Linux 2.6.33-rc8
[linux-2.6/lguest.git] / drivers / net / mlx4 / alloc.c
blob8c8515619b8e9b808aafbf08bdab91bb080bb17a
1 /*
2 * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/errno.h>
35 #include <linux/slab.h>
36 #include <linux/mm.h>
37 #include <linux/bitmap.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/vmalloc.h>
41 #include "mlx4.h"
43 u32 mlx4_bitmap_alloc(struct mlx4_bitmap *bitmap)
45 u32 obj;
47 spin_lock(&bitmap->lock);
49 obj = find_next_zero_bit(bitmap->table, bitmap->max, bitmap->last);
50 if (obj >= bitmap->max) {
51 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
52 & bitmap->mask;
53 obj = find_first_zero_bit(bitmap->table, bitmap->max);
56 if (obj < bitmap->max) {
57 set_bit(obj, bitmap->table);
58 bitmap->last = (obj + 1);
59 if (bitmap->last == bitmap->max)
60 bitmap->last = 0;
61 obj |= bitmap->top;
62 } else
63 obj = -1;
65 spin_unlock(&bitmap->lock);
67 return obj;
70 void mlx4_bitmap_free(struct mlx4_bitmap *bitmap, u32 obj)
72 mlx4_bitmap_free_range(bitmap, obj, 1);
75 u32 mlx4_bitmap_alloc_range(struct mlx4_bitmap *bitmap, int cnt, int align)
77 u32 obj, i;
79 if (likely(cnt == 1 && align == 1))
80 return mlx4_bitmap_alloc(bitmap);
82 spin_lock(&bitmap->lock);
84 obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max,
85 bitmap->last, cnt, align - 1);
86 if (obj >= bitmap->max) {
87 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
88 & bitmap->mask;
89 obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max,
90 0, cnt, align - 1);
93 if (obj < bitmap->max) {
94 for (i = 0; i < cnt; i++)
95 set_bit(obj + i, bitmap->table);
96 if (obj == bitmap->last) {
97 bitmap->last = (obj + cnt);
98 if (bitmap->last >= bitmap->max)
99 bitmap->last = 0;
101 obj |= bitmap->top;
102 } else
103 obj = -1;
105 spin_unlock(&bitmap->lock);
107 return obj;
110 void mlx4_bitmap_free_range(struct mlx4_bitmap *bitmap, u32 obj, int cnt)
112 u32 i;
114 obj &= bitmap->max + bitmap->reserved_top - 1;
116 spin_lock(&bitmap->lock);
117 for (i = 0; i < cnt; i++)
118 clear_bit(obj + i, bitmap->table);
119 bitmap->last = min(bitmap->last, obj);
120 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
121 & bitmap->mask;
122 spin_unlock(&bitmap->lock);
125 int mlx4_bitmap_init(struct mlx4_bitmap *bitmap, u32 num, u32 mask,
126 u32 reserved_bot, u32 reserved_top)
128 int i;
130 /* num must be a power of 2 */
131 if (num != roundup_pow_of_two(num))
132 return -EINVAL;
134 bitmap->last = 0;
135 bitmap->top = 0;
136 bitmap->max = num - reserved_top;
137 bitmap->mask = mask;
138 bitmap->reserved_top = reserved_top;
139 spin_lock_init(&bitmap->lock);
140 bitmap->table = kzalloc(BITS_TO_LONGS(bitmap->max) *
141 sizeof (long), GFP_KERNEL);
142 if (!bitmap->table)
143 return -ENOMEM;
145 for (i = 0; i < reserved_bot; ++i)
146 set_bit(i, bitmap->table);
148 return 0;
151 void mlx4_bitmap_cleanup(struct mlx4_bitmap *bitmap)
153 kfree(bitmap->table);
157 * Handling for queue buffers -- we allocate a bunch of memory and
158 * register it in a memory region at HCA virtual address 0. If the
159 * requested size is > max_direct, we split the allocation into
160 * multiple pages, so we don't require too much contiguous memory.
