2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
88 #include <asm/uaccess.h>
89 #include <linux/module.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h>
92 #include <linux/mii.h>
93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h>
98 #include "fsl_pq_mdio.h"
100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
104 const char gfar_driver_name
[] = "Gianfar Ethernet";
105 const char gfar_driver_version
[] = "1.3";
107 static int gfar_enet_open(struct net_device
*dev
);
108 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
109 static void gfar_reset_task(struct work_struct
*work
);
110 static void gfar_timeout(struct net_device
*dev
);
111 static int gfar_close(struct net_device
*dev
);
112 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
114 struct sk_buff
*skb
);
115 static int gfar_set_mac_address(struct net_device
*dev
);
116 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
117 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
118 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
119 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
120 static void adjust_link(struct net_device
*dev
);
121 static void init_registers(struct net_device
*dev
);
122 static int init_phy(struct net_device
*dev
);
123 static int gfar_probe(struct of_device
*ofdev
,
124 const struct of_device_id
*match
);
125 static int gfar_remove(struct of_device
*ofdev
);
126 static void free_skb_resources(struct gfar_private
*priv
);
127 static void gfar_set_multi(struct net_device
*dev
);
128 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
129 static void gfar_configure_serdes(struct net_device
*dev
);
130 static int gfar_poll(struct napi_struct
*napi
, int budget
);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device
*dev
);
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
136 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
138 static void gfar_vlan_rx_register(struct net_device
*netdev
,
139 struct vlan_group
*grp
);
140 void gfar_halt(struct net_device
*dev
);
141 static void gfar_halt_nodisable(struct net_device
*dev
);
142 void gfar_start(struct net_device
*dev
);
143 static void gfar_clear_exact_match(struct net_device
*dev
);
144 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
145 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
158 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
159 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
160 lstatus
|= BD_LFLAG(RXBD_WRAP
);
164 bdp
->lstatus
= lstatus
;
167 static int gfar_init_bds(struct net_device
*ndev
)
169 struct gfar_private
*priv
= netdev_priv(ndev
);
170 struct gfar_priv_tx_q
*tx_queue
= NULL
;
171 struct gfar_priv_rx_q
*rx_queue
= NULL
;
176 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
177 tx_queue
= priv
->tx_queue
[i
];
178 /* Initialize some variables in our dev structure */
179 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
180 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
181 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
182 tx_queue
->skb_curtx
= 0;
183 tx_queue
->skb_dirtytx
= 0;
185 /* Initialize Transmit Descriptor Ring */
186 txbdp
= tx_queue
->tx_bd_base
;
187 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
193 /* Set the last descriptor in the ring to indicate wrap */
195 txbdp
->status
|= TXBD_WRAP
;
198 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
199 rx_queue
= priv
->rx_queue
[i
];
200 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
201 rx_queue
->skb_currx
= 0;
202 rxbdp
= rx_queue
->rx_bd_base
;
204 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
205 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
208 gfar_init_rxbdp(rx_queue
, rxbdp
,
211 skb
= gfar_new_skb(ndev
);
213 pr_err("%s: Can't allocate RX buffers\n",
215 goto err_rxalloc_fail
;
217 rx_queue
->rx_skbuff
[j
] = skb
;
219 gfar_new_rxbdp(rx_queue
, rxbdp
, skb
);
230 free_skb_resources(priv
);
234 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
239 struct gfar_private
*priv
= netdev_priv(ndev
);
240 struct device
*dev
= &priv
->ofdev
->dev
;
241 struct gfar_priv_tx_q
*tx_queue
= NULL
;
242 struct gfar_priv_rx_q
*rx_queue
= NULL
;
244 priv
->total_tx_ring_size
= 0;
245 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
246 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
248 priv
->total_rx_ring_size
= 0;
249 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
250 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
252 /* Allocate memory for the buffer descriptors */
253 vaddr
= dma_alloc_coherent(dev
,
254 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
255 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
258 if (netif_msg_ifup(priv
))
259 pr_err("%s: Could not allocate buffer descriptors!\n",
264 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
265 tx_queue
= priv
->tx_queue
[i
];
266 tx_queue
->tx_bd_base
= (struct txbd8
*) vaddr
;
267 tx_queue
->tx_bd_dma_base
= addr
;
268 tx_queue
->dev
= ndev
;
269 /* enet DMA only understands physical addresses */
270 addr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
271 vaddr
+= sizeof(struct txbd8
) *tx_queue
->tx_ring_size
;
274 /* Start the rx descriptor ring where the tx ring leaves off */
275 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
276 rx_queue
= priv
->rx_queue
[i
];
277 rx_queue
->rx_bd_base
= (struct rxbd8
*) vaddr
;
278 rx_queue
->rx_bd_dma_base
= addr
;
279 rx_queue
->dev
= ndev
;
280 addr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
281 vaddr
+= sizeof (struct rxbd8
) * rx_queue
->rx_ring_size
;
284 /* Setup the skbuff rings */
285 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
286 tx_queue
= priv
->tx_queue
[i
];
287 tx_queue
->tx_skbuff
= kmalloc(sizeof(*tx_queue
->tx_skbuff
) *
288 tx_queue
->tx_ring_size
, GFP_KERNEL
);
289 if (!tx_queue
->tx_skbuff
) {
290 if (netif_msg_ifup(priv
))
291 pr_err("%s: Could not allocate tx_skbuff\n",
296 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
297 tx_queue
->tx_skbuff
[k
] = NULL
;
300 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
301 rx_queue
= priv
->rx_queue
[i
];
302 rx_queue
->rx_skbuff
= kmalloc(sizeof(*rx_queue
->rx_skbuff
) *
303 rx_queue
->rx_ring_size
, GFP_KERNEL
);
305 if (!rx_queue
->rx_skbuff
) {
306 if (netif_msg_ifup(priv
))
307 pr_err("%s: Could not allocate rx_skbuff\n",
312 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
313 rx_queue
->rx_skbuff
[j
] = NULL
;
316 if (gfar_init_bds(ndev
))
322 free_skb_resources(priv
);
326 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
328 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
332 baddr
= ®s
->tbase0
;
333 for(i
= 0; i
< priv
->num_tx_queues
; i
++) {
334 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
338 baddr
= ®s
->rbase0
;
339 for(i
= 0; i
< priv
->num_rx_queues
; i
++) {
340 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
345 static void gfar_init_mac(struct net_device
*ndev
)
347 struct gfar_private
*priv
= netdev_priv(ndev
);
348 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv
);
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
359 if (priv
->rx_filer_enable
) {
360 rctrl
|= RCTRL_FILREN
;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(®s
->rir0
, DEFAULT_RIR0
);
365 if (priv
->rx_csum_enable
)
366 rctrl
|= RCTRL_CHECKSUMMING
;
368 if (priv
->extended_hash
) {
369 rctrl
|= RCTRL_EXTHASH
;
371 gfar_clear_exact_match(ndev
);
376 rctrl
&= ~RCTRL_PAL_MASK
;
377 rctrl
|= RCTRL_PADDING(priv
->padding
);
380 /* keep vlan related bits if it's enabled */
382 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
383 tctrl
|= TCTRL_VLINS
;
386 /* Init rctrl based on our settings */
387 gfar_write(®s
->rctrl
, rctrl
);
389 if (ndev
->features
& NETIF_F_IP_CSUM
)
390 tctrl
|= TCTRL_INIT_CSUM
;
392 tctrl
|= TCTRL_TXSCHED_PRIO
;
394 gfar_write(®s
->tctrl
, tctrl
);
396 /* Set the extraction length and index */
397 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
398 ATTRELI_EI(priv
->rx_stash_index
);
400 gfar_write(®s
->attreli
, attrs
);
402 /* Start with defaults, and add stashing or locking
403 * depending on the approprate variables */
404 attrs
= ATTR_INIT_SETTINGS
;
406 if (priv
->bd_stash_en
)
407 attrs
|= ATTR_BDSTASH
;
409 if (priv
->rx_stash_size
!= 0)
410 attrs
|= ATTR_BUFSTASH
;
412 gfar_write(®s
->attr
, attrs
);
414 gfar_write(®s
->fifo_tx_thr
, priv
->fifo_threshold
);
415 gfar_write(®s
->fifo_tx_starve
, priv
->fifo_starve
);
416 gfar_write(®s
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
419 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
421 struct gfar_private
*priv
= netdev_priv(dev
);
422 struct netdev_queue
*txq
;
423 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
424 unsigned long tx_packets
= 0, tx_bytes
= 0;
427 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
428 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
429 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
430 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
433 dev
->stats
.rx_packets
= rx_packets
;
434 dev
->stats
.rx_bytes
= rx_bytes
;
435 dev
->stats
.rx_dropped
= rx_dropped
;
437 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
438 txq
= netdev_get_tx_queue(dev
, i
);
439 tx_bytes
+= txq
->tx_bytes
;
440 tx_packets
+= txq
->tx_packets
;
443 dev
->stats
.tx_bytes
= tx_bytes
;
444 dev
->stats
.tx_packets
= tx_packets
;
449 static const struct net_device_ops gfar_netdev_ops
= {
450 .ndo_open
= gfar_enet_open
,
451 .ndo_start_xmit
= gfar_start_xmit
,
452 .ndo_stop
= gfar_close
,
453 .ndo_change_mtu
= gfar_change_mtu
,
454 .ndo_set_multicast_list
= gfar_set_multi
,
455 .ndo_tx_timeout
= gfar_timeout
,
456 .ndo_do_ioctl
= gfar_ioctl
,
457 .ndo_get_stats
= gfar_get_stats
,
458 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
459 .ndo_set_mac_address
= eth_mac_addr
,
460 .ndo_validate_addr
= eth_validate_addr
,
461 #ifdef CONFIG_NET_POLL_CONTROLLER
462 .ndo_poll_controller
= gfar_netpoll
,
466 unsigned int ftp_rqfpr
[MAX_FILER_IDX
+ 1];
467 unsigned int ftp_rqfcr
[MAX_FILER_IDX
