1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version
[] = DRV_VERSION
;
36 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl
[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
88 int e1000_up(struct e1000_adapter
*adapter
);
89 void e1000_down(struct e1000_adapter
*adapter
);
90 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
91 void e1000_reset(struct e1000_adapter
*adapter
);
92 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
93 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
94 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
95 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
96 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
97 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
98 struct e1000_tx_ring
*txdr
);
99 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
100 struct e1000_rx_ring
*rxdr
);
101 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*tx_ring
);
103 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rx_ring
);
105 void e1000_update_stats(struct e1000_adapter
*adapter
);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
110 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
111 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
112 static int e1000_sw_init(struct e1000_adapter
*adapter
);
113 static int e1000_open(struct net_device
*netdev
);
114 static int e1000_close(struct net_device
*netdev
);
115 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
116 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
117 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
120 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
121 struct e1000_tx_ring
*tx_ring
);
122 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
123 struct e1000_rx_ring
*rx_ring
);
124 static void e1000_set_rx_mode(struct net_device
*netdev
);
125 static void e1000_update_phy_info(unsigned long data
);
126 static void e1000_watchdog(unsigned long data
);
127 static void e1000_82547_tx_fifo_stall(unsigned long data
);
128 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
129 struct net_device
*netdev
);
130 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
131 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
132 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
133 static irqreturn_t
e1000_intr(int irq
, void *data
);
134 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
135 struct e1000_tx_ring
*tx_ring
);
136 static int e1000_clean(struct napi_struct
*napi
, int budget
);
137 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
138 struct e1000_rx_ring
*rx_ring
,
139 int *work_done
, int work_to_do
);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
141 struct e1000_rx_ring
*rx_ring
,
142 int *work_done
, int work_to_do
);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
144 struct e1000_rx_ring
*rx_ring
,
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
147 struct e1000_rx_ring
*rx_ring
,
149 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
150 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
152 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
153 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
154 static void e1000_tx_timeout(struct net_device
*dev
);
155 static void e1000_reset_task(struct work_struct
*work
);
156 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
158 struct sk_buff
*skb
);
160 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
161 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
162 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
163 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
166 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
167 static int e1000_resume(struct pci_dev
*pdev
);
169 static void e1000_shutdown(struct pci_dev
*pdev
);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device
*netdev
);
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
178 module_param(copybreak
, uint
, 0644);
179 MODULE_PARM_DESC(copybreak
,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
183 pci_channel_state_t state
);
184 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
185 static void e1000_io_resume(struct pci_dev
*pdev
);
187 static struct pci_error_handlers e1000_err_handler
= {
188 .error_detected
= e1000_io_error_detected
,
189 .slot_reset
= e1000_io_slot_reset
,
190 .resume
= e1000_io_resume
,
193 static struct pci_driver e1000_driver
= {
194 .name
= e1000_driver_name
,
195 .id_table
= e1000_pci_tbl
,
196 .probe
= e1000_probe
,
197 .remove
= __devexit_p(e1000_remove
),
199 /* Power Managment Hooks */
200 .suspend
= e1000_suspend
,
201 .resume
= e1000_resume
,
203 .shutdown
= e1000_shutdown
,
204 .err_handler
= &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION
);
212 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
213 module_param(debug
, int, 0);
214 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
217 * e1000_init_module - Driver Registration Routine
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
223 static int __init
e1000_init_module(void)
226 printk(KERN_INFO
"%s - version %s\n",
227 e1000_driver_string
, e1000_driver_version
);
229 printk(KERN_INFO
"%s\n", e1000_copyright
);
231 ret
= pci_register_driver(&e1000_driver
);
232 if (copybreak
!= COPYBREAK_DEFAULT
) {
234 printk(KERN_INFO
"e1000: copybreak disabled\n");
236 printk(KERN_INFO
"e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak
);
242 module_init(e1000_init_module
);
245 * e1000_exit_module - Driver Exit Cleanup Routine
247 * e1000_exit_module is called just before the driver is removed
251 static void __exit
e1000_exit_module(void)
253 pci_unregister_driver(&e1000_driver
);
256 module_exit(e1000_exit_module
);
258 static int e1000_request_irq(struct e1000_adapter
*adapter
)
260 struct net_device
*netdev
= adapter
->netdev
;
261 irq_handler_t handler
= e1000_intr
;
262 int irq_flags
= IRQF_SHARED
;
265 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
269 "Unable to allocate interrupt Error: %d\n", err
);
275 static void e1000_free_irq(struct e1000_adapter
*adapter
)
277 struct net_device
*netdev
= adapter
->netdev
;
279 free_irq(adapter
->pdev
->irq
, netdev
);
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
287 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
289 struct e1000_hw
*hw
= &adapter
->hw
;
293 synchronize_irq(adapter
->pdev
->irq
);
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
301 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
303 struct e1000_hw
*hw
= &adapter
->hw
;
305 ew32(IMS
, IMS_ENABLE_MASK
);
309 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
311 struct e1000_hw
*hw
= &adapter
->hw
;
312 struct net_device
*netdev
= adapter
->netdev
;
313 u16 vid
= hw
->mng_cookie
.vlan_id
;
314 u16 old_vid
= adapter
->mng_vlan_id
;
315 if (adapter
->vlgrp
) {
316 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
317 if (hw
->mng_cookie
.status
&
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
319 e1000_vlan_rx_add_vid(netdev
, vid
);
320 adapter
->mng_vlan_id
= vid
;
322 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
324 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
326 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
327 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
329 adapter
->mng_vlan_id
= vid
;
333 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
335 struct e1000_hw
*hw
= &adapter
->hw
;
337 if (adapter
->en_mng_pt
) {
338 u32 manc
= er32(MANC
);
340 /* disable hardware interception of ARP */
341 manc
&= ~(E1000_MANC_ARP_EN
);
347 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
349 struct e1000_hw
*hw
= &adapter
->hw
;
351 if (adapter
->en_mng_pt
) {
352 u32 manc
= er32(MANC
);
354 /* re-enable hardware interception of ARP */
355 manc
|= E1000_MANC_ARP_EN
;
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
365 static void e1000_configure(struct e1000_adapter
*adapter
)
367 struct net_device
*netdev
= adapter
->netdev
;
370 e1000_set_rx_mode(netdev
);
372 e1000_restore_vlan(adapter
);
373 e1000_init_manageability(adapter
);
375 e1000_configure_tx(adapter
);
376 e1000_setup_rctl(adapter
);
377 e1000_configure_rx(adapter
);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
382 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
383 adapter
->alloc_rx_buf(adapter
, ring
,
384 E1000_DESC_UNUSED(ring
));
387 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
390 int e1000_up(struct e1000_adapter
*adapter
)
392 struct e1000_hw
*hw
= &adapter
->hw
;
394 /* hardware has been reset, we need to reload some things */
395 e1000_configure(adapter
);
397 clear_bit(__E1000_DOWN
, &adapter
->flags
);
399 napi_enable(&adapter
->napi
);
401 e1000_irq_enable(adapter
);
403 netif_wake_queue(adapter
->netdev
);
405 /* fire a link change interrupt to start the watchdog */
406 ew32(ICS
, E1000_ICS_LSC
);
411 * e1000_power_up_phy - restore link in case the phy was powered down
412 * @adapter: address of board private structure
414 * The phy may be powered down to save power and turn off link when the
415 * driver is unloaded and wake on lan is not enabled (among others)
416 * *** this routine MUST be followed by a call to e1000_reset ***
420 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
422 struct e1000_hw
*hw
= &adapter
->hw
;
425 /* Just clear the power down bit to wake the phy back up */
426 if (hw
->media_type
== e1000_media_type_copper
) {
427 /* according to the manual, the phy will retain its
428 * settings across a power-down/up cycle */
429 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
430 mii_reg
&= ~MII_CR_POWER_DOWN
;
431 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
435 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
437 struct e1000_hw
*hw
= &adapter
->hw
;
439 /* Power down the PHY so no link is implied when interface is down *
440 * The PHY cannot be powered down if any of the following is true *
443 * (c) SoL/IDER session is active */
444 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
445 hw
->media_type
== e1000_media_type_copper
) {
448 switch (hw
->mac_type
) {
451 case e1000_82545_rev_3
:
453 case e1000_82546_rev_3
:
455 case e1000_82541_rev_2
:
457 case e1000_82547_rev_2
:
458 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
464 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
465 mii_reg
|= MII_CR_POWER_DOWN
;
466 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
473 void e1000_down(struct e1000_adapter
*adapter
)
475 struct e1000_hw
*hw
= &adapter
->hw
;
476 struct net_device
*netdev
= adapter
->netdev
;
479 /* signal that we're down so the interrupt handler does not
480 * reschedule our watchdog timer */
481 set_bit(__E1000_DOWN
, &adapter
->flags
);
483 /* disable receives in the hardware */
485 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
486 /* flush and sleep below */
488 netif_tx_disable(netdev
);
490 /* disable transmits in the hardware */
492 tctl
&= ~E1000_TCTL_EN
;
494 /* flush both disables and wait for them to finish */
498 napi_disable(&adapter
->napi
);
500 e1000_irq_disable(adapter
);
502 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
503 del_timer_sync(&adapter
->watchdog_timer
);
504 del_timer_sync(&adapter
->phy_info_timer
);
506 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
507 adapter
->link_speed
= 0;
508 adapter
->link_duplex
= 0;
509 netif_carrier_off(netdev
);
511 e1000_reset(adapter
);
512 e1000_clean_all_tx_rings(adapter
);
513 e1000_clean_all_rx_rings(adapter
);
516 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
518 WARN_ON(in_interrupt());
519 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
523 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
526 void e1000_reset(struct e1000_adapter
*adapter
)
528 struct e1000_hw
*hw
= &adapter
->hw
;
529 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
530 bool legacy_pba_adjust
= false;
533 /* Repartition Pba for greater than 9k mtu
534 * To take effect CTRL.RST is required.
537 switch (hw
->mac_type
) {
538 case e1000_82542_rev2_0
:
539 case e1000_82542_rev2_1
:
544 case e1000_82541_rev_2
:
545 legacy_pba_adjust
= true;
549 case e1000_82545_rev_3
:
551 case e1000_82546_rev_3
:
555 case e1000_82547_rev_2
:
556 legacy_pba_adjust
= true;
559 case e1000_undefined
:
564 if (legacy_pba_adjust
) {
565 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
566 pba
-= 8; /* allocate more FIFO for Tx */
568 if (hw
->mac_type
== e1000_82547
) {
569 adapter
->tx_fifo_head
= 0;
570 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
571 adapter
->tx_fifo_size
=
572 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
573 atomic_set(&adapter
->tx_fifo_stall
, 0);
575 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
576 /* adjust PBA for jumbo frames */
579 /* To maintain wire speed transmits, the Tx FIFO should be
580 * large enough to accommodate two full transmit packets,
581 * rounded up to the next 1KB and expressed in KB. Likewise,
582 * the Rx FIFO should be large enough to accommodate at least
583 * one full receive packet and is similarly rounded up and
584 * expressed in KB. */
586 /* upper 16 bits has Tx packet buffer allocation size in KB */
587 tx_space
= pba
>> 16;
588 /* lower 16 bits has Rx packet buffer allocation size in KB */
591 * the tx fifo also stores 16 bytes of information about the tx
592 * but don't include ethernet FCS because hardware appends it
594 min_tx_space
= (hw
->max_frame_size
+
595 sizeof(struct e1000_tx_desc
) -
597 min_tx_space
= ALIGN(min_tx_space
, 1024);
599 /* software strips receive CRC, so leave room for it */
600 min_rx_space
= hw
->max_frame_size
;
601 min_rx_space
= ALIGN(min_rx_space
, 1024);
604 /* If current Tx allocation is less than the min Tx FIFO size,
605 * and the min Tx FIFO size is less than the current Rx FIFO
606 * allocation, take space away from current Rx allocation */
607 if (tx_space
< min_tx_space
&&
608 ((min_tx_space
- tx_space
) < pba
)) {
609 pba
= pba
- (min_tx_space
- tx_space
);
611 /* PCI/PCIx hardware has PBA alignment constraints */
612 switch (hw
->mac_type
) {
613 case e1000_82545
... e1000_82546_rev_3
:
614 pba
&= ~(E1000_PBA_8K
- 1);
620 /* if short on rx space, rx wins and must trump tx
621 * adjustment or use Early Receive if available */
622 if (pba
< min_rx_space
)
630 * flow control settings:
631 * The high water mark must be low enough to fit one full frame
632 * (or the size used for early receive) above it in the Rx FIFO.