163 int mlx4_buf_alloc(struct mlx4_dev *dev, int size, int max_direct,
164 struct mlx4_buf *buf)
166 dma_addr_t t;
168 if (size <= max_direct) {
169 buf->nbufs = 1;
170 buf->npages = 1;
171 buf->page_shift = get_order(size) + PAGE_SHIFT;
172 buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev,
173 size, &t, GFP_KERNEL);
174 if (!buf->direct.buf)
175 return -ENOMEM;
177 buf->direct.map = t;
179 while (t & ((1 << buf->page_shift) - 1)) {
180 --buf->page_shift;
181 buf->npages *= 2;
184 memset(buf->direct.buf, 0, size);
185 } else {
186 int i;
188 buf->nbufs = (size + PAGE_SIZE - 1) / PAGE_SIZE;
189 buf->npages = buf->nbufs;
190 buf->page_shift = PAGE_SHIFT;
191 buf->page_list = kzalloc(buf->nbufs * sizeof *buf->page_list,
192 GFP_KERNEL);
193 if (!buf->page_list)
194 return -ENOMEM;
196 for (i = 0; i < buf->nbufs; ++i) {
197 buf->page_list[i].buf =
198 dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE,
199 &t, GFP_KERNEL);
200 if (!buf->page_list[i].buf)
201 goto err_free;
203 buf->page_list[i].map = t;
205 memset(buf->page_list[i].buf, 0, PAGE_SIZE);
208 if (BITS_PER_LONG == 64) {
209 struct page **pages;
210 pages = kmalloc(sizeof *pages * buf->nbufs, GFP_KERNEL);
211 if (!pages)
212 goto err_free;
213 for (i = 0; i < buf->nbufs; ++i)
214 pages[i] = virt_to_page(buf->page_list[i].buf);
215 buf->direct.buf = vmap(pages, buf->nbufs, VM_MAP, PAGE_KERNEL);
216 kfree(pages);
217 if (!buf->direct.buf)
218 goto err_free;
222 return 0;
224 err_free:
225 mlx4_buf_free(dev, size, buf);
227 return -ENOMEM;
229 EXPORT_SYMBOL_GPL(mlx4_buf_alloc);
231 void mlx4_buf_free(struct mlx4_dev *dev, int size, struct mlx4_buf *buf)
233 int i;
235 if (buf->nbufs == 1)
236 dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf,
237 buf->direct.map);
238 else {
239 if (BITS_PER_LONG == 64)
240 vunmap(buf->direct.buf);
242 for (i = 0; i < buf->nbufs; ++i)
243 if (buf->page_list[i].buf)
244 dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
245 buf->page_list[i].buf,
246 buf->page_list[i].map);
247 kfree(buf->page_list);
250 EXPORT_SYMBOL_GPL(mlx4_buf_free);
252 static struct mlx4_db_pgdir *mlx4_alloc_db_pgdir(struct device *dma_device)
254 struct mlx4_db_pgdir *pgdir;
256 pgdir = kzalloc(sizeof *pgdir, GFP_KERNEL);
257 if (!pgdir)
258 return NULL;
260 bitmap_fill(pgdir->order1, MLX4_DB_PER_PAGE / 2);
261 pgdir->bits[0] = pgdir->order0;
262 pgdir->bits[1] = pgdir->order1;
263 pgdir->db_page = dma_alloc_coherent(dma_device, PAGE_SIZE,
264 &pgdir->db_dma, GFP_KERNEL);
265 if (!pgdir->db_page) {
266 kfree(pgdir);
267 return NULL;
270 return pgdir;
273 static int mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir *pgdir,
274 struct mlx4_db *db, int order)
276 int o;
277 int i;
279 for (o = order; o <= 1; ++o) {