+ 1];
469 void lock_rx_qs(struct gfar_private
*priv
)
473 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
474 spin_lock(&priv
->rx_queue
[i
]->rxlock
);
477 void lock_tx_qs(struct gfar_private
*priv
)
481 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
482 spin_lock(&priv
->tx_queue
[i
]->txlock
);
485 void unlock_rx_qs(struct gfar_private
*priv
)
489 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
490 spin_unlock(&priv
->rx_queue
[i
]->rxlock
);
493 void unlock_tx_qs(struct gfar_private
*priv
)
497 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
498 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
501 /* Returns 1 if incoming frames use an FCB */
502 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
504 return priv
->vlgrp
|| priv
->rx_csum_enable
;
507 static void free_tx_pointers(struct gfar_private
*priv
)
511 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
512 kfree(priv
->tx_queue
[i
]);
515 static void free_rx_pointers(struct gfar_private
*priv
)
519 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
520 kfree(priv
->rx_queue
[i
]);
523 static void unmap_group_regs(struct gfar_private
*priv
)
527 for (i
= 0; i
< MAXGROUPS
; i
++)
528 if (priv
->gfargrp
[i
].regs
)
529 iounmap(priv
->gfargrp
[i
].regs
);
532 static void disable_napi(struct gfar_private
*priv
)
536 for (i
= 0; i
< priv
->num_grps
; i
++)
537 napi_disable(&priv
->gfargrp
[i
].napi
);
540 static void enable_napi(struct gfar_private
*priv
)
544 for (i
= 0; i
< priv
->num_grps
; i
++)
545 napi_enable(&priv
->gfargrp
[i
].napi
);
548 static int gfar_parse_group(struct device_node
*np
,
549 struct gfar_private
*priv
, const char *model
)
554 addr
= of_translate_address(np
,
555 of_get_address(np
, 0, &size
, NULL
));
556 priv
->gfargrp
[priv
->num_grps
].regs
= ioremap(addr
, size
);
558 if (!priv
->gfargrp
[priv
->num_grps
].regs
)
561 priv
->gfargrp
[priv
->num_grps
].interruptTransmit
=
562 irq_of_parse_and_map(np
, 0);
564 /* If we aren't the FEC we have multiple interrupts */
565 if (model
&& strcasecmp(model
, "FEC")) {
566 priv
->gfargrp
[priv
->num_grps
].interruptReceive
=
567 irq_of_parse_and_map(np
, 1);
568 priv
->gfargrp
[priv
->num_grps
].interruptError
=
569 irq_of_parse_and_map(np
,2);
570 if (priv
->gfargrp
[priv
->num_grps
].interruptTransmit
< 0 ||
571 priv
->gfargrp
[priv
->num_grps
].interruptReceive
< 0 ||
572 priv
->gfargrp
[priv
->num_grps
].interruptError
< 0) {
577 priv
->gfargrp
[priv
->num_grps
].grp_id
= priv
->num_grps
;
578 priv
->gfargrp
[priv
->num_grps
].priv
= priv
;
579 spin_lock_init(&priv
->gfargrp
[priv
->num_grps
].grplock
);
580 if(priv
->mode
== MQ_MG_MODE
) {
581 queue_mask
= (u32
*)of_get_property(np
,
582 "fsl,rx-bit-map", NULL
);
583 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
=
584 queue_mask
? *queue_mask
:(DEFAULT_MAPPING
>> priv
->num_grps
);
585 queue_mask
= (u32
*)of_get_property(np
,
586 "fsl,tx-bit-map", NULL
);
587 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
=
588 queue_mask
? *queue_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
590 priv
->gfargrp
[priv
->num_grps
].rx_bit_map
= 0xFF;
591 priv
->gfargrp
[priv
->num_grps
].tx_bit_map
= 0xFF;
598 static int gfar_of_init(struct of_device
*ofdev
, struct net_device
**pdev
)
602 const void *mac_addr
;
604 struct net_device
*dev
= NULL
;
605 struct gfar_private
*priv
= NULL
;
606 struct device_node
*np
= ofdev
->node
;
607 struct device_node
*child
= NULL
;
609 const u32
*stash_len
;
610 const u32
*stash_idx
;
611 unsigned int num_tx_qs
, num_rx_qs
;
612 u32
*tx_queues
, *rx_queues
;
614 if (!np
|| !of_device_is_available(np
))
617 /* parse the num of tx and rx queues */
618 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
619 num_tx_qs
= tx_queues
? *tx_queues
: 1;
621 if (num_tx_qs
> MAX_TX_QS
) {
622 printk(KERN_ERR
"num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
623 num_tx_qs
, MAX_TX_QS
);
624 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
628 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
629 num_rx_qs
= rx_queues
? *rx_queues
: 1;
631 if (num_rx_qs
> MAX_RX_QS
) {
632 printk(KERN_ERR
"num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
633 num_tx_qs
, MAX_TX_QS
);
634 printk(KERN_ERR
"Cannot do alloc_etherdev, aborting\n");
638 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
643 priv
= netdev_priv(dev
);
644 priv
->node
= ofdev
->node
;
647 dev
->num_tx_queues
= num_tx_qs
;
648 dev
->real_num_tx_queues
= num_tx_qs
;
649 priv
->num_tx_queues
= num_tx_qs
;
650 priv
->num_rx_queues
= num_rx_qs
;
651 priv
->num_grps
= 0x0;
653 model
= of_get_property(np
, "model", NULL
);
655 for (i
= 0; i
< MAXGROUPS
; i
++)
656 priv
->gfargrp
[i
].regs
= NULL
;
658 /* Parse and initialize group specific information */
659 if (of_device_is_compatible(np
, "fsl,etsec2")) {
660 priv
->mode
= MQ_MG_MODE
;
661 for_each_child_of_node(np
, child
) {
662 err
= gfar_parse_group(child
, priv
, model
);
667 priv
->mode
= SQ_SG_MODE
;
668 err
= gfar_parse_group(np
, priv
, model
);
673 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
674 priv
->tx_queue
[i
] = NULL
;
675 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
676 priv
->rx_queue
[i
] = NULL
;
678 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
679 priv
->tx_queue
[i
] = (struct gfar_priv_tx_q
*)kmalloc(
680 sizeof (struct gfar_priv_tx_q
), GFP_KERNEL
);
681 if (!priv
->tx_queue
[i
]) {
683 goto tx_alloc_failed
;
685 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
686 priv
->tx_queue
[i
]->qindex
= i
;
687 priv
->tx_queue
[i
]->dev
= dev
;
688 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
691 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
692 priv
->rx_queue
[i
] = (struct gfar_priv_rx_q
*)kmalloc(
693 sizeof (struct gfar_priv_rx_q
), GFP_KERNEL
);
694 if (!priv
->rx_queue
[i
]) {
696 goto rx_alloc_failed
;
698 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
699 priv
->rx_queue
[i
]->qindex
= i
;
700 priv
->rx_queue
[i
]->dev
= dev
;
701 spin_lock_init(&(priv
->rx_queue
[i
]->rxlock
));
705 stash
= of_get_property(np
, "bd-stash", NULL
);
708 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
709 priv
->bd_stash_en
= 1;
712 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
715 priv
->rx_stash_size
= *stash_len
;
717 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
720 priv
->rx_stash_index
= *stash_idx
;
722 if (stash_len
|| stash_idx
)
723 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
725 mac_addr
= of_get_mac_address(np
);
727 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
729 if (model
&& !strcasecmp(model
, "TSEC"))
731 FSL_GIANFAR_DEV_HAS_GIGABIT
|
732 FSL_GIANFAR_DEV_HAS_COALESCE
|
733 FSL_GIANFAR_DEV_HAS_RMON
|
734 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
735 if (model
&& !strcasecmp(model
, "eTSEC"))
737 FSL_GIANFAR_DEV_HAS_GIGABIT
|
738 FSL_GIANFAR_DEV_HAS_COALESCE
|
739 FSL_GIANFAR_DEV_HAS_RMON
|
740 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
741 FSL_GIANFAR_DEV_HAS_PADDING
|
742 FSL_GIANFAR_DEV_HAS_CSUM
|
743 FSL_GIANFAR_DEV_HAS_VLAN
|
744 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
745 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
;
747 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
749 /* We only care about rgmii-id. The rest are autodetected */
750 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
751 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
753 priv
->interface
= PHY_INTERFACE_MODE_MII
;
755 if (of_get_property(np
, "fsl,magic-packet", NULL
))
756 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
758 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
760 /* Find the TBI PHY. If it's not there, we don't support SGMII */
761 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
766 free_rx_pointers(priv
);
768 free_tx_pointers(priv
);
770 unmap_group_regs(priv
);
775 /* Ioctl MII Interface */
776 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
778 struct gfar_private
*priv
= netdev_priv(dev
);
780 if (!netif_running(dev
))
786 return phy_mii_ioctl(priv
->phydev
, if_mii(rq
), cmd
);
789 static unsigned int reverse_bitmap(unsigned int bit_map
, unsigned int max_qs
)
791 unsigned int new_bit_map
= 0x0;
792 int mask
= 0x1 << (max_qs
- 1), i
;
793 for (i
= 0; i
< max_qs
; i
++) {
795 new_bit_map
= new_bit_map
+ (1 << i
);
801 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
804 u32 rqfpr
= FPR_FILER_MASK
;
808 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
809 ftp_rqfpr
[rqfar
] = rqfpr
;
810 ftp_rqfcr
[rqfar
] = rqfcr
;
811 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
814 rqfcr
= RQFCR_CMP_NOMATCH
;
815 ftp_rqfpr
[rqfar
] = rqfpr
;
816 ftp_rqfcr
[rqfar
] = rqfcr
;
817 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
820 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
822 ftp_rqfcr
[rqfar
] = rqfcr
;
823 ftp_rqfpr
[rqfar
] = rqfpr
;
824 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
827 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
829 ftp_rqfcr
[rqfar
] = rqfcr
;
830 ftp_rqfpr
[rqfar
] = rqfpr
;
831 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
836 static void gfar_init_filer_table(struct gfar_private
*priv
)
839 u32 rqfar
= MAX_FILER_IDX
;
841 u32 rqfpr
= FPR_FILER_MASK
;
844 rqfcr
= RQFCR_CMP_MATCH
;
845 ftp_rqfcr
[rqfar
] = rqfcr
;
846 ftp_rqfpr
[rqfar
] = rqfpr
;
847 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
849 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
850 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
851 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
852 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
853 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
854 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
856 /* cur_filer_idx indicated the fisrt non-masked rule */
857 priv
->cur_filer_idx
= rqfar
;
859 /* Rest are masked rules */
860 rqfcr
= RQFCR_CMP_NOMATCH
;
861 for (i
= 0; i
< rqfar
; i
++) {
862 ftp_rqfcr
[i
] = rqfcr
;
863 ftp_rqfpr
[i
] = rqfpr
;
