Linux 2.6.33-rc8
[linux-2.6/lguest.git] / drivers / net / gianfar.c
blob8bd3c9f17532529e6f3c445024f9e5e4c8d6ac96
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
27 * Theory of operation
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
86 #include <asm/io.h>
87 #include <asm/irq.h>
88 #include <asm/uaccess.h>
89 #include <linux/module.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h>
92 #include <linux/mii.h>
93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h>
95 #include <linux/of.h>
97 #include "gianfar.h"
98 #include "fsl_pq_mdio.h"
100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
104 const char gfar_driver_name[] = "Gianfar Ethernet";
105 const char gfar_driver_version[] = "1.3";
107 static int gfar_enet_open(struct net_device *dev);
108 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
109 static void gfar_reset_task(struct work_struct *work);
110 static void gfar_timeout(struct net_device *dev);
111 static int gfar_close(struct net_device *dev);
112 struct sk_buff *gfar_new_skb(struct net_device *dev);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
114 struct sk_buff *skb);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static void init_registers(struct net_device *dev);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct of_device *ofdev,
124 const struct of_device_id *match);
125 static int gfar_remove(struct of_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 int amount_pull);
138 static void gfar_vlan_rx_register(struct net_device *netdev,
139 struct vlan_group *grp);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152 dma_addr_t buf)
154 u32 lstatus;
156 bdp->bufPtr = buf;
158 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160 lstatus |= BD_LFLAG(RXBD_WRAP);
162 eieio();
164 bdp->lstatus = lstatus;
167 static int gfar_init_bds(struct net_device *ndev)
169 struct gfar_private *priv = netdev_priv(ndev);
170 struct gfar_priv_tx_q *tx_queue = NULL;
171 struct gfar_priv_rx_q *rx_queue = NULL;
172 struct txbd8 *txbdp;
173 struct rxbd8 *rxbdp;
174 int i, j;
176 for (i = 0; i < priv->num_tx_queues; i++) {
177 tx_queue = priv->tx_queue[i];
178 /* Initialize some variables in our dev structure */
179 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180 tx_queue->dirty_tx = tx_queue->tx_bd_base;
181 tx_queue->cur_tx = tx_queue->tx_bd_base;
182 tx_queue->skb_curtx = 0;
183 tx_queue->skb_dirtytx = 0;
185 /* Initialize Transmit Descriptor Ring */
186 txbdp = tx_queue->tx_bd_base;
187 for (j = 0; j < tx_queue->tx_ring_size; j++) {
188 txbdp->lstatus = 0;
189 txbdp->bufPtr = 0;
190 txbdp++;
193 /* Set the last descriptor in the ring to indicate wrap */
194 txbdp--;
195 txbdp->status |= TXBD_WRAP;
198 for (i = 0; i < priv->num_rx_queues; i++) {
199 rx_queue = priv->rx_queue[i];
200 rx_queue->cur_rx = rx_queue->rx_bd_base;
201 rx_queue->skb_currx = 0;
202 rxbdp = rx_queue->rx_bd_base;
204 for (j = 0; j < rx_queue->rx_ring_size; j++) {
205 struct sk_buff *skb = rx_queue->rx_skbuff[j];
207 if (skb) {
208 gfar_init_rxbdp(rx_queue, rxbdp,
209 rxbdp->bufPtr);
210 } else {
211 skb = gfar_new_skb(ndev);
212 if (!skb) {
213 pr_err("%s: Can't allocate RX buffers\n",
214 ndev->name);
215 goto err_rxalloc_fail;
217 rx_queue->rx_skbuff[j] = skb;
219 gfar_new_rxbdp(rx_queue, rxbdp, skb);
222 rxbdp++;
227 return 0;
229 err_rxalloc_fail:
230 free_skb_resources(priv);
231 return -ENOMEM;
234 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 void *vaddr;
237 dma_addr_t addr;
238 int i, j, k;
239 struct gfar_private *priv = netdev_priv(ndev);
240 struct device *dev = &priv->ofdev->dev;
241 struct gfar_priv_tx_q *tx_queue = NULL;
242 struct gfar_priv_rx_q *rx_queue = NULL;
244 priv->total_tx_ring_size = 0;
245 for (i = 0; i < priv->num_tx_queues; i++)
246 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248 priv->total_rx_ring_size = 0;
249 for (i = 0; i < priv->num_rx_queues; i++)
250 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252 /* Allocate memory for the buffer descriptors */
253 vaddr = dma_alloc_coherent(dev,
254 sizeof(struct txbd8) * priv->total_tx_ring_size +
255 sizeof(struct rxbd8) * priv->total_rx_ring_size,
256 &addr, GFP_KERNEL);
257 if (!vaddr) {
258 if (netif_msg_ifup(priv))
259 pr_err("%s: Could not allocate buffer descriptors!\n",
260 ndev->name);
261 return -ENOMEM;
264 for (i = 0; i < priv->num_tx_queues; i++) {
265 tx_queue = priv->tx_queue[i];
266 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
267 tx_queue->tx_bd_dma_base = addr;
268 tx_queue->dev = ndev;
269 /* enet DMA only understands physical addresses */
270 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
271 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274 /* Start the rx descriptor ring where the tx ring leaves off */
275 for (i = 0; i < priv->num_rx_queues; i++) {
276 rx_queue = priv->rx_queue[i];
277 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
278 rx_queue->rx_bd_dma_base = addr;
279 rx_queue->dev = ndev;
280 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
281 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284 /* Setup the skbuff rings */
285 for (i = 0; i < priv->num_tx_queues; i++) {
286 tx_queue = priv->tx_queue[i];
287 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
288 tx_queue->tx_ring_size, GFP_KERNEL);
289 if (!tx_queue->tx_skbuff) {
290 if (netif_msg_ifup(priv))
291 pr_err("%s: Could not allocate tx_skbuff\n",
292 ndev->name);
293 goto cleanup;
296 for (k = 0; k < tx_queue->tx_ring_size; k++)
297 tx_queue->tx_skbuff[k] = NULL;
300 for (i = 0; i < priv->num_rx_queues; i++) {
301 rx_queue = priv->rx_queue[i];
302 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
303 rx_queue->rx_ring_size, GFP_KERNEL);
305 if (!rx_queue->rx_skbuff) {
306 if (netif_msg_ifup(priv))
307 pr_err("%s: Could not allocate rx_skbuff\n",
308 ndev->name);
309 goto cleanup;
312 for (j = 0; j < rx_queue->rx_ring_size; j++)
313 rx_queue->rx_skbuff[j] = NULL;
316 if (gfar_init_bds(ndev))
317 goto cleanup;
319 return 0;
321 cleanup:
322 free_skb_resources(priv);
323 return -ENOMEM;
326 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 struct gfar __iomem *regs = priv->gfargrp[0].regs;
329 u32 __iomem *baddr;
330 int i;
332 baddr = &regs->tbase0;
333 for(i = 0; i < priv->num_tx_queues; i++) {
334 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
335 baddr += 2;
338 baddr = &regs->rbase0;
339 for(i = 0; i < priv->num_rx_queues; i++) {
340 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
341 baddr += 2;
345 static void gfar_init_mac(struct net_device *ndev)
347 struct gfar_private *priv = netdev_priv(ndev);
348 struct gfar __iomem *regs = priv->gfargrp[0].regs;
349 u32 rctrl = 0;
350 u32 tctrl = 0;
351 u32 attrs = 0;
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv);
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv, 0xFF, 0xFF);
359 if (priv->rx_filer_enable) {
360 rctrl |= RCTRL_FILREN;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(&regs->rir0, DEFAULT_RIR0);
365 if (priv->rx_csum_enable)
366 rctrl |= RCTRL_CHECKSUMMING;
368 if (priv->extended_hash) {
369 rctrl |= RCTRL_EXTHASH;
371 gfar_clear_exact_match(ndev);
372 rctrl |= RCTRL_EMEN;
375 if (priv->padding) {
376 rctrl &= ~RCTRL_PAL_MASK;
377 rctrl |= RCTRL_PADDING(priv->padding);
380 /* keep vlan related bits if it's enabled */
381 if (priv->vlgrp) {
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 tctrl |= TCTRL_VLINS;
386 /* Init rctrl based on our settings */
387 gfar_write(&regs->rctrl, rctrl);
389 if (ndev->features & NETIF_F_IP_CSUM)
390 tctrl |= TCTRL_INIT_CSUM;
392 tctrl |= TCTRL_TXSCHED_PRIO;
394 gfar_write(&regs->tctrl, tctrl);
396 /* Set the extraction length and index */
397 attrs = ATTRELI_EL(priv->rx_stash_size) |
398 ATTRELI_EI(priv->rx_stash_index);
400 gfar_write(&regs->attreli, attrs);
402 /* Start with defaults, and add stashing or locking
403 * depending on the approprate variables */
404 attrs = ATTR_INIT_SETTINGS;
406 if (priv->bd_stash_en)
407 attrs |= ATTR_BDSTASH;
409 if (priv->rx_stash_size != 0)
410 attrs |= ATTR_BUFSTASH;
412 gfar_write(&regs->attr, attrs);
414 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
415 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
416 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
419 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
421 struct gfar_private *priv = netdev_priv(dev);
422 struct netdev_queue *txq;
423 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
424 unsigned long tx_packets = 0, tx_bytes = 0;
425 int i = 0;
427 for (i = 0; i < priv->num_rx_queues; i++) {
428 rx_packets += priv->rx_queue[i]->stats.rx_packets;
429 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
430 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
433 dev->stats.rx_packets = rx_packets;
434 dev->stats.rx_bytes = rx_bytes;
435 dev->stats.rx_dropped = rx_dropped;
437 for (i = 0; i < priv->num_tx_queues; i++) {
438 txq = netdev_get_tx_queue(dev, i);
439 tx_bytes += txq->tx_bytes;
440 tx_packets += txq->tx_packets;
443 dev->stats.tx_bytes = tx_bytes;
444 dev->stats.tx_packets = tx_packets;
446 return &dev->stats;
449 static const struct net_device_ops gfar_netdev_ops = {
450 .ndo_open = gfar_enet_open,
451 .ndo_start_xmit = gfar_start_xmit,
452 .ndo_stop = gfar_close,
453 .ndo_change_mtu = gfar_change_mtu,
454 .ndo_set_multicast_list = gfar_set_multi,
455 .ndo_tx_timeout = gfar_timeout,
456 .ndo_do_ioctl = gfar_ioctl,
457 .ndo_get_stats = gfar_get_stats,
458 .ndo_vlan_rx_register = gfar_vlan_rx_register,
459 .ndo_set_mac_address = eth_mac_addr,
460 .ndo_validate_addr = eth_validate_addr,
461 #ifdef CONFIG_NET_POLL_CONTROLLER
462 .ndo_poll_controller = gfar_netpoll,
463 #endif
466 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
467 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
469 void lock_rx_qs(struct gfar_private *priv)
471 int i = 0x0;
473 for (i = 0; i < priv->num_rx_queues; i++)
474 spin_lock(&priv->rx_queue[i]->rxlock);
477 void lock_tx_qs(struct gfar_private *priv)
479 int i = 0x0;
481 for (i = 0; i < priv->num_tx_queues; i++)
482 spin_lock(&priv->tx_queue[i]->txlock);
485 void unlock_rx_qs(struct gfar_private *priv)
487 int i = 0x0;
489 for (i = 0; i < priv->num_rx_queues; i++)
490 spin_unlock(&priv->rx_queue[i]->rxlock);
493 void unlock_tx_qs(struct gfar_private *priv)
495 int i = 0x0;
497 for (i = 0; i < priv->num_tx_queues; i++)
498 spin_unlock(&priv->tx_queue[i]->txlock);
501 /* Returns 1 if incoming frames use an FCB */
502 static inline int gfar_uses_fcb(struct gfar_private *priv)