280 i = find_first_bit(pgdir->bits[o], MLX4_DB_PER_PAGE >> o);
281 if (i < MLX4_DB_PER_PAGE >> o)
282 goto found;
285 return -ENOMEM;
287 found:
288 clear_bit(i, pgdir->bits[o]);
290 i <<= o;
292 if (o > order)
293 set_bit(i ^ 1, pgdir->bits[order]);
295 db->u.pgdir = pgdir;
296 db->index = i;
297 db->db = pgdir->db_page + db->index;
298 db->dma = pgdir->db_dma + db->index * 4;
299 db->order = order;
301 return 0;
304 int mlx4_db_alloc(struct mlx4_dev *dev, struct mlx4_db *db, int order)
306 struct mlx4_priv *priv = mlx4_priv(dev);
307 struct mlx4_db_pgdir *pgdir;
308 int ret = 0;
310 mutex_lock(&priv->pgdir_mutex);
312 list_for_each_entry(pgdir, &priv->pgdir_list, list)
313 if (!mlx4_alloc_db_from_pgdir(pgdir, db, order))
314 goto out;
316 pgdir = mlx4_alloc_db_pgdir(&(dev->pdev->dev));
317 if (!pgdir) {
318 ret = -ENOMEM;
319 goto out;
322 list_add(&pgdir->list, &priv->pgdir_list);
324 /* This should never fail -- we just allocated an empty page: */
325 WARN_ON(mlx4_alloc_db_from_pgdir(pgdir, db, order));
327 out:
328 mutex_unlock(&priv->pgdir_mutex);
330 return ret;
332 EXPORT_SYMBOL_GPL(mlx4_db_alloc);
334 void mlx4_db_free(struct mlx4_dev *dev, struct mlx4_db *db)
336 struct mlx4_priv *priv = mlx4_priv(dev);
337 int o;
338 int i;
340 mutex_lock(&priv->pgdir_mutex);
342 o = db->order;
343 i = db->index;
345 if (db->order == 0 && test_bit(i ^ 1, db->u.pgdir->order0)) {
346 clear_bit(i ^ 1, db->u.pgdir->order0);
347 ++o;
349 i >>= o;
350 set_bit(i, db->u.pgdir->bits[o]);
352 if (bitmap_full(db->u.pgdir->order1, MLX4_DB_PER_PAGE / 2)) {
353 dma_free_coherent(&(dev->pdev->dev), PAGE_SIZE,
354 db->u.pgdir->db_page, db->u.pgdir->db_dma);
355 list_del(&db->u.pgdir->list);
356 kfree(db->u.pgdir);
359 mutex_unlock(&priv->pgdir_mutex);
361 EXPORT_SYMBOL_GPL(mlx4_db_free);
363 int mlx4_alloc_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
364 int size, int max_direct)
366 int err;
368 err = mlx4_db_alloc(dev, &wqres->db, 1);
369 if (err)
370 return err;
372 *wqres->db.db = 0;
374 err = mlx4_buf_alloc(dev, size, max_direct, &wqres->buf);
375 if (err)
376 goto err_db;
378 err = mlx4_mtt_init(dev, wqres->buf.npages, wqres->buf.page_shift,
379 &wqres->mtt);
380 if (err)
381 goto err_buf;
383 err = mlx4_buf_write_mtt(dev, &wqres->mtt, &wqres->buf);
384 if (err)
385 goto err_mtt;
387 return 0;
389 err_mtt:
390 mlx4_mtt_cleanup(dev, &wqres->mtt);
391 err_buf:
392 mlx4_buf_free(dev, size, &wqres->buf);
393 err_db:
394 mlx4_db_free(dev, &wqres->db);
396 return err;
398 EXPORT_SYMBOL_GPL(mlx4_alloc_hwq_res);
400 void mlx4_free_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
401 int size)
403 mlx4_mtt_cleanup(dev, &wqres->mtt);
404 mlx4_buf_free(dev, size, &wqres->buf);
405 mlx4_db_free(dev, &wqres->db);
407 EXPORT_SYMBOL_GPL(mlx4_free_hwq_res);