633 * Set it to the lower of:
634 * - 90% of the Rx FIFO size, and
635 * - the full Rx FIFO size minus the early receive size (for parts
636 * with ERT support assuming ERT set to E1000_ERT_2048), or
637 * - the full Rx FIFO size minus one full frame
639 hwm
= min(((pba
<< 10) * 9 / 10),
640 ((pba
<< 10) - hw
->max_frame_size
));
642 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
643 hw
->fc_low_water
= hw
->fc_high_water
- 8;
644 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
646 hw
->fc
= hw
->original_fc
;
648 /* Allow time for pending master requests to run */
650 if (hw
->mac_type
>= e1000_82544
)
653 if (e1000_init_hw(hw
))
654 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
655 e1000_update_mng_vlan(adapter
);
657 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
658 if (hw
->mac_type
>= e1000_82544
&&
660 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
661 u32 ctrl
= er32(CTRL
);
662 /* clear phy power management bit if we are in gig only mode,
663 * which if enabled will attempt negotiation to 100Mb, which
664 * can cause a loss of link at power off or driver unload */
665 ctrl
&= ~E1000_CTRL_SWDPIN3
;
669 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
670 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
672 e1000_reset_adaptive(hw
);
673 e1000_phy_get_info(hw
, &adapter
->phy_info
);
675 e1000_release_manageability(adapter
);
679 * Dump the eeprom for users having checksum issues
681 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
683 struct net_device
*netdev
= adapter
->netdev
;
684 struct ethtool_eeprom eeprom
;
685 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
688 u16 csum_old
, csum_new
= 0;
690 eeprom
.len
= ops
->get_eeprom_len(netdev
);
693 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
695 printk(KERN_ERR
"Unable to allocate memory to dump EEPROM"
700 ops
->get_eeprom(netdev
, &eeprom
, data
);
702 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
703 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
704 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
705 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
706 csum_new
= EEPROM_SUM
- csum_new
;
708 printk(KERN_ERR
"/*********************/\n");
709 printk(KERN_ERR
"Current EEPROM Checksum : 0x%04x\n", csum_old
);
710 printk(KERN_ERR
"Calculated : 0x%04x\n", csum_new
);
712 printk(KERN_ERR
"Offset Values\n");
713 printk(KERN_ERR
"======== ======\n");
714 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
716 printk(KERN_ERR
"Include this output when contacting your support "
718 printk(KERN_ERR
"This is not a software error! Something bad "
719 "happened to your hardware or\n");
720 printk(KERN_ERR
"EEPROM image. Ignoring this "
721 "problem could result in further problems,\n");
722 printk(KERN_ERR
"possibly loss of data, corruption or system hangs!\n");
723 printk(KERN_ERR
"The MAC Address will be reset to 00:00:00:00:00:00, "
724 "which is invalid\n");
725 printk(KERN_ERR
"and requires you to set the proper MAC "
726 "address manually before continuing\n");
727 printk(KERN_ERR
"to enable this network device.\n");
728 printk(KERN_ERR
"Please inspect the EEPROM dump and report the issue "
729 "to your hardware vendor\n");
730 printk(KERN_ERR
"or Intel Customer Support.\n");
731 printk(KERN_ERR
"/*********************/\n");
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
738 * @pdev: PCI device information struct
740 * Return true if an adapter needs ioport resources
742 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
744 switch (pdev
->device
) {
745 case E1000_DEV_ID_82540EM
:
746 case E1000_DEV_ID_82540EM_LOM
:
747 case E1000_DEV_ID_82540EP
:
748 case E1000_DEV_ID_82540EP_LOM
:
749 case E1000_DEV_ID_82540EP_LP
:
750 case E1000_DEV_ID_82541EI
:
751 case E1000_DEV_ID_82541EI_MOBILE
:
752 case E1000_DEV_ID_82541ER
:
753 case E1000_DEV_ID_82541ER_LOM
:
754 case E1000_DEV_ID_82541GI
:
755 case E1000_DEV_ID_82541GI_LF
:
756 case E1000_DEV_ID_82541GI_MOBILE
:
757 case E1000_DEV_ID_82544EI_COPPER
:
758 case E1000_DEV_ID_82544EI_FIBER
:
759 case E1000_DEV_ID_82544GC_COPPER
:
760 case E1000_DEV_ID_82544GC_LOM
:
761 case E1000_DEV_ID_82545EM_COPPER
:
762 case E1000_DEV_ID_82545EM_FIBER
:
763 case E1000_DEV_ID_82546EB_COPPER
:
764 case E1000_DEV_ID_82546EB_FIBER
:
765 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
772 static const struct net_device_ops e1000_netdev_ops
= {
773 .ndo_open
= e1000_open
,
774 .ndo_stop
= e1000_close
,
775 .ndo_start_xmit
= e1000_xmit_frame
,
776 .ndo_get_stats
= e1000_get_stats
,
777 .ndo_set_rx_mode
= e1000_set_rx_mode
,
778 .ndo_set_mac_address
= e1000_set_mac
,
779 .ndo_tx_timeout
= e1000_tx_timeout
,
780 .ndo_change_mtu
= e1000_change_mtu
,
781 .ndo_do_ioctl
= e1000_ioctl
,
782 .ndo_validate_addr
= eth_validate_addr
,
784 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
785 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
786 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
787 #ifdef CONFIG_NET_POLL_CONTROLLER
788 .ndo_poll_controller
= e1000_netpoll
,
793 * e1000_probe - Device Initialization Routine
794 * @pdev: PCI device information struct
795 * @ent: entry in e1000_pci_tbl
797 * Returns 0 on success, negative on failure
799 * e1000_probe initializes an adapter identified by a pci_dev structure.
800 * The OS initialization, configuring of the adapter private structure,
801 * and a hardware reset occur.
803 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
804 const struct pci_device_id
*ent
)
806 struct net_device
*netdev
;
807 struct e1000_adapter
*adapter
;
810 static int cards_found
= 0;
811 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
812 int i
, err
, pci_using_dac
;
814 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
815 int bars
, need_ioport
;
817 /* do not allocate ioport bars when not needed */
818 need_ioport
= e1000_is_need_ioport(pdev
);
820 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
821 err
= pci_enable_device(pdev
);
823 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
824 err
= pci_enable_device_mem(pdev
);
829 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)) &&
830 !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
833 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
835 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
837 E1000_ERR("No usable DMA configuration, "
845 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
849 pci_set_master(pdev
);
852 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
854 goto err_alloc_etherdev
;
856 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
858 pci_set_drvdata(pdev
, netdev
);
859 adapter
= netdev_priv(netdev
);
860 adapter
->netdev
= netdev
;
861 adapter
->pdev
= pdev
;
862 adapter
->msg_enable
= (1 << debug
) - 1;
863 adapter
->bars
= bars
;
864 adapter
->need_ioport
= need_ioport
;
870 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
874 if (adapter
->need_ioport
) {
875 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
876 if (pci_resource_len(pdev
, i
) == 0)
878 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
879 hw
->io_base
= pci_resource_start(pdev
, i
);
885 netdev
->netdev_ops
= &e1000_netdev_ops
;
886 e1000_set_ethtool_ops(netdev
);
887 netdev
->watchdog_timeo
= 5 * HZ
;
888 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
890 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
892 adapter
->bd_number
= cards_found
;
894 /* setup the private structure */
896 err
= e1000_sw_init(adapter
);
902 if (hw
->mac_type
>= e1000_82543
) {
903 netdev
->features
= NETIF_F_SG
|
907 NETIF_F_HW_VLAN_FILTER
;
910 if ((hw
->mac_type
>= e1000_82544
) &&
911 (hw
->mac_type
!= e1000_82547
))
912 netdev
->features
|= NETIF_F_TSO
;
915 netdev
->features
|= NETIF_F_HIGHDMA
;
917 netdev
->vlan_features
|= NETIF_F_TSO
;
918 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
919 netdev
->vlan_features
|= NETIF_F_SG
;
921 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw
)) {
925 E1000_ERR("EEPROM initialization failed\n");
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw
) < 0) {
936 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter
);
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
946 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw
))
950 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
954 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
956 if (!is_valid_ether_addr(netdev
->perm_addr
))
957 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
959 e1000_get_bus_info(hw
);
961 init_timer(&adapter
->tx_fifo_stall_timer
);
962 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
963 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
965 init_timer(&adapter
->watchdog_timer
);
966 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
967 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
969 init_timer(&adapter
->phy_info_timer
);
970 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
971 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
973 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
975 e1000_check_options(adapter
);
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
982 switch (hw
->mac_type
) {
983 case e1000_82542_rev2_0
:
984 case e1000_82542_rev2_1
:
988 e1000_read_eeprom(hw
,
989 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
990 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
993 case e1000_82546_rev_3
:
994 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
995 e1000_read_eeprom(hw
,
996 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1001 e1000_read_eeprom(hw
,
1002 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1005 if (eeprom_data
& eeprom_apme_mask
)
1006 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev
->device
) {
1012 case E1000_DEV_ID_82546GB_PCIE
:
1013 adapter
->eeprom_wol
= 0;
1015 case E1000_DEV_ID_82546EB_FIBER
:
1016 case E1000_DEV_ID_82546GB_FIBER
:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1020 adapter
->eeprom_wol
= 0;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a
!= 0)
1025 adapter
->eeprom_wol
= 0;
1027 adapter
->quad_port_a
= 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a
== 4)
1030 global_quad_port_a
= 0;
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter
->wol
= adapter
->eeprom_wol
;
1036 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1040 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1041 ((hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1042 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1043 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1044 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1045 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" : "32-bit"));
1047 printk("%pM\n", netdev
->dev_addr
);
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter
);
1052 strcpy(netdev
->name
, "eth%d");
1053 err
= register_netdev(netdev
);
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev
);
1060 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1067 e1000_phy_hw_reset(hw
);
1069 if (hw
->flash_address
)
1070 iounmap(hw
->flash_address
);
1071 kfree(adapter
->tx_ring
);
1072 kfree(adapter
->rx_ring
);
1074 iounmap(hw
->hw_addr
);
1076 free_netdev(netdev
);
1078 pci_release_selected_regions(pdev
, bars
);
1081 pci_disable_device(pdev
);
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1095 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1097 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1098 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1099 struct e1000_hw
*hw
= &adapter
->hw
;
1101 set_bit(__E1000_DOWN
, &adapter
->flags
);
1102 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
1103 del_timer_sync(&adapter
->watchdog_timer
);
1104 del_timer_sync(&adapter
->phy_info_timer
);
1106 cancel_work_sync(&adapter
->reset_task
);
1108 e1000_release_manageability(adapter
);
1110 unregister_netdev(netdev
);
1112 e1000_phy_hw_reset(hw
);
1114 kfree(adapter
->tx_ring
);
1115 kfree(adapter
->rx_ring
);
1117 iounmap(hw
->hw_addr
);
1118 if (hw
->flash_address
)
1119 iounmap(hw
->flash_address
);
1120 pci_release_selected_regions(pdev
, adapter
->bars
);
1122 free_netdev(netdev
);
1124 pci_disable_device(pdev
);
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1136 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1138 struct e1000_hw
*hw
= &adapter
->hw
;
1139 struct net_device
*netdev
= adapter
->netdev
;
1140 struct pci_dev
*pdev
= adapter
->pdev
;
1142 /* PCI config space info */
1144 hw
->vendor_id
= pdev
->vendor
;
1145 hw
->device_id
= pdev
->device
;
1146 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1147 hw
->subsystem_id
= pdev
->subsystem_device
;
1148 hw
->revision_id
= pdev
->revision
;
1150 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1152 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1153 hw
->max_frame_size
= netdev
->mtu
+
1154 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1155 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1157 /* identify the MAC */
1159 if (e1000_set_mac_type(hw
)) {
1160 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1164 switch (hw
->mac_type
) {
1169 case e1000_82541_rev_2
:
1170 case e1000_82547_rev_2
:
1171 hw
->phy_init_script
= 1;
1175 e1000_set_media_type(hw
);
1177 hw
->wait_autoneg_complete
= false;
1178 hw
->tbi_compatibility_en
= true;
1179 hw
->adaptive_ifs
= true;
1181 /* Copper options */
1183 if (hw
->media_type
== e1000_media_type_copper
) {
1184 hw
->mdix
= AUTO_ALL_MODES
;
1185 hw
->disable_polarity_correction
= false;
1186 hw
->master_slave
= E1000_MASTER_SLAVE
;
1189 adapter
->num_tx_queues
= 1;
1190 adapter
->num_rx_queues
= 1;
1192 if (e1000_alloc_queues(adapter
)) {
1193 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter
);
1200 spin_lock_init(&adapter
->stats_lock
);
1202 set_bit(__E1000_DOWN
, &adapter
->flags
);
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1215 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1217 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1218 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1219 if (!adapter
->tx_ring
)
1222 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1223 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1224 if (!adapter
->rx_ring
) {
1225 kfree(adapter
->tx_ring
);
1229 return E1000_SUCCESS
;
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1236 * Returns 0 on success, negative value on failure
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1245 static int e1000_open(struct net_device
*netdev
)
1247 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1248 struct e1000_hw
*hw
= &adapter
->hw
;
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1255 netif_carrier_off(netdev
);
1257 /* allocate transmit descriptors */
1258 err
= e1000_setup_all_tx_resources(adapter
);
1262 /* allocate receive descriptors */
1263 err
= e1000_setup_all_rx_resources(adapter
);
1267 e1000_power_up_phy(adapter
);
1269 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1270 if ((hw
->mng_cookie
.status
&
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1272 e1000_update_mng_vlan(adapter
);
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter
);
1281 err
= e1000_request_irq(adapter
);
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1288 napi_enable(&adapter
->napi
);
1290 e1000_irq_enable(adapter
);
1292 netif_start_queue(netdev
);
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS
, E1000_ICS_LSC
);
1297 return E1000_SUCCESS
;
1300 e1000_power_down_phy(adapter
);
1301 e1000_free_all_rx_resources(adapter
);
1303 e1000_free_all_tx_resources(adapter
);
1305 e1000_reset(adapter
);
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1314 * Returns 0, this is not allowed to fail
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1322 static int e1000_close(struct net_device
*netdev
)
1324 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1325 struct e1000_hw
*hw
= &adapter
->hw
;
1327 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1328 e1000_down(adapter
);
1329 e1000_power_down_phy(adapter
);
1330 e1000_free_irq(adapter
);
1332 e1000_free_all_tx_resources(adapter
);
1333 e1000_free_all_rx_resources(adapter
);
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw
->mng_cookie
.status
&
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1340 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1341 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1353 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1356 struct e1000_hw
*hw
= &adapter
->hw
;
1357 unsigned long begin
= (unsigned long)start
;
1358 unsigned long end
= begin
+ len
;
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw
->mac_type
== e1000_82545
||
1363 hw
->mac_type
== e1000_82546
) {
1364 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1375 * Return 0 on success, negative on failure
1378 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1379 struct e1000_tx_ring
*txdr
)
1381 struct pci_dev
*pdev
= adapter
->pdev
;
1384 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1385 txdr
->buffer_info
= vmalloc(size
);
1386 if (!txdr
->buffer_info
) {
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1391 memset(txdr
->buffer_info
, 0, size
);
1393 /* round up to nearest 4K */
1395 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1396 txdr
->size
= ALIGN(txdr
->size
, 4096);
1398 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1401 vfree(txdr
->buffer_info
);
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1409 void *olddesc
= txdr
->desc
;
1410 dma_addr_t olddma
= txdr
->dma
;
1411 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr
->size
, txdr
->desc
);
1413 /* Try again, without freeing the previous */
1414 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1415 /* Failed allocation, critical failure */
1417 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1418 goto setup_tx_desc_die
;
1421 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1423 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1425 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr
->buffer_info
);
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1436 memset(txdr
->desc
, 0, txdr
->size
);
1438 txdr
->next_to_use
= 0;
1439 txdr
->next_to_clean
= 0;
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1449 * Return 0 on success, negative on failure
1452 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1456 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1457 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1460 "Allocation for Tx Queue %u failed\n", i
);
1461 for (i
-- ; i
>= 0; i
--)
1462 e1000_free_tx_resources(adapter
,
1463 &adapter
->tx_ring
[i
]);
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1475 * Configure the Tx unit of the MAC after a reset.