504 return priv->vlgrp || priv->rx_csum_enable;
507 static void free_tx_pointers(struct gfar_private *priv)
509 int i = 0;
511 for (i = 0; i < priv->num_tx_queues; i++)
512 kfree(priv->tx_queue[i]);
515 static void free_rx_pointers(struct gfar_private *priv)
517 int i = 0;
519 for (i = 0; i < priv->num_rx_queues; i++)
520 kfree(priv->rx_queue[i]);
523 static void unmap_group_regs(struct gfar_private *priv)
525 int i = 0;
527 for (i = 0; i < MAXGROUPS; i++)
528 if (priv->gfargrp[i].regs)
529 iounmap(priv->gfargrp[i].regs);
532 static void disable_napi(struct gfar_private *priv)
534 int i = 0;
536 for (i = 0; i < priv->num_grps; i++)
537 napi_disable(&priv->gfargrp[i].napi);
540 static void enable_napi(struct gfar_private *priv)
542 int i = 0;
544 for (i = 0; i < priv->num_grps; i++)
545 napi_enable(&priv->gfargrp[i].napi);
548 static int gfar_parse_group(struct device_node *np,
549 struct gfar_private *priv, const char *model)
551 u32 *queue_mask;
552 u64 addr, size;
554 addr = of_translate_address(np,
555 of_get_address(np, 0, &size, NULL));
556 priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
558 if (!priv->gfargrp[priv->num_grps].regs)
559 return -ENOMEM;
561 priv->gfargrp[priv->num_grps].interruptTransmit =
562 irq_of_parse_and_map(np, 0);
564 /* If we aren't the FEC we have multiple interrupts */
565 if (model && strcasecmp(model, "FEC")) {
566 priv->gfargrp[priv->num_grps].interruptReceive =
567 irq_of_parse_and_map(np, 1);
568 priv->gfargrp[priv->num_grps].interruptError =
569 irq_of_parse_and_map(np,2);
570 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
571 priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
572 priv->gfargrp[priv->num_grps].interruptError < 0) {
573 return -EINVAL;
577 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
578 priv->gfargrp[priv->num_grps].priv = priv;
579 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
580 if(priv->mode == MQ_MG_MODE) {
581 queue_mask = (u32 *)of_get_property(np,
582 "fsl,rx-bit-map", NULL);
583 priv->gfargrp[priv->num_grps].rx_bit_map =
584 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
585 queue_mask = (u32 *)of_get_property(np,
586 "fsl,tx-bit-map", NULL);
587 priv->gfargrp[priv->num_grps].tx_bit_map =
588 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
589 } else {
590 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
591 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
593 priv->num_grps++;
595 return 0;
598 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
600 const char *model;
601 const char *ctype;
602 const void *mac_addr;
603 int err = 0, i;
604 struct net_device *dev = NULL;
605 struct gfar_private *priv = NULL;
606 struct device_node *np = ofdev->node;
607 struct device_node *child = NULL;
608 const u32 *stash;
609 const u32 *stash_len;
610 const u32 *stash_idx;
611 unsigned int num_tx_qs, num_rx_qs;
612 u32 *tx_queues, *rx_queues;
614 if (!np || !of_device_is_available(np))
615 return -ENODEV;
617 /* parse the num of tx and rx queues */
618 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
619 num_tx_qs = tx_queues ? *tx_queues : 1;
621 if (num_tx_qs > MAX_TX_QS) {
622 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
623 num_tx_qs, MAX_TX_QS);
624 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
625 return -EINVAL;
628 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
629 num_rx_qs = rx_queues ? *rx_queues : 1;
631 if (num_rx_qs > MAX_RX_QS) {
632 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
633 num_tx_qs, MAX_TX_QS);
634 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
635 return -EINVAL;
638 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
639 dev = *pdev;
640 if (NULL == dev)
641 return -ENOMEM;
643 priv = netdev_priv(dev);
644 priv->node = ofdev->node;
645 priv->ndev = dev;
647 dev->num_tx_queues = num_tx_qs;
648 dev->real_num_tx_queues = num_tx_qs;
649 priv->num_tx_queues = num_tx_qs;
650 priv->num_rx_queues = num_rx_qs;
651 priv->num_grps = 0x0;
653 model = of_get_property(np, "model", NULL);
655 for (i = 0; i < MAXGROUPS; i++)
656 priv->gfargrp[i].regs = NULL;
658 /* Parse and initialize group specific information */
659 if (of_device_is_compatible(np, "fsl,etsec2")) {
660 priv->mode = MQ_MG_MODE;
661 for_each_child_of_node(np, child) {
662 err = gfar_parse_group(child, priv, model);
663 if (err)
664 goto err_grp_init;
666 } else {
667 priv->mode = SQ_SG_MODE;
668 err = gfar_parse_group(np, priv, model);
669 if(err)
670 goto err_grp_init;
673 for (i = 0; i < priv->num_tx_queues; i++)
674 priv->tx_queue[i] = NULL;
675 for (i = 0; i < priv->num_rx_queues; i++)
676 priv->rx_queue[i] = NULL;
678 for (i = 0; i < priv->num_tx_queues; i++) {
679 priv->tx_queue[i] = (struct gfar_priv_tx_q *)kmalloc(
680 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
681 if (!priv->tx_queue[i]) {
682 err = -ENOMEM;
683 goto tx_alloc_failed;
685 priv->tx_queue[i]->tx_skbuff = NULL;
686 priv->tx_queue[i]->qindex = i;
687 priv->tx_queue[i]->dev = dev;
688 spin_lock_init(&(priv->tx_queue[i]->txlock));
691 for (i = 0; i < priv->num_rx_queues; i++) {
692 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kmalloc(
693 sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
694 if (!priv->rx_queue[i]) {
695 err = -ENOMEM;
696 goto rx_alloc_failed;
698 priv->rx_queue[i]->rx_skbuff = NULL;
699 priv->rx_queue[i]->qindex = i;
700 priv->rx_queue[i]->dev = dev;
701 spin_lock_init(&(priv->rx_queue[i]->rxlock));
705 stash = of_get_property(np, "bd-stash", NULL);
707 if (stash) {
708 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
709 priv->bd_stash_en = 1;
712 stash_len = of_get_property(np, "rx-stash-len", NULL);
714 if (stash_len)
715 priv->rx_stash_size = *stash_len;
717 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
719 if (stash_idx)
720 priv->rx_stash_index = *stash_idx;
722 if (stash_len || stash_idx)
723 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
725 mac_addr = of_get_mac_address(np);
726 if (mac_addr)
727 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
729 if (model && !strcasecmp(model, "TSEC"))
730 priv->device_flags =
731 FSL_GIANFAR_DEV_HAS_GIGABIT |
732 FSL_GIANFAR_DEV_HAS_COALESCE |
733 FSL_GIANFAR_DEV_HAS_RMON |
734 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
735 if (model && !strcasecmp(model, "eTSEC"))
736 priv->device_flags =
737 FSL_GIANFAR_DEV_HAS_GIGABIT |
738 FSL_GIANFAR_DEV_HAS_COALESCE |
739 FSL_GIANFAR_DEV_HAS_RMON |
740 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
741 FSL_GIANFAR_DEV_HAS_PADDING |
742 FSL_GIANFAR_DEV_HAS_CSUM |
743 FSL_GIANFAR_DEV_HAS_VLAN |
744 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
745 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
747 ctype = of_get_property(np, "phy-connection-type", NULL);
749 /* We only care about rgmii-id. The rest are autodetected */
750 if (ctype && !strcmp(ctype, "rgmii-id"))
751 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
752 else
753 priv->interface = PHY_INTERFACE_MODE_MII;
755 if (of_get_property(np, "fsl,magic-packet", NULL))
756 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
758 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
760 /* Find the TBI PHY. If it's not there, we don't support SGMII */
761 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
763 return 0;
765 rx_alloc_failed:
766 free_rx_pointers(priv);
767 tx_alloc_failed:
768 free_tx_pointers(priv);
769 err_grp_init:
770 unmap_group_regs(priv);
771 free_netdev(dev);
772 return err;
775 /* Ioctl MII Interface */
776 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
778 struct gfar_private *priv = netdev_priv(dev);
780 if (!netif_running(dev))
781 return -EINVAL;
783 if (!priv->phydev)
784 return -ENODEV;
786 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
789 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
791 unsigned int new_bit_map = 0x0;
792 int mask = 0x1 << (max_qs - 1), i;
793 for (i = 0; i < max_qs; i++) {
794 if (bit_map & mask)
795 new_bit_map = new_bit_map + (1 << i);
796 mask = mask >> 0x1;
798 return new_bit_map;
801 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
802 u32 class)
804 u32 rqfpr = FPR_FILER_MASK;
805 u32 rqfcr = 0x0;
807 rqfar--;
808 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
809 ftp_rqfpr[rqfar] = rqfpr;
810 ftp_rqfcr[rqfar] = rqfcr;
811 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
813 rqfar--;
814 rqfcr = RQFCR_CMP_NOMATCH;
815 ftp_rqfpr[rqfar] = rqfpr;
816 ftp_rqfcr[rqfar] = rqfcr;
817 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
819 rqfar--;
820 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
821 rqfpr = class;
822 ftp_rqfcr[rqfar] = rqfcr;
823 ftp_rqfpr[rqfar] = rqfpr;
824 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
826 rqfar--;
827 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
828 rqfpr = class;
829 ftp_rqfcr[rqfar] = rqfcr;
830 ftp_rqfpr[rqfar] = rqfpr;
831 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
833 return rqfar;
836 static void gfar_init_filer_table(struct gfar_private *priv)
838 int i = 0x0;
839 u32 rqfar = MAX_FILER_IDX;
840 u32 rqfcr = 0x0;
841 u32 rqfpr = FPR_FILER_MASK;
843 /* Default rule */
844 rqfcr = RQFCR_CMP_MATCH;
845 ftp_rqfcr[rqfar] = rqfcr;
846 ftp_rqfpr[rqfar] = rqfpr;
847 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
849 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
850 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
851 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
852 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
853 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
854 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
856 /* cur_filer_idx indicated the fisrt non-masked rule */
857 priv->cur_filer_idx = rqfar;
859 /* Rest are masked rules */
860 rqfcr = RQFCR_CMP_NOMATCH;
861 for (i = 0; i < rqfar; i++) {
862 ftp_rqfcr[i] = rqfcr;
863 ftp_rqfpr[i] = rqfpr;
864 gfar_write_filer(priv, i, rqfcr, rqfpr);
868 /* Set up the ethernet device structure, private data,
869 * and anything else we need before we start */
870 static int gfar_probe(struct of_device *ofdev,
871 const struct of_device_id *match)
873 u32 tempval;
874 struct net_device *dev = NULL;
875 struct gfar_private *priv = NULL;
876 struct gfar __iomem *regs = NULL;
877 int err = 0, i, grp_idx = 0;
878 int len_devname;
879 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
880 u32 isrg = 0;
881 u32 __iomem *baddr;
883 err = gfar_of_init(ofdev, &dev);
885 if (err)
886 return err;
888 priv = netdev_priv(dev);
889 priv->ndev = dev;
890 priv->ofdev = ofdev;
