_DEV_ID_ATTR(product
);
1158 INPUT_DEV_ID_ATTR(version
);
1160 static struct attribute
*input_dev_id_attrs
[] = {
1161 &dev_attr_bustype
.attr
,
1162 &dev_attr_vendor
.attr
,
1163 &dev_attr_product
.attr
,
1164 &dev_attr_version
.attr
,
1168 static struct attribute_group input_dev_id_attr_group
= {
1170 .attrs
= input_dev_id_attrs
,
1173 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1174 int max
, int add_cr
)
1178 bool skip_empty
= true;
1180 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1181 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1182 bitmap
[i
], skip_empty
);
1186 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1191 * If no output was produced print a single 0.
1194 len
= snprintf(buf
, buf_size
, "%d", 0);
1197 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1202 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1203 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1204 struct device_attribute *attr, \
1207 struct input_dev *input_dev = to_input_dev(dev); \
1208 int len = input_print_bitmap(buf, PAGE_SIZE, \
1209 input_dev->bm##bit, ev##_MAX, \
1211 return min_t(int, len, PAGE_SIZE); \
1213 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1215 INPUT_DEV_CAP_ATTR(EV
, ev
);
1216 INPUT_DEV_CAP_ATTR(KEY
, key
);
1217 INPUT_DEV_CAP_ATTR(REL
, rel
);
1218 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1219 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1220 INPUT_DEV_CAP_ATTR(LED
, led
);
1221 INPUT_DEV_CAP_ATTR(SND
, snd
);
1222 INPUT_DEV_CAP_ATTR(FF
, ff
);
1223 INPUT_DEV_CAP_ATTR(SW
, sw
);
1225 static struct attribute
*input_dev_caps_attrs
[] = {
1238 static struct attribute_group input_dev_caps_attr_group
= {
1239 .name
= "capabilities",
1240 .attrs
= input_dev_caps_attrs
,
1243 static const struct attribute_group
*input_dev_attr_groups
[] = {
1244 &input_dev_attr_group
,
1245 &input_dev_id_attr_group
,
1246 &input_dev_caps_attr_group
,
1250 static void input_dev_release(struct device
*device
)
1252 struct input_dev
*dev
= to_input_dev(device
);
1254 input_ff_destroy(dev
);
1257 module_put(THIS_MODULE
);
1261 * Input uevent interface - loading event handlers based on
1264 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1265 const char *name
, unsigned long *bitmap
, int max
)
1269 if (add_uevent_var(env
, "%s=", name
))
1272 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1273 sizeof(env
->buf
) - env
->buflen
,
1274 bitmap
, max
, false);
1275 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1282 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1283 struct input_dev
*dev
)
1287 if (add_uevent_var(env
, "MODALIAS="))
1290 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1291 sizeof(env
->buf
) - env
->buflen
,
1293 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1300 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1302 int err = add_uevent_var(env, fmt, val); \
1307 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1309 int err = input_add_uevent_bm_var(env, name, bm, max); \
1314 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1316 int err = input_add_uevent_modalias_var(env, dev); \
1321 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1323 struct input_dev
*dev
= to_input_dev(device
);
1325 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1326 dev
->id
.bustype
, dev
->id
.vendor
,
1327 dev
->id
.product
, dev
->id
.version
);
1329 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1331 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1333 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1335 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1336 if (test_bit(EV_KEY
, dev
->evbit
))
1337 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1338 if (test_bit(EV_REL
, dev
->evbit
))
1339 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1340 if (test_bit(EV_ABS
, dev
->evbit
))
1341 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1342 if (test_bit(EV_MSC
, dev
->evbit
))
1343 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1344 if (test_bit(EV_LED
, dev
->evbit
))
1345 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1346 if (test_bit(EV_SND
, dev
->evbit
))
1347 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1348 if (test_bit(EV_FF
, dev
->evbit
))
1349 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1350 if (test_bit(EV_SW
, dev
->evbit
))
1351 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1353 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1358 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1363 if (!test_bit(EV_##type, dev->evbit)) \