1478 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1481 struct e1000_hw
*hw
= &adapter
->hw
;
1482 u32 tdlen
, tctl
, tipg
;
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1487 switch (adapter
->num_tx_queues
) {
1490 tdba
= adapter
->tx_ring
[0].dma
;
1491 tdlen
= adapter
->tx_ring
[0].count
*
1492 sizeof(struct e1000_tx_desc
);
1494 ew32(TDBAH
, (tdba
>> 32));
1495 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1498 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1499 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw
->media_type
== e1000_media_type_fiber
||
1505 hw
->media_type
== e1000_media_type_internal_serdes
))
1506 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1508 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1510 switch (hw
->mac_type
) {
1511 case e1000_82542_rev2_0
:
1512 case e1000_82542_rev2_1
:
1513 tipg
= DEFAULT_82542_TIPG_IPGT
;
1514 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1515 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1518 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1519 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1522 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1523 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1526 /* Set the Tx Interrupt Delay register */
1528 ew32(TIDV
, adapter
->tx_int_delay
);
1529 if (hw
->mac_type
>= e1000_82540
)
1530 ew32(TADV
, adapter
->tx_abs_int_delay
);
1532 /* Program the Transmit Control Register */
1535 tctl
&= ~E1000_TCTL_CT
;
1536 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1537 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1539 e1000_config_collision_dist(hw
);
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter
->tx_int_delay
)
1546 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1548 if (hw
->mac_type
< e1000_82543
)
1549 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1551 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw
->mac_type
== e1000_82544
&&
1556 hw
->bus_type
== e1000_bus_type_pcix
)
1557 adapter
->pcix_82544
= 1;
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1568 * Returns 0 on success, negative on failure
1571 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1572 struct e1000_rx_ring
*rxdr
)
1574 struct pci_dev
*pdev
= adapter
->pdev
;
1577 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1578 rxdr
->buffer_info
= vmalloc(size
);
1579 if (!rxdr
->buffer_info
) {
1581 "Unable to allocate memory for the receive descriptor ring\n");
1584 memset(rxdr
->buffer_info
, 0, size
);
1586 desc_len
= sizeof(struct e1000_rx_desc
);
1588 /* Round up to nearest 4K */
1590 rxdr
->size
= rxdr
->count
* desc_len
;
1591 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1593 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1597 "Unable to allocate memory for the receive descriptor ring\n");
1599 vfree(rxdr
->buffer_info
);
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1605 void *olddesc
= rxdr
->desc
;
1606 dma_addr_t olddma
= rxdr
->dma
;
1607 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr
->size
, rxdr
->desc
);
1609 /* Try again, without freeing the previous */
1610 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1611 /* Failed allocation, critical failure */
1613 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die
;
1620 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1622 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1624 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die
;
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1634 memset(rxdr
->desc
, 0, rxdr
->size
);
1636 rxdr
->next_to_clean
= 0;
1637 rxdr
->next_to_use
= 0;
1638 rxdr
->rx_skb_top
= NULL
;
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1648 * Return 0 on success, negative on failure
1651 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1655 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1656 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1659 "Allocation for Rx Queue %u failed\n", i
);
1660 for (i
-- ; i
>= 0; i
--)
1661 e1000_free_rx_resources(adapter
,
1662 &adapter
->rx_ring
[i
]);
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1674 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1676 struct e1000_hw
*hw
= &adapter
->hw
;
1681 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1683 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1684 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1685 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1687 if (hw
->tbi_compatibility_on
== 1)
1688 rctl
|= E1000_RCTL_SBP
;
1690 rctl
&= ~E1000_RCTL_SBP
;
1692 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1693 rctl
&= ~E1000_RCTL_LPE
;
1695 rctl
|= E1000_RCTL_LPE
;
1697 /* Setup buffer sizes */
1698 rctl
&= ~E1000_RCTL_SZ_4096
;
1699 rctl
|= E1000_RCTL_BSEX
;
1700 switch (adapter
->rx_buffer_len
) {
1701 case E1000_RXBUFFER_2048
:
1703 rctl
|= E1000_RCTL_SZ_2048
;
1704 rctl
&= ~E1000_RCTL_BSEX
;
1706 case E1000_RXBUFFER_4096
:
1707 rctl
|= E1000_RCTL_SZ_4096
;
1709 case E1000_RXBUFFER_8192
:
1710 rctl
|= E1000_RCTL_SZ_8192
;
1712 case E1000_RXBUFFER_16384
:
1713 rctl
|= E1000_RCTL_SZ_16384
;
1721 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1722 * @adapter: board private structure
1724 * Configure the Rx unit of the MAC after a reset.
1727 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1730 struct e1000_hw
*hw
= &adapter
->hw
;
1731 u32 rdlen
, rctl
, rxcsum
;
1733 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1734 rdlen
= adapter
->rx_ring
[0].count
*
1735 sizeof(struct e1000_rx_desc
);
1736 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1737 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1739 rdlen
= adapter
->rx_ring
[0].count
*
1740 sizeof(struct e1000_rx_desc
);
1741 adapter
->clean_rx
= e1000_clean_rx_irq
;
1742 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1745 /* disable receives while setting up the descriptors */
1747 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1749 /* set the Receive Delay Timer Register */
1750 ew32(RDTR
, adapter
->rx_int_delay
);
1752 if (hw
->mac_type
>= e1000_82540
) {
1753 ew32(RADV
, adapter
->rx_abs_int_delay
);
1754 if (adapter
->itr_setting
!= 0)
1755 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1758 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1759 * the Base and Length of the Rx Descriptor Ring */
1760 switch (adapter
->num_rx_queues
) {
1763 rdba
= adapter
->rx_ring
[0].dma
;
1765 ew32(RDBAH
, (rdba
>> 32));
1766 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1769 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1770 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1774 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1775 if (hw
->mac_type
>= e1000_82543
) {
1776 rxcsum
= er32(RXCSUM
);
1777 if (adapter
->rx_csum
)
1778 rxcsum
|= E1000_RXCSUM_TUOFL
;
1780 /* don't need to clear IPPCSE as it defaults to 0 */
1781 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1782 ew32(RXCSUM
, rxcsum
);
1785 /* Enable Receives */
1790 * e1000_free_tx_resources - Free Tx Resources per Queue
1791 * @adapter: board private structure
1792 * @tx_ring: Tx descriptor ring for a specific queue
1794 * Free all transmit software resources
1797 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1798 struct e1000_tx_ring
*tx_ring
)
1800 struct pci_dev
*pdev
= adapter
->pdev
;
1802 e1000_clean_tx_ring(adapter
, tx_ring
);
1804 vfree(tx_ring
->buffer_info
);
1805 tx_ring
->buffer_info
= NULL
;
1807 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1809 tx_ring
->desc
= NULL
;
1813 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1814 * @adapter: board private structure
1816 * Free all transmit software resources
1819 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1823 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1824 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1827 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1828 struct e1000_buffer
*buffer_info
)
1830 if (buffer_info
->dma
) {
1831 if (buffer_info
->mapped_as_page
)
1832 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
1833 buffer_info
->length
, PCI_DMA_TODEVICE
);
1835 pci_unmap_single(adapter
->pdev
, buffer_info
->dma
,
1836 buffer_info
->length
,
1838 buffer_info
->dma
= 0;
1840 if (buffer_info
->skb
) {
1841 dev_kfree_skb_any(buffer_info
->skb
);
1842 buffer_info
->skb
= NULL
;
1844 buffer_info
->time_stamp
= 0;
1845 /* buffer_info must be completely set up in the transmit path */
1849 * e1000_clean_tx_ring - Free Tx Buffers
1850 * @adapter: board private structure
1851 * @tx_ring: ring to be cleaned
1854 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1855 struct e1000_tx_ring
*tx_ring
)
1857 struct e1000_hw
*hw
= &adapter
->hw
;
1858 struct e1000_buffer
*buffer_info
;
1862 /* Free all the Tx ring sk_buffs */
1864 for (i
= 0; i
< tx_ring
->count
; i
++) {
1865 buffer_info
= &tx_ring
->buffer_info
[i
];
1866 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1869 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1870 memset(tx_ring
->buffer_info
, 0, size
);
1872 /* Zero out the descriptor ring */
1874 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1876 tx_ring
->next_to_use
= 0;
1877 tx_ring
->next_to_clean
= 0;
1878 tx_ring
->last_tx_tso
= 0;
1880 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
1881 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
1885 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1886 * @adapter: board private structure
1889 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1893 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1894 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1898 * e1000_free_rx_resources - Free Rx Resources
1899 * @adapter: board private structure
1900 * @rx_ring: ring to clean the resources from
1902 * Free all receive software resources
1905 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1906 struct e1000_rx_ring
*rx_ring
)
1908 struct pci_dev
*pdev
= adapter
->pdev
;
1910 e1000_clean_rx_ring(adapter
, rx_ring
);
1912 vfree(rx_ring
->buffer_info
);
1913 rx_ring
->buffer_info
= NULL
;
1915 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1917 rx_ring
->desc
= NULL
;
1921 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1922 * @adapter: board private structure
1924 * Free all receive software resources
1927 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
1931 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1932 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1936 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1937 * @adapter: board private structure
1938 * @rx_ring: ring to free buffers from
1941 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
1942 struct e1000_rx_ring
*rx_ring
)
1944 struct e1000_hw
*hw
= &adapter
->hw
;
1945 struct e1000_buffer
*buffer_info
;
1946 struct pci_dev
*pdev
= adapter
->pdev
;
1950 /* Free all the Rx ring sk_buffs */
1951 for (i
= 0; i
< rx_ring
->count
; i
++) {
1952 buffer_info
= &rx_ring
->buffer_info
[i
];
1953 if (buffer_info
->dma
&&
1954 adapter
->clean_rx
== e1000_clean_rx_irq
) {
1955 pci_unmap_single(pdev
, buffer_info
->dma
,
1956 buffer_info
->length
,
1957 PCI_DMA_FROMDEVICE
);
1958 } else if (buffer_info
->dma
&&
1959 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
1960 pci_unmap_page(pdev
, buffer_info
->dma
,
1961 buffer_info
->length
,
1962 PCI_DMA_FROMDEVICE
);
1965 buffer_info
->dma
= 0;
1966 if (buffer_info
->page
) {
1967 put_page(buffer_info
->page
);
1968 buffer_info
->page
= NULL
;
1970 if (buffer_info
->skb
) {
1971 dev_kfree_skb(buffer_info
->skb
);
1972 buffer_info
->skb
= NULL
;
1976 /* there also may be some cached data from a chained receive */
1977 if (rx_ring
->rx_skb_top
) {
1978 dev_kfree_skb(rx_ring
->rx_skb_top
);
1979 rx_ring
->rx_skb_top
= NULL
;
1982 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1983 memset(rx_ring
->buffer_info
, 0, size
);
1985 /* Zero out the descriptor ring */
1986 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1988 rx_ring
->next_to_clean
= 0;
1989 rx_ring
->next_to_use
= 0;
1991 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
1992 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
1996 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1997 * @adapter: board private structure
2000 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2004 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2005 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2008 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2009 * and memory write and invalidate disabled for certain operations
2011 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2013 struct e1000_hw
*hw
= &adapter
->hw
;
2014 struct net_device
*netdev
= adapter
->netdev
;
2017 e1000_pci_clear_mwi(hw
);
2020 rctl
|= E1000_RCTL_RST
;
2022 E1000_WRITE_FLUSH();
2025 if (netif_running(netdev
))
2026 e1000_clean_all_rx_rings(adapter
);
2029 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2031 struct e1000_hw
*hw
= &adapter
->hw
;
2032 struct net_device
*netdev
= adapter
->netdev
;
2036 rctl
&= ~E1000_RCTL_RST
;
2038 E1000_WRITE_FLUSH();
2041 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2042 e1000_pci_set_mwi(hw
);
2044 if (netif_running(netdev
)) {
2045 /* No need to loop, because 82542 supports only 1 queue */
2046 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2047 e1000_configure_rx(adapter
);
2048 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2053 * e1000_set_mac - Change the Ethernet Address of the NIC
2054 * @netdev: network interface device structure
2055 * @p: pointer to an address structure
2057 * Returns 0 on success, negative on failure
2060 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2062 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2063 struct e1000_hw
*hw
= &adapter
->hw
;
2064 struct sockaddr
*addr
= p
;
2066 if (!is_valid_ether_addr(addr
->sa_data
))
2067 return -EADDRNOTAVAIL
;
2069 /* 82542 2.0 needs to be in reset to write receive address registers */
2071 if (hw
->mac_type
== e1000_82542_rev2_0
)
2072 e1000_enter_82542_rst(adapter
);
2074 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2075 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2077 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2079 if (hw
->mac_type
== e1000_82542_rev2_0
)
2080 e1000_leave_82542_rst(adapter
);
2086 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2087 * @netdev: network interface device structure
2089 * The set_rx_mode entry point is called whenever the unicast or multicast
2090 * address lists or the network interface flags are updated. This routine is
2091 * responsible for configuring the hardware for proper unicast, multicast,
2092 * promiscuous mode, and all-multi behavior.