891 priv->node = ofdev->node;
892 SET_NETDEV_DEV(dev, &ofdev->dev);
894 spin_lock_init(&priv->bflock);
895 INIT_WORK(&priv->reset_task, gfar_reset_task);
897 dev_set_drvdata(&ofdev->dev, priv);
898 regs = priv->gfargrp[0].regs;
900 /* Stop the DMA engine now, in case it was running before */
901 /* (The firmware could have used it, and left it running). */
902 gfar_halt(dev);
904 /* Reset MAC layer */
905 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
907 /* We need to delay at least 3 TX clocks */
908 udelay(2);
910 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
911 gfar_write(&regs->maccfg1, tempval);
913 /* Initialize MACCFG2. */
914 gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
916 /* Initialize ECNTRL */
917 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
919 /* Set the dev->base_addr to the gfar reg region */
920 dev->base_addr = (unsigned long) regs;
922 SET_NETDEV_DEV(dev, &ofdev->dev);
924 /* Fill in the dev structure */
925 dev->watchdog_timeo = TX_TIMEOUT;
926 dev->mtu = 1500;
927 dev->netdev_ops = &gfar_netdev_ops;
928 dev->ethtool_ops = &gfar_ethtool_ops;
930 /* Register for napi ...We are registering NAPI for each grp */
931 for (i = 0; i < priv->num_grps; i++)
932 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
934 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
935 priv->rx_csum_enable = 1;
936 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
937 } else
938 priv->rx_csum_enable = 0;
940 priv->vlgrp = NULL;
942 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
943 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
945 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
946 priv->extended_hash = 1;
947 priv->hash_width = 9;
949 priv->hash_regs[0] = &regs->igaddr0;
950 priv->hash_regs[1] = &regs->igaddr1;
951 priv->hash_regs[2] = &regs->igaddr2;
952 priv->hash_regs[3] = &regs->igaddr3;
953 priv->hash_regs[4] = &regs->igaddr4;
954 priv->hash_regs[5] = &regs->igaddr5;
955 priv->hash_regs[6] = &regs->igaddr6;
956 priv->hash_regs[7] = &regs->igaddr7;
957 priv->hash_regs[8] = &regs->gaddr0;
958 priv->hash_regs[9] = &regs->gaddr1;
959 priv->hash_regs[10] = &regs->gaddr2;
960 priv->hash_regs[11] = &regs->gaddr3;
961 priv->hash_regs[12] = &regs->gaddr4;
962 priv->hash_regs[13] = &regs->gaddr5;
963 priv->hash_regs[14] = &regs->gaddr6;
964 priv->hash_regs[15] = &regs->gaddr7;
966 } else {
967 priv->extended_hash = 0;
968 priv->hash_width = 8;
970 priv->hash_regs[0] = &regs->gaddr0;
971 priv->hash_regs[1] = &regs->gaddr1;
972 priv->hash_regs[2] = &regs->gaddr2;
973 priv->hash_regs[3] = &regs->gaddr3;
974 priv->hash_regs[4] = &regs->gaddr4;
975 priv->hash_regs[5] = &regs->gaddr5;
976 priv->hash_regs[6] = &regs->gaddr6;
977 priv->hash_regs[7] = &regs->gaddr7;
980 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
981 priv->padding = DEFAULT_PADDING;
982 else
983 priv->padding = 0;
985 if (dev->features & NETIF_F_IP_CSUM)
986 dev->hard_header_len += GMAC_FCB_LEN;
988 /* Program the isrg regs only if number of grps > 1 */
989 if (priv->num_grps > 1) {
990 baddr = &regs->isrg0;
991 for (i = 0; i < priv->num_grps; i++) {
992 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
993 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
994 gfar_write(baddr, isrg);
995 baddr++;
996 isrg = 0x0;
1000 /* Need to reverse the bit maps as bit_map's MSB is q0
1001 * but, for_each_bit parses from right to left, which
1002 * basically reverses the queue numbers */
1003 for (i = 0; i< priv->num_grps; i++) {
1004 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1005 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1006 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1007 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1010 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1011 * also assign queues to groups */
1012 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1013 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1014 for_each_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1015 priv->num_rx_queues) {
1016 priv->gfargrp[grp_idx].num_rx_queues++;
1017 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1018 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1019 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1021 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1022 for_each_bit (i, &priv->gfargrp[grp_idx].tx_bit_map,
1023 priv->num_tx_queues) {
1024 priv->gfargrp[grp_idx].num_tx_queues++;
1025 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1026 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1027 tqueue = tqueue | (TQUEUE_EN0 >> i);
1029 priv->gfargrp[grp_idx].rstat = rstat;
1030 priv->gfargrp[grp_idx].tstat = tstat;
1031 rstat = tstat =0;
1034 gfar_write(&regs->rqueue, rqueue);
1035 gfar_write(&regs->tqueue, tqueue);
1037 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1039 /* Initializing some of the rx/tx queue level parameters */
1040 for (i = 0; i < priv->num_tx_queues; i++) {
1041 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1042 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1043 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1044 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1047 for (i = 0; i < priv->num_rx_queues; i++) {
1048 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1049 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1050 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1053 /* enable filer if using multiple RX queues*/
1054 if(priv->num_rx_queues > 1)
1055 priv->rx_filer_enable = 1;
1056 /* Enable most messages by default */
1057 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1059 /* Carrier starts down, phylib will bring it up */
1060 netif_carrier_off(dev);
1062 err = register_netdev(dev);
1064 if (err) {
1065 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1066 dev->name);
1067 goto register_fail;
1070 device_init_wakeup(&dev->dev,
1071 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1073 /* fill out IRQ number and name fields */
1074 len_devname = strlen(dev->name);
1075 for (i = 0; i < priv->num_grps; i++) {
1076 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1077 len_devname);
1078 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1079 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1080 "_g", sizeof("_g"));
1081 priv->gfargrp[i].int_name_tx[
1082 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1083 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1084 priv->gfargrp[i].int_name_tx)],
1085 "_tx", sizeof("_tx") + 1);
1087 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1088 len_devname);
1089 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1090 "_g", sizeof("_g"));
1091 priv->gfargrp[i].int_name_rx[
1092 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1093 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1094 priv->gfargrp[i].int_name_rx)],
1095 "_rx", sizeof("_rx") + 1);
1097 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1098 len_devname);
1099 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1100 "_g", sizeof("_g"));
1101 priv->gfargrp[i].int_name_er[strlen(
1102 priv->gfargrp[i].int_name_er)] = i+48;
1103 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1104 priv->gfargrp[i].int_name_er)],
1105 "_er", sizeof("_er") + 1);
1106 } else
1107 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1110 /* Initialize the filer table */
1111 gfar_init_filer_table(priv);
1113 /* Create all the sysfs files */
1114 gfar_init_sysfs(dev);
1116 /* Print out the device info */
1117 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1119 /* Even more device info helps when determining which kernel */
1120 /* provided which set of benchmarks. */
1121 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1122 for (i = 0; i < priv->num_rx_queues; i++)
1123 printk(KERN_INFO "%s: :RX BD ring size for Q[%d]: %d\n",
1124 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1125 for(i = 0; i < priv->num_tx_queues; i++)
1126 printk(KERN_INFO "%s:TX BD ring size for Q[%d]: %d\n",
1127 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1129 return 0;
1131 register_fail:
1132 unmap_group_regs(priv);
1133 free_tx_pointers(priv);
1134 free_rx_pointers(priv);
1135 if (priv->phy_node)
1136 of_node_put(priv->phy_node);
1137 if (priv->tbi_node)
1138 of_node_put(priv->tbi_node);
1139 free_netdev(dev);
1140 return err;
1143 static int gfar_remove(struct of_device *ofdev)
1145 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1147 if (priv->phy_node)
1148 of_node_put(priv->phy_node);
1149 if (priv->tbi_node)
1150 of_node_put(priv->tbi_node);
1152 dev_set_drvdata(&ofdev->dev, NULL);
1154 unregister_netdev(priv->ndev);
1155 unmap_group_regs(priv);
1156 free_netdev(priv->ndev);
1158 return 0;
1161 #ifdef CONFIG_PM
1163 static int gfar_suspend(struct device *dev)
1165 struct gfar_private *priv = dev_get_drvdata(dev);
1166 struct net_device *ndev = priv->ndev;
1167 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1168 unsigned long flags;
1169 u32 tempval;
1171 int magic_packet = priv->wol_en &&
1172 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1174 netif_device_detach(ndev);
1176 if (netif_running(ndev)) {
1178 local_irq_save(flags);
1179 lock_tx_qs(priv);
1180 lock_rx_qs(priv);
1182 gfar_halt_nodisable(ndev);
1184 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1185 tempval = gfar_read(&regs->maccfg1);
1187 tempval &= ~MACCFG1_TX_EN;
1189 if (!magic_packet)
1190 tempval &= ~MACCFG1_RX_EN;
1192 gfar_write(&regs->maccfg1, tempval);
1194 unlock_rx_qs(priv);
1195 unlock_tx_qs(priv);
1196 local_irq_restore(flags);
1198 disable_napi(priv);
1200 if (magic_packet) {
1201 /* Enable interrupt on Magic Packet */
1202 gfar_write(&regs->imask, IMASK_MAG);
1204 /* Enable Magic Packet mode */
1205 tempval = gfar_read(&regs->maccfg2);
1206 tempval |= MACCFG2_MPEN;
1207 gfar_write(&regs->maccfg2, tempval);
1208 } else {
1209 phy_stop(priv->phydev);
1213 return 0;
1216 static int gfar_resume(struct device *dev)
1218 struct gfar_private *priv = dev_get_drvdata(dev);
1219 struct net_device *ndev = priv->ndev;
1220 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1221 unsigned long flags;
1222 u32 tempval;
1223 int magic_packet = priv->wol_en &&
1224 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1226 if (!netif_running(ndev)) {
1227 netif_device_attach(ndev);
1228 return 0;
1231 if (!magic_packet && priv->phydev)
1232 phy_start(priv->phydev);
1234 /* Disable Magic Packet mode, in case something
1235 * else woke us up.
