Linux 2.6.33-rc8
[linux-2.6/lguest.git] / drivers / net / sb1000.c
blob9f83a11973750a2711eee50e7b985af5159c5cec
1 /* sb1000.c: A General Instruments SB1000 driver for linux. */
2 /*
3 Written 1998 by Franco Venturi.
5 Copyright 1998 by Franco Venturi.
6 Copyright 1994,1995 by Donald Becker.
7 Copyright 1993 United States Government as represented by the
8 Director, National Security Agency.
10 This driver is for the General Instruments SB1000 (internal SURFboard)
12 The author may be reached as fventuri@mediaone.net
14 This program is free software; you can redistribute it
15 and/or modify it under the terms of the GNU General
16 Public License as published by the Free Software
17 Foundation; either version 2 of the License, or (at
18 your option) any later version.
20 Changes:
22 981115 Steven Hirsch <shirsch@adelphia.net>
24 Linus changed the timer interface. Should work on all recent
25 development kernels.
27 980608 Steven Hirsch <shirsch@adelphia.net>
29 Small changes to make it work with 2.1.x kernels. Hopefully,
30 nothing major will change before official release of Linux 2.2.
32 Merged with 2.2 - Alan Cox
35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/sched.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/errno.h>
43 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/ioport.h>
47 #include <linux/netdevice.h>
48 #include <linux/if_arp.h>
49 #include <linux/skbuff.h>
50 #include <linux/delay.h> /* for udelay() */
51 #include <linux/etherdevice.h>
52 #include <linux/pnp.h>
53 #include <linux/init.h>
54 #include <linux/bitops.h>
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/uaccess.h>
60 #ifdef SB1000_DEBUG
61 static int sb1000_debug = SB1000_DEBUG;
62 #else
63 static const int sb1000_debug = 1;
64 #endif
66 static const int SB1000_IO_EXTENT = 8;
67 /* SB1000 Maximum Receive Unit */
68 static const int SB1000_MRU = 1500; /* octects */
70 #define NPIDS 4
71 struct sb1000_private {
72 struct sk_buff *rx_skb[NPIDS];
73 short rx_dlen[NPIDS];
74 unsigned int rx_frames;
75 short rx_error_count;
76 short rx_error_dpc_count;
77 unsigned char rx_session_id[NPIDS];
78 unsigned char rx_frame_id[NPIDS];
79 unsigned char rx_pkt_type[NPIDS];
82 /* prototypes for Linux interface */
83 extern int sb1000_probe(struct net_device *dev);
84 static int sb1000_open(struct net_device *dev);
85 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
86 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb,
87 struct net_device *dev);
88 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
89 static int sb1000_close(struct net_device *dev);
92 /* SB1000 hardware routines to be used during open/configuration phases */
93 static int card_wait_for_busy_clear(const int ioaddr[],
94 const char* name);
95 static int card_wait_for_ready(const int ioaddr[], const char* name,
96 unsigned char in[]);
97 static int card_send_command(const int ioaddr[], const char* name,
98 const unsigned char out[], unsigned char in[]);
100 /* SB1000 hardware routines to be used during frame rx interrupt */
101 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
102 static int sb1000_wait_for_ready_clear(const int ioaddr[],
103 const char* name);
104 static void sb1000_send_command(const int ioaddr[], const char* name,
105 const unsigned char out[]);
106 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
107 static void sb1000_issue_read_command(const int ioaddr[],
108 const char* name);
110 /* SB1000 commands for open/configuration */
111 static int sb1000_reset(const int ioaddr[], const char* name);
112 static int sb1000_check_CRC(const int ioaddr[], const char* name);
113 static inline int sb1000_start_get_set_command(const int ioaddr[],
114 const char* name);
115 static int sb1000_end_get_set_command(const int ioaddr[],
116 const char* name);
117 static int sb1000_activate(const int ioaddr[], const char* name);
118 static int sb1000_get_firmware_version(const int ioaddr[],
119 const char* name, unsigned char version[], int do_end);
120 static int sb1000_get_frequency(const int ioaddr[], const char* name,
121 int* frequency);
122 static int sb1000_set_frequency(const int ioaddr[], const char* name,