2095 static void e1000_set_rx_mode(struct net_device
*netdev
)
2097 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2098 struct e1000_hw
*hw
= &adapter
->hw
;
2099 struct netdev_hw_addr
*ha
;
2100 bool use_uc
= false;
2101 struct dev_addr_list
*mc_ptr
;
2104 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2105 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2106 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2109 DPRINTK(PROBE
, ERR
, "memory allocation failed\n");
2113 /* Check for Promiscuous and All Multicast modes */
2117 if (netdev
->flags
& IFF_PROMISC
) {
2118 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2119 rctl
&= ~E1000_RCTL_VFE
;
2121 if (netdev
->flags
& IFF_ALLMULTI
)
2122 rctl
|= E1000_RCTL_MPE
;
2124 rctl
&= ~E1000_RCTL_MPE
;
2125 /* Enable VLAN filter if there is a VLAN */
2127 rctl
|= E1000_RCTL_VFE
;
2130 if (netdev
->uc
.count
> rar_entries
- 1) {
2131 rctl
|= E1000_RCTL_UPE
;
2132 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2133 rctl
&= ~E1000_RCTL_UPE
;
2139 /* 82542 2.0 needs to be in reset to write receive address registers */
2141 if (hw
->mac_type
== e1000_82542_rev2_0
)
2142 e1000_enter_82542_rst(adapter
);
2144 /* load the first 14 addresses into the exact filters 1-14. Unicast
2145 * addresses take precedence to avoid disabling unicast filtering
2148 * RAR 0 is used for the station MAC adddress
2149 * if there are not 14 addresses, go ahead and clear the filters
2153 list_for_each_entry(ha
, &netdev
->uc
.list
, list
) {
2154 if (i
== rar_entries
)
2156 e1000_rar_set(hw
, ha
->addr
, i
++);
2159 WARN_ON(i
== rar_entries
);
2161 mc_ptr
= netdev
->mc_list
;
2163 for (; i
< rar_entries
; i
++) {
2165 e1000_rar_set(hw
, mc_ptr
->da_addr
, i
);
2166 mc_ptr
= mc_ptr
->next
;
2168 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2169 E1000_WRITE_FLUSH();
2170 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2171 E1000_WRITE_FLUSH();
2175 /* load any remaining addresses into the hash table */
2177 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2178 u32 hash_reg
, hash_bit
, mta
;
2179 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->da_addr
);
2180 hash_reg
= (hash_value
>> 5) & 0x7F;
2181 hash_bit
= hash_value
& 0x1F;
2182 mta
= (1 << hash_bit
);
2183 mcarray
[hash_reg
] |= mta
;
2186 /* write the hash table completely, write from bottom to avoid
2187 * both stupid write combining chipsets, and flushing each write */
2188 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2190 * If we are on an 82544 has an errata where writing odd
2191 * offsets overwrites the previous even offset, but writing
2192 * backwards over the range solves the issue by always
2193 * writing the odd offset first
2195 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2197 E1000_WRITE_FLUSH();
2199 if (hw
->mac_type
== e1000_82542_rev2_0
)
2200 e1000_leave_82542_rst(adapter
);
2205 /* Need to wait a few seconds after link up to get diagnostic information from
2208 static void e1000_update_phy_info(unsigned long data
)
2210 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2211 struct e1000_hw
*hw
= &adapter
->hw
;
2212 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2216 * e1000_82547_tx_fifo_stall - Timer Call-back
2217 * @data: pointer to adapter cast into an unsigned long
2220 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2222 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2223 struct e1000_hw
*hw
= &adapter
->hw
;
2224 struct net_device
*netdev
= adapter
->netdev
;
2227 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2228 if ((er32(TDT
) == er32(TDH
)) &&
2229 (er32(TDFT
) == er32(TDFH
)) &&
2230 (er32(TDFTS
) == er32(TDFHS
))) {
2232 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2233 ew32(TDFT
, adapter
->tx_head_addr
);
2234 ew32(TDFH
, adapter
->tx_head_addr
);
2235 ew32(TDFTS
, adapter
->tx_head_addr
);
2236 ew32(TDFHS
, adapter
->tx_head_addr
);
2238 E1000_WRITE_FLUSH();
2240 adapter
->tx_fifo_head
= 0;
2241 atomic_set(&adapter
->tx_fifo_stall
, 0);
2242 netif_wake_queue(netdev
);
2243 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2244 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2249 static bool e1000_has_link(struct e1000_adapter
*adapter
)
2251 struct e1000_hw
*hw
= &adapter
->hw
;
2252 bool link_active
= false;
2254 /* get_link_status is set on LSC (link status) interrupt or
2255 * rx sequence error interrupt. get_link_status will stay
2256 * false until the e1000_check_for_link establishes link
2257 * for copper adapters ONLY
2259 switch (hw
->media_type
) {
2260 case e1000_media_type_copper
:
2261 if (hw
->get_link_status
) {
2262 e1000_check_for_link(hw
);
2263 link_active
= !hw
->get_link_status
;
2268 case e1000_media_type_fiber
:
2269 e1000_check_for_link(hw
);
2270 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2272 case e1000_media_type_internal_serdes
:
2273 e1000_check_for_link(hw
);
2274 link_active
= hw
->serdes_has_link
;
2284 * e1000_watchdog - Timer Call-back
2285 * @data: pointer to adapter cast into an unsigned long
2287 static void e1000_watchdog(unsigned long data
)
2289 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2290 struct e1000_hw
*hw
= &adapter
->hw
;
2291 struct net_device
*netdev
= adapter
->netdev
;
2292 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2295 link
= e1000_has_link(adapter
);
2296 if ((netif_carrier_ok(netdev
)) && link
)
2300 if (!netif_carrier_ok(netdev
)) {
2303 /* update snapshot of PHY registers on LSC */
2304 e1000_get_speed_and_duplex(hw
,
2305 &adapter
->link_speed
,
2306 &adapter
->link_duplex
);
2309 printk(KERN_INFO
"e1000: %s NIC Link is Up %d Mbps %s, "
2310 "Flow Control: %s\n",
2312 adapter
->link_speed
,
2313 adapter
->link_duplex
== FULL_DUPLEX
?
2314 "Full Duplex" : "Half Duplex",
2315 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2316 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2317 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2318 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2320 /* tweak tx_queue_len according to speed/duplex
2321 * and adjust the timeout factor */
2322 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2323 adapter
->tx_timeout_factor
= 1;
2324 switch (adapter
->link_speed
) {
2327 netdev
->tx_queue_len
= 10;
2328 adapter
->tx_timeout_factor
= 16;
2332 netdev
->tx_queue_len
= 100;
2333 /* maybe add some timeout factor ? */
2337 /* enable transmits in the hardware */
2339 tctl
|= E1000_TCTL_EN
;
2342 netif_carrier_on(netdev
);
2343 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2344 mod_timer(&adapter
->phy_info_timer
,
2345 round_jiffies(jiffies
+ 2 * HZ
));
2346 adapter
->smartspeed
= 0;
2349 if (netif_carrier_ok(netdev
)) {
2350 adapter
->link_speed
= 0;
2351 adapter
->link_duplex
= 0;
2352 printk(KERN_INFO
"e1000: %s NIC Link is Down\n",
2354 netif_carrier_off(netdev
);
2356 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2357 mod_timer(&adapter
->phy_info_timer
,
2358 round_jiffies(jiffies
+ 2 * HZ
));
2361 e1000_smartspeed(adapter
);
2365 e1000_update_stats(adapter
);
2367 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2368 adapter
->tpt_old
= adapter
->stats
.tpt
;
2369 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2370 adapter
->colc_old
= adapter
->stats
.colc
;
2372 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2373 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2374 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2375 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2377 e1000_update_adaptive(hw
);
2379 if (!netif_carrier_ok(netdev
)) {
2380 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2381 /* We've lost link, so the controller stops DMA,
2382 * but we've got queued Tx work that's never going
2383 * to get done, so reset controller to flush Tx.
2384 * (Do the reset outside of interrupt context). */
2385 adapter
->tx_timeout_count
++;
2386 schedule_work(&adapter
->reset_task
);
2387 /* return immediately since reset is imminent */
2392 /* Cause software interrupt to ensure rx ring is cleaned */
2393 ew32(ICS
, E1000_ICS_RXDMT0
);
2395 /* Force detection of hung controller every watchdog period */
2396 adapter
->detect_tx_hung
= true;
2398 /* Reset the timer */
2399 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2400 mod_timer(&adapter
->watchdog_timer
,
2401 round_jiffies(jiffies
+ 2 * HZ
));
2404 enum latency_range
{
2408 latency_invalid
= 255
2412 * e1000_update_itr - update the dynamic ITR value based on statistics
2413 * @adapter: pointer to adapter
2414 * @itr_setting: current adapter->itr
2415 * @packets: the number of packets during this measurement interval
2416 * @bytes: the number of bytes during this measurement interval
2418 * Stores a new ITR value based on packets and byte
2419 * counts during the last interrupt. The advantage of per interrupt
2420 * computation is faster updates and more accurate ITR for the current
2421 * traffic pattern. Constants in this function were computed
2422 * based on theoretical maximum wire speed and thresholds were set based
2423 * on testing data as well as attempting to minimize response time
2424 * while increasing bulk throughput.
2425 * this functionality is controlled by the InterruptThrottleRate module
2426 * parameter (see e1000_param.c)
2428 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2429 u16 itr_setting
, int packets
, int bytes
)
2431 unsigned int retval
= itr_setting
;
2432 struct e1000_hw
*hw
= &adapter
->hw
;
2434 if (unlikely(hw
->mac_type
< e1000_82540
))
2435 goto update_itr_done
;
2438 goto update_itr_done
;
2440 switch (itr_setting
) {
2441 case lowest_latency
:
2442 /* jumbo frames get bulk treatment*/
2443 if (bytes
/packets
> 8000)
2444 retval
= bulk_latency
;
2445 else if ((packets
< 5) && (bytes
> 512))
2446 retval
= low_latency
;
2448 case low_latency
: /* 50 usec aka 20000 ints/s */
2449 if (bytes
> 10000) {
2450 /* jumbo frames need bulk latency setting */
2451 if (bytes
/packets
> 8000)
2452 retval
= bulk_latency
;
2453 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2454 retval
= bulk_latency
;
2455 else if ((packets
> 35))
2456 retval
= lowest_latency
;
2457 } else if (bytes
/packets
> 2000)
2458 retval
= bulk_latency
;
2459 else if (packets
<= 2 && bytes
< 512)
2460 retval
= lowest_latency
;
2462 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2463 if (bytes
> 25000) {
2465 retval
= low_latency
;
2466 } else if (bytes
< 6000) {
2467 retval
= low_latency
;
2476 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2478 struct e1000_hw
*hw
= &adapter
->hw
;
2480 u32 new_itr
= adapter
->itr
;
2482 if (unlikely(hw
->mac_type
< e1000_82540
))
2485 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2486 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2492 adapter
->tx_itr
= e1000_update_itr(adapter
,
2494 adapter
->total_tx_packets
,
2495 adapter
->total_tx_bytes
);
2496 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2497 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2498 adapter
->tx_itr
= low_latency
;
2500 adapter
->rx_itr
= e1000_update_itr(adapter
,
2502 adapter
->total_rx_packets
,
2503 adapter
->total_rx_bytes
);
2504 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2505 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2506 adapter
->rx_itr
= low_latency
;
2508 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2510 switch (current_itr
) {
2511 /* counts and packets in update_itr are dependent on these numbers */
2512 case lowest_latency
:
2516 new_itr
= 20000; /* aka hwitr = ~200 */
2526 if (new_itr
!= adapter
->itr
) {
2527 /* this attempts to bias the interrupt rate towards Bulk
2528 * by adding intermediate steps when interrupt rate is
2530 new_itr
= new_itr
> adapter
->itr
?