1237 local_irq_save(flags);
1238 lock_tx_qs(priv);
1239 lock_rx_qs(priv);
1241 tempval = gfar_read(&regs->maccfg2);
1242 tempval &= ~MACCFG2_MPEN;
1243 gfar_write(&regs->maccfg2, tempval);
1245 gfar_start(ndev);
1247 unlock_rx_qs(priv);
1248 unlock_tx_qs(priv);
1249 local_irq_restore(flags);
1251 netif_device_attach(ndev);
1253 enable_napi(priv);
1255 return 0;
1258 static int gfar_restore(struct device *dev)
1260 struct gfar_private *priv = dev_get_drvdata(dev);
1261 struct net_device *ndev = priv->ndev;
1263 if (!netif_running(ndev))
1264 return 0;
1266 gfar_init_bds(ndev);
1267 init_registers(ndev);
1268 gfar_set_mac_address(ndev);
1269 gfar_init_mac(ndev);
1270 gfar_start(ndev);
1272 priv->oldlink = 0;
1273 priv->oldspeed = 0;
1274 priv->oldduplex = -1;
1276 if (priv->phydev)
1277 phy_start(priv->phydev);
1279 netif_device_attach(ndev);
1280 enable_napi(priv);
1282 return 0;
1285 static struct dev_pm_ops gfar_pm_ops = {
1286 .suspend = gfar_suspend,
1287 .resume = gfar_resume,
1288 .freeze = gfar_suspend,
1289 .thaw = gfar_resume,
1290 .restore = gfar_restore,
1293 #define GFAR_PM_OPS (&gfar_pm_ops)
1295 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1297 return gfar_suspend(&ofdev->dev);
1300 static int gfar_legacy_resume(struct of_device *ofdev)
1302 return gfar_resume(&ofdev->dev);
1305 #else
1307 #define GFAR_PM_OPS NULL
1308 #define gfar_legacy_suspend NULL
1309 #define gfar_legacy_resume NULL
1311 #endif
1313 /* Reads the controller's registers to determine what interface
1314 * connects it to the PHY.
1316 static phy_interface_t gfar_get_interface(struct net_device *dev)
1318 struct gfar_private *priv = netdev_priv(dev);
1319 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1320 u32 ecntrl;
1322 ecntrl = gfar_read(&regs->ecntrl);
1324 if (ecntrl & ECNTRL_SGMII_MODE)
1325 return PHY_INTERFACE_MODE_SGMII;
1327 if (ecntrl & ECNTRL_TBI_MODE) {
1328 if (ecntrl & ECNTRL_REDUCED_MODE)
1329 return PHY_INTERFACE_MODE_RTBI;
1330 else
1331 return PHY_INTERFACE_MODE_TBI;
1334 if (ecntrl & ECNTRL_REDUCED_MODE) {
1335 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1336 return PHY_INTERFACE_MODE_RMII;
1337 else {
1338 phy_interface_t interface = priv->interface;
1341 * This isn't autodetected right now, so it must
1342 * be set by the device tree or platform code.
1344 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1345 return PHY_INTERFACE_MODE_RGMII_ID;
1347 return PHY_INTERFACE_MODE_RGMII;
1351 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1352 return PHY_INTERFACE_MODE_GMII;
1354 return PHY_INTERFACE_MODE_MII;
1358 /* Initializes driver's PHY state, and attaches to the PHY.
1359 * Returns 0 on success.
1361 static int init_phy(struct net_device *dev)
1363 struct gfar_private *priv = netdev_priv(dev);
1364 uint gigabit_support =
1365 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1366 SUPPORTED_1000baseT_Full : 0;
1367 phy_interface_t interface;
1369 priv->oldlink = 0;
1370 priv->oldspeed = 0;
1371 priv->oldduplex = -1;
1373 interface = gfar_get_interface(dev);
1375 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1376 interface);
1377 if (!priv->phydev)
1378 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1379 interface);
1380 if (!priv->phydev) {
1381 dev_err(&dev->dev, "could not attach to PHY\n");
1382 return -ENODEV;
1385 if (interface == PHY_INTERFACE_MODE_SGMII)
1386 gfar_configure_serdes(dev);
1388 /* Remove any features not supported by the controller */
1389 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1390 priv->phydev->advertising = priv->phydev->supported;
1392 return 0;
1396 * Initialize TBI PHY interface for communicating with the
1397 * SERDES lynx PHY on the chip. We communicate with this PHY
1398 * through the MDIO bus on each controller, treating it as a
1399 * "normal" PHY at the address found in the TBIPA register. We assume
1400 * that the TBIPA register is valid. Either the MDIO bus code will set
1401 * it to a value that doesn't conflict with other PHYs on the bus, or the
1402 * value doesn't matter, as there are no other PHYs on the bus.
1404 static void gfar_configure_serdes(struct net_device *dev)
1406 struct gfar_private *priv = netdev_priv(dev);
1407 struct phy_device *tbiphy;
1409 if (!priv->tbi_node) {
1410 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1411 "device tree specify a tbi-handle\n");
1412 return;
1415 tbiphy = of_phy_find_device(priv->tbi_node);
1416 if (!tbiphy) {
1417 dev_err(&dev->dev, "error: Could not get TBI device\n");
1418 return;
1422 * If the link is already up, we must already be ok, and don't need to
1423 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1424 * everything for us? Resetting it takes the link down and requires
1425 * several seconds for it to come back.
1427 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1428 return;
1430 /* Single clk mode, mii mode off(for serdes communication) */
1431 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1433 phy_write(tbiphy, MII_ADVERTISE,
1434 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1435 ADVERTISE_1000XPSE_ASYM);
1437 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1438 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1441 static void init_registers(struct net_device *dev)
1443 struct gfar_private *priv = netdev_priv(dev);
1444 struct gfar __iomem *regs = NULL;
1445 int i = 0;
1447 for (i = 0; i < priv->num_grps; i++) {
1448 regs = priv->gfargrp[i].regs;
1449 /* Clear IEVENT */
1450 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1452 /* Initialize IMASK */
1453 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1456 regs = priv->gfargrp[0].regs;
1457 /* Init hash registers to zero */
1458 gfar_write(&regs->igaddr0, 0);
1459 gfar_write(&regs->igaddr1, 0);
1460 gfar_write(&regs->igaddr2, 0);
1461 gfar_write(&regs->igaddr3, 0);
1462 gfar_write(&regs->igaddr4, 0);
1463 gfar_write(&regs->igaddr5, 0);
1464 gfar_write(&regs->igaddr6, 0);
1465 gfar_write(&regs->igaddr7, 0);
1467 gfar_write(&regs->gaddr0, 0);
1468 gfar_write(&regs->gaddr1, 0);
1469 gfar_write(&regs->gaddr2, 0);
1470 gfar_write(&regs->gaddr3, 0);
1471 gfar_write(&regs->gaddr4, 0);
1472 gfar_write(&regs->gaddr5, 0);
1473 gfar_write(&regs->gaddr6, 0);
1474 gfar_write(&regs->gaddr7, 0);
1476 /* Zero out the rmon mib registers if it has them */
1477 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1478 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1480 /* Mask off the CAM interrupts */
1481 gfar_write(&regs->rmon.cam1, 0xffffffff);
1482 gfar_write(&regs->rmon.cam2, 0xffffffff);
1485 /* Initialize the max receive buffer length */
1486 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1488 /* Initialize the Minimum Frame Length Register */
1489 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1493 /* Halt the receive and transmit queues */
1494 static void gfar_halt_nodisable(struct net_device *dev)
1496 struct gfar_private *priv = netdev_priv(dev);
1497 struct gfar __iomem *regs = NULL;
1498 u32 tempval;
1499 int i = 0;
1501 for (i = 0; i < priv->num_grps; i++) {
1502 regs = priv->gfargrp[i].regs;
1503 /* Mask all interrupts */
1504 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1506 /* Clear all interrupts */
1507 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1510 regs = priv->gfargrp[0].regs;
1511 /* Stop the DMA, and wait for it to stop */
1512 tempval = gfar_read(&regs->dmactrl);
1513 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1514 != (DMACTRL_GRS | DMACTRL_GTS)) {
1515 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1516 gfar_write(&regs->dmactrl, tempval);
1518 while (!(gfar_read(&regs->ievent) &
1519 (IEVENT_GRSC | IEVENT_GTSC)))
1520 cpu_relax();
1524 /* Halt the receive and transmit queues */
1525 void gfar_halt(struct net_device *dev)
1527 struct gfar_private *priv = netdev_priv(dev);
1528 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1529 u32 tempval;
1531 gfar_halt_nodisable(dev);
1533 /* Disable Rx and Tx */
1534 tempval = gfar_read(&regs->maccfg1);
1535 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1536 gfar_write(&regs->maccfg1, tempval);
1539 static void free_grp_irqs(struct gfar_priv_grp *grp)
1541 free_irq(grp->interruptError, grp);
1542 free_irq(grp->interruptTransmit, grp);
1543 free_irq(grp->interruptReceive, grp);
1546 void stop_gfar(struct net_device *dev)
1548 struct gfar_private *priv = netdev_priv(dev);
1549 unsigned long flags;
1550 int i;
1552 phy_stop(priv->phydev);
1555 /* Lock it down */
1556 local_irq_save(flags);
1557 lock_tx_qs(priv);
1558 lock_rx_qs(priv);
1560 gfar_halt(dev);
1562 unlock_rx_qs(priv);
1563 unlock_tx_qs(priv);
1564 local_irq_restore(flags);
1566 /* Free the IRQs */
1567 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1568 for (i = 0; i < priv->num_grps; i++)
1569 free_grp_irqs(&priv->gfargrp[i]);
1570 } else {
1571 for (i = 0; i < priv->num_grps; i++)
1572 free_irq(priv->gfargrp[i].interruptTransmit,
1573 &priv->gfargrp[i]);
1576 free_skb_resources(priv);
1579 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1581 struct txbd8 *txbdp;
1582 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1583 int i, j;
1585 txbdp = tx_queue->tx_bd_base;
1587 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1588 if (!tx_queue->tx_skbuff[i])
1589 continue;
1591 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1592 txbdp->length, DMA_TO_DEVICE);
1593 txbdp->lstatus = 0;
1594 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1595 j++) {
1596 txbdp++;
1597 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1598 txbdp->length, DMA_TO_DEVICE);
1600 txbdp++;
1601 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1602 tx_queue->tx_skbuff[i] = NULL;
1604 kfree(tx_queue->tx_skbuff);
1607 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1609 struct rxbd8 *rxbdp;
1610 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1611 int i;
1613 rxbdp = rx_queue->rx_bd_base;
1615 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1616 if (rx_queue->rx_skbuff[i]) {
1617 dma_unmap_single(&priv->ofdev->dev,
1618 rxbdp->bufPtr, priv->rx_buffer_size,
1619 DMA_FROM_DEVICE);
1620 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1621 rx_queue->rx_skbuff[i] = NULL;
1623 rxbdp->lstatus = 0;
1624 rxbdp->bufPtr = 0;
1625 rxbdp++;
1627 kfree(rx_queue->rx_skbuff);
1630 /* If there are any tx skbs or rx skbs still around, free them.