1366 for (i = 0; i < type##_MAX; i++) { \
1367 if (!test_bit(i, dev->bits##bit)) \
1370 active = test_bit(i, dev->bits); \
1371 if (!active && !on) \
1374 dev->event(dev, EV_##type, i, on ? active : 0); \
1379 static void input_dev_reset(struct input_dev
*dev
, bool activate
)
1384 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1385 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1387 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1388 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1389 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1393 static int input_dev_suspend(struct device
*dev
)
1395 struct input_dev
*input_dev
= to_input_dev(dev
);
1397 mutex_lock(&input_dev
->mutex
);
1398 input_dev_reset(input_dev
, false);
1399 mutex_unlock(&input_dev
->mutex
);
1404 static int input_dev_resume(struct device
*dev
)
1406 struct input_dev
*input_dev
= to_input_dev(dev
);
1408 mutex_lock(&input_dev
->mutex
);
1409 input_dev_reset(input_dev
, true);
1410 mutex_unlock(&input_dev
->mutex
);
1415 static const struct dev_pm_ops input_dev_pm_ops
= {
1416 .suspend
= input_dev_suspend
,
1417 .resume
= input_dev_resume
,
1418 .poweroff
= input_dev_suspend
,
1419 .restore
= input_dev_resume
,
1421 #endif /* CONFIG_PM */
1423 static struct device_type input_dev_type
= {
1424 .groups
= input_dev_attr_groups
,
1425 .release
= input_dev_release
,
1426 .uevent
= input_dev_uevent
,
1428 .pm
= &input_dev_pm_ops
,
1432 static char *input_devnode(struct device
*dev
, mode_t
*mode
)
1434 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1437 struct class input_class
= {
1439 .devnode
= input_devnode
,
1441 EXPORT_SYMBOL_GPL(input_class
);
1444 * input_allocate_device - allocate memory for new input device
1446 * Returns prepared struct input_dev or NULL.
1448 * NOTE: Use input_free_device() to free devices that have not been
1449 * registered; input_unregister_device() should be used for already
1450 * registered devices.
1452 struct input_dev
*input_allocate_device(void)
1454 struct input_dev
*dev
;
1456 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1458 dev
->dev
.type
= &input_dev_type
;
1459 dev
->dev
.class = &input_class
;
1460 device_initialize(&dev
->dev
);
1461 mutex_init(&dev
->mutex
);
1462 spin_lock_init(&dev
->event_lock
);
1463 INIT_LIST_HEAD(&dev
->h_list
);
1464 INIT_LIST_HEAD(&dev
->node
);
1466 __module_get(THIS_MODULE
);
1471 EXPORT_SYMBOL(input_allocate_device
);
1474 * input_free_device - free memory occupied by input_dev structure
1475 * @dev: input device to free
1477 * This function should only be used if input_register_device()
1478 * was not called yet or if it failed. Once device was registered
1479 * use input_unregister_device() and memory will be freed once last
1480 * reference to the device is dropped.
1482 * Device should be allocated by input_allocate_device().
1484 * NOTE: If there are references to the input device then memory
1485 * will not be freed until last reference is dropped.
1487 void input_free_device(struct input_dev
*dev
)
1490 input_put_device(dev
);
1492 EXPORT_SYMBOL(input_free_device
);
1495 * input_set_capability - mark device as capable of a certain event
1496 * @dev: device that is capable of emitting or accepting event
1497 * @type: type of the event (EV_KEY, EV_REL, etc...)
1500 * In addition to setting up corresponding bit in appropriate capability
1501 * bitmap the function also adjusts dev->evbit.
1503 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1507 __set_bit(code
, dev
->keybit
);
1511 __set_bit(code
, dev
->relbit
);
1515 __set_bit(code
, dev
->absbit
);
1519 __set_bit(code
, dev
->mscbit
);
1523 __set_bit(code
, dev
->swbit
);
1527 __set_bit(code
, dev
->ledbit
);
1531 __set_bit(code
, dev
->sndbit
);
1535 __set_bit(code
, dev
->ffbit
);
1544 "input_set_capability: unknown type %u (code %u)\n",
1550 __set_bit(type
, dev
->evbit
);
1552 EXPORT_SYMBOL(input_set_capability
);
1555 * input_register_device - register device with input core
1556 * @dev: device to be registered
1558 * This function registers device with input core. The device must be
1559 * allocated with input_allocate_device() and all it's capabilities
1560 * set up before registering.
1561 * If function fails the device must be freed with input_free_device().
1562 * Once device has been successfully registered it can be unregistered
1563 * with input_unregister_device(); input_free_device() should not be
1564 * called in this case.