864 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
868 /* Set up the ethernet device structure, private data,
869 * and anything else we need before we start */
870 static int gfar_probe(struct of_device
*ofdev
,
871 const struct of_device_id
*match
)
874 struct net_device
*dev
= NULL
;
875 struct gfar_private
*priv
= NULL
;
876 struct gfar __iomem
*regs
= NULL
;
877 int err
= 0, i
, grp_idx
= 0;
879 u32 rstat
= 0, tstat
= 0, rqueue
= 0, tqueue
= 0;
883 err
= gfar_of_init(ofdev
, &dev
);
888 priv
= netdev_priv(dev
);
891 priv
->node
= ofdev
->node
;
892 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
894 spin_lock_init(&priv
->bflock
);
895 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
897 dev_set_drvdata(&ofdev
->dev
, priv
);
898 regs
= priv
->gfargrp
[0].regs
;
900 /* Stop the DMA engine now, in case it was running before */
901 /* (The firmware could have used it, and left it running). */
904 /* Reset MAC layer */
905 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
907 /* We need to delay at least 3 TX clocks */
910 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
911 gfar_write(®s
->maccfg1
, tempval
);
913 /* Initialize MACCFG2. */
914 gfar_write(®s
->maccfg2
, MACCFG2_INIT_SETTINGS
);
916 /* Initialize ECNTRL */
917 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
919 /* Set the dev->base_addr to the gfar reg region */
920 dev
->base_addr
= (unsigned long) regs
;
922 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
924 /* Fill in the dev structure */
925 dev
->watchdog_timeo
= TX_TIMEOUT
;
927 dev
->netdev_ops
= &gfar_netdev_ops
;
928 dev
->ethtool_ops
= &gfar_ethtool_ops
;
930 /* Register for napi ...We are registering NAPI for each grp */
931 for (i
= 0; i
< priv
->num_grps
; i
++)
932 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
934 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
935 priv
->rx_csum_enable
= 1;
936 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
938 priv
->rx_csum_enable
= 0;
942 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
943 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
945 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
946 priv
->extended_hash
= 1;
947 priv
->hash_width
= 9;
949 priv
->hash_regs
[0] = ®s
->igaddr0
;
950 priv
->hash_regs
[1] = ®s
->igaddr1
;
951 priv
->hash_regs
[2] = ®s
->igaddr2
;
952 priv
->hash_regs
[3] = ®s
->igaddr3
;
953 priv
->hash_regs
[4] = ®s
->igaddr4
;
954 priv
->hash_regs
[5] = ®s
->igaddr5
;
955 priv
->hash_regs
[6] = ®s
->igaddr6
;
956 priv
->hash_regs
[7] = ®s
->igaddr7
;
957 priv
->hash_regs
[8] = ®s
->gaddr0
;
958 priv
->hash_regs
[9] = ®s
->gaddr1
;
959 priv
->hash_regs
[10] = ®s
->gaddr2
;
960 priv
->hash_regs
[11] = ®s
->gaddr3
;
961 priv
->hash_regs
[12] = ®s
->gaddr4
;
962 priv
->hash_regs
[13] = ®s
->gaddr5
;
963 priv
->hash_regs
[14] = ®s
->gaddr6
;
964 priv
->hash_regs
[15] = ®s
->gaddr7
;
967 priv
->extended_hash
= 0;
968 priv
->hash_width
= 8;
970 priv
->hash_regs
[0] = ®s
->gaddr0
;
971 priv
->hash_regs
[1] = ®s
->gaddr1
;
972 priv
->hash_regs
[2] = ®s
->gaddr2
;
973 priv
->hash_regs
[3] = ®s
->gaddr3
;
974 priv
->hash_regs
[4] = ®s
->gaddr4
;
975 priv
->hash_regs
[5] = ®s
->gaddr5
;
976 priv
->hash_regs
[6] = ®s
->gaddr6
;
977 priv
->hash_regs
[7] = ®s
->gaddr7
;
980 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
981 priv
->padding
= DEFAULT_PADDING
;
985 if (dev
->features
& NETIF_F_IP_CSUM
)
986 dev
->hard_header_len
+= GMAC_FCB_LEN
;
988 /* Program the isrg regs only if number of grps > 1 */
989 if (priv
->num_grps
> 1) {
990 baddr
= ®s
->isrg0
;
991 for (i
= 0; i
< priv
->num_grps
; i
++) {
992 isrg
|= (priv
->gfargrp
[i
].rx_bit_map
<< ISRG_SHIFT_RX
);
993 isrg
|= (priv
->gfargrp
[i
].tx_bit_map
<< ISRG_SHIFT_TX
);
994 gfar_write(baddr
, isrg
);
1000 /* Need to reverse the bit maps as bit_map's MSB is q0
1001 * but, for_each_bit parses from right to left, which
1002 * basically reverses the queue numbers */
1003 for (i
= 0; i
< priv
->num_grps
; i
++) {
1004 priv
->gfargrp
[i
].tx_bit_map
= reverse_bitmap(
1005 priv
->gfargrp
[i
].tx_bit_map
, MAX_TX_QS
);
1006 priv
->gfargrp
[i
].rx_bit_map
= reverse_bitmap(
1007 priv
->gfargrp
[i
].rx_bit_map
, MAX_RX_QS
);
1010 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1011 * also assign queues to groups */
1012 for (grp_idx
= 0; grp_idx
< priv
->num_grps
; grp_idx
++) {
1013 priv
->gfargrp
[grp_idx
].num_rx_queues
= 0x0;
1014 for_each_bit(i
, &priv
->gfargrp
[grp_idx
].rx_bit_map
,
1015 priv
->num_rx_queues
) {
1016 priv
->gfargrp
[grp_idx
].num_rx_queues
++;
1017 priv
->rx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1018 rstat
= rstat
| (RSTAT_CLEAR_RHALT
>> i
);
1019 rqueue
= rqueue
| ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
1021 priv
->gfargrp
[grp_idx
].num_tx_queues
= 0x0;
1022 for_each_bit (i
, &priv
->gfargrp
[grp_idx
].tx_bit_map
,
1023 priv
->num_tx_queues
) {
1024 priv
->gfargrp
[grp_idx
].num_tx_queues
++;
1025 priv
->tx_queue
[i
]->grp
= &priv
->gfargrp
[grp_idx
];
1026 tstat
= tstat
| (TSTAT_CLEAR_THALT
>> i
);
1027 tqueue
= tqueue
| (TQUEUE_EN0
>> i
);
1029 priv
->gfargrp
[grp_idx
].rstat
= rstat
;
1030 priv
->gfargrp
[grp_idx
].tstat
= tstat
;
1034 gfar_write(®s
->rqueue
, rqueue
);
1035 gfar_write(®s
->tqueue
, tqueue
);
1037 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1039 /* Initializing some of the rx/tx queue level parameters */
1040 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1041 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1042 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1043 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1044 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1047 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1048 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1049 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1050 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1053 /* enable filer if using multiple RX queues*/
1054 if(priv
->num_rx_queues
> 1)
1055 priv
->rx_filer_enable
= 1;
1056 /* Enable most messages by default */
1057 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1059 /* Carrier starts down, phylib will bring it up */
1060 netif_carrier_off(dev
);
1062 err
= register_netdev(dev
);
1065 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1070 device_init_wakeup(&dev
->dev
,
1071 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1073 /* fill out IRQ number and name fields */
1074 len_devname
= strlen(dev
->name
);
1075 for (i
= 0; i
< priv
->num_grps
; i
++) {
1076 strncpy(&priv
->gfargrp
[i
].int_name_tx
[0], dev
->name
,
1078 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1079 strncpy(&priv
->gfargrp
[i
].int_name_tx
[len_devname
],
1080 "_g", sizeof("_g"));
1081 priv
->gfargrp
[i
].int_name_tx
[
1082 strlen(priv
->gfargrp
[i
].int_name_tx
)] = i
+48;
1083 strncpy(&priv
->gfargrp
[i
].int_name_tx
[strlen(
1084 priv
->gfargrp
[i
].int_name_tx
)],
1085 "_tx", sizeof("_tx") + 1);
1087 strncpy(&priv
->gfargrp
[i
].int_name_rx
[0], dev
->name
,
1089 strncpy(&priv
->gfargrp
[i
].int_name_rx
[len_devname
],
1090 "_g", sizeof("_g"));
1091 priv
->gfargrp
[i
].int_name_rx
[
1092 strlen(priv
->gfargrp
[i
].int_name_rx
)] = i
+48;
1093 strncpy(&priv
->gfargrp
[i
].int_name_rx
[strlen(
1094 priv
->gfargrp
[i
].int_name_rx
)],
1095 "_rx", sizeof("_rx") + 1);
1097 strncpy(&priv
->gfargrp
[i
].int_name_er
[0], dev
->name
,
1099 strncpy(&priv
->gfargrp
[i
].int_name_er
[len_devname
],
1100 "_g", sizeof("_g"));
1101 priv
->gfargrp
[i
].int_name_er
[strlen(
1102 priv
->gfargrp
[i
].int_name_er
)] = i
+48;
1103 strncpy(&priv
->gfargrp
[i
].int_name_er
[strlen(\
1104 priv
->gfargrp
[i
].int_name_er
)],
1105 "_er", sizeof("_er") + 1);
1107 priv
->gfargrp
[i
].int_name_tx
[len_devname
] = '\0';
1110 /* Initialize the filer table */
1111 gfar_init_filer_table(priv
);
1113 /* Create all the sysfs files */
1114 gfar_init_sysfs(dev
);
1116 /* Print out the device info */
1117 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
1119 /* Even more device info helps when determining which kernel */
1120 /* provided which set of benchmarks. */
1121 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
1122 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1123 printk(KERN_INFO
"%s: :RX BD ring size for Q[%d]: %d\n",
1124 dev
->name
, i
, priv
->rx_queue
[i
]->rx_ring_size
);
1125 for(i
= 0; i
< priv
->num_tx_queues
; i
++)
1126 printk(KERN_INFO
"%s:TX BD ring size for Q[%d]: %d\n",
1127 dev
->name
, i
, priv
->tx_queue
[i
]->tx_ring_size
);
1132 unmap_group_regs(priv
);
1133 free_tx_pointers(priv
);
1134 free_rx_pointers(priv
);
1136 of_node_put(priv
->phy_node
);
1138 of_node_put(priv
->tbi_node
);
1143 static int gfar_remove(struct of_device
*ofdev
)
1145 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
1148 of_node_put(priv
->phy_node
);
1150 of_node_put(priv
->tbi_node
);
1152 dev_set_drvdata(&ofdev
->dev
, NULL
);
1154 unregister_netdev(priv
->ndev
);
1155 unmap_group_regs(priv
);
1156 free_netdev(priv
->ndev
);
1163 static int gfar_suspend(struct device
*dev
)
1165 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1166 struct net_device
*ndev
= priv
->ndev
;
1167 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1168 unsigned long flags
;
1171 int magic_packet
= priv
->wol_en
&&
1172 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1174 netif_device_detach(ndev
);
1176 if (netif_running(ndev
)) {
1178 local_irq_save(flags
);
1182 gfar_halt_nodisable(ndev
);
1184 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1185 tempval
= gfar_read(®s
->maccfg1
);
1187 tempval
&= ~MACCFG1_TX_EN
;
1190 tempval
&= ~MACCFG1_RX_EN
;
1192 gfar_write(®s
->maccfg1
, tempval
);
1196 local_irq_restore(flags
);
1201 /* Enable interrupt on Magic Packet */
1202 gfar_write(®s
->imask
, IMASK_MAG
);
1204 /* Enable Magic Packet mode */
1205 tempval
= gfar_read(®s
->maccfg2
);
1206 tempval
|= MACCFG2_MPEN
;
1207 gfar_write(®s
->maccfg2
, tempval
);
1209 phy_stop(priv
->phydev
);
1216 static int gfar_resume(struct device