1631 * Then free tx_skbuff and rx_skbuff */
1632 static void free_skb_resources(struct gfar_private *priv)
1634 struct gfar_priv_tx_q *tx_queue = NULL;
1635 struct gfar_priv_rx_q *rx_queue = NULL;
1636 int i;
1638 /* Go through all the buffer descriptors and free their data buffers */
1639 for (i = 0; i < priv->num_tx_queues; i++) {
1640 tx_queue = priv->tx_queue[i];
1641 if(!tx_queue->tx_skbuff)
1642 free_skb_tx_queue(tx_queue);
1645 for (i = 0; i < priv->num_rx_queues; i++) {
1646 rx_queue = priv->rx_queue[i];
1647 if(!rx_queue->rx_skbuff)
1648 free_skb_rx_queue(rx_queue);
1651 dma_free_coherent(&priv->ofdev->dev,
1652 sizeof(struct txbd8) * priv->total_tx_ring_size +
1653 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1654 priv->tx_queue[0]->tx_bd_base,
1655 priv->tx_queue[0]->tx_bd_dma_base);
1658 void gfar_start(struct net_device *dev)
1660 struct gfar_private *priv = netdev_priv(dev);
1661 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1662 u32 tempval;
1663 int i = 0;
1665 /* Enable Rx and Tx in MACCFG1 */
1666 tempval = gfar_read(&regs->maccfg1);
1667 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1668 gfar_write(&regs->maccfg1, tempval);
1670 /* Initialize DMACTRL to have WWR and WOP */
1671 tempval = gfar_read(&regs->dmactrl);
1672 tempval |= DMACTRL_INIT_SETTINGS;
1673 gfar_write(&regs->dmactrl, tempval);
1675 /* Make sure we aren't stopped */
1676 tempval = gfar_read(&regs->dmactrl);
1677 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1678 gfar_write(&regs->dmactrl, tempval);
1680 for (i = 0; i < priv->num_grps; i++) {
1681 regs = priv->gfargrp[i].regs;
1682 /* Clear THLT/RHLT, so that the DMA starts polling now */
1683 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1684 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1685 /* Unmask the interrupts we look for */
1686 gfar_write(&regs->imask, IMASK_DEFAULT);
1689 dev->trans_start = jiffies;
1692 void gfar_configure_coalescing(struct gfar_private *priv,
1693 unsigned long tx_mask, unsigned long rx_mask)
1695 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1696 u32 __iomem *baddr;
1697 int i = 0;
1699 /* Backward compatible case ---- even if we enable
1700 * multiple queues, there's only single reg to program
1702 gfar_write(&regs->txic, 0);
1703 if(likely(priv->tx_queue[0]->txcoalescing))
1704 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1706 gfar_write(&regs->rxic, 0);
1707 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1708 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1710 if (priv->mode == MQ_MG_MODE) {
1711 baddr = &regs->txic0;
1712 for_each_bit (i, &tx_mask, priv->num_tx_queues) {
1713 if (likely(priv->tx_queue[i]->txcoalescing)) {
1714 gfar_write(baddr + i, 0);
1715 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1719 baddr = &regs->rxic0;
1720 for_each_bit (i, &rx_mask, priv->num_rx_queues) {
1721 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1722 gfar_write(baddr + i, 0);
1723 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1729 static int register_grp_irqs(struct gfar_priv_grp *grp)
1731 struct gfar_private *priv = grp->priv;
1732 struct net_device *dev = priv->ndev;
1733 int err;
1735 /* If the device has multiple interrupts, register for
1736 * them. Otherwise, only register for the one */
1737 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1738 /* Install our interrupt handlers for Error,
1739 * Transmit, and Receive */
1740 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1741 grp->int_name_er,grp)) < 0) {
1742 if (netif_msg_intr(priv))
1743 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1744 dev->name, grp->interruptError);
1746 goto err_irq_fail;
1749 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1750 0, grp->int_name_tx, grp)) < 0) {
1751 if (netif_msg_intr(priv))
1752 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1753 dev->name, grp->interruptTransmit);
1754 goto tx_irq_fail;
1757 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1758 grp->int_name_rx, grp)) < 0) {
1759 if (netif_msg_intr(priv))
1760 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1761 dev->name, grp->interruptReceive);
1762 goto rx_irq_fail;
1764 } else {
1765 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1766 grp->int_name_tx, grp)) < 0) {
1767 if (netif_msg_intr(priv))
1768 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1769 dev->name, grp->interruptTransmit);
1770 goto err_irq_fail;
1774 return 0;
1776 rx_irq_fail:
1777 free_irq(grp->interruptTransmit, grp);
1778 tx_irq_fail:
1779 free_irq(grp->interruptError, grp);
1780 err_irq_fail:
1781 return err;
1785 /* Bring the controller up and running */
1786 int startup_gfar(struct net_device *ndev)
1788 struct gfar_private *priv = netdev_priv(ndev);
1789 struct gfar __iomem *regs = NULL;
1790 int err, i, j;
1792 for (i = 0; i < priv->num_grps; i++) {
1793 regs= priv->gfargrp[i].regs;
1794 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1797 regs= priv->gfargrp[0].regs;
1798 err = gfar_alloc_skb_resources(ndev);
1799 if (err)
1800 return err;
1802 gfar_init_mac(ndev);
1804 for (i = 0; i < priv->num_grps; i++) {
1805 err = register_grp_irqs(&priv->gfargrp[i]);
1806 if (err) {
1807 for (j = 0; j < i; j++)
1808 free_grp_irqs(&priv->gfargrp[j]);
1809 goto irq_fail;
1813 /* Start the controller */
1814 gfar_start(ndev);
1816 phy_start(priv->phydev);
1818 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1820 return 0;
1822 irq_fail:
1823 free_skb_resources(priv);
1824 return err;
1827 /* Called when something needs to use the ethernet device */
1828 /* Returns 0 for success. */
1829 static int gfar_enet_open(struct net_device *dev)
1831 struct gfar_private *priv = netdev_priv(dev);
1832 int err;
1834 enable_napi(priv);
1836 skb_queue_head_init(&priv->rx_recycle);
1838 /* Initialize a bunch of registers */
1839 init_registers(dev);
1841 gfar_set_mac_address(dev);
1843 err = init_phy(dev);
1845 if (err) {
1846 disable_napi(priv);
1847 return err;
1850 err = startup_gfar(dev);
1851 if (err) {
1852 disable_napi(priv);
1853 return err;
1856 netif_tx_start_all_queues(dev);
1858 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1860 return err;
1863 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1865 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1867 memset(fcb, 0, GMAC_FCB_LEN);
1869 return fcb;
1872 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1874 u8 flags = 0;
1876 /* If we're here, it's a IP packet with a TCP or UDP
1877 * payload. We set it to checksum, using a pseudo-header
1878 * we provide
1880 flags = TXFCB_DEFAULT;
1882 /* Tell the controller what the protocol is */
1883 /* And provide the already calculated phcs */
1884 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1885 flags |= TXFCB_UDP;
1886 fcb->phcs = udp_hdr(skb)->check;
1887 } else
1888 fcb->phcs = tcp_hdr(skb)->check;
1890 /* l3os is the distance between the start of the
1891 * frame (skb->data) and the start of the IP hdr.
1892 * l4os is the distance between the start of the
1893 * l3 hdr and the l4 hdr */
1894 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1895 fcb->l4os = skb_network_header_len(skb);
1897 fcb->flags = flags;
1900 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1902 fcb->flags |= TXFCB_VLN;
1903 fcb->vlctl = vlan_tx_tag_get(skb);
1906 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1907 struct txbd8 *base, int ring_size)
1909 struct txbd8 *new_bd = bdp + stride;
1911 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1914 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1915 int ring_size)
1917 return skip_txbd(bdp, 1, base, ring_size);
1920 /* This is called by the kernel when a frame is ready for transmission. */
1921 /* It is pointed to by the dev->hard_start_xmit function pointer */
1922 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1924 struct gfar_private *priv = netdev_priv(dev);
1925 struct gfar_priv_tx_q *tx_queue = NULL;
1926 struct netdev_queue *txq;
1927 struct gfar __iomem *regs = NULL;
1928 struct txfcb *fcb = NULL;
1929 struct txbd8 *txbdp, *txbdp_start, *base;
1930 u32 lstatus;
1931 int i, rq = 0;
1932 u32 bufaddr;
1933 unsigned long flags;
1934 unsigned int nr_frags, length;
1937 rq = skb->queue_mapping;
1938 tx_queue = priv->tx_queue[rq];
1939 txq = netdev_get_tx_queue(dev, rq);
1940 base = tx_queue->tx_bd_base;
1941 regs = tx_queue->grp->regs;
1943 /* make space for additional header when fcb is needed */
1944 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1945 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1946 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1947 struct sk_buff *skb_new;
1949 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1950 if (!skb_new) {
1951 dev->stats.tx_errors++;
1952 kfree_skb(skb);
1953 return NETDEV_TX_OK;
1955 kfree_skb(skb);
1956 skb = skb_new;
1959 /* total number of fragments in the SKB */
1960 nr_frags = skb_shinfo(skb)->nr_frags;
1962 /* check if there is space to queue this packet */
1963 if ((nr_frags+1) > tx_queue->num_txbdfree) {
1964 /* no space, stop the queue */
1965 netif_tx_stop_queue(txq);
1966 dev->stats.tx_fifo_errors++;
1967 return NETDEV_TX_BUSY;
1970 /* Update transmit stats */
1971 txq->tx_bytes += skb->len;
1972 txq->tx_packets ++;
1974 txbdp = txbdp_start = tx_queue->cur_tx;
1976 if (nr_frags == 0) {
1977 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1978 } else {
1979 /* Place the fragment addresses and lengths into the TxBDs */
1980 for (i = 0; i < nr_frags; i++) {
1981 /* Point at the next BD, wrapping as needed */
1982 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1984 length = skb_shinfo(skb)->frags[i].size;
1986 lstatus = txbdp->lstatus | length |
1987 BD_LFLAG(TXBD_READY);
1989 /* Handle the last BD specially */
1990 if (i == nr_frags - 1)
1991 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1993 bufaddr = dma_map_page(&priv->ofdev->dev,
1994 skb_shinfo(skb)->frags[i].page,
1995 skb_shinfo(skb)->frags[i].page_offset,
1996 length,
1997 DMA_TO_DEVICE);
1999 /* set the TxBD length and buffer pointer */
2000 txbdp->bufPtr = bufaddr;
2001 txbdp->lstatus = lstatus;
2004 lstatus = txbdp_start->lstatus;
2007 /* Set up checksumming */
2008 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2009 fcb = gfar_add_fcb(skb);
2010 lstatus |= BD_LFLAG(TXBD_TOE);
2011 gfar_tx_checksum(skb, fcb);
2014 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2015 if (unlikely(NULL == fcb)) {
2016 fcb = gfar_add_fcb(skb);
2017 lstatus |= BD_LFLAG(TXBD_TOE);
2020 gfar_tx_vlan(skb, fcb);
2023 /* setup the TxBD length and buffer pointer for the first BD */
2024 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2025 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2026 skb_headlen(skb), DMA_TO_DEVICE);
2028 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2031 * We can work in parallel with gfar_clean_tx_ring(), except
2032 * when modifying num_txbdfree. Note that we didn't grab the lock
2033 * when we were reading the num_txbdfree and checking for available
2034 * space, that's because outside of this function it can only grow,
2035 * and once we've got needed space, it cannot suddenly disappear.