123 int frequency);
124 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
125 short PID[]);
126 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
127 const short PID[]);
129 /* SB1000 commands for frame rx interrupt */
130 static int sb1000_rx(struct net_device *dev);
131 static void sb1000_error_dpc(struct net_device *dev);
133 static const struct pnp_device_id sb1000_pnp_ids[] = {
134 { "GIC1000", 0 },
135 { "", 0 }
137 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
139 static const struct net_device_ops sb1000_netdev_ops = {
140 .ndo_open = sb1000_open,
141 .ndo_start_xmit = sb1000_start_xmit,
142 .ndo_do_ioctl = sb1000_dev_ioctl,
143 .ndo_stop = sb1000_close,
144 .ndo_change_mtu = eth_change_mtu,
145 .ndo_set_mac_address = eth_mac_addr,
146 .ndo_validate_addr = eth_validate_addr,
149 static int
150 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
152 struct net_device *dev;
153 unsigned short ioaddr[2], irq;
154 unsigned int serial_number;
155 int error = -ENODEV;
157 if (pnp_device_attach(pdev) < 0)
158 return -ENODEV;
159 if (pnp_activate_dev(pdev) < 0)
160 goto out_detach;
162 if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
163 goto out_disable;
164 if (!pnp_irq_valid(pdev, 0))
165 goto out_disable;
167 serial_number = pdev->card->serial;
169 ioaddr[0] = pnp_port_start(pdev, 0);
170 ioaddr[1] = pnp_port_start(pdev, 0);
172 irq = pnp_irq(pdev, 0);
174 if (!request_region(ioaddr[0], 16, "sb1000"))
175 goto out_disable;
176 if (!request_region(ioaddr[1], 16, "sb1000"))
177 goto out_release_region0;
179 dev = alloc_etherdev(sizeof(struct sb1000_private));
180 if (!dev) {
181 error = -ENOMEM;
182 goto out_release_regions;
186 dev->base_addr = ioaddr[0];
187 /* mem_start holds the second I/O address */
188 dev->mem_start = ioaddr[1];
189 dev->irq = irq;
191 if (sb1000_debug > 0)
192 printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
193 "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
194 dev->mem_start, serial_number, dev->irq);
197 * The SB1000 is an rx-only cable modem device. The uplink is a modem
198 * and we do not want to arp on it.
200 dev->flags = IFF_POINTOPOINT|IFF_NOARP;
202 SET_NETDEV_DEV(dev, &pdev->dev);
204 if (sb1000_debug > 0)
205 printk(KERN_NOTICE "%s", version);
207 dev->netdev_ops = &sb1000_netdev_ops;
209 /* hardware address is 0:0:serial_number */
210 dev->dev_addr[2] = serial_number >> 24 & 0xff;
211 dev->dev_addr[3] = serial_number >> 16 & 0xff;
212 dev->dev_addr[4] = serial_number >> 8 & 0xff;
213 dev->dev_addr[5] = serial_number >> 0 & 0xff;
215 pnp_set_drvdata(pdev, dev);
217 error = register_netdev(dev);
218 if (error)
219 goto out_free_netdev;
220 return 0;
222 out_free_netdev:
223 free_netdev(dev);
224 out_release_regions:
225 release_region(ioaddr[1], 16);
226 out_release_region0:
227 release_region(ioaddr[0], 16);
228 out_disable:
229 pnp_disable_dev(pdev);
230 out_detach:
231 pnp_device_detach(pdev);
232 return error;
235 static void
236 sb1000_remove_one(struct pnp_dev *pdev)
238 struct net_device *dev = pnp_get_drvdata(pdev);
240 unregister_netdev(dev);
241 release_region(dev->base_addr, 16);
242 release_region(dev->mem_start, 16);
243 free_netdev(dev);
246 static struct pnp_driver sb1000_driver = {
247 .name = "sb1000",
248 .id_table = sb1000_pnp_ids,
249 .probe = sb1000_probe_one,
250 .remove = sb1000_remove_one,
255 * SB1000 hardware routines to be used during open/configuration phases
258 static const int TimeOutJiffies = (875 * HZ) / 100;
260 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
261 static int
262 card_wait_for_busy_clear(const int ioaddr[], const char* name)
264 unsigned char a;
265 unsigned long timeout;
267 a = inb(ioaddr[0] + 7);
268 timeout = jiffies + TimeOutJiffies;
269 while (a & 0x80 || a & 0x40) {
270 /* a little sleep */
271 yield();
273 a = inb(ioaddr[0] + 7);
274 if (time_after_eq(jiffies, timeout)) {
275 printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
276 name);
277 return -ETIME;
281 return 0;
284 /* Card Wait For Ready (cannot be used during an interrupt) */
285 static int
286 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
288 unsigned char a;
289 unsigned long timeout;