*dev
)
1218 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1219 struct net_device
*ndev
= priv
->ndev
;
1220 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1221 unsigned long flags
;
1223 int magic_packet
= priv
->wol_en
&&
1224 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1226 if (!netif_running(ndev
)) {
1227 netif_device_attach(ndev
);
1231 if (!magic_packet
&& priv
->phydev
)
1232 phy_start(priv
->phydev
);
1234 /* Disable Magic Packet mode, in case something
1237 local_irq_save(flags
);
1241 tempval
= gfar_read(®s
->maccfg2
);
1242 tempval
&= ~MACCFG2_MPEN
;
1243 gfar_write(®s
->maccfg2
, tempval
);
1249 local_irq_restore(flags
);
1251 netif_device_attach(ndev
);
1258 static int gfar_restore(struct device
*dev
)
1260 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1261 struct net_device
*ndev
= priv
->ndev
;
1263 if (!netif_running(ndev
))
1266 gfar_init_bds(ndev
);
1267 init_registers(ndev
);
1268 gfar_set_mac_address(ndev
);
1269 gfar_init_mac(ndev
);
1274 priv
->oldduplex
= -1;
1277 phy_start(priv
->phydev
);
1279 netif_device_attach(ndev
);
1285 static struct dev_pm_ops gfar_pm_ops
= {
1286 .suspend
= gfar_suspend
,
1287 .resume
= gfar_resume
,
1288 .freeze
= gfar_suspend
,
1289 .thaw
= gfar_resume
,
1290 .restore
= gfar_restore
,
1293 #define GFAR_PM_OPS (&gfar_pm_ops)
1295 static int gfar_legacy_suspend(struct of_device
*ofdev
, pm_message_t state
)
1297 return gfar_suspend(&ofdev
->dev
);
1300 static int gfar_legacy_resume(struct of_device
*ofdev
)
1302 return gfar_resume(&ofdev
->dev
);
1307 #define GFAR_PM_OPS NULL
1308 #define gfar_legacy_suspend NULL
1309 #define gfar_legacy_resume NULL
1313 /* Reads the controller's registers to determine what interface
1314 * connects it to the PHY.
1316 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1318 struct gfar_private
*priv
= netdev_priv(dev
);
1319 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1322 ecntrl
= gfar_read(®s
->ecntrl
);
1324 if (ecntrl
& ECNTRL_SGMII_MODE
)
1325 return PHY_INTERFACE_MODE_SGMII
;
1327 if (ecntrl
& ECNTRL_TBI_MODE
) {
1328 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1329 return PHY_INTERFACE_MODE_RTBI
;
1331 return PHY_INTERFACE_MODE_TBI
;
1334 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1335 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
1336 return PHY_INTERFACE_MODE_RMII
;
1338 phy_interface_t interface
= priv
->interface
;
1341 * This isn't autodetected right now, so it must
1342 * be set by the device tree or platform code.
1344 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1345 return PHY_INTERFACE_MODE_RGMII_ID
;
1347 return PHY_INTERFACE_MODE_RGMII
;
1351 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1352 return PHY_INTERFACE_MODE_GMII
;
1354 return PHY_INTERFACE_MODE_MII
;
1358 /* Initializes driver's PHY state, and attaches to the PHY.
1359 * Returns 0 on success.
1361 static int init_phy(struct net_device
*dev
)
1363 struct gfar_private
*priv
= netdev_priv(dev
);
1364 uint gigabit_support
=
1365 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1366 SUPPORTED_1000baseT_Full
: 0;
1367 phy_interface_t interface
;
1371 priv
->oldduplex
= -1;
1373 interface
= gfar_get_interface(dev
);
1375 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1378 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
1380 if (!priv
->phydev
) {
1381 dev_err(&dev
->dev
, "could not attach to PHY\n");
1385 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1386 gfar_configure_serdes(dev
);
1388 /* Remove any features not supported by the controller */
1389 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1390 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1396 * Initialize TBI PHY interface for communicating with the
1397 * SERDES lynx PHY on the chip. We communicate with this PHY
1398 * through the MDIO bus on each controller, treating it as a
1399 * "normal" PHY at the address found in the TBIPA register. We assume
1400 * that the TBIPA register is valid. Either the MDIO bus code will set
1401 * it to a value that doesn't conflict with other PHYs on the bus, or the
1402 * value doesn't matter, as there are no other PHYs on the bus.
1404 static void gfar_configure_serdes(struct net_device
*dev
)
1406 struct gfar_private
*priv
= netdev_priv(dev
);
1407 struct phy_device
*tbiphy
;
1409 if (!priv
->tbi_node
) {
1410 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1411 "device tree specify a tbi-handle\n");
1415 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1417 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1422 * If the link is already up, we must already be ok, and don't need to
1423 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1424 * everything for us? Resetting it takes the link down and requires
1425 * several seconds for it to come back.
1427 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1430 /* Single clk mode, mii mode off(for serdes communication) */
1431 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1433 phy_write(tbiphy
, MII_ADVERTISE
,
1434 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1435 ADVERTISE_1000XPSE_ASYM
);
1437 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
1438 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
1441 static void init_registers(struct net_device
*dev
)
1443 struct gfar_private
*priv
= netdev_priv(dev
);
1444 struct gfar __iomem
*regs
= NULL
;
1447 for (i
= 0; i
< priv
->num_grps
; i
++) {
1448 regs
= priv
->gfargrp
[i
].regs
;
1450 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1452 /* Initialize IMASK */
1453 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1456 regs
= priv
->gfargrp
[0].regs
;
1457 /* Init hash registers to zero */
1458 gfar_write(®s
->igaddr0
, 0);
1459 gfar_write(®s
->igaddr1
, 0);
1460 gfar_write(®s
->igaddr2
, 0);
1461 gfar_write(®s
->igaddr3
, 0);
1462 gfar_write(®s
->igaddr4
, 0);
1463 gfar_write(®s
->igaddr5
, 0);
1464 gfar_write(®s
->igaddr6
, 0);
1465 gfar_write(®s
->igaddr7
, 0);
1467 gfar_write(®s
->gaddr0
, 0);
1468 gfar_write(®s
->gaddr1
, 0);
1469 gfar_write(®s
->gaddr2
, 0);
1470 gfar_write(®s
->gaddr3
, 0);
1471 gfar_write(®s
->gaddr4
, 0);
1472 gfar_write(®s
->gaddr5
, 0);
1473 gfar_write(®s
->gaddr6
, 0);
1474 gfar_write(®s
->gaddr7
, 0);
1476 /* Zero out the rmon mib registers if it has them */
1477 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1478 memset_io(&(regs
->rmon
), 0, sizeof (struct rmon_mib
));
1480 /* Mask off the CAM interrupts */
1481 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1482 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1485 /* Initialize the max receive buffer length */
1486 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1488 /* Initialize the Minimum Frame Length Register */
1489 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1493 /* Halt the receive and transmit queues */
1494 static void gfar_halt_nodisable(struct net_device
*dev
)
1496 struct gfar_private
*priv
= netdev_priv(dev
);
1497 struct gfar __iomem
*regs
= NULL
;
1501 for (i
= 0; i
< priv
->num_grps
; i
++) {
1502 regs
= priv
->gfargrp
[i
].regs
;
1503 /* Mask all interrupts */
1504 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1506 /* Clear all interrupts */
1507 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
1510 regs
= priv
->gfargrp
[0].regs
;
1511 /* Stop the DMA, and wait for it to stop */
1512 tempval
= gfar_read(®s
->dmactrl
);
1513 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
1514 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
1515 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1516 gfar_write(®s
->dmactrl
, tempval
);
1518 while (!(gfar_read(®s
->ievent
) &
1519 (IEVENT_GRSC
| IEVENT_GTSC
)))
1524 /* Halt the receive and transmit queues */
1525 void gfar_halt(struct net_device
*dev
)
1527 struct gfar_private
*priv
= netdev_priv(dev
);
1528 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1531 gfar_halt_nodisable(dev
);
1533 /* Disable Rx and Tx */
1534 tempval
= gfar_read(®s
->maccfg1
);
1535 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1536 gfar_write(®s
->maccfg1
, tempval
);
1539 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1541 free_irq(grp
->interruptError
, grp
);
1542 free_irq(grp
->interruptTransmit
, grp
);
1543 free_irq(grp
->interruptReceive
, grp
);
1546 void stop_gfar(struct net_device
*dev
)
1548 struct gfar_private
*priv
= netdev_priv(dev
);
1549 unsigned long flags
;
1552 phy_stop(priv
->phydev
);
1556 local_irq_save(flags
);
1564 local_irq_restore(flags
);
1567 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1568 for (i
= 0; i
< priv
->num_grps
; i
++)
1569 free_grp_irqs(&priv
->gfargrp
[i
]);
1571 for (i
= 0; i
< priv
->num_grps
; i
++)
1572 free_irq(priv
->gfargrp
[i
].interruptTransmit
,
1576 free_skb_resources(priv
);
1579 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1581 struct txbd8
*txbdp
;
1582 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1585 txbdp
= tx_queue
->tx_bd_base
;
1587 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1588 if (!tx_queue
->tx_skbuff
[i
])
1591 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1592 txbdp
->length
, DMA_TO_DEVICE
);
1594 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1597 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
1598 txbdp
->length
, DMA_TO_DEVICE
);
1601 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1602 tx_queue
->tx_skbuff
[i
] = NULL
;
1604 kfree(tx_queue
->tx_skbuff
);
1607 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1609 struct rxbd8
*rxbdp
;
1610 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1613 rxbdp
= rx_queue
->rx_bd_base
;
1615 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1616 if (rx_queue
->rx_skbuff
[i
]) {
1617 dma_unmap_single(&priv
->ofdev
->dev
,
1618 rxbdp
->bufPtr
, priv
->rx_buffer_size
,
1620 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1621 rx_queue
->rx_skbuff
[i
] = NULL
;
1627 kfree(rx_queue
->rx_skbuff
);
1630 /* If there are any tx skbs or rx skbs still around, free them.