2037 * The lock also protects us from gfar_error(), which can modify
2038 * regs->tstat and thus retrigger the transfers, which is why we
2039 * also must grab the lock before setting ready bit for the first
2040 * to be transmitted BD.
2042 spin_lock_irqsave(&tx_queue->txlock, flags);
2045 * The powerpc-specific eieio() is used, as wmb() has too strong
2046 * semantics (it requires synchronization between cacheable and
2047 * uncacheable mappings, which eieio doesn't provide and which we
2048 * don't need), thus requiring a more expensive sync instruction. At
2049 * some point, the set of architecture-independent barrier functions
2050 * should be expanded to include weaker barriers.
2052 eieio();
2054 txbdp_start->lstatus = lstatus;
2056 /* Update the current skb pointer to the next entry we will use
2057 * (wrapping if necessary) */
2058 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2059 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2061 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2063 /* reduce TxBD free count */
2064 tx_queue->num_txbdfree -= (nr_frags + 1);
2066 dev->trans_start = jiffies;
2068 /* If the next BD still needs to be cleaned up, then the bds
2069 are full. We need to tell the kernel to stop sending us stuff. */
2070 if (!tx_queue->num_txbdfree) {
2071 netif_tx_stop_queue(txq);
2073 dev->stats.tx_fifo_errors++;
2076 /* Tell the DMA to go go go */
2077 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2079 /* Unlock priv */
2080 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2082 return NETDEV_TX_OK;
2085 /* Stops the kernel queue, and halts the controller */
2086 static int gfar_close(struct net_device *dev)
2088 struct gfar_private *priv = netdev_priv(dev);
2090 disable_napi(priv);
2092 skb_queue_purge(&priv->rx_recycle);
2093 cancel_work_sync(&priv->reset_task);
2094 stop_gfar(dev);
2096 /* Disconnect from the PHY */
2097 phy_disconnect(priv->phydev);
2098 priv->phydev = NULL;
2100 netif_tx_stop_all_queues(dev);
2102 return 0;
2105 /* Changes the mac address if the controller is not running. */
2106 static int gfar_set_mac_address(struct net_device *dev)
2108 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2110 return 0;
2114 /* Enables and disables VLAN insertion/extraction */
2115 static void gfar_vlan_rx_register(struct net_device *dev,
2116 struct vlan_group *grp)
2118 struct gfar_private *priv = netdev_priv(dev);
2119 struct gfar __iomem *regs = NULL;
2120 unsigned long flags;
2121 u32 tempval;
2123 regs = priv->gfargrp[0].regs;
2124 local_irq_save(flags);
2125 lock_rx_qs(priv);
2127 priv->vlgrp = grp;
2129 if (grp) {
2130 /* Enable VLAN tag insertion */
2131 tempval = gfar_read(&regs->tctrl);
2132 tempval |= TCTRL_VLINS;
2134 gfar_write(&regs->tctrl, tempval);
2136 /* Enable VLAN tag extraction */
2137 tempval = gfar_read(&regs->rctrl);
2138 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2139 gfar_write(&regs->rctrl, tempval);
2140 } else {
2141 /* Disable VLAN tag insertion */
2142 tempval = gfar_read(&regs->tctrl);
2143 tempval &= ~TCTRL_VLINS;
2144 gfar_write(&regs->tctrl, tempval);
2146 /* Disable VLAN tag extraction */
2147 tempval = gfar_read(&regs->rctrl);
2148 tempval &= ~RCTRL_VLEX;
2149 /* If parse is no longer required, then disable parser */
2150 if (tempval & RCTRL_REQ_PARSER)
2151 tempval |= RCTRL_PRSDEP_INIT;
2152 else
2153 tempval &= ~RCTRL_PRSDEP_INIT;
2154 gfar_write(&regs->rctrl, tempval);
2157 gfar_change_mtu(dev, dev->mtu);
2159 unlock_rx_qs(priv);
2160 local_irq_restore(flags);
2163 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2165 int tempsize, tempval;
2166 struct gfar_private *priv = netdev_priv(dev);
2167 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2168 int oldsize = priv->rx_buffer_size;
2169 int frame_size = new_mtu + ETH_HLEN;
2171 if (priv->vlgrp)
2172 frame_size += VLAN_HLEN;
2174 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2175 if (netif_msg_drv(priv))
2176 printk(KERN_ERR "%s: Invalid MTU setting\n",
2177 dev->name);
2178 return -EINVAL;
2181 if (gfar_uses_fcb(priv))
2182 frame_size += GMAC_FCB_LEN;
2184 frame_size += priv->padding;
2186 tempsize =
2187 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2188 INCREMENTAL_BUFFER_SIZE;
2190 /* Only stop and start the controller if it isn't already
2191 * stopped, and we changed something */
2192 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2193 stop_gfar(dev);
2195 priv->rx_buffer_size = tempsize;
2197 dev->mtu = new_mtu;
2199 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2200 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2202 /* If the mtu is larger than the max size for standard
2203 * ethernet frames (ie, a jumbo frame), then set maccfg2
2204 * to allow huge frames, and to check the length */
2205 tempval = gfar_read(&regs->maccfg2);
2207 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2208 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2209 else
2210 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2212 gfar_write(&regs->maccfg2, tempval);
2214 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2215 startup_gfar(dev);
2217 return 0;
2220 /* gfar_reset_task gets scheduled when a packet has not been
2221 * transmitted after a set amount of time.
2222 * For now, assume that clearing out all the structures, and
2223 * starting over will fix the problem.
2225 static void gfar_reset_task(struct work_struct *work)
2227 struct gfar_private *priv = container_of(work, struct gfar_private,
2228 reset_task);
2229 struct net_device *dev = priv->ndev;
2231 if (dev->flags & IFF_UP) {
2232 netif_tx_stop_all_queues(dev);
2233 stop_gfar(dev);
2234 startup_gfar(dev);
2235 netif_tx_start_all_queues(dev);
2238 netif_tx_schedule_all(dev);
2241 static void gfar_timeout(struct net_device *dev)
2243 struct gfar_private *priv = netdev_priv(dev);
2245 dev->stats.tx_errors++;
2246 schedule_work(&priv->reset_task);
2249 /* Interrupt Handler for Transmit complete */
2250 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2252 struct net_device *dev = tx_queue->dev;
2253 struct gfar_private *priv = netdev_priv(dev);
2254 struct gfar_priv_rx_q *rx_queue = NULL;
2255 struct txbd8 *bdp;
2256 struct txbd8 *lbdp = NULL;
2257 struct txbd8 *base = tx_queue->tx_bd_base;
2258 struct sk_buff *skb;
2259 int skb_dirtytx;
2260 int tx_ring_size = tx_queue->tx_ring_size;
2261 int frags = 0;
2262 int i;
2263 int howmany = 0;
2264 u32 lstatus;
2266 rx_queue = priv->rx_queue[tx_queue->qindex];
2267 bdp = tx_queue->dirty_tx;
2268 skb_dirtytx = tx_queue->skb_dirtytx;
2270 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2271 unsigned long flags;
2273 frags = skb_shinfo(skb)->nr_frags;
2274 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
2276 lstatus = lbdp->lstatus;
2278 /* Only clean completed frames */
2279 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2280 (lstatus & BD_LENGTH_MASK))
2281 break;
2283 dma_unmap_single(&priv->ofdev->dev,
2284 bdp->bufPtr,
2285 bdp->length,
2286 DMA_TO_DEVICE);
2288 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2289 bdp = next_txbd(bdp, base, tx_ring_size);
2291 for (i = 0; i < frags; i++) {
2292 dma_unmap_page(&priv->ofdev->dev,
2293 bdp->bufPtr,
2294 bdp->length,
2295 DMA_TO_DEVICE);
2296 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2297 bdp = next_txbd(bdp, base, tx_ring_size);
2301 * If there's room in the queue (limit it to rx_buffer_size)
2302 * we add this skb back into the pool, if it's the right size
2304 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2305 skb_recycle_check(skb, priv->rx_buffer_size +
2306 RXBUF_ALIGNMENT))
2307 __skb_queue_head(&priv->rx_recycle, skb);
2308 else
2309 dev_kfree_skb_any(skb);
2311 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2313 skb_dirtytx = (skb_dirtytx + 1) &
2314 TX_RING_MOD_MASK(tx_ring_size);
2316 howmany++;
2317 spin_lock_irqsave(&tx_queue->txlock, flags);
2318 tx_queue->num_txbdfree += frags + 1;
2319 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2322 /* If we freed a buffer, we can restart transmission, if necessary */
2323 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2324 netif_wake_subqueue(dev, tx_queue->qindex);
2326 /* Update dirty indicators */
2327 tx_queue->skb_dirtytx = skb_dirtytx;
2328 tx_queue->dirty_tx = bdp;
2330 return howmany;
2333 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2335 unsigned long flags;
2337 spin_lock_irqsave(&gfargrp->grplock, flags);
2338 if (napi_schedule_prep(&gfargrp->napi)) {
2339 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2340 __napi_schedule(&gfargrp->napi);
2341 } else {
2343 * Clear IEVENT, so interrupts aren't called again
2344 * because of the packets that have already arrived.