2531 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2533 adapter
->itr
= new_itr
;
2534 ew32(ITR
, 1000000000 / (new_itr
* 256));
2540 #define E1000_TX_FLAGS_CSUM 0x00000001
2541 #define E1000_TX_FLAGS_VLAN 0x00000002
2542 #define E1000_TX_FLAGS_TSO 0x00000004
2543 #define E1000_TX_FLAGS_IPV4 0x00000008
2544 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2545 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2547 static int e1000_tso(struct e1000_adapter
*adapter
,
2548 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2550 struct e1000_context_desc
*context_desc
;
2551 struct e1000_buffer
*buffer_info
;
2554 u16 ipcse
= 0, tucse
, mss
;
2555 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2558 if (skb_is_gso(skb
)) {
2559 if (skb_header_cloned(skb
)) {
2560 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2565 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2566 mss
= skb_shinfo(skb
)->gso_size
;
2567 if (skb
->protocol
== htons(ETH_P_IP
)) {
2568 struct iphdr
*iph
= ip_hdr(skb
);
2571 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2575 cmd_length
= E1000_TXD_CMD_IP
;
2576 ipcse
= skb_transport_offset(skb
) - 1;
2577 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2578 ipv6_hdr(skb
)->payload_len
= 0;
2579 tcp_hdr(skb
)->check
=
2580 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2581 &ipv6_hdr(skb
)->daddr
,
2585 ipcss
= skb_network_offset(skb
);
2586 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2587 tucss
= skb_transport_offset(skb
);
2588 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2591 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2592 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2594 i
= tx_ring
->next_to_use
;
2595 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2596 buffer_info
= &tx_ring
->buffer_info
[i
];
2598 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2599 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2600 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2601 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2602 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2603 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2604 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2605 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2606 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2608 buffer_info
->time_stamp
= jiffies
;
2609 buffer_info
->next_to_watch
= i
;
2611 if (++i
== tx_ring
->count
) i
= 0;
2612 tx_ring
->next_to_use
= i
;
2619 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2620 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2622 struct e1000_context_desc
*context_desc
;
2623 struct e1000_buffer
*buffer_info
;
2626 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2628 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2631 switch (skb
->protocol
) {
2632 case cpu_to_be16(ETH_P_IP
):
2633 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2634 cmd_len
|= E1000_TXD_CMD_TCP
;
2636 case cpu_to_be16(ETH_P_IPV6
):
2637 /* XXX not handling all IPV6 headers */
2638 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2639 cmd_len
|= E1000_TXD_CMD_TCP
;
2642 if (unlikely(net_ratelimit()))
2643 DPRINTK(DRV
, WARNING
,
2644 "checksum_partial proto=%x!\n", skb
->protocol
);
2648 css
= skb_transport_offset(skb
);
2650 i
= tx_ring
->next_to_use
;
2651 buffer_info
= &tx_ring
->buffer_info
[i
];
2652 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2654 context_desc
->lower_setup
.ip_config
= 0;
2655 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2656 context_desc
->upper_setup
.tcp_fields
.tucso
=
2657 css
+ skb
->csum_offset
;
2658 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2659 context_desc
->tcp_seg_setup
.data
= 0;
2660 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2662 buffer_info
->time_stamp
= jiffies
;
2663 buffer_info
->next_to_watch
= i
;
2665 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2666 tx_ring
->next_to_use
= i
;
2671 #define E1000_MAX_TXD_PWR 12
2672 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2674 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2675 struct e1000_tx_ring
*tx_ring
,
2676 struct sk_buff
*skb
, unsigned int first
,
2677 unsigned int max_per_txd
, unsigned int nr_frags
,
2680 struct e1000_hw
*hw
= &adapter
->hw
;
2681 struct pci_dev
*pdev
= adapter
->pdev
;
2682 struct e1000_buffer
*buffer_info
;
2683 unsigned int len
= skb_headlen(skb
);
2684 unsigned int offset
= 0, size
, count
= 0, i
;
2687 i
= tx_ring
->next_to_use
;
2690 buffer_info
= &tx_ring
->buffer_info
[i
];
2691 size
= min(len
, max_per_txd
);
2692 /* Workaround for Controller erratum --
2693 * descriptor for non-tso packet in a linear SKB that follows a
2694 * tso gets written back prematurely before the data is fully
2695 * DMA'd to the controller */
2696 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2698 tx_ring
->last_tx_tso
= 0;
2702 /* Workaround for premature desc write-backs
2703 * in TSO mode. Append 4-byte sentinel desc */
2704 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2706 /* work-around for errata 10 and it applies
2707 * to all controllers in PCI-X mode
2708 * The fix is to make sure that the first descriptor of a
2709 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2711 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2712 (size
> 2015) && count
== 0))
2715 /* Workaround for potential 82544 hang in PCI-X. Avoid
2716 * terminating buffers within evenly-aligned dwords. */
2717 if (unlikely(adapter
->pcix_82544
&&
2718 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2722 buffer_info
->length
= size
;
2723 /* set time_stamp *before* dma to help avoid a possible race */
2724 buffer_info
->time_stamp
= jiffies
;
2725 buffer_info
->mapped_as_page
= false;
2726 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
+ offset
,
2727 size
, PCI_DMA_TODEVICE
);
2728 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
))
2730 buffer_info
->next_to_watch
= i
;
2737 if (unlikely(i
== tx_ring
->count
))
2742 for (f
= 0; f
< nr_frags
; f
++) {
2743 struct skb_frag_struct
*frag
;
2745 frag
= &skb_shinfo(skb
)->frags
[f
];
2747 offset
= frag
->page_offset
;
2751 if (unlikely(i
== tx_ring
->count
))
2754 buffer_info
= &tx_ring
->buffer_info
[i
];
2755 size
= min(len
, max_per_txd
);
2756 /* Workaround for premature desc write-backs
2757 * in TSO mode. Append 4-byte sentinel desc */
2758 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2760 /* Workaround for potential 82544 hang in PCI-X.
2761 * Avoid terminating buffers within evenly-aligned
2763 if (unlikely(adapter
->pcix_82544
&&
2764 !((unsigned long)(page_to_phys(frag
->page
) + offset
2769 buffer_info
->length
= size
;
2770 buffer_info
->time_stamp
= jiffies
;
2771 buffer_info
->mapped_as_page
= true;
2772 buffer_info
->dma
= pci_map_page(pdev
, frag
->page
,
2775 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
))
2777 buffer_info
->next_to_watch
= i
;
2785 tx_ring
->buffer_info
[i
].skb
= skb
;
2786 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2791 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2792 buffer_info
->dma
= 0;
2798 i
+= tx_ring
->count
;
2800 buffer_info
= &tx_ring
->buffer_info
[i
];
2801 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2807 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2808 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2811 struct e1000_hw
*hw
= &adapter
->hw
;
2812 struct e1000_tx_desc
*tx_desc
= NULL
;
2813 struct e1000_buffer
*buffer_info
;
2814 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2817 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2818 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2820 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2822 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2823 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2826 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2827 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2828 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2831 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2832 txd_lower
|= E1000_TXD_CMD_VLE
;
2833 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2836 i
= tx_ring
->next_to_use
;
2839 buffer_info
= &tx_ring
->buffer_info
[i
];
2840 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2841 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2842 tx_desc
->lower
.data
=
2843 cpu_to_le32(txd_lower
| buffer_info
->length
);
2844 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2845 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2848 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2850 /* Force memory writes to complete before letting h/w
2851 * know there are new descriptors to fetch. (Only
2852 * applicable for weak-ordered memory model archs,
2853 * such as IA-64). */
2856 tx_ring
->next_to_use
= i
;
2857 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
2858 /* we need this if more than one processor can write to our tail
2859 * at a time, it syncronizes IO on IA64/Altix systems */
2864 * 82547 workaround to avoid controller hang in half-duplex environment.
2865 * The workaround is to avoid queuing a large packet that would span
2866 * the internal Tx FIFO ring boundary by notifying the stack to resend
2867 * the packet at a later time. This gives the Tx FIFO an opportunity to
2868 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2869 * to the beginning of the Tx FIFO.
2872 #define E1000_FIFO_HDR 0x10
2873 #define E1000_82547_PAD_LEN 0x3E0
2875 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
2876 struct sk_buff
*skb
)
2878 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2879 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2881 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
2883 if (adapter
->link_duplex
!= HALF_DUPLEX
)
2884 goto no_fifo_stall_required
;
2886 if (atomic_read(&adapter
->tx_fifo_stall
))
2889 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2890 atomic_set(&adapter
->tx_fifo_stall
, 1);
2894 no_fifo_stall_required
:
2895 adapter
->tx_fifo_head
+= skb_fifo_len
;
2896 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2897 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2901 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
2903 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2904 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
2906 netif_stop_queue(netdev
);
2907 /* Herbert's original patch had:
2908 * smp_mb__after_netif_stop_queue();
2909 * but since that doesn't exist yet, just open code it. */
2912 /* We need to check again in a case another CPU has just
2913 * made room available. */
2914 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
2918 netif_start_queue(netdev
);
2919 ++adapter
->restart_queue
;
2923 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
2924 struct e1000_tx_ring
*tx_ring
, int size
)
2926 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
2928 return __e1000_maybe_stop_tx(netdev
, size
);
2931 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2932 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
2933 struct net_device
*netdev
)
2935 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2936 struct e1000_hw
*hw
= &adapter
->hw
;
2937 struct e1000_tx_ring
*tx_ring
;
2938 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
2939 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
2940 unsigned int tx_flags
= 0;
2941 unsigned int len
= skb
->len
- skb
->data_len
;
2942 unsigned int nr_frags
;
2948 /* This goes back to the question of how to logically map a tx queue
2949 * to a flow. Right now, performance is impacted slightly negatively
2950 * if using multiple tx queues. If the stack breaks away from a
2951 * single qdisc implementation, we can look at this again. */
2952 tx_ring
= adapter
->tx_ring
;
2954 if (unlikely(skb
->len
<= 0)) {
2955 dev_kfree_skb_any(skb
);
2956 return NETDEV_TX_OK
;
2959 mss
= skb_shinfo(skb
)->gso_size
;
2960 /* The controller does a simple calculation to
2961 * make sure there is enough room in the FIFO before
2962 * initiating the DMA for each buffer. The calc is:
2963 * 4 = ceil(buffer len/mss). To make sure we don't
2964 * overrun the FIFO, adjust the max buffer len if mss
2968 max_per_txd
= min(mss
<< 2, max_per_txd
);
2969 max_txd_pwr
= fls(max_per_txd
) - 1;
2971 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2972 if (skb
->data_len
&& hdr_len
== len
) {
2973 switch (hw
->mac_type
) {
2974 unsigned int pull_size
;
2976 /* Make sure we have room to chop off 4 bytes,
2977 * and that the end alignment will work out to
2978 * this hardware's requirements
2979 * NOTE: this is a TSO only workaround
2980 * if end byte alignment not correct move us
2981 * into the next dword */
2982 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
2985 pull_size
= min((unsigned int)4, skb
->data_len
);
2986 if (!__pskb_pull_tail(skb
, pull_size
)) {
2988 "__pskb_pull_tail failed.\n");
2989 dev_kfree_skb_any(skb
);
2990 return NETDEV_TX_OK
;
2992 len
= skb
->len
- skb
->data_len
;
3001 /* reserve a descriptor for the offload context */
3002 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3006 /* Controller Erratum workaround */
3007 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3010 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3012 if (adapter
->pcix_82544
)
3015 /* work-around for errata 10 and it applies to all controllers
3016 * in PCI-X mode, so add one more descriptor to the count
3018 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3022 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3023 for (f
= 0; f
< nr_frags
; f
++)
3024 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3026 if (adapter
->pcix_82544
)
3029 /* need: count + 2 desc gap to keep tail from touching
3030 * head, otherwise try next time */
3031 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3032 return NETDEV_TX_BUSY
;
3034 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3035 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3036 netif_stop_queue(netdev
);
3037 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3038 mod_timer(&adapter
->tx_fifo_stall_timer
,
3040 return NETDEV_TX_BUSY
;
3044 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3045 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3046 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3049 first
= tx_ring
->next_to_use
;
3051 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3053 dev_kfree_skb_any(skb
);
3054 return NETDEV_TX_OK
;
3058 if (likely(hw
->mac_type
!= e1000_82544
))
3059 tx_ring
->last_tx_tso
= 1;
3060 tx_flags
|= E1000_TX_FLAGS_TSO
;
3061 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3062 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3064 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3065 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3067 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3071 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3072 /* Make sure there is space in the ring for the next send. */
3073 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3076 dev_kfree_skb_any(skb
);
3077 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3078 tx_ring
->next_to_use
= first
;
3081 return NETDEV_TX_OK
;
3085 * e1000_tx_timeout - Respond to a Tx Hang
3086 * @netdev: network interface device structure
3089 static void e1000_tx_timeout(struct net_device
*netdev
)
3091 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3093 /* Do the reset outside of interrupt context */
3094 adapter
->tx_timeout_count
++;
3095 schedule_work(&adapter
->reset_task
);
3098 static void e1000_reset_task(struct work_struct
*work
)
3100 struct e1000_adapter
*adapter
=
3101 container_of(work
, struct e1000_adapter
, reset_task
);
3103 e1000_reinit_locked(adapter
);
3107 * e1000_get_stats - Get System Network Statistics
3108 * @netdev: network interface device structure
3110 * Returns the address of the device statistics structure.