1631 * Then free tx_skbuff and rx_skbuff */
1632 static void free_skb_resources(struct gfar_private
*priv
)
1634 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1635 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1638 /* Go through all the buffer descriptors and free their data buffers */
1639 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1640 tx_queue
= priv
->tx_queue
[i
];
1641 if(!tx_queue
->tx_skbuff
)
1642 free_skb_tx_queue(tx_queue
);
1645 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1646 rx_queue
= priv
->rx_queue
[i
];
1647 if(!rx_queue
->rx_skbuff
)
1648 free_skb_rx_queue(rx_queue
);
1651 dma_free_coherent(&priv
->ofdev
->dev
,
1652 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1653 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1654 priv
->tx_queue
[0]->tx_bd_base
,
1655 priv
->tx_queue
[0]->tx_bd_dma_base
);
1658 void gfar_start(struct net_device
*dev
)
1660 struct gfar_private
*priv
= netdev_priv(dev
);
1661 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1665 /* Enable Rx and Tx in MACCFG1 */
1666 tempval
= gfar_read(®s
->maccfg1
);
1667 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1668 gfar_write(®s
->maccfg1
, tempval
);
1670 /* Initialize DMACTRL to have WWR and WOP */
1671 tempval
= gfar_read(®s
->dmactrl
);
1672 tempval
|= DMACTRL_INIT_SETTINGS
;
1673 gfar_write(®s
->dmactrl
, tempval
);
1675 /* Make sure we aren't stopped */
1676 tempval
= gfar_read(®s
->dmactrl
);
1677 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1678 gfar_write(®s
->dmactrl
, tempval
);
1680 for (i
= 0; i
< priv
->num_grps
; i
++) {
1681 regs
= priv
->gfargrp
[i
].regs
;
1682 /* Clear THLT/RHLT, so that the DMA starts polling now */
1683 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1684 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1685 /* Unmask the interrupts we look for */
1686 gfar_write(®s
->imask
, IMASK_DEFAULT
);
1689 dev
->trans_start
= jiffies
;
1692 void gfar_configure_coalescing(struct gfar_private
*priv
,
1693 unsigned long tx_mask
, unsigned long rx_mask
)
1695 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1699 /* Backward compatible case ---- even if we enable
1700 * multiple queues, there's only single reg to program
1702 gfar_write(®s
->txic
, 0);
1703 if(likely(priv
->tx_queue
[0]->txcoalescing
))
1704 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
1706 gfar_write(®s
->rxic
, 0);
1707 if(unlikely(priv
->rx_queue
[0]->rxcoalescing
))
1708 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
1710 if (priv
->mode
== MQ_MG_MODE
) {
1711 baddr
= ®s
->txic0
;
1712 for_each_bit (i
, &tx_mask
, priv
->num_tx_queues
) {
1713 if (likely(priv
->tx_queue
[i
]->txcoalescing
)) {
1714 gfar_write(baddr
+ i
, 0);
1715 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
1719 baddr
= ®s
->rxic0
;
1720 for_each_bit (i
, &rx_mask
, priv
->num_rx_queues
) {
1721 if (likely(priv
->rx_queue
[i
]->rxcoalescing
)) {
1722 gfar_write(baddr
+ i
, 0);
1723 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
1729 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1731 struct gfar_private
*priv
= grp
->priv
;
1732 struct net_device
*dev
= priv
->ndev
;
1735 /* If the device has multiple interrupts, register for
1736 * them. Otherwise, only register for the one */
1737 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1738 /* Install our interrupt handlers for Error,
1739 * Transmit, and Receive */
1740 if ((err
= request_irq(grp
->interruptError
, gfar_error
, 0,
1741 grp
->int_name_er
,grp
)) < 0) {
1742 if (netif_msg_intr(priv
))
1743 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1744 dev
->name
, grp
->interruptError
);
1749 if ((err
= request_irq(grp
->interruptTransmit
, gfar_transmit
,
1750 0, grp
->int_name_tx
, grp
)) < 0) {
1751 if (netif_msg_intr(priv
))
1752 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1753 dev
->name
, grp
->interruptTransmit
);
1757 if ((err
= request_irq(grp
->interruptReceive
, gfar_receive
, 0,
1758 grp
->int_name_rx
, grp
)) < 0) {
1759 if (netif_msg_intr(priv
))
1760 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1761 dev
->name
, grp
->interruptReceive
);
1765 if ((err
= request_irq(grp
->interruptTransmit
, gfar_interrupt
, 0,
1766 grp
->int_name_tx
, grp
)) < 0) {
1767 if (netif_msg_intr(priv
))
1768 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1769 dev
->name
, grp
->interruptTransmit
);
1777 free_irq(grp
->interruptTransmit
, grp
);
1779 free_irq(grp
->interruptError
, grp
);
1785 /* Bring the controller up and running */
1786 int startup_gfar(struct net_device
*ndev
)
1788 struct gfar_private
*priv
= netdev_priv(ndev
);
1789 struct gfar __iomem
*regs
= NULL
;
1792 for (i
= 0; i
< priv
->num_grps
; i
++) {
1793 regs
= priv
->gfargrp
[i
].regs
;
1794 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
1797 regs
= priv
->gfargrp
[0].regs
;
1798 err
= gfar_alloc_skb_resources(ndev
);
1802 gfar_init_mac(ndev
);
1804 for (i
= 0; i
< priv
->num_grps
; i
++) {
1805 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
1807 for (j
= 0; j
< i
; j
++)
1808 free_grp_irqs(&priv
->gfargrp
[j
]);
1813 /* Start the controller */
1816 phy_start(priv
->phydev
);
1818 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
1823 free_skb_resources(priv
);
1827 /* Called when something needs to use the ethernet device */
1828 /* Returns 0 for success. */
1829 static int gfar_enet_open(struct net_device
*dev
)
1831 struct gfar_private
*priv
= netdev_priv(dev
);
1836 skb_queue_head_init(&priv
->rx_recycle
);
1838 /* Initialize a bunch of registers */
1839 init_registers(dev
);
1841 gfar_set_mac_address(dev
);
1843 err
= init_phy(dev
);
1850 err
= startup_gfar(dev
);
1856 netif_tx_start_all_queues(dev
);
1858 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1863 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1865 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1867 memset(fcb
, 0, GMAC_FCB_LEN
);
1872 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1876 /* If we're here, it's a IP packet with a TCP or UDP
1877 * payload. We set it to checksum, using a pseudo-header
1880 flags
= TXFCB_DEFAULT
;
1882 /* Tell the controller what the protocol is */
1883 /* And provide the already calculated phcs */
1884 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1886 fcb
->phcs
= udp_hdr(skb
)->check
;
1888 fcb
->phcs
= tcp_hdr(skb
)->check
;
1890 /* l3os is the distance between the start of the
1891 * frame (skb->data) and the start of the IP hdr.