2346 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2348 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2352 /* Interrupt Handler for Transmit complete */
2353 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2355 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2356 return IRQ_HANDLED;
2359 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2360 struct sk_buff *skb)
2362 struct net_device *dev = rx_queue->dev;
2363 struct gfar_private *priv = netdev_priv(dev);
2364 dma_addr_t buf;
2366 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2367 priv->rx_buffer_size, DMA_FROM_DEVICE);
2368 gfar_init_rxbdp(rx_queue, bdp, buf);
2372 struct sk_buff * gfar_new_skb(struct net_device *dev)
2374 unsigned int alignamount;
2375 struct gfar_private *priv = netdev_priv(dev);
2376 struct sk_buff *skb = NULL;
2378 skb = __skb_dequeue(&priv->rx_recycle);
2379 if (!skb)
2380 skb = netdev_alloc_skb(dev,
2381 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2383 if (!skb)
2384 return NULL;
2386 alignamount = RXBUF_ALIGNMENT -
2387 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2389 /* We need the data buffer to be aligned properly. We will reserve
2390 * as many bytes as needed to align the data properly
2392 skb_reserve(skb, alignamount);
2394 return skb;
2397 static inline void count_errors(unsigned short status, struct net_device *dev)
2399 struct gfar_private *priv = netdev_priv(dev);
2400 struct net_device_stats *stats = &dev->stats;
2401 struct gfar_extra_stats *estats = &priv->extra_stats;
2403 /* If the packet was truncated, none of the other errors
2404 * matter */
2405 if (status & RXBD_TRUNCATED) {
2406 stats->rx_length_errors++;
2408 estats->rx_trunc++;
2410 return;
2412 /* Count the errors, if there were any */
2413 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2414 stats->rx_length_errors++;
2416 if (status & RXBD_LARGE)
2417 estats->rx_large++;
2418 else
2419 estats->rx_short++;
2421 if (status & RXBD_NONOCTET) {
2422 stats->rx_frame_errors++;
2423 estats->rx_nonoctet++;
2425 if (status & RXBD_CRCERR) {
2426 estats->rx_crcerr++;
2427 stats->rx_crc_errors++;
2429 if (status & RXBD_OVERRUN) {
2430 estats->rx_overrun++;
2431 stats->rx_crc_errors++;
2435 irqreturn_t gfar_receive(int irq, void *grp_id)
2437 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2438 return IRQ_HANDLED;
2441 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2443 /* If valid headers were found, and valid sums
2444 * were verified, then we tell the kernel that no
2445 * checksumming is necessary. Otherwise, it is */
2446 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2447 skb->ip_summed = CHECKSUM_UNNECESSARY;
2448 else
2449 skb->ip_summed = CHECKSUM_NONE;
2453 /* gfar_process_frame() -- handle one incoming packet if skb
2454 * isn't NULL. */
2455 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2456 int amount_pull)
2458 struct gfar_private *priv = netdev_priv(dev);
2459 struct rxfcb *fcb = NULL;
2461 int ret;
2463 /* fcb is at the beginning if exists */
2464 fcb = (struct rxfcb *)skb->data;
2466 /* Remove the FCB from the skb */
2467 /* Remove the padded bytes, if there are any */
2468 if (amount_pull) {
2469 skb_record_rx_queue(skb, fcb->rq);
2470 skb_pull(skb, amount_pull);
2473 if (priv->rx_csum_enable)
2474 gfar_rx_checksum(skb, fcb);
2476 /* Tell the skb what kind of packet this is */
2477 skb->protocol = eth_type_trans(skb, dev);
2479 /* Send the packet up the stack */
2480 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2481 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2482 else
2483 ret = netif_receive_skb(skb);
2485 if (NET_RX_DROP == ret)
2486 priv->extra_stats.kernel_dropped++;
2488 return 0;
2491 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2492 * until the budget/quota has been reached. Returns the number
2493 * of frames handled
2495 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2497 struct net_device *dev = rx_queue->dev;
2498 struct rxbd8 *bdp, *base;
2499 struct sk_buff *skb;
2500 int pkt_len;
2501 int amount_pull;
2502 int howmany = 0;
2503 struct gfar_private *priv = netdev_priv(dev);
2505 /* Get the first full descriptor */
2506 bdp = rx_queue->cur_rx;
2507 base = rx_queue->rx_bd_base;
2509 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
2510 priv->padding;
2512 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2513 struct sk_buff *newskb;
2514 rmb();
2516 /* Add another skb for the future */
2517 newskb = gfar_new_skb(dev);
2519 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2521 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2522 priv->rx_buffer_size, DMA_FROM_DEVICE);
2524 /* We drop the frame if we failed to allocate a new buffer */
2525 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2526 bdp->status & RXBD_ERR)) {
2527 count_errors(bdp->status, dev);
2529 if (unlikely(!newskb))
2530 newskb = skb;
2531 else if (skb) {
2533 * We need to reset ->data to what it
2534 * was before gfar_new_skb() re-aligned
2535 * it to an RXBUF_ALIGNMENT boundary
2536 * before we put the skb back on the
2537 * recycle list.
2539 skb->data = skb->head + NET_SKB_PAD;
2540 __skb_queue_head(&priv->rx_recycle, skb);
2542 } else {
2543 /* Increment the number of packets */
2544 rx_queue->stats.rx_packets++;
2545 howmany++;
2547 if (likely(skb)) {
2548 pkt_len = bdp->length - ETH_FCS_LEN;
2549 /* Remove the FCS from the packet length */
2550 skb_put(skb, pkt_len);
2551 rx_queue->stats.rx_bytes += pkt_len;
2552 skb_record_rx_queue(skb, rx_queue->qindex);
2553 gfar_process_frame(dev, skb, amount_pull);
2555 } else {
2556 if (netif_msg_rx_err(priv))
2557 printk(KERN_WARNING
2558 "%s: Missing skb!\n", dev->name);
2559 rx_queue->stats.rx_dropped++;
2560 priv->extra_stats.rx_skbmissing++;
2565 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2567 /* Setup the new bdp */
2568 gfar_new_rxbdp(rx_queue, bdp, newskb);
2570 /* Update to the next pointer */
2571 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2573 /* update to point at the next skb */
2574 rx_queue->skb_currx =
2575 (rx_queue->skb_currx + 1) &
2576 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2579 /* Update the current rxbd pointer to be the next one */
2580 rx_queue->cur_rx = bdp;
2582 return howmany;
2585 static int gfar_poll(struct napi_struct *napi, int budget)
2587 struct gfar_priv_grp *gfargrp = container_of(napi,
2588 struct gfar_priv_grp, napi);
2589 struct gfar_private *priv = gfargrp->priv;
2590 struct gfar __iomem *regs = gfargrp->regs;
2591 struct gfar_priv_tx_q *tx_queue = NULL;
2592 struct gfar_priv_rx_q *rx_queue = NULL;
2593 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2594 int tx_cleaned = 0, i, left_over_budget = budget;
2595 unsigned long serviced_queues = 0;
2596 int num_queues = 0;
2598 num_queues = gfargrp->num_rx_queues;
2599 budget_per_queue = budget/num_queues;
2601 /* Clear IEVENT, so interrupts aren't called again
2602 * because of the packets that have already arrived */
2603 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2605 while (num_queues && left_over_budget) {
2607 budget_per_queue = left_over_budget/num_queues;
2608 left_over_budget = 0;
2610 for_each_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2611 if (test_bit(i, &serviced_queues))
2612 continue;
2613 rx_queue = priv->rx_queue[i];
2614 tx_queue = priv->tx_queue[rx_queue->qindex];
2616 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2617 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2618 budget_per_queue);
2619 rx_cleaned += rx_cleaned_per_queue;
2620 if(rx_cleaned_per_queue < budget_per_queue) {
2621 left_over_budget = left_over_budget +
2622 (budget_per_queue - rx_cleaned_per_queue);
2623 set_bit(i, &serviced_queues);
2624 num_queues--;
2629 if (tx_cleaned)
2630 return budget;
2632 if (rx_cleaned < budget) {
2633 napi_complete(napi);
2635 /* Clear the halt bit in RSTAT */
2636 gfar_write(&regs->rstat, gfargrp->rstat);
2638 gfar_write(&regs->imask, IMASK_DEFAULT);
2640 /* If we are coalescing interrupts, update the timer */
2641 /* Otherwise, clear it */
2642 gfar_configure_coalescing(priv,
2643 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2646 return rx_cleaned;
2649 #ifdef CONFIG_NET_POLL_CONTROLLER
2651 * Polling 'interrupt' - used by things like netconsole to send skbs
2652 * without having to re-enable interrupts. It's not called while
2653 * the interrupt routine is executing.
2655 static void gfar_netpoll(struct net_device *dev)
2657 struct gfar_private *priv = netdev_priv(dev);
2658 int i = 0;
2660 /* If the device has multiple interrupts, run tx/rx */
2661 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2662 for (i = 0; i < priv->num_grps; i++) {
2663 disable_irq(priv->gfargrp[i].interruptTransmit);
2664 disable_irq(priv->gfargrp[i].interruptReceive);
2665 disable_irq(priv->gfargrp[i].interruptError);
2666 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2667 &priv->gfargrp[i]);
2668 enable_irq(priv->gfargrp[i].interruptError);
2669 enable_irq(priv->gfargrp[i].interruptReceive);
2670 enable_irq(priv->gfargrp[i].interruptTransmit);
2672 } else {
2673 for (i = 0; i < priv->num_grps; i++) {
2674 disable_irq(priv->gfargrp[i].interruptTransmit);
2675 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2676 &priv->gfargrp[i]);
2677 enable_irq(priv->gfargrp[i].interruptTransmit);
2681 #endif
2683 /* The interrupt handler for devices with one interrupt */
2684 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2686 struct gfar_priv_grp *gfargrp = grp_id;
2688 /* Save ievent for future reference */
2689 u32 events = gfar_read(&gfargrp->regs->ievent);
2691 /* Check for reception */
2692 if (events & IEVENT_RX_MASK)
2693 gfar_receive(irq, grp_id);
2695 /* Check for transmit completion */
2696 if (events & IEVENT_TX_MASK)
2697 gfar_transmit(irq, grp_id);
2699 /* Check for errors */
2700 if (events & IEVENT_ERR_MASK)
2701 gfar_error(irq, grp_id);
2703 return IRQ_HANDLED;
2706 /* Called every time the controller might need to be made
2707 * aware of new link state. The PHY code conveys this
2708 * information through variables in the phydev structure, and this
2709 * function converts those variables into the appropriate
2710 * register values, and can bring down the device if needed.
2712 static void adjust_link(struct net_device *dev)
2714 struct gfar_private *priv = netdev_priv(dev);
2715 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2716 unsigned long flags;
2717 struct phy_device *phydev = priv->phydev;
2718 int new_state = 0;
2720 local_irq_save(flags);
2721 lock_tx_qs(priv);
2723 if (phydev->link) {
2724 u32 tempval = gfar_read(&regs->maccfg2);
2725 u32 ecntrl = gfar_read(&regs->ecntrl);
2727 /* Now we make sure that we can be in full duplex mode.