3111 * The statistics are actually updated from the timer callback.
3114 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3116 /* only return the current stats */
3117 return &netdev
->stats
;
3121 * e1000_change_mtu - Change the Maximum Transfer Unit
3122 * @netdev: network interface device structure
3123 * @new_mtu: new value for maximum frame size
3125 * Returns 0 on success, negative on failure
3128 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3130 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3131 struct e1000_hw
*hw
= &adapter
->hw
;
3132 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3134 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3135 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3136 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3140 /* Adapter-specific max frame size limits. */
3141 switch (hw
->mac_type
) {
3142 case e1000_undefined
... e1000_82542_rev2_1
:
3143 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3144 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3149 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3153 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3155 /* e1000_down has a dependency on max_frame_size */
3156 hw
->max_frame_size
= max_frame
;
3157 if (netif_running(netdev
))
3158 e1000_down(adapter
);
3160 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3161 * means we reserve 2 more, this pushes us to allocate from the next
3163 * i.e. RXBUFFER_2048 --> size-4096 slab
3164 * however with the new *_jumbo_rx* routines, jumbo receives will use
3165 * fragmented skbs */
3167 if (max_frame
<= E1000_RXBUFFER_2048
)
3168 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3170 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3171 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3172 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3173 adapter
->rx_buffer_len
= PAGE_SIZE
;
3176 /* adjust allocation if LPE protects us, and we aren't using SBP */
3177 if (!hw
->tbi_compatibility_on
&&
3178 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3179 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3180 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3182 printk(KERN_INFO
"e1000: %s changing MTU from %d to %d\n",
3183 netdev
->name
, netdev
->mtu
, new_mtu
);
3184 netdev
->mtu
= new_mtu
;
3186 if (netif_running(netdev
))
3189 e1000_reset(adapter
);
3191 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3197 * e1000_update_stats - Update the board statistics counters
3198 * @adapter: board private structure
3201 void e1000_update_stats(struct e1000_adapter
*adapter
)
3203 struct net_device
*netdev
= adapter
->netdev
;
3204 struct e1000_hw
*hw
= &adapter
->hw
;
3205 struct pci_dev
*pdev
= adapter
->pdev
;
3206 unsigned long flags
;
3209 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3212 * Prevent stats update while adapter is being reset, or if the pci
3213 * connection is down.
3215 if (adapter
->link_speed
== 0)
3217 if (pci_channel_offline(pdev
))
3220 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3222 /* these counters are modified from e1000_tbi_adjust_stats,
3223 * called from the interrupt context, so they must only
3224 * be written while holding adapter->stats_lock
3227 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3228 adapter
->stats
.gprc
+= er32(GPRC
);
3229 adapter
->stats
.gorcl
+= er32(GORCL
);
3230 adapter
->stats
.gorch
+= er32(GORCH
);
3231 adapter
->stats
.bprc
+= er32(BPRC
);
3232 adapter
->stats
.mprc
+= er32(MPRC
);
3233 adapter
->stats
.roc
+= er32(ROC
);
3235 adapter
->stats
.prc64
+= er32(PRC64
);
3236 adapter
->stats
.prc127
+= er32(PRC127
);
3237 adapter
->stats
.prc255
+= er32(PRC255
);
3238 adapter
->stats
.prc511
+= er32(PRC511
);
3239 adapter
->stats
.prc1023
+= er32(PRC1023
);
3240 adapter
->stats
.prc1522
+= er32(PRC1522
);
3242 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3243 adapter
->stats
.mpc
+= er32(MPC
);
3244 adapter
->stats
.scc
+= er32(SCC
);
3245 adapter
->stats
.ecol
+= er32(ECOL
);
3246 adapter
->stats
.mcc
+= er32(MCC
);
3247 adapter
->stats
.latecol
+= er32(LATECOL
);
3248 adapter
->stats
.dc
+= er32(DC
);
3249 adapter
->stats
.sec
+= er32(SEC
);
3250 adapter
->stats
.rlec
+= er32(RLEC
);
3251 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3252 adapter
->stats
.xontxc
+= er32(XONTXC
);
3253 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3254 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3255 adapter
->stats
.fcruc
+= er32(FCRUC
);
3256 adapter
->stats
.gptc
+= er32(GPTC
);
3257 adapter
->stats
.gotcl
+= er32(GOTCL
);
3258 adapter
->stats
.gotch
+= er32(GOTCH
);
3259 adapter
->stats
.rnbc
+= er32(RNBC
);
3260 adapter
->stats
.ruc
+= er32(RUC
);
3261 adapter
->stats
.rfc
+= er32(RFC
);
3262 adapter
->stats
.rjc
+= er32(RJC
);
3263 adapter
->stats
.torl
+= er32(TORL
);
3264 adapter
->stats
.torh
+= er32(TORH
);
3265 adapter
->stats
.totl
+= er32(TOTL
);
3266 adapter
->stats
.toth
+= er32(TOTH
);
3267 adapter
->stats
.tpr
+= er32(TPR
);
3269 adapter
->stats
.ptc64
+= er32(PTC64
);
3270 adapter
->stats
.ptc127
+= er32(PTC127
);
3271 adapter
->stats
.ptc255
+= er32(PTC255
);
3272 adapter
->stats
.ptc511
+= er32(PTC511
);
3273 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3274 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3276 adapter
->stats
.mptc
+= er32(MPTC
);
3277 adapter
->stats
.bptc
+= er32(BPTC
);
3279 /* used for adaptive IFS */
3281 hw
->tx_packet_delta
= er32(TPT
);
3282 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3283 hw
->collision_delta
= er32(COLC
);
3284 adapter
->stats
.colc
+= hw
->collision_delta
;
3286 if (hw
->mac_type
>= e1000_82543
) {
3287 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3288 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3289 adapter
->stats
.tncrs
+= er32(TNCRS
);
3290 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3291 adapter
->stats
.tsctc
+= er32(TSCTC
);
3292 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3295 /* Fill out the OS statistics structure */
3296 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3297 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3301 /* RLEC on some newer hardware can be incorrect so build
3302 * our own version based on RUC and ROC */
3303 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3304 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3305 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3306 adapter
->stats
.cexterr
;
3307 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3308 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3309 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3310 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3311 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3314 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3315 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3316 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3317 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3318 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3319 if (hw
->bad_tx_carr_stats_fd
&&
3320 adapter
->link_duplex
== FULL_DUPLEX
) {
3321 netdev
->stats
.tx_carrier_errors
= 0;
3322 adapter
->stats
.tncrs
= 0;
3325 /* Tx Dropped needs to be maintained elsewhere */
3328 if (hw
->media_type
== e1000_media_type_copper
) {
3329 if ((adapter
->link_speed
== SPEED_1000
) &&
3330 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3331 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3332 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3335 if ((hw
->mac_type
<= e1000_82546
) &&
3336 (hw
->phy_type
== e1000_phy_m88
) &&
3337 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3338 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3341 /* Management Stats */
3342 if (hw
->has_smbus
) {
3343 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3344 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3345 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3348 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3352 * e1000_intr - Interrupt Handler
3353 * @irq: interrupt number
3354 * @data: pointer to a network interface device structure
3357 static irqreturn_t
e1000_intr(int irq
, void *data
)
3359 struct net_device
*netdev
= data
;
3360 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3361 struct e1000_hw
*hw
= &adapter
->hw
;
3362 u32 icr
= er32(ICR
);
3364 if (unlikely((!icr
) || test_bit(__E1000_DOWN
, &adapter
->flags
)))
3365 return IRQ_NONE
; /* Not our interrupt */
3367 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3368 hw
->get_link_status
= 1;
3369 /* guard against interrupt when we're going down */
3370 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3371 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3374 /* disable interrupts, without the synchronize_irq bit */
3376 E1000_WRITE_FLUSH();
3378 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3379 adapter
->total_tx_bytes
= 0;
3380 adapter
->total_tx_packets
= 0;
3381 adapter
->total_rx_bytes
= 0;
3382 adapter
->total_rx_packets
= 0;
3383 __napi_schedule(&adapter
->napi
);
3385 /* this really should not happen! if it does it is basically a
3386 * bug, but not a hard error, so enable ints and continue */
3387 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3388 e1000_irq_enable(adapter
);
3395 * e1000_clean - NAPI Rx polling callback
3396 * @adapter: board private structure
3398 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3400 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3401 int tx_clean_complete
= 0, work_done
= 0;
3403 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3405 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3407 if (!tx_clean_complete
)
3410 /* If budget not fully consumed, exit the polling mode */
3411 if (work_done
< budget
) {
3412 if (likely(adapter
->itr_setting
& 3))
3413 e1000_set_itr(adapter
);
3414 napi_complete(napi
);
3415 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3416 e1000_irq_enable(adapter
);
3423 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3424 * @adapter: board private structure
3426 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3427 struct e1000_tx_ring
*tx_ring
)
3429 struct e1000_hw
*hw
= &adapter
->hw
;
3430 struct net_device
*netdev
= adapter
->netdev
;
3431 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3432 struct e1000_buffer
*buffer_info
;
3433 unsigned int i
, eop
;
3434 unsigned int count
= 0;
3435 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3437 i
= tx_ring
->next_to_clean
;
3438 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3439 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3441 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3442 (count
< tx_ring
->count
)) {
3443 bool cleaned
= false;
3444 for ( ; !cleaned
; count
++) {
3445 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3446 buffer_info
= &tx_ring
->buffer_info
[i
];
3447 cleaned
= (i
== eop
);
3450 struct sk_buff
*skb
= buffer_info
->skb
;
3451 unsigned int segs
, bytecount
;
3452 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3453 /* multiply data chunks by size of headers */
3454 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3456 total_tx_packets
+= segs
;
3457 total_tx_bytes
+= bytecount
;
3459 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3460 tx_desc
->upper
.data
= 0;
3462 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3465 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3466 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3469 tx_ring
->next_to_clean
= i
;
3471 #define TX_WAKE_THRESHOLD 32
3472 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3473 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3474 /* Make sure that anybody stopping the queue after this
3475 * sees the new next_to_clean.