1566 int input_register_device(struct input_dev
*dev
)
1568 static atomic_t input_no
= ATOMIC_INIT(0);
1569 struct input_handler
*handler
;
1573 __set_bit(EV_SYN
, dev
->evbit
);
1576 * If delay and period are pre-set by the driver, then autorepeating
1577 * is handled by the driver itself and we don't do it in input.c.
1580 init_timer(&dev
->timer
);
1581 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
1582 dev
->timer
.data
= (long) dev
;
1583 dev
->timer
.function
= input_repeat_key
;
1584 dev
->rep
[REP_DELAY
] = 250;
1585 dev
->rep
[REP_PERIOD
] = 33;
1588 if (!dev
->getkeycode
)
1589 dev
->getkeycode
= input_default_getkeycode
;
1591 if (!dev
->setkeycode
)
1592 dev
->setkeycode
= input_default_setkeycode
;
1594 dev_set_name(&dev
->dev
, "input%ld",
1595 (unsigned long) atomic_inc_return(&input_no
) - 1);
1597 error
= device_add(&dev
->dev
);
1601 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1602 printk(KERN_INFO
"input: %s as %s\n",
1603 dev
->name
? dev
->name
: "Unspecified device", path
? path
: "N/A");
1606 error
= mutex_lock_interruptible(&input_mutex
);
1608 device_del(&dev
->dev
);
1612 list_add_tail(&dev
->node
, &input_dev_list
);
1614 list_for_each_entry(handler
, &input_handler_list
, node
)
1615 input_attach_handler(dev
, handler
);
1617 input_wakeup_procfs_readers();
1619 mutex_unlock(&input_mutex
);
1623 EXPORT_SYMBOL(input_register_device
);
1626 * input_unregister_device - unregister previously registered device
1627 * @dev: device to be unregistered
1629 * This function unregisters an input device. Once device is unregistered
1630 * the caller should not try to access it as it may get freed at any moment.
1632 void input_unregister_device(struct input_dev
*dev
)
1634 struct input_handle
*handle
, *next
;
1636 input_disconnect_device(dev
);
1638 mutex_lock(&input_mutex
);
1640 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
1641 handle
->handler
->disconnect(handle
);
1642 WARN_ON(!list_empty(&dev
->h_list
));
1644 del_timer_sync(&dev
->timer
);
1645 list_del_init(&dev
->node
);
1647 input_wakeup_procfs_readers();
1649 mutex_unlock(&input_mutex
);
1651 device_unregister(&dev
->dev
);
1653 EXPORT_SYMBOL(input_unregister_device
);
1656 * input_register_handler - register a new input handler
1657 * @handler: handler to be registered
1659 * This function registers a new input handler (interface) for input
1660 * devices in the system and attaches it to all input devices that
1661 * are compatible with the handler.
1663 int input_register_handler(struct input_handler
*handler
)
1665 struct input_dev
*dev
;
1668 retval
= mutex_lock_interruptible(&input_mutex
);
1672 INIT_LIST_HEAD(&handler
->h_list
);
1674 if (handler
->fops
!= NULL
) {
1675 if (input_table
[handler
->minor
>> 5]) {
1679 input_table
[handler
->minor
>> 5] = handler
;
1682 list_add_tail(&handler
->node
, &input_handler_list
);
1684 list_for_each_entry(dev
, &input_dev_list
, node
)
1685 input_attach_handler(dev
, handler
);
1687 input_wakeup_procfs_readers();
1690 mutex_unlock(&input_mutex
);
1693 EXPORT_SYMBOL(input_register_handler
);
1696 * input_unregister_handler - unregisters an input handler
1697 * @handler: handler to be unregistered
1699 * This function disconnects a handler from its input devices and
1700 * removes it from lists of known handlers.
1702 void input_unregister_handler(struct input_handler
*handler
)
1704 struct input_handle
*handle
, *next
;
1706 mutex_lock(&input_mutex
);
1708 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
1709 handler
->disconnect(handle
);
1710 WARN_ON(!list_empty(&handler
->h_list
));
1712 list_del_init(&handler
->node
);
1714 if (handler
->fops
!= NULL
)
1715 input_table
[handler
->minor
>> 5] = NULL
;
1717 input_wakeup_procfs_readers();
1719 mutex_unlock(&input_mutex
);
1721 EXPORT_SYMBOL(input_unregister_handler
);
1724 * input_handler_for_each_handle - handle iterator
1725 * @handler: input handler to iterate
1726 * @data: data for the callback
1727 * @fn: function to be called for each handle
1729 * Iterate over @bus's list of devices, and call @fn for each, passing
1730 * it @data and stop when @fn returns a non-zero value. The function is
1731 * using RCU to traverse the list and therefore may be usind in atonic
1732 * contexts. The @fn callback is invoked from RCU critical section and
1733 * thus must not sleep.