1892 * l4os is the distance between the start of the
1893 * l3 hdr and the l4 hdr */
1894 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1895 fcb
->l4os
= skb_network_header_len(skb
);
1900 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1902 fcb
->flags
|= TXFCB_VLN
;
1903 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1906 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
1907 struct txbd8
*base
, int ring_size
)
1909 struct txbd8
*new_bd
= bdp
+ stride
;
1911 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
1914 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
1917 return skip_txbd(bdp
, 1, base
, ring_size
);
1920 /* This is called by the kernel when a frame is ready for transmission. */
1921 /* It is pointed to by the dev->hard_start_xmit function pointer */
1922 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1924 struct gfar_private
*priv
= netdev_priv(dev
);
1925 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1926 struct netdev_queue
*txq
;
1927 struct gfar __iomem
*regs
= NULL
;
1928 struct txfcb
*fcb
= NULL
;
1929 struct txbd8
*txbdp
, *txbdp_start
, *base
;
1933 unsigned long flags
;
1934 unsigned int nr_frags
, length
;
1937 rq
= skb
->queue_mapping
;
1938 tx_queue
= priv
->tx_queue
[rq
];
1939 txq
= netdev_get_tx_queue(dev
, rq
);
1940 base
= tx_queue
->tx_bd_base
;
1941 regs
= tx_queue
->grp
->regs
;
1943 /* make space for additional header when fcb is needed */
1944 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1945 (priv
->vlgrp
&& vlan_tx_tag_present(skb
))) &&
1946 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
1947 struct sk_buff
*skb_new
;
1949 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
1951 dev
->stats
.tx_errors
++;
1953 return NETDEV_TX_OK
;
1959 /* total number of fragments in the SKB */
1960 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1962 /* check if there is space to queue this packet */
1963 if ((nr_frags
+1) > tx_queue
->num_txbdfree
) {
1964 /* no space, stop the queue */
1965 netif_tx_stop_queue(txq
);
1966 dev
->stats
.tx_fifo_errors
++;
1967 return NETDEV_TX_BUSY
;
1970 /* Update transmit stats */
1971 txq
->tx_bytes
+= skb
->len
;
1974 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
1976 if (nr_frags
== 0) {
1977 lstatus
= txbdp
->lstatus
| BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1979 /* Place the fragment addresses and lengths into the TxBDs */
1980 for (i
= 0; i
< nr_frags
; i
++) {
1981 /* Point at the next BD, wrapping as needed */
1982 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
1984 length
= skb_shinfo(skb
)->frags
[i
].size
;
1986 lstatus
= txbdp
->lstatus
| length
|
1987 BD_LFLAG(TXBD_READY
);
1989 /* Handle the last BD specially */
1990 if (i
== nr_frags
- 1)
1991 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1993 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
1994 skb_shinfo(skb
)->frags
[i
].page
,
1995 skb_shinfo(skb
)->frags
[i
].page_offset
,
1999 /* set the TxBD length and buffer pointer */
2000 txbdp
->bufPtr
= bufaddr
;
2001 txbdp
->lstatus
= lstatus
;
2004 lstatus
= txbdp_start
->lstatus
;
2007 /* Set up checksumming */
2008 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
2009 fcb
= gfar_add_fcb(skb
);
2010 lstatus
|= BD_LFLAG(TXBD_TOE
);
2011 gfar_tx_checksum(skb
, fcb
);
2014 if (priv
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2015 if (unlikely(NULL
== fcb
)) {
2016 fcb
= gfar_add_fcb(skb
);
2017 lstatus
|= BD_LFLAG(TXBD_TOE
);
2020 gfar_tx_vlan(skb
, fcb
);
2023 /* setup the TxBD length and buffer pointer for the first BD */
2024 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2025 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2026 skb_headlen(skb
), DMA_TO_DEVICE
);
2028 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2031 * We can work in parallel with gfar_clean_tx_ring(), except
2032 * when modifying num_txbdfree. Note that we didn't grab the lock
2033 * when we were reading the num_txbdfree and checking for available
2034 * space, that's because outside of this function it can only grow,
2035 * and once we've got needed space, it cannot suddenly disappear.
2037 * The lock also protects us from gfar_error(), which can modify
2038 * regs->tstat and thus retrigger the transfers, which is why we
2039 * also must grab the lock before setting ready bit for the first
2040 * to be transmitted BD.
2042 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2045 * The powerpc-specific eieio() is used, as wmb() has too strong
2046 * semantics (it requires synchronization between cacheable and
2047 * uncacheable mappings, which eieio doesn't provide and which we
2048 * don't need), thus requiring a more expensive sync instruction. At
2049 * some point, the set of architecture-independent barrier functions
2050 * should be expanded to include weaker barriers.
2054 txbdp_start
->lstatus
= lstatus
;
2056 /* Update the current skb pointer to the next entry we will use
2057 * (wrapping if necessary) */
2058 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2059 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2061 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2063 /* reduce TxBD free count */
2064 tx_queue
->num_txbdfree
-= (nr_frags
+ 1);
2066 dev
->trans_start
= jiffies
;
2068 /* If the next BD still needs to be cleaned up, then the bds
2069 are full. We need to tell the kernel to stop sending us stuff. */
2070 if (!tx_queue
->num_txbdfree
) {
2071 netif_tx_stop_queue(txq
);
2073 dev
->stats
.tx_fifo_errors
++;
2076 /* Tell the DMA to go go go */
2077 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2080 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2082 return NETDEV_TX_OK
;
2085 /* Stops the kernel queue, and halts the controller */
2086 static int gfar_close(struct net_device
*dev
)
2088 struct gfar_private
*priv
= netdev_priv(dev
);
2092 skb_queue_purge(&priv
->rx_recycle
);
2093 cancel_work_sync(&priv
->reset_task
);
2096 /* Disconnect from the PHY */
2097 phy_disconnect(priv
->phydev
);
2098 priv
->phydev
= NULL
;
2100 netif_tx_stop_all_queues(dev
);
2105 /* Changes the mac address if the controller is not running. */
2106 static int gfar_set_mac_address(struct net_device
*dev
)
2108 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2114 /* Enables and disables VLAN insertion/extraction */
2115 static void gfar_vlan_rx_register(struct net_device
*dev
,
2116 struct vlan_group
*grp
)
2118 struct gfar_private
*priv
= netdev_priv(dev
);
2119 struct gfar __iomem
*regs
= NULL
;
2120 unsigned long flags
;
2123 regs
= priv
->gfargrp
[0].regs
;
2124 local_irq_save(flags
);
2130 /* Enable VLAN tag insertion */
2131 tempval
= gfar_read(®s
->tctrl
);
2132 tempval
|= TCTRL_VLINS
;
2134 gfar_write(®s
->tctrl
, tempval
);
2136 /* Enable VLAN tag extraction */
2137 tempval
= gfar_read(®s
->rctrl
);
2138 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
2139 gfar_write(®s
->rctrl
, tempval
);
2141 /* Disable VLAN tag insertion */
2142 tempval
= gfar_read(®s
->tctrl
);
2143 tempval
&= ~TCTRL_VLINS
;
2144 gfar_write(®s
->tctrl
, tempval
);
2146 /* Disable VLAN tag extraction */
2147 tempval
= gfar_read(®s
->rctrl
);
2148 tempval
&= ~RCTRL_VLEX
;
2149 /* If parse is no longer required, then disable parser */
2150 if (tempval
& RCTRL_REQ_PARSER
)
2151 tempval
|= RCTRL_PRSDEP_INIT
;
2153 tempval
&= ~RCTRL_PRSDEP_INIT
;
2154 gfar_write(®s
->rctrl
, tempval
);
2157 gfar_change_mtu(dev
, dev
->mtu
);
2160 local_irq_restore(flags
);
2163 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2165 int tempsize
, tempval
;
2166 struct gfar_private
*priv
= netdev_priv(dev
);
2167 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2168 int oldsize
= priv
->rx_buffer_size
;
2169 int frame_size
= new_mtu
+ ETH_HLEN
;
2172 frame_size
+= VLAN_HLEN
;
2174 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2175 if (netif_msg_drv(priv
))
2176 printk(KERN_ERR
"%s: Invalid MTU setting\n",
2181 if (gfar_uses_fcb(priv
))
2182 frame_size
+= GMAC_FCB_LEN
;
2184 frame_size
+= priv
->padding
;
2187 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
2188 INCREMENTAL_BUFFER_SIZE
;
2190 /* Only stop and start the controller if it isn't already
2191 * stopped, and we changed something */
2192 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2195 priv
->rx_buffer_size
= tempsize
;
2199 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
2200 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
2202 /* If the mtu is larger than the max size for standard
2203 * ethernet frames (ie, a jumbo frame), then set maccfg2
2204 * to allow huge frames, and to check the length */
2205 tempval
= gfar_read(®s
->maccfg2
);
2207 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
2208 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2210 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
2212 gfar_write(®s
->maccfg2
, tempval
);
2214 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
2220 /* gfar_reset_task gets scheduled when a packet has not been
2221 * transmitted after a set amount of time.
2222 * For now, assume that clearing out all the structures, and
2223 * starting over will fix the problem.
2225 static void gfar_reset_task(struct work_struct
*work
)
2227 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2229 struct net_device
*dev
= priv
->ndev
;
2231 if (dev
->flags
& IFF_UP
) {
2232 netif_tx_stop_all_queues(dev
);
2235 netif_tx_start_all_queues(dev
);
2238 netif_tx_schedule_all(dev
);
2241 static void gfar_timeout(struct net_device
*dev
)
2243 struct gfar_private
*priv
= netdev_priv(dev
);
2245 dev
->stats
.tx_errors
++;
2246 schedule_work(&priv
->reset_task
);
2249 /* Interrupt Handler for Transmit complete */
2250 static int gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2252 struct net_device
*dev
= tx_queue
->dev
;
2253 struct gfar_private
*priv
= netdev_priv(dev
);
2254 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2256 struct txbd8
*lbdp
= NULL
;
2257 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2258 struct sk_buff
*skb
;
2260 int tx_ring_size
= tx_queue
->tx_ring_size
;
2266 rx_queue
= priv
->rx_queue
[tx_queue
->qindex
];
2267 bdp
= tx_queue
->dirty_tx
;
2268 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2270 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2271 unsigned long flags
;
2273 frags
= skb_shinfo(skb
)->nr_frags
;
2274 lbdp
= skip_txbd(bdp
, frags
, base
, tx_ring_size
);
2276 lstatus
= lbdp
->lstatus
;
2278 /* Only clean completed frames */
2279 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2280 (lstatus
& BD_LENGTH_MASK
))
2283 dma_unmap_single(&priv
->ofdev
->dev
,
2288 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2289 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2291 for (i
= 0; i
< frags
; i
++) {
2292 dma_unmap_page(&priv
->ofdev
->dev
,
2296 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2297 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2301 * If there's room in the queue (limit it to rx_buffer_size)
2302 * we add this skb back into the pool, if it's the right size
2304 if (skb_queue_len(&priv
->rx_recycle
) < rx_queue
->rx_ring_size
&&
2305 skb_recycle_check(skb
, priv
->rx_buffer_size
+
2307 __skb_queue_head(&priv
->rx_recycle
, skb
);
2309 dev_kfree_skb_any(skb
);
2311 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2313 skb_dirtytx
= (skb_dirtytx
+ 1) &
2314 TX_RING_MOD_MASK(tx_ring_size
);
2317 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2318 tx_queue
->num_txbdfree
+= frags
+ 1;
2319 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2322 /* If we freed a buffer, we can restart transmission, if necessary */
2323 if (__netif_subqueue_stopped(dev
, tx_queue
->qindex
) && tx_queue
->num_txbdfree
)
2324 netif_wake_subqueue(dev
, tx_queue
->qindex
);
2326 /* Update dirty indicators */
2327 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2328 tx_queue
->dirty_tx
= bdp
;
2333 static void gfar_schedule_cleanup(struct gfar_priv_grp
*gfargrp
)
2335 unsigned long flags
;
2337 spin_lock_irqsave(&gfargrp
->grplock
, flags
);
2338 if (napi_schedule_prep(&gfargrp
->napi
)) {
2339 gfar_write(&gfargrp
->regs
->imask
, IMASK_RTX_DISABLED
);
2340 __napi_schedule(&gfargrp
->napi
);
2343 * Clear IEVENT, so interrupts aren't called again
2344 * because of the packets that have already arrived.