3479 if (netif_queue_stopped(netdev
) &&
3480 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3481 netif_wake_queue(netdev
);
3482 ++adapter
->restart_queue
;
3486 if (adapter
->detect_tx_hung
) {
3487 /* Detect a transmit hang in hardware, this serializes the
3488 * check with the clearing of time_stamp and movement of i */
3489 adapter
->detect_tx_hung
= false;
3490 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3491 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3492 (adapter
->tx_timeout_factor
* HZ
)) &&
3493 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3495 /* detected Tx unit hang */
3496 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3500 " next_to_use <%x>\n"
3501 " next_to_clean <%x>\n"
3502 "buffer_info[next_to_clean]\n"
3503 " time_stamp <%lx>\n"
3504 " next_to_watch <%x>\n"
3506 " next_to_watch.status <%x>\n",
3507 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3508 sizeof(struct e1000_tx_ring
)),
3509 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3510 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3511 tx_ring
->next_to_use
,
3512 tx_ring
->next_to_clean
,
3513 tx_ring
->buffer_info
[eop
].time_stamp
,
3516 eop_desc
->upper
.fields
.status
);
3517 netif_stop_queue(netdev
);
3520 adapter
->total_tx_bytes
+= total_tx_bytes
;
3521 adapter
->total_tx_packets
+= total_tx_packets
;
3522 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3523 netdev
->stats
.tx_packets
+= total_tx_packets
;
3524 return (count
< tx_ring
->count
);
3528 * e1000_rx_checksum - Receive Checksum Offload for 82543
3529 * @adapter: board private structure
3530 * @status_err: receive descriptor status and error fields
3531 * @csum: receive descriptor csum field
3532 * @sk_buff: socket buffer with received data
3535 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3536 u32 csum
, struct sk_buff
*skb
)
3538 struct e1000_hw
*hw
= &adapter
->hw
;
3539 u16 status
= (u16
)status_err
;
3540 u8 errors
= (u8
)(status_err
>> 24);
3541 skb
->ip_summed
= CHECKSUM_NONE
;
3543 /* 82543 or newer only */
3544 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3545 /* Ignore Checksum bit is set */
3546 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3547 /* TCP/UDP checksum error bit is set */
3548 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3549 /* let the stack verify checksum errors */
3550 adapter
->hw_csum_err
++;
3553 /* TCP/UDP Checksum has not been calculated */
3554 if (!(status
& E1000_RXD_STAT_TCPCS
))
3557 /* It must be a TCP or UDP packet with a valid checksum */
3558 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3559 /* TCP checksum is good */
3560 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3562 adapter
->hw_csum_good
++;
3566 * e1000_consume_page - helper function
3568 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3573 skb
->data_len
+= length
;
3574 skb
->truesize
+= length
;
3578 * e1000_receive_skb - helper function to handle rx indications
3579 * @adapter: board private structure
3580 * @status: descriptor status field as written by hardware
3581 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3582 * @skb: pointer to sk_buff to be indicated to stack
3584 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3585 __le16 vlan
, struct sk_buff
*skb
)
3587 if (unlikely(adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))) {
3588 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3590 E1000_RXD_SPC_VLAN_MASK
);
3592 netif_receive_skb(skb
);
3597 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3598 * @adapter: board private structure
3599 * @rx_ring: ring to clean
3600 * @work_done: amount of napi work completed this call
3601 * @work_to_do: max amount of work allowed for this call to do
3603 * the return value indicates whether actual cleaning was done, there
3604 * is no guarantee that everything was cleaned
3606 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3607 struct e1000_rx_ring
*rx_ring
,
3608 int *work_done
, int work_to_do
)
3610 struct e1000_hw
*hw
= &adapter
->hw
;
3611 struct net_device
*netdev
= adapter
->netdev
;
3612 struct pci_dev
*pdev
= adapter
->pdev
;
3613 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3614 struct e1000_buffer
*buffer_info
, *next_buffer
;
3615 unsigned long irq_flags
;
3618 int cleaned_count
= 0;
3619 bool cleaned
= false;
3620 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3622 i
= rx_ring
->next_to_clean
;
3623 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3624 buffer_info
= &rx_ring
->buffer_info
[i
];
3626 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3627 struct sk_buff
*skb
;
3630 if (*work_done
>= work_to_do
)
3634 status
= rx_desc
->status
;
3635 skb
= buffer_info
->skb
;
3636 buffer_info
->skb
= NULL
;
3638 if (++i
== rx_ring
->count
) i
= 0;
3639 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3642 next_buffer
= &rx_ring
->buffer_info
[i
];
3646 pci_unmap_page(pdev
, buffer_info
->dma
, buffer_info
->length
,
3647 PCI_DMA_FROMDEVICE
);
3648 buffer_info
->dma
= 0;
3650 length
= le16_to_cpu(rx_desc
->length
);
3652 /* errors is only valid for DD + EOP descriptors */
3653 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3654 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3655 u8 last_byte
= *(skb
->data
+ length
- 1);
3656 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3658 spin_lock_irqsave(&adapter
->stats_lock
,
3660 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3662 spin_unlock_irqrestore(&adapter
->stats_lock
,
3666 /* recycle both page and skb */
3667 buffer_info
->skb
= skb
;
3668 /* an error means any chain goes out the window
3670 if (rx_ring
->rx_skb_top
)
3671 dev_kfree_skb(rx_ring
->rx_skb_top
);
3672 rx_ring
->rx_skb_top
= NULL
;
3677 #define rxtop rx_ring->rx_skb_top
3678 if (!(status
& E1000_RXD_STAT_EOP
)) {
3679 /* this descriptor is only the beginning (or middle) */
3681 /* this is the beginning of a chain */
3683 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3686 /* this is the middle of a chain */
3687 skb_fill_page_desc(rxtop
,
3688 skb_shinfo(rxtop
)->nr_frags
,
3689 buffer_info
->page
, 0, length
);
3690 /* re-use the skb, only consumed the page */
3691 buffer_info
->skb
= skb
;
3693 e1000_consume_page(buffer_info
, rxtop
, length
);
3697 /* end of the chain */
3698 skb_fill_page_desc(rxtop
,
3699 skb_shinfo(rxtop
)->nr_frags
,
3700 buffer_info
->page
, 0, length
);
3701 /* re-use the current skb, we only consumed the
3703 buffer_info
->skb
= skb
;
3706 e1000_consume_page(buffer_info
, skb
, length
);
3708 /* no chain, got EOP, this buf is the packet
3709 * copybreak to save the put_page/alloc_page */
3710 if (length
<= copybreak
&&
3711 skb_tailroom(skb
) >= length
) {
3713 vaddr
= kmap_atomic(buffer_info
->page
,
3714 KM_SKB_DATA_SOFTIRQ
);
3715 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3716 kunmap_atomic(vaddr
,
3717 KM_SKB_DATA_SOFTIRQ
);
3718 /* re-use the page, so don't erase
3719 * buffer_info->page */
3720 skb_put(skb
, length
);
3722 skb_fill_page_desc(skb
, 0,
3723 buffer_info
->page
, 0,
3725 e1000_consume_page(buffer_info
, skb
,
3731 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3732 e1000_rx_checksum(adapter
,
3734 ((u32
)(rx_desc
->errors
) << 24),
3735 le16_to_cpu(rx_desc
->csum
), skb
);
3737 pskb_trim(skb
, skb
->len
- 4);
3739 /* probably a little skewed due to removing CRC */
3740 total_rx_bytes
+= skb
->len
;
3743 /* eth type trans needs skb->data to point to something */
3744 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3745 DPRINTK(DRV
, ERR
, "pskb_may_pull failed.\n");
3750 skb
->protocol
= eth_type_trans(skb
, netdev
);
3752 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3755 rx_desc
->status
= 0;
3757 /* return some buffers to hardware, one at a time is too slow */
3758 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3759 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3763 /* use prefetched values */
3765 buffer_info
= next_buffer
;
3767 rx_ring
->next_to_clean
= i
;
3769 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3771 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3773 adapter
->total_rx_packets
+= total_rx_packets
;
3774 adapter
->total_rx_bytes
+= total_rx_bytes
;
3775 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3776 netdev
->stats
.rx_packets
+= total_rx_packets
;
3781 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3782 * @adapter: board private structure
3783 * @rx_ring: ring to clean
3784 * @work_done: amount of napi work completed this call
3785 * @work_to_do: max amount of work allowed for this call to do
3787 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3788 struct e1000_rx_ring
*rx_ring
,
3789 int *work_done
, int work_to_do
)
3791 struct e1000_hw
*hw
= &adapter
->hw
;
3792 struct net_device
*netdev
= adapter
->netdev
;
3793 struct pci_dev
*pdev
= adapter
->pdev
;
3794 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3795 struct e1000_buffer
*buffer_info
, *next_buffer
;
3796 unsigned long flags
;
3799 int cleaned_count
= 0;
3800 bool cleaned
= false;
3801 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3803 i
= rx_ring
->next_to_clean
;
3804 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3805 buffer_info
= &rx_ring
->buffer_info
[i
];
3807 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3808 struct sk_buff
*skb
;
3811 if (*work_done
>= work_to_do
)
3815 status
= rx_desc
->status
;
3816 skb
= buffer_info
->skb
;
3817 buffer_info
->skb
= NULL
;
3819 prefetch(skb
->data
- NET_IP_ALIGN
);
3821 if (++i
== rx_ring
->count
) i
= 0;
3822 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3825 next_buffer
= &rx_ring
->buffer_info
[i
];
3829 pci_unmap_single(pdev
, buffer_info
->dma
, buffer_info
->length
,
3830 PCI_DMA_FROMDEVICE
);
3831 buffer_info
->dma
= 0;
3833 length
= le16_to_cpu(rx_desc
->length
);
3834 /* !EOP means multiple descriptors were used to store a single
3835 * packet, if thats the case we need to toss it. In fact, we
3836 * to toss every packet with the EOP bit clear and the next
3837 * frame that _does_ have the EOP bit set, as it is by
3838 * definition only a frame fragment
3840 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
3841 adapter
->discarding
= true;
3843 if (adapter
->discarding
) {
3844 /* All receives must fit into a single buffer */
3845 E1000_DBG("%s: Receive packet consumed multiple"
3846 " buffers\n", netdev
->name
);
3848 buffer_info
->skb
= skb
;
3849 if (status
& E1000_RXD_STAT_EOP
)
3850 adapter
->discarding
= false;
3854 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3855 u8 last_byte
= *(skb
->data
+ length
- 1);
3856 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3858 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3859 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3861 spin_unlock_irqrestore(&adapter
->stats_lock
,
3866 buffer_info
->skb
= skb
;
3871 /* adjust length to remove Ethernet CRC, this must be
3872 * done after the TBI_ACCEPT workaround above */
3875 /* probably a little skewed due to removing CRC */
3876 total_rx_bytes
+= length
;
3879 /* code added for copybreak, this should improve
3880 * performance for small packets with large amounts
3881 * of reassembly being done in the stack */
3882 if (length
< copybreak
) {
3883 struct sk_buff
*new_skb
=
3884 netdev_alloc_skb_ip_align(netdev
, length
);
3886 skb_copy_to_linear_data_offset(new_skb
,
3892 /* save the skb in buffer_info as good */
3893 buffer_info
->skb
= skb
;
3896 /* else just continue with the old one */
3898 /* end copybreak code */
3899 skb_put(skb
, length
);
3901 /* Receive Checksum Offload */
3902 e1000_rx_checksum(adapter
,
3904 ((u32
)(rx_desc
->errors
) << 24),
3905 le16_to_cpu(rx_desc
->csum
), skb
);
3907 skb
->protocol
= eth_type_trans(skb
, netdev
);
3909 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3912 rx_desc
->status
= 0;
3914 /* return some buffers to hardware, one at a time is too slow */
3915 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3916 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3920 /* use prefetched values */
3922 buffer_info
= next_buffer
;
3924 rx_ring
->next_to_clean
= i
;
3926 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3928 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3930 adapter
->total_rx_packets
+= total_rx_packets
;
3931 adapter
->total_rx_bytes
+= total_rx_bytes
;
3932 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3933 netdev
->stats
.rx_packets
+= total_rx_packets
;
3938 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3939 * @adapter: address of board private structure
3940 * @rx_ring: pointer to receive ring structure
3941 * @cleaned_count: number of buffers to allocate this pass
3945 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
3946 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
3948 struct net_device
*netdev
= adapter
->netdev
;
3949 struct pci_dev
*pdev
= adapter
->pdev
;
3950 struct e1000_rx_desc
*rx_desc
;
3951 struct e1000_buffer
*buffer_info
;
3952 struct sk_buff
*skb
;
3954 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
3956 i
= rx_ring
->next_to_use
;
3957 buffer_info
= &rx_ring
->buffer_info
[i
];
3959 while (cleaned_count
--) {
3960 skb
= buffer_info
->skb
;
3966 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
3967 if (unlikely(!skb
)) {
3968 /* Better luck next round */
3969 adapter
->alloc_rx_buff_failed
++;
3973 /* Fix for errata 23, can't cross 64kB boundary */
3974 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3975 struct sk_buff
*oldskb
= skb
;
3976 DPRINTK(PROBE
, ERR
, "skb align check failed: %u bytes "
3977 "at %p\n", bufsz
, skb
->data
);
3978 /* Try again, without freeing the previous */
3979 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
3980 /* Failed allocation, critical failure */
3982 dev_kfree_skb(oldskb
);
3983 adapter
->alloc_rx_buff_failed
++;
3987 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3990 dev_kfree_skb(oldskb
);
3991 break; /* while (cleaned_count--) */
3994 /* Use new allocation */
3995 dev_kfree_skb(oldskb
);
3997 buffer_info
->skb
= skb
;
3998 buffer_info
->length
= adapter
->rx_buffer_len
;
4000 /* allocate a new page if necessary */
4001 if (!buffer_info
->page
) {
4002 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4003 if (unlikely(!buffer_info
->page
)) {
4004 adapter
->alloc_rx_buff_failed
++;
4009 if (!buffer_info
->dma
)
4010 buffer_info
->dma
= pci_map_page(pdev
,
4011 buffer_info
->page
, 0,
4012 buffer_info
->length
,
4013 PCI_DMA_FROMDEVICE
);
4015 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4016 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4018 if (unlikely(++i
== rx_ring
->count
))
4020 buffer_info
= &rx_ring
->buffer_info
[i
];
4023 if (likely(rx_ring
->next_to_use
!= i
)) {
4024 rx_ring
->next_to_use
= i
;
4025 if (unlikely(i
-- == 0))
4026 i
= (rx_ring
->count
- 1);
4028 /* Force memory writes to complete before letting h/w
4029 * know there are new descriptors to fetch. (Only
4030 * applicable for weak-ordered memory model archs,
4031 * such as IA-64). */
4033 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4038 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4039 * @adapter: address of board private structure
4042 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4043 struct e1000_rx_ring
*rx_ring
,
4046 struct e1000_hw
*hw
= &adapter
->hw
;
4047 struct net_device
*netdev
= adapter
->netdev
;
4048 struct pci_dev
*pdev
= adapter
->pdev
;
4049 struct e1000_rx_desc
*rx_desc
;
4050 struct e1000_buffer
*buffer_info
;
4051 struct sk_buff
*skb
;
4053 unsigned int bufsz
= adapter
->rx_buffer_len
;
4055 i
= rx_ring
->next_to_use
;
4056 buffer_info
= &rx_ring
->buffer_info
[i