291 a = inb(ioaddr[1] + 6);
292 timeout = jiffies + TimeOutJiffies;
293 while (a & 0x80 || !(a & 0x40)) {
294 /* a little sleep */
295 yield();
297 a = inb(ioaddr[1] + 6);
298 if (time_after_eq(jiffies, timeout)) {
299 printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
300 name);
301 return -ETIME;
305 in[1] = inb(ioaddr[0] + 1);
306 in[2] = inb(ioaddr[0] + 2);
307 in[3] = inb(ioaddr[0] + 3);
308 in[4] = inb(ioaddr[0] + 4);
309 in[0] = inb(ioaddr[0] + 5);
310 in[6] = inb(ioaddr[0] + 6);
311 in[5] = inb(ioaddr[1] + 6);
312 return 0;
315 /* Card Send Command (cannot be used during an interrupt) */
316 static int
317 card_send_command(const int ioaddr[], const char* name,
318 const unsigned char out[], unsigned char in[])
320 int status, x;
322 if ((status = card_wait_for_busy_clear(ioaddr, name)))
323 return status;
324 outb(0xa0, ioaddr[0] + 6);
325 outb(out[2], ioaddr[0] + 1);
326 outb(out[3], ioaddr[0] + 2);
327 outb(out[4], ioaddr[0] + 3);
328 outb(out[5], ioaddr[0] + 4);
329 outb(out[1], ioaddr[0] + 5);
330 outb(0xa0, ioaddr[0] + 6);
331 outb(out[0], ioaddr[0] + 7);
332 if (out[0] != 0x20 && out[0] != 0x30) {
333 if ((status = card_wait_for_ready(ioaddr, name, in)))
334 return status;
335 inb(ioaddr[0] + 7);
336 if (sb1000_debug > 3)
337 printk(KERN_DEBUG "%s: card_send_command "
338 "out: %02x%02x%02x%02x%02x%02x "
339 "in: %02x%02x%02x%02x%02x%02x%02x\n", name,
340 out[0], out[1], out[2], out[3], out[4], out[5],
341 in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
342 } else {
343 if (sb1000_debug > 3)
344 printk(KERN_DEBUG "%s: card_send_command "
345 "out: %02x%02x%02x%02x%02x%02x\n", name,
346 out[0], out[1], out[2], out[3], out[4], out[5]);
349 if (out[1] == 0x1b) {
350 x = (out[2] == 0x02);
351 } else {
352 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
353 return -EIO;
355 return 0;
360 * SB1000 hardware routines to be used during frame rx interrupt
362 static const int Sb1000TimeOutJiffies = 7 * HZ;
364 /* Card Wait For Ready (to be used during frame rx) */
365 static int
366 sb1000_wait_for_ready(const int ioaddr[], const char* name)
368 unsigned long timeout;
370 timeout = jiffies + Sb1000TimeOutJiffies;
371 while (inb(ioaddr[1] + 6) & 0x80) {
372 if (time_after_eq(jiffies, timeout)) {
373 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
374 name);
375 return -ETIME;
378 timeout = jiffies + Sb1000TimeOutJiffies;
379 while (!(inb(ioaddr[1] + 6) & 0x40)) {
380 if (time_after_eq(jiffies, timeout)) {
381 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
382 name);
383 return -ETIME;
386 inb(ioaddr[0] + 7);
387 return 0;
390 /* Card Wait For Ready Clear (to be used during frame rx) */
391 static int
392 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
394 unsigned long timeout;
396 timeout = jiffies + Sb1000TimeOutJiffies;
397 while (inb(ioaddr[1] + 6) & 0x80) {
398 if (time_after_eq(jiffies, timeout)) {
399 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
400 name);
401 return -ETIME;
404 timeout = jiffies + Sb1000TimeOutJiffies;
405 while (inb(ioaddr[1] + 6) & 0x40) {
406 if (time_after_eq(jiffies, timeout)) {
407 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
408 name);
409 return -ETIME;
412 return 0;
415 /* Card Send Command (to be used during frame rx) */
416 static void
417 sb1000_send_command(const int ioaddr[], const char* name,
418 const unsigned char out[])
420 outb(out[2], ioaddr[0] + 1);
421 outb(out[3], ioaddr[0] + 2);
422 outb(out[4], ioaddr[0] + 3);
423 outb(out[5], ioaddr[0] + 4);
424 outb(out[1], ioaddr[0] + 5);
425 outb(out[0], ioaddr[0] + 7);
426 if (sb1000_debug > 3)
427 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
428 "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
429 return;
432 /* Card Read Status (to be used during frame rx) */
433 static void
434 sb1000_read_status(const int ioaddr[], unsigned char in[])
436 in[1] = inb(ioaddr[0] + 1);
437 in[2] = inb(ioaddr[0] + 2);
438 in[3] = inb(ioaddr[0] + 3);
439 in[4] = inb(ioaddr[0] + 4);
440 in[0] = inb(ioaddr[0] + 5);
441 return;
444 /* Issue Read Command (to be used during frame rx) */
445 static void
446 sb1000_issue_read_command(const int ioaddr[], const char* name)