2346 gfar_write(&gfargrp
->regs
->ievent
, IEVENT_RTX_MASK
);
2348 spin_unlock_irqrestore(&gfargrp
->grplock
, flags
);
2352 /* Interrupt Handler for Transmit complete */
2353 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2355 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2359 static void gfar_new_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
2360 struct sk_buff
*skb
)
2362 struct net_device
*dev
= rx_queue
->dev
;
2363 struct gfar_private
*priv
= netdev_priv(dev
);
2366 buf
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
2367 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2368 gfar_init_rxbdp(rx_queue
, bdp
, buf
);
2372 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
2374 unsigned int alignamount
;
2375 struct gfar_private
*priv
= netdev_priv(dev
);
2376 struct sk_buff
*skb
= NULL
;
2378 skb
= __skb_dequeue(&priv
->rx_recycle
);
2380 skb
= netdev_alloc_skb(dev
,
2381 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2386 alignamount
= RXBUF_ALIGNMENT
-
2387 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
2389 /* We need the data buffer to be aligned properly. We will reserve
2390 * as many bytes as needed to align the data properly
2392 skb_reserve(skb
, alignamount
);
2397 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2399 struct gfar_private
*priv
= netdev_priv(dev
);
2400 struct net_device_stats
*stats
= &dev
->stats
;
2401 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2403 /* If the packet was truncated, none of the other errors
2405 if (status
& RXBD_TRUNCATED
) {
2406 stats
->rx_length_errors
++;
2412 /* Count the errors, if there were any */
2413 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2414 stats
->rx_length_errors
++;
2416 if (status
& RXBD_LARGE
)
2421 if (status
& RXBD_NONOCTET
) {
2422 stats
->rx_frame_errors
++;
2423 estats
->rx_nonoctet
++;
2425 if (status
& RXBD_CRCERR
) {
2426 estats
->rx_crcerr
++;
2427 stats
->rx_crc_errors
++;
2429 if (status
& RXBD_OVERRUN
) {
2430 estats
->rx_overrun
++;
2431 stats
->rx_crc_errors
++;
2435 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2437 gfar_schedule_cleanup((struct gfar_priv_grp
*)grp_id
);
2441 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2443 /* If valid headers were found, and valid sums
2444 * were verified, then we tell the kernel that no
2445 * checksumming is necessary. Otherwise, it is */
2446 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2447 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2449 skb
->ip_summed
= CHECKSUM_NONE
;
2453 /* gfar_process_frame() -- handle one incoming packet if skb
2455 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2458 struct gfar_private
*priv
= netdev_priv(dev
);
2459 struct rxfcb
*fcb
= NULL
;
2463 /* fcb is at the beginning if exists */
2464 fcb
= (struct rxfcb
*)skb
->data
;
2466 /* Remove the FCB from the skb */
2467 /* Remove the padded bytes, if there are any */
2469 skb_record_rx_queue(skb
, fcb
->rq
);
2470 skb_pull(skb
, amount_pull
);
2473 if (priv
->rx_csum_enable
)
2474 gfar_rx_checksum(skb
, fcb
);
2476 /* Tell the skb what kind of packet this is */
2477 skb
->protocol
= eth_type_trans(skb
, dev
);
2479 /* Send the packet up the stack */
2480 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
2481 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
2483 ret
= netif_receive_skb(skb
);
2485 if (NET_RX_DROP
== ret
)
2486 priv
->extra_stats
.kernel_dropped
++;
2491 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2492 * until the budget/quota has been reached. Returns the number
2495 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2497 struct net_device
*dev
= rx_queue
->dev
;
2498 struct rxbd8
*bdp
, *base
;
2499 struct sk_buff
*skb
;
2503 struct gfar_private
*priv
= netdev_priv(dev
);
2505 /* Get the first full descriptor */
2506 bdp
= rx_queue
->cur_rx
;
2507 base
= rx_queue
->rx_bd_base
;
2509 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0) +
2512 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2513 struct sk_buff
*newskb
;
2516 /* Add another skb for the future */
2517 newskb
= gfar_new_skb(dev
);
2519 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2521 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
2522 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2524 /* We drop the frame if we failed to allocate a new buffer */
2525 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2526 bdp
->status
& RXBD_ERR
)) {
2527 count_errors(bdp
->status
, dev
);
2529 if (unlikely(!newskb
))
2533 * We need to reset ->data to what it
2534 * was before gfar_new_skb() re-aligned
2535 * it to an RXBUF_ALIGNMENT boundary
2536 * before we put the skb back on the
2539 skb
->data
= skb
->head
+ NET_SKB_PAD
;
2540 __skb_queue_head(&priv
->rx_recycle
, skb
);
2543 /* Increment the number of packets */
2544 rx_queue
->stats
.rx_packets
++;
2548 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2549 /* Remove the FCS from the packet length */
2550 skb_put(skb
, pkt_len
);
2551 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2552 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2553 gfar_process_frame(dev
, skb
, amount_pull
);
2556 if (netif_msg_rx_err(priv
))
2558 "%s: Missing skb!\n", dev
->name
);
2559 rx_queue
->stats
.rx_dropped
++;
2560 priv
->extra_stats
.rx_skbmissing
++;
2565 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2567 /* Setup the new bdp */
2568 gfar_new_rxbdp(rx_queue
, bdp
, newskb
);
2570 /* Update to the next pointer */
2571 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2573 /* update to point at the next skb */
2574 rx_queue
->skb_currx
=
2575 (rx_queue
->skb_currx
+ 1) &
2576 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2579 /* Update the current rxbd pointer to be the next one */
2580 rx_queue
->cur_rx
= bdp
;
2585 static int gfar_poll(struct napi_struct
*napi
, int budget
)
2587 struct gfar_priv_grp
*gfargrp
= container_of(napi
,
2588 struct gfar_priv_grp
, napi
);
2589 struct gfar_private
*priv
= gfargrp
->priv
;
2590 struct gfar __iomem
*regs
= gfargrp
->regs
;
2591 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2592 struct gfar_priv_rx_q
*rx_queue
= NULL
;
2593 int rx_cleaned
= 0, budget_per_queue
= 0, rx_cleaned_per_queue
= 0;
2594 int tx_cleaned
= 0, i
, left_over_budget
= budget
;
2595 unsigned long serviced_queues
= 0;
2598 num_queues
= gfargrp
->num_rx_queues
;
2599 budget_per_queue
= budget
/num_queues
;
2601 /* Clear IEVENT, so interrupts aren't called again
2602 * because of the packets that have already arrived */
2603 gfar_write(®s
->ievent
, IEVENT_RTX_MASK
);
2605 while (num_queues
&& left_over_budget
) {
2607 budget_per_queue
= left_over_budget
/num_queues
;
2608 left_over_budget
= 0;
2610 for_each_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
2611 if (test_bit(i
, &serviced_queues
))
2613 rx_queue
= priv
->rx_queue
[i
];
2614 tx_queue
= priv
->tx_queue
[rx_queue
->qindex
];
2616 tx_cleaned
+= gfar_clean_tx_ring(tx_queue
);
2617 rx_cleaned_per_queue
= gfar_clean_rx_ring(rx_queue
,
2619 rx_cleaned
+= rx_cleaned_per_queue
;
2620 if(rx_cleaned_per_queue
< budget_per_queue
) {
2621 left_over_budget
= left_over_budget
+
2622 (budget_per_queue
- rx_cleaned_per_queue
);
2623 set_bit(i
, &serviced_queues
);
2632 if (rx_cleaned
< budget
) {
2633 napi_complete(napi
);
2635 /* Clear the halt bit in RSTAT */
2636 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2638 gfar_write(®s
->imask
, IMASK_DEFAULT
);
2640 /* If we are coalescing interrupts, update the timer */
2641 /* Otherwise, clear it */
2642 gfar_configure_coalescing(priv
,
2643 gfargrp
->rx_bit_map
, gfargrp
->tx_bit_map
);
2649 #ifdef CONFIG_NET_POLL_CONTROLLER
2651 * Polling 'interrupt' - used by things like netconsole to send skbs
2652 * without having to re-enable interrupts. It's not called while
2653 * the interrupt routine is executing.
2655 static void gfar_netpoll(struct net_device
*dev
)
2657 struct gfar_private
*priv
= netdev_priv(dev
);
2660 /* If the device has multiple interrupts, run tx/rx */
2661 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2662 for (i
= 0; i
< priv
->num_grps
; i
++) {
2663 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2664 disable_irq(priv
->gfargrp
[i
].interruptReceive
);
2665 disable_irq(priv
->gfargrp
[i
].interruptError
);
2666 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2668 enable_irq(priv
->gfargrp
[i
].interruptError
);
2669 enable_irq(priv
->gfargrp
[i
].interruptReceive
);
2670 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2673 for (i
= 0; i
< priv
->num_grps
; i
++) {
2674 disable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2675 gfar_interrupt(priv
->gfargrp
[i
].interruptTransmit
,
2677 enable_irq(priv
->gfargrp
[i
].interruptTransmit
);
2683 /* The interrupt handler for devices with one interrupt */
2684 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
2686 struct gfar_priv_grp
*gfargrp
= grp_id
;
2688 /* Save ievent for future reference */
2689 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
2691 /* Check for reception */
2692 if (events
& IEVENT_RX_MASK
)
2693 gfar_receive(irq
, grp_id
);
2695 /* Check for transmit completion */
2696 if (events
& IEVENT_TX_MASK
)
2697 gfar_transmit(irq
, grp_id
);
2699 /* Check for errors */
2700 if (events
& IEVENT_ERR_MASK
)
2701 gfar_error(irq
, grp_id
);
2706 /* Called every time the controller might need to be made
2707 * aware of new link state. The PHY code conveys this
2708 * information through variables in the phydev structure, and this
2709 * function converts those variables into the appropriate
2710 * register values, and can bring down the device if needed.