1735 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
1736 int (*fn
)(struct input_handle
*, void *))
1738 struct input_handle
*handle
;
1743 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
1744 retval
= fn(handle
, data
);
1753 EXPORT_SYMBOL(input_handler_for_each_handle
);
1756 * input_register_handle - register a new input handle
1757 * @handle: handle to register
1759 * This function puts a new input handle onto device's
1760 * and handler's lists so that events can flow through
1761 * it once it is opened using input_open_device().
1763 * This function is supposed to be called from handler's
1766 int input_register_handle(struct input_handle
*handle
)
1768 struct input_handler
*handler
= handle
->handler
;
1769 struct input_dev
*dev
= handle
->dev
;
1773 * We take dev->mutex here to prevent race with
1774 * input_release_device().
1776 error
= mutex_lock_interruptible(&dev
->mutex
);
1779 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
1780 mutex_unlock(&dev
->mutex
);
1783 * Since we are supposed to be called from ->connect()
1784 * which is mutually exclusive with ->disconnect()
1785 * we can't be racing with input_unregister_handle()
1786 * and so separate lock is not needed here.
1788 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
1791 handler
->start(handle
);
1795 EXPORT_SYMBOL(input_register_handle
);
1798 * input_unregister_handle - unregister an input handle
1799 * @handle: handle to unregister
1801 * This function removes input handle from device's
1802 * and handler's lists.
1804 * This function is supposed to be called from handler's
1805 * disconnect() method.
1807 void input_unregister_handle(struct input_handle
*handle
)
1809 struct input_dev
*dev
= handle
->dev
;
1811 list_del_rcu(&handle
->h_node
);
1814 * Take dev->mutex to prevent race with input_release_device().
1816 mutex_lock(&dev
->mutex
);
1817 list_del_rcu(&handle
->d_node
);
1818 mutex_unlock(&dev
->mutex
);
1822 EXPORT_SYMBOL(input_unregister_handle
);
1824 static int input_open_file(struct inode
*inode
, struct file
*file
)
1826 struct input_handler
*handler
;
1827 const struct file_operations
*old_fops
, *new_fops
= NULL
;
1831 /* No load-on-demand here? */
1832 handler
= input_table
[iminor(inode
) >> 5];
1833 if (!handler
|| !(new_fops
= fops_get(handler
->fops
))) {
1839 * That's _really_ odd. Usually NULL ->open means "nothing special",
1840 * not "no device". Oh, well...
1842 if (!new_fops
->open
) {
1847 old_fops
= file
->f_op
;
1848 file
->f_op
= new_fops
;
1850 err
= new_fops
->open(inode
, file
);
1853 fops_put(file
->f_op
);
1854 file
->f_op
= fops_get(old_fops
);
1862 static const struct file_operations input_fops
= {
1863 .owner
= THIS_MODULE
,
1864 .open
= input_open_file
,
1867 static void __init
input_init_abs_bypass(void)
1869 const unsigned int *p
;
1871 for (p
= input_abs_bypass_init_data
; *p
; p
++)
1872 input_abs_bypass
[BIT_WORD(*p
)] |= BIT_MASK(*p
);
1875 static int __init
input_init(void)
1879 input_init_abs_bypass();
1881 err
= class_register(&input_class
);
1883 printk(KERN_ERR
"input: unable to register input_dev class\n");
1887 err
= input_proc_init();
1891 err
= register_chrdev(INPUT_MAJOR
, "input", &input_fops
);
1893 printk(KERN_ERR
"input: unable to register char major %d", INPUT_MAJOR
);
1899 fail2
: input_proc_exit();
1900 fail1
: class_unregister(&input_class
);
1904 static void __exit
input_exit(void)
1907 unregister_chrdev(INPUT_MAJOR
, "input");
1908 class_unregister(&input_class
);
1911 subsys_initcall(input_init
);
1912 module_exit(input_exit
);