2728 * If not, we operate in half-duplex mode. */
2729 if (phydev->duplex != priv->oldduplex) {
2730 new_state = 1;
2731 if (!(phydev->duplex))
2732 tempval &= ~(MACCFG2_FULL_DUPLEX);
2733 else
2734 tempval |= MACCFG2_FULL_DUPLEX;
2736 priv->oldduplex = phydev->duplex;
2739 if (phydev->speed != priv->oldspeed) {
2740 new_state = 1;
2741 switch (phydev->speed) {
2742 case 1000:
2743 tempval =
2744 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2746 ecntrl &= ~(ECNTRL_R100);
2747 break;
2748 case 100:
2749 case 10:
2750 tempval =
2751 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2753 /* Reduced mode distinguishes
2754 * between 10 and 100 */
2755 if (phydev->speed == SPEED_100)
2756 ecntrl |= ECNTRL_R100;
2757 else
2758 ecntrl &= ~(ECNTRL_R100);
2759 break;
2760 default:
2761 if (netif_msg_link(priv))
2762 printk(KERN_WARNING
2763 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2764 dev->name, phydev->speed);
2765 break;
2768 priv->oldspeed = phydev->speed;
2771 gfar_write(&regs->maccfg2, tempval);
2772 gfar_write(&regs->ecntrl, ecntrl);
2774 if (!priv->oldlink) {
2775 new_state = 1;
2776 priv->oldlink = 1;
2778 } else if (priv->oldlink) {
2779 new_state = 1;
2780 priv->oldlink = 0;
2781 priv->oldspeed = 0;
2782 priv->oldduplex = -1;
2785 if (new_state && netif_msg_link(priv))
2786 phy_print_status(phydev);
2787 unlock_tx_qs(priv);
2788 local_irq_restore(flags);
2791 /* Update the hash table based on the current list of multicast
2792 * addresses we subscribe to. Also, change the promiscuity of
2793 * the device based on the flags (this function is called
2794 * whenever dev->flags is changed */
2795 static void gfar_set_multi(struct net_device *dev)
2797 struct dev_mc_list *mc_ptr;
2798 struct gfar_private *priv = netdev_priv(dev);
2799 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2800 u32 tempval;
2802 if (dev->flags & IFF_PROMISC) {
2803 /* Set RCTRL to PROM */
2804 tempval = gfar_read(&regs->rctrl);
2805 tempval |= RCTRL_PROM;
2806 gfar_write(&regs->rctrl, tempval);
2807 } else {
2808 /* Set RCTRL to not PROM */
2809 tempval = gfar_read(&regs->rctrl);
2810 tempval &= ~(RCTRL_PROM);
2811 gfar_write(&regs->rctrl, tempval);
2814 if (dev->flags & IFF_ALLMULTI) {
2815 /* Set the hash to rx all multicast frames */
2816 gfar_write(&regs->igaddr0, 0xffffffff);
2817 gfar_write(&regs->igaddr1, 0xffffffff);
2818 gfar_write(&regs->igaddr2, 0xffffffff);
2819 gfar_write(&regs->igaddr3, 0xffffffff);
2820 gfar_write(&regs->igaddr4, 0xffffffff);
2821 gfar_write(&regs->igaddr5, 0xffffffff);
2822 gfar_write(&regs->igaddr6, 0xffffffff);
2823 gfar_write(&regs->igaddr7, 0xffffffff);
2824 gfar_write(&regs->gaddr0, 0xffffffff);
2825 gfar_write(&regs->gaddr1, 0xffffffff);
2826 gfar_write(&regs->gaddr2, 0xffffffff);
2827 gfar_write(&regs->gaddr3, 0xffffffff);
2828 gfar_write(&regs->gaddr4, 0xffffffff);
2829 gfar_write(&regs->gaddr5, 0xffffffff);
2830 gfar_write(&regs->gaddr6, 0xffffffff);
2831 gfar_write(&regs->gaddr7, 0xffffffff);
2832 } else {
2833 int em_num;
2834 int idx;
2836 /* zero out the hash */
2837 gfar_write(&regs->igaddr0, 0x0);
2838 gfar_write(&regs->igaddr1, 0x0);
2839 gfar_write(&regs->igaddr2, 0x0);
2840 gfar_write(&regs->igaddr3, 0x0);
2841 gfar_write(&regs->igaddr4, 0x0);
2842 gfar_write(&regs->igaddr5, 0x0);
2843 gfar_write(&regs->igaddr6, 0x0);
2844 gfar_write(&regs->igaddr7, 0x0);
2845 gfar_write(&regs->gaddr0, 0x0);
2846 gfar_write(&regs->gaddr1, 0x0);
2847 gfar_write(&regs->gaddr2, 0x0);
2848 gfar_write(&regs->gaddr3, 0x0);
2849 gfar_write(&regs->gaddr4, 0x0);
2850 gfar_write(&regs->gaddr5, 0x0);
2851 gfar_write(&regs->gaddr6, 0x0);
2852 gfar_write(&regs->gaddr7, 0x0);
2854 /* If we have extended hash tables, we need to
2855 * clear the exact match registers to prepare for
2856 * setting them */
2857 if (priv->extended_hash) {
2858 em_num = GFAR_EM_NUM + 1;
2859 gfar_clear_exact_match(dev);
2860 idx = 1;
2861 } else {
2862 idx = 0;
2863 em_num = 0;
2866 if (dev->mc_count == 0)
2867 return;
2869 /* Parse the list, and set the appropriate bits */
2870 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2871 if (idx < em_num) {
2872 gfar_set_mac_for_addr(dev, idx,
2873 mc_ptr->dmi_addr);
2874 idx++;
2875 } else
2876 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2880 return;
2884 /* Clears each of the exact match registers to zero, so they
2885 * don't interfere with normal reception */
2886 static void gfar_clear_exact_match(struct net_device *dev)
2888 int idx;
2889 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2891 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2892 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2895 /* Set the appropriate hash bit for the given addr */
2896 /* The algorithm works like so:
2897 * 1) Take the Destination Address (ie the multicast address), and
2898 * do a CRC on it (little endian), and reverse the bits of the
2899 * result.
2900 * 2) Use the 8 most significant bits as a hash into a 256-entry
2901 * table. The table is controlled through 8 32-bit registers:
2902 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2903 * gaddr7. This means that the 3 most significant bits in the
2904 * hash index which gaddr register to use, and the 5 other bits
2905 * indicate which bit (assuming an IBM numbering scheme, which
2906 * for PowerPC (tm) is usually the case) in the register holds
2907 * the entry. */
2908 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2910 u32 tempval;
2911 struct gfar_private *priv = netdev_priv(dev);
2912 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2913 int width = priv->hash_width;
2914 u8 whichbit = (result >> (32 - width)) & 0x1f;
2915 u8 whichreg = result >> (32 - width + 5);
2916 u32 value = (1 << (31-whichbit));
2918 tempval = gfar_read(priv->hash_regs[whichreg]);
2919 tempval |= value;
2920 gfar_write(priv->hash_regs[whichreg], tempval);
2922 return;
2926 /* There are multiple MAC Address register pairs on some controllers
2927 * This function sets the numth pair to a given address
2929 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2931 struct gfar_private *priv = netdev_priv(dev);
2932 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2933 int idx;
2934 char tmpbuf[MAC_ADDR_LEN];
2935 u32 tempval;
2936 u32 __iomem *macptr = &regs->macstnaddr1;
2938 macptr += num*2;
2940 /* Now copy it into the mac registers backwards, cuz */
2941 /* little endian is silly */
2942 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2943 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2945 gfar_write(macptr, *((u32 *) (tmpbuf)));
2947 tempval = *((u32 *) (tmpbuf + 4));
2949 gfar_write(macptr+1, tempval);
2952 /* GFAR error interrupt handler */
2953 static irqreturn_t gfar_error(int irq, void *grp_id)
2955 struct gfar_priv_grp *gfargrp = grp_id;
2956 struct gfar __iomem *regs = gfargrp->regs;
2957 struct gfar_private *priv= gfargrp->priv;
2958 struct net_device *dev = priv->ndev;
2960 /* Save ievent for future reference */
2961 u32 events = gfar_read(&regs->ievent);
2963 /* Clear IEVENT */
2964 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2966 /* Magic Packet is not an error. */
2967 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2968 (events & IEVENT_MAG))
2969 events &= ~IEVENT_MAG;
2971 /* Hmm... */
2972 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2973 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2974 dev->name, events, gfar_read(&regs->imask));
2976 /* Update the error counters */
2977 if (events & IEVENT_TXE) {
2978 dev->stats.tx_errors++;
2980 if (events & IEVENT_LC)
2981 dev->stats.tx_window_errors++;
2982 if (events & IEVENT_CRL)
2983 dev->stats.tx_aborted_errors++;
2984 if (events & IEVENT_XFUN) {
2985 unsigned long flags;
2987 if (netif_msg_tx_err(priv))
2988 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2989 "packet dropped.\n", dev->name);
2990 dev->stats.tx_dropped++;
2991 priv->extra_stats.tx_underrun++;
2993 local_irq_save(flags);
2994 lock_tx_qs(priv);
2996 /* Reactivate the Tx Queues */
2997 gfar_write(&regs->tstat, gfargrp->tstat);
2999 unlock_tx_qs(priv);
3000 local_irq_restore(flags);
3002 if (netif_msg_tx_err(priv))
3003 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3005 if (events & IEVENT_BSY) {
3006 dev->stats.rx_errors++;
3007 priv->extra_stats.rx_bsy++;
3009 gfar_receive(irq, grp_id);
3011 if (netif_msg_rx_err(priv))
3012 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3013 dev->name, gfar_read(&regs->rstat));
3015 if (events & IEVENT_BABR) {
3016 dev->stats.rx_errors++;
3017 priv->extra_stats.rx_babr++;
3019 if (netif_msg_rx_err(priv))
3020 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3022 if (events & IEVENT_EBERR) {
3023 priv->extra_stats.eberr++;
3024 if (netif_msg_rx_err(priv))
3025 printk(KERN_DEBUG "%s: bus error\n", dev->name);
3027 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3028 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3030 if (events & IEVENT_BABT) {
3031 priv->extra_stats.tx_babt++;
3032 if (netif_msg_tx_err(priv))
3033 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3035 return IRQ_HANDLED;
3038 static struct of_device_id gfar_match[] =
3041 .type = "network",
3042 .compatible = "gianfar",
3045 .compatible = "fsl,etsec2",
3049 MODULE_DEVICE_TABLE(of, gfar_match);
3051 /* Structure for a device driver */
3052 static struct of_platform_driver gfar_driver = {
3053 .name = "fsl-gianfar",
3054 .match_table = gfar_match,
3056 .probe = gfar_probe,
3057 .remove = gfar_remove,
3058 .suspend = gfar_legacy_suspend,
3059 .resume = gfar_legacy_resume,
3060 .driver.pm = GFAR_PM_OPS,
3063 static int __init gfar_init(void)
3065 return of_register_platform_driver(&gfar_driver);
3068 static void __exit gfar_exit(void)
3070 of_unregister_platform_driver(&gfar_driver);
3073 module_init(gfar_init);
3074 module_exit(gfar_exit);