448 static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
450 sb1000_wait_for_ready_clear(ioaddr, name);
451 outb(0xa0, ioaddr[0] + 6);
452 sb1000_send_command(ioaddr, name, Command0);
453 return;
458 * SB1000 commands for open/configuration
460 /* reset SB1000 card */
461 static int
462 sb1000_reset(const int ioaddr[], const char* name)
464 static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
466 unsigned char st[7];
467 int port, status;
469 port = ioaddr[1] + 6;
470 outb(0x4, port);
471 inb(port);
472 udelay(1000);
473 outb(0x0, port);
474 inb(port);
475 ssleep(1);
476 outb(0x4, port);
477 inb(port);
478 udelay(1000);
479 outb(0x0, port);
480 inb(port);
481 udelay(0);
483 if ((status = card_send_command(ioaddr, name, Command0, st)))
484 return status;
485 if (st[3] != 0xf0)
486 return -EIO;
487 return 0;
490 /* check SB1000 firmware CRC */
491 static int
492 sb1000_check_CRC(const int ioaddr[], const char* name)
494 static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
496 unsigned char st[7];
497 int crc, status;
499 /* check CRC */
500 if ((status = card_send_command(ioaddr, name, Command0, st)))
501 return status;
502 if (st[1] != st[3] || st[2] != st[4])
503 return -EIO;
504 crc = st[1] << 8 | st[2];
505 return 0;
508 static inline int
509 sb1000_start_get_set_command(const int ioaddr[], const char* name)
511 static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
513 unsigned char st[7];
515 return card_send_command(ioaddr, name, Command0, st);
518 static int
519 sb1000_end_get_set_command(const int ioaddr[], const char* name)
521 static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
522 static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
524 unsigned char st[7];
525 int status;
527 if ((status = card_send_command(ioaddr, name, Command0, st)))
528 return status;
529 return card_send_command(ioaddr, name, Command1, st);
532 static int
533 sb1000_activate(const int ioaddr[], const char* name)
535 static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
536 static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
538 unsigned char st[7];
539 int status;
541 ssleep(1);
542 if ((status = card_send_command(ioaddr, name, Command0, st)))
543 return status;
544 if ((status = card_send_command(ioaddr, name, Command1, st)))
545 return status;
546 if (st[3] != 0xf1) {
547 if ((status = sb1000_start_get_set_command(ioaddr, name)))
548 return status;
549 return -EIO;
551 udelay(1000);
552 return sb1000_start_get_set_command(ioaddr, name);
555 /* get SB1000 firmware version */
556 static int
557 sb1000_get_firmware_version(const int ioaddr[], const char* name,
558 unsigned char version[], int do_end)
560 static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
562 unsigned char st[7];
563 int status;
565 if ((status = sb1000_start_get_set_command(ioaddr, name)))
566 return status;
567 if ((status = card_send_command(ioaddr, name, Command0, st)))
568 return status;
569 if (st[0] != 0xa3)
570 return -EIO;
571 version[0] = st[1];
572 version[1] = st[2];
573 if (do_end)
574 return sb1000_end_get_set_command(ioaddr, name);
575 else
576 return 0;
579 /* get SB1000 frequency */
580 static int
581 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
583 static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
585 unsigned char st[7];
586 int status;
588 udelay(1000);
589 if ((status = sb1000_start_get_set_command(ioaddr, name)))
590 return status;
591 if ((status = card_send_command(ioaddr, name, Command0, st)))
592 return status;
593 *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
594 return sb1000_end_get_set_command(ioaddr, name);
597 /* set SB1000 frequency */
598 static int
599 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
601 unsigned char st[7];
602 int status;
603 unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
605 const int FrequencyLowerLimit = 57000;
606 const int FrequencyUpperLimit = 804000;
608 if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
609 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
610 "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
611 FrequencyUpperLimit);
612 