];
4058 while (cleaned_count
--) {
4059 skb
= buffer_info
->skb
;
4065 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4066 if (unlikely(!skb
)) {
4067 /* Better luck next round */
4068 adapter
->alloc_rx_buff_failed
++;
4072 /* Fix for errata 23, can't cross 64kB boundary */
4073 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4074 struct sk_buff
*oldskb
= skb
;
4075 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4076 "at %p\n", bufsz
, skb
->data
);
4077 /* Try again, without freeing the previous */
4078 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4079 /* Failed allocation, critical failure */
4081 dev_kfree_skb(oldskb
);
4082 adapter
->alloc_rx_buff_failed
++;
4086 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4089 dev_kfree_skb(oldskb
);
4090 adapter
->alloc_rx_buff_failed
++;
4091 break; /* while !buffer_info->skb */
4094 /* Use new allocation */
4095 dev_kfree_skb(oldskb
);
4097 buffer_info
->skb
= skb
;
4098 buffer_info
->length
= adapter
->rx_buffer_len
;
4100 buffer_info
->dma
= pci_map_single(pdev
,
4102 buffer_info
->length
,
4103 PCI_DMA_FROMDEVICE
);
4106 * XXX if it was allocated cleanly it will never map to a
4110 /* Fix for errata 23, can't cross 64kB boundary */
4111 if (!e1000_check_64k_bound(adapter
,
4112 (void *)(unsigned long)buffer_info
->dma
,
4113 adapter
->rx_buffer_len
)) {
4114 DPRINTK(RX_ERR
, ERR
,
4115 "dma align check failed: %u bytes at %p\n",
4116 adapter
->rx_buffer_len
,
4117 (void *)(unsigned long)buffer_info
->dma
);
4119 buffer_info
->skb
= NULL
;
4121 pci_unmap_single(pdev
, buffer_info
->dma
,
4122 adapter
->rx_buffer_len
,
4123 PCI_DMA_FROMDEVICE
);
4124 buffer_info
->dma
= 0;
4126 adapter
->alloc_rx_buff_failed
++;
4127 break; /* while !buffer_info->skb */
4129 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4130 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4132 if (unlikely(++i
== rx_ring
->count
))
4134 buffer_info
= &rx_ring
->buffer_info
[i
];
4137 if (likely(rx_ring
->next_to_use
!= i
)) {
4138 rx_ring
->next_to_use
= i
;
4139 if (unlikely(i
-- == 0))
4140 i
= (rx_ring
->count
- 1);
4142 /* Force memory writes to complete before letting h/w
4143 * know there are new descriptors to fetch. (Only
4144 * applicable for weak-ordered memory model archs,
4145 * such as IA-64). */
4147 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4152 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4156 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4158 struct e1000_hw
*hw
= &adapter
->hw
;
4162 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4163 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4166 if (adapter
->smartspeed
== 0) {
4167 /* If Master/Slave config fault is asserted twice,
4168 * we assume back-to-back */
4169 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4170 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4171 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4172 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4173 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4174 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4175 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4176 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4178 adapter
->smartspeed
++;
4179 if (!e1000_phy_setup_autoneg(hw
) &&
4180 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4182 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4183 MII_CR_RESTART_AUTO_NEG
);
4184 e1000_write_phy_reg(hw
, PHY_CTRL
,
4189 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4190 /* If still no link, perhaps using 2/3 pair cable */
4191 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4192 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4193 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4194 if (!e1000_phy_setup_autoneg(hw
) &&
4195 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4196 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4197 MII_CR_RESTART_AUTO_NEG
);
4198 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4201 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4202 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4203 adapter
->smartspeed
= 0;
4213 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4219 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4232 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4235 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4236 struct e1000_hw
*hw
= &adapter
->hw
;
4237 struct mii_ioctl_data
*data
= if_mii(ifr
);
4241 unsigned long flags
;
4243 if (hw
->media_type
!= e1000_media_type_copper
)
4248 data
->phy_id
= hw
->phy_addr
;
4251 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4252 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4254 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4257 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4260 if (data
->reg_num
& ~(0x1F))
4262 mii_reg
= data
->val_in
;
4263 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4264 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4266 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4269 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4270 if (hw
->media_type
== e1000_media_type_copper
) {
4271 switch (data
->reg_num
) {
4273 if (mii_reg
& MII_CR_POWER_DOWN
)
4275 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4277 hw
->autoneg_advertised
= 0x2F;
4280 spddplx
= SPEED_1000
;
4281 else if (mii_reg
& 0x2000)
4282 spddplx
= SPEED_100
;
4285 spddplx
+= (mii_reg
& 0x100)
4288 retval
= e1000_set_spd_dplx(adapter
,
4293 if (netif_running(adapter
->netdev
))
4294 e1000_reinit_locked(adapter
);
4296 e1000_reset(adapter
);
4298 case M88E1000_PHY_SPEC_CTRL
:
4299 case M88E1000_EXT_PHY_SPEC_CTRL
:
4300 if (e1000_phy_reset(hw
))
4305 switch (data
->reg_num
) {
4307 if (mii_reg
& MII_CR_POWER_DOWN
)
4309 if (netif_running(adapter
->netdev
))
4310 e1000_reinit_locked(adapter
);
4312 e1000_reset(adapter
);
4320 return E1000_SUCCESS
;
4323 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4325 struct e1000_adapter
*adapter
= hw
->back
;
4326 int ret_val
= pci_set_mwi(adapter
->pdev
);
4329 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4332 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4334 struct e1000_adapter
*adapter
= hw
->back
;
4336 pci_clear_mwi(adapter
->pdev
);
4339 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4341 struct e1000_adapter
*adapter
= hw
->back
;
4342 return pcix_get_mmrbc(adapter
->pdev
);
4345 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4347 struct e1000_adapter
*adapter
= hw
->back
;
4348 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4351 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4356 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4357 struct vlan_group
*grp
)
4359 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4360 struct e1000_hw
*hw
= &adapter
->hw
;
4363 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4364 e1000_irq_disable(adapter
);
4365 adapter
->vlgrp
= grp
;
4368 /* enable VLAN tag insert/strip */
4370 ctrl
|= E1000_CTRL_VME
;
4373 /* enable VLAN receive filtering */
4375 rctl
&= ~E1000_RCTL_CFIEN
;
4376 if (!(netdev
->flags
& IFF_PROMISC
))
4377 rctl
|= E1000_RCTL_VFE
;
4379 e1000_update_mng_vlan(adapter
);
4381 /* disable VLAN tag insert/strip */
4383 ctrl
&= ~E1000_CTRL_VME
;
4386 /* disable VLAN receive filtering */
4388 rctl
&= ~E1000_RCTL_VFE
;
4391 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
4392 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4393 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4397 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4398 e1000_irq_enable(adapter
);
4401 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4403 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4404 struct e1000_hw
*hw
= &adapter
->hw
;
4407 if ((hw
->mng_cookie
.status
&
4408 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4409 (vid
== adapter
->mng_vlan_id
))
4411 /* add VID to filter table */
4412 index
= (vid
>> 5) & 0x7F;
4413 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4414 vfta
|= (1 << (vid
& 0x1F));
4415 e1000_write_vfta(hw
, index
, vfta
);
4418 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4420 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4421 struct e1000_hw
*hw
= &adapter
->hw
;
4424 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4425 e1000_irq_disable(adapter
);
4426 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4427 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4428 e1000_irq_enable(adapter
);
4430 /* remove VID from filter table */
4431 index
= (vid
>> 5) & 0x7F;
4432 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4433 vfta
&= ~(1 << (vid
& 0x1F));
4434 e1000_write_vfta(hw
, index
, vfta
);
4437 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4439 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4441 if (adapter
->vlgrp
) {
4443 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4444 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4446 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4451 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4453 struct e1000_hw
*hw
= &adapter
->hw
;
4457 /* Fiber NICs only allow 1000 gbps Full duplex */
4458 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4459 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4460 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4465 case SPEED_10
+ DUPLEX_HALF
:
4466 hw
->forced_speed_duplex
= e1000_10_half
;
4468 case SPEED_10
+ DUPLEX_FULL
:
4469 hw
->forced_speed_duplex
= e1000_10_full
;
4471 case SPEED_100
+ DUPLEX_HALF
:
4472 hw
->forced_speed_duplex
= e1000_100_half
;
4474 case SPEED_100
+ DUPLEX_FULL
:
4475 hw
->forced_speed_duplex
= e1000_100_full
;
4477 case SPEED_1000
+ DUPLEX_FULL
:
4479 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4481 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4483 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4489 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4491 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4492 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4493 struct e1000_hw
*hw
= &adapter
->hw
;
4494 u32 ctrl
, ctrl_ext
, rctl
, status
;
4495 u32 wufc
= adapter
->wol
;
4500 netif_device_detach(netdev
);
4502 if (netif_running(netdev
)) {
4503 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4504 e1000_down(adapter
);
4508 retval
= pci_save_state(pdev
);
4513 status
= er32(STATUS
);
4514 if (status
& E1000_STATUS_LU
)
4515 wufc
&= ~E1000_WUFC_LNKC
;
4518 e1000_setup_rctl(adapter
);
4519 e1000_set_rx_mode(netdev
);
4521 /* turn on all-multi mode if wake on multicast is enabled */
4522 if (wufc
& E1000_WUFC_MC
) {
4524 rctl
|= E1000_RCTL_MPE
;
4528 if (hw
->mac_type
>= e1000_82540
) {
4530 /* advertise wake from D3Cold */
4531 #define E1000_CTRL_ADVD3WUC 0x00100000
4532 /* phy power management enable */
4533 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4534 ctrl
|= E1000_CTRL_ADVD3WUC
|
4535 E1000_CTRL_EN_PHY_PWR_MGMT
;
4539 if (hw
->media_type
== e1000_media_type_fiber
||
4540 hw
->media_type
== e1000_media_type_internal_serdes
) {
4541 /* keep the laser running in D3 */
4542 ctrl_ext
= er32(CTRL_EXT
);
4543 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4544 ew32(CTRL_EXT
, ctrl_ext
);
4547 ew32(WUC
, E1000_WUC_PME_EN
);
4554 e1000_release_manageability(adapter
);
4556 *enable_wake
= !!wufc
;
4558 /* make sure adapter isn't asleep if manageability is enabled */
4559 if (adapter
->en_mng_pt
)
4560 *enable_wake
= true;
4562 if (netif_running(netdev
))
4563 e1000_free_irq(adapter
);
4565 pci_disable_device(pdev
);
4571 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4576 retval
= __e1000_shutdown(pdev
, &wake
);
4581 pci_prepare_to_sleep(pdev
);
4583 pci_wake_from_d3(pdev
, false);
4584 pci_set_power_state(pdev
, PCI_D3hot
);
4590 static int e1000_resume(struct pci_dev
*pdev
)
4592 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4593 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4594 struct e1000_hw
*hw
= &adapter
->hw
;
4597 pci_set_power_state(pdev
, PCI_D0
);
4598 pci_restore_state(pdev
);
4600 if (adapter
->need_ioport
)
4601 err
= pci_enable_device(pdev
);
4603 err
= pci_enable_device_mem(pdev
);
4605 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
4608 pci_set_master(pdev
);
4610 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4611 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4613 if (netif_running(netdev
)) {
4614 err
= e1000_request_irq(adapter
);
4619 e1000_power_up_phy(adapter
);
4620 e1000_reset(adapter
);
4623 e1000_init_manageability(adapter
);
4625 if (netif_running(netdev
))
4628 netif_device_attach(netdev
);
4634 static void e1000_shutdown(struct pci_dev
*pdev
)
4638 __e1000_shutdown(pdev
, &wake
);
4640 if (system_state
== SYSTEM_POWER_OFF
) {
4641 pci_wake_from_d3(pdev
, wake
);
4642 pci_set_power_state(pdev
, PCI_D3hot
);
4646 #ifdef CONFIG_NET_POLL_CONTROLLER
4648 * Polling 'interrupt' - used by things like netconsole to send skbs
4649 * without having to re-enable interrupts. It's not called while
4650 * the interrupt routine is executing.
4652 static void e1000_netpoll(struct net_device
*netdev
)
4654 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4656 disable_irq(adapter
->pdev
->irq
);
4657 e1000_intr(adapter
->pdev
->irq
, netdev
);
4658 enable_irq(adapter
->pdev
->irq
);
4663 * e1000_io_error_detected - called when PCI error is detected
4664 * @pdev: Pointer to PCI device
4665 * @state: The current pci connection state
4667 * This function is called after a PCI bus error affecting
4668 * this device has been detected.
4670 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4671 pci_channel_state_t state
)
4673 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4674 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4676 netif_device_detach(netdev
);
4678 if (state
== pci_channel_io_perm_failure
)
4679 return PCI_ERS_RESULT_DISCONNECT
;
4681 if (netif_running(netdev
))
4682 e1000_down(adapter
);
4683 pci_disable_device(pdev
);
4685 /* Request a slot slot reset. */
4686 return PCI_ERS_RESULT_NEED_RESET
;
4690 * e1000_io_slot_reset - called after the pci bus has been reset.
4691 * @pdev: Pointer to PCI device
4693 * Restart the card from scratch, as if from a cold-boot. Implementation
4694 * resembles the first-half of the e1000_resume routine.
4696 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4698 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4699 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4700 struct e1000_hw
*hw
= &adapter
->hw
;
4703 if (adapter
->need_ioport
)
4704 err
= pci_enable_device(pdev
);
4706 err
= pci_enable_device_mem(pdev
);
4708 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
4709 return PCI_ERS_RESULT_DISCONNECT
;
4711 pci_set_master(pdev
);
4713 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4714 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4716 e1000_reset(adapter
);
4719 return PCI_ERS_RESULT_RECOVERED
;
4723 * e1000_io_resume - called when traffic can start flowing again.
4724 * @pdev: Pointer to PCI device
4726 * This callback is called when the error recovery driver tells us that
4727 * its OK to resume normal operation. Implementation resembles the
4728 * second-half of the e1000_resume routine.
4730 static void e1000_io_resume(struct pci_dev
*pdev
)
4732 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4733 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4735 e1000_init_manageability(adapter
);
4737 if (netif_running(netdev
)) {
4738 if (e1000_up(adapter
)) {
4739 printk("e1000: can't bring device back up after reset\n");
4744 netif_device_attach(netdev
);