2712 static void adjust_link(struct net_device
*dev
)
2714 struct gfar_private
*priv
= netdev_priv(dev
);
2715 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2716 unsigned long flags
;
2717 struct phy_device
*phydev
= priv
->phydev
;
2720 local_irq_save(flags
);
2724 u32 tempval
= gfar_read(®s
->maccfg2
);
2725 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2727 /* Now we make sure that we can be in full duplex mode.
2728 * If not, we operate in half-duplex mode. */
2729 if (phydev
->duplex
!= priv
->oldduplex
) {
2731 if (!(phydev
->duplex
))
2732 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2734 tempval
|= MACCFG2_FULL_DUPLEX
;
2736 priv
->oldduplex
= phydev
->duplex
;
2739 if (phydev
->speed
!= priv
->oldspeed
) {
2741 switch (phydev
->speed
) {
2744 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2746 ecntrl
&= ~(ECNTRL_R100
);
2751 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2753 /* Reduced mode distinguishes
2754 * between 10 and 100 */
2755 if (phydev
->speed
== SPEED_100
)
2756 ecntrl
|= ECNTRL_R100
;
2758 ecntrl
&= ~(ECNTRL_R100
);
2761 if (netif_msg_link(priv
))
2763 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2764 dev
->name
, phydev
->speed
);
2768 priv
->oldspeed
= phydev
->speed
;
2771 gfar_write(®s
->maccfg2
, tempval
);
2772 gfar_write(®s
->ecntrl
, ecntrl
);
2774 if (!priv
->oldlink
) {
2778 } else if (priv
->oldlink
) {
2782 priv
->oldduplex
= -1;
2785 if (new_state
&& netif_msg_link(priv
))
2786 phy_print_status(phydev
);
2788 local_irq_restore(flags
);
2791 /* Update the hash table based on the current list of multicast
2792 * addresses we subscribe to. Also, change the promiscuity of
2793 * the device based on the flags (this function is called
2794 * whenever dev->flags is changed */
2795 static void gfar_set_multi(struct net_device
*dev
)
2797 struct dev_mc_list
*mc_ptr
;
2798 struct gfar_private
*priv
= netdev_priv(dev
);
2799 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2802 if (dev
->flags
& IFF_PROMISC
) {
2803 /* Set RCTRL to PROM */
2804 tempval
= gfar_read(®s
->rctrl
);
2805 tempval
|= RCTRL_PROM
;
2806 gfar_write(®s
->rctrl
, tempval
);
2808 /* Set RCTRL to not PROM */
2809 tempval
= gfar_read(®s
->rctrl
);
2810 tempval
&= ~(RCTRL_PROM
);
2811 gfar_write(®s
->rctrl
, tempval
);
2814 if (dev
->flags
& IFF_ALLMULTI
) {
2815 /* Set the hash to rx all multicast frames */
2816 gfar_write(®s
->igaddr0
, 0xffffffff);
2817 gfar_write(®s
->igaddr1
, 0xffffffff);
2818 gfar_write(®s
->igaddr2
, 0xffffffff);
2819 gfar_write(®s
->igaddr3
, 0xffffffff);
2820 gfar_write(®s
->igaddr4
, 0xffffffff);
2821 gfar_write(®s
->igaddr5
, 0xffffffff);
2822 gfar_write(®s
->igaddr6
, 0xffffffff);
2823 gfar_write(®s
->igaddr7
, 0xffffffff);
2824 gfar_write(®s
->gaddr0
, 0xffffffff);
2825 gfar_write(®s
->gaddr1
, 0xffffffff);
2826 gfar_write(®s
->gaddr2
, 0xffffffff);
2827 gfar_write(®s
->gaddr3
, 0xffffffff);
2828 gfar_write(®s
->gaddr4
, 0xffffffff);
2829 gfar_write(®s
->gaddr5
, 0xffffffff);
2830 gfar_write(®s
->gaddr6
, 0xffffffff);
2831 gfar_write(®s
->gaddr7
, 0xffffffff);
2836 /* zero out the hash */
2837 gfar_write(®s
->igaddr0
, 0x0);
2838 gfar_write(®s
->igaddr1
, 0x0);
2839 gfar_write(®s
->igaddr2
, 0x0);
2840 gfar_write(®s
->igaddr3
, 0x0);
2841 gfar_write(®s
->igaddr4
, 0x0);
2842 gfar_write(®s
->igaddr5
, 0x0);
2843 gfar_write(®s
->igaddr6
, 0x0);
2844 gfar_write(®s
->igaddr7
, 0x0);
2845 gfar_write(®s
->gaddr0
, 0x0);
2846 gfar_write(®s
->gaddr1
, 0x0);
2847 gfar_write(®s
->gaddr2
, 0x0);
2848 gfar_write(®s
->gaddr3
, 0x0);
2849 gfar_write(®s
->gaddr4
, 0x0);
2850 gfar_write(®s
->gaddr5
, 0x0);
2851 gfar_write(®s
->gaddr6
, 0x0);
2852 gfar_write(®s
->gaddr7
, 0x0);
2854 /* If we have extended hash tables, we need to
2855 * clear the exact match registers to prepare for
2857 if (priv
->extended_hash
) {
2858 em_num
= GFAR_EM_NUM
+ 1;
2859 gfar_clear_exact_match(dev
);
2866 if (dev
->mc_count
== 0)
2869 /* Parse the list, and set the appropriate bits */
2870 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2872 gfar_set_mac_for_addr(dev
, idx
,
2876 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
2884 /* Clears each of the exact match registers to zero, so they
2885 * don't interfere with normal reception */
2886 static void gfar_clear_exact_match(struct net_device
*dev
)
2889 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
2891 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
2892 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
2895 /* Set the appropriate hash bit for the given addr */
2896 /* The algorithm works like so:
2897 * 1) Take the Destination Address (ie the multicast address), and
2898 * do a CRC on it (little endian), and reverse the bits of the
2900 * 2) Use the 8 most significant bits as a hash into a 256-entry
2901 * table. The table is controlled through 8 32-bit registers:
2902 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2903 * gaddr7. This means that the 3 most significant bits in the
2904 * hash index which gaddr register to use, and the 5 other bits
2905 * indicate which bit (assuming an IBM numbering scheme, which
2906 * for PowerPC (tm) is usually the case) in the register holds
2908 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
2911 struct gfar_private
*priv
= netdev_priv(dev
);
2912 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
2913 int width
= priv
->hash_width
;
2914 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
2915 u8 whichreg
= result
>> (32 - width
+ 5);
2916 u32 value
= (1 << (31-whichbit
));
2918 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
2920 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
2926 /* There are multiple MAC Address register pairs on some controllers
2927 * This function sets the numth pair to a given address
2929 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
2931 struct gfar_private
*priv
= netdev_priv(dev
);
2932 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
2934 char tmpbuf
[MAC_ADDR_LEN
];
2936 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
2940 /* Now copy it into the mac registers backwards, cuz */
2941 /* little endian is silly */
2942 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
2943 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
2945 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
2947 tempval
= *((u32
*) (tmpbuf
+ 4));
2949 gfar_write(macptr
+1, tempval
);
2952 /* GFAR error interrupt handler */
2953 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
2955 struct gfar_priv_grp
*gfargrp
= grp_id
;
2956 struct gfar __iomem
*regs
= gfargrp
->regs
;
2957 struct gfar_private
*priv
= gfargrp
->priv
;
2958 struct net_device
*dev
= priv
->ndev
;
2960 /* Save ievent for future reference */
2961 u32 events
= gfar_read(®s
->ievent
);
2964 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
2966 /* Magic Packet is not an error. */
2967 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
2968 (events
& IEVENT_MAG
))
2969 events
&= ~IEVENT_MAG
;
2972 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
2973 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2974 dev
->name
, events
, gfar_read(®s
->imask
));
2976 /* Update the error counters */
2977 if (events
& IEVENT_TXE
) {
2978 dev
->stats
.tx_errors
++;
2980 if (events
& IEVENT_LC
)
2981 dev
->stats
.tx_window_errors
++;
2982 if (events
& IEVENT_CRL
)
2983 dev
->stats
.tx_aborted_errors
++;
2984 if (events
& IEVENT_XFUN
) {
2985 unsigned long flags
;
2987 if (netif_msg_tx_err(priv
))
2988 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
2989 "packet dropped.\n", dev
->name
);
2990 dev
->stats
.tx_dropped
++;
2991 priv
->extra_stats
.tx_underrun
++;
2993 local_irq_save(flags
);
2996 /* Reactivate the Tx Queues */
2997 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3000 local_irq_restore(flags
);
3002 if (netif_msg_tx_err(priv
))
3003 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
3005 if (events
& IEVENT_BSY
) {
3006 dev
->stats
.rx_errors
++;
3007 priv
->extra_stats
.rx_bsy
++;
3009 gfar_receive(irq
, grp_id
);
3011 if (netif_msg_rx_err(priv
))
3012 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
3013 dev
->name
, gfar_read(®s
->rstat
));
3015 if (events
& IEVENT_BABR
) {
3016 dev
->stats
.rx_errors
++;
3017 priv
->extra_stats
.rx_babr
++;
3019 if (netif_msg_rx_err(priv
))
3020 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
3022 if (events
& IEVENT_EBERR
) {
3023 priv
->extra_stats
.eberr
++;
3024 if (netif_msg_rx_err(priv
))
3025 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
3027 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
3028 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
3030 if (events
& IEVENT_BABT
) {
3031 priv
->extra_stats
.tx_babt
++;
3032 if (netif_msg_tx_err(priv
))
3033 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
3038 static struct of_device_id gfar_match
[] =
3042 .compatible
= "gianfar",
3045 .compatible
= "fsl,etsec2",
3049 MODULE_DEVICE_TABLE(of
, gfar_match
);
3051 /* Structure for a device driver */
3052 static struct of_platform_driver gfar_driver
= {
3053 .name
= "fsl-gianfar",
3054 .match_table
= gfar_match
,
3056 .probe
= gfar_probe
,
3057 .remove
= gfar_remove
,
3058 .suspend
= gfar_legacy_suspend
,
3059 .resume
= gfar_legacy_resume
,
3060 .driver
.pm
= GFAR_PM_OPS
,
3063 static int __init
gfar_init(void)
3065 return of_register_platform_driver(&gfar_driver
);
3068 static void __exit
gfar_exit(void)
3070 of_unregister_platform_driver(&gfar_driver
);
3073 module_init(gfar_init
);
3074 module_exit(gfar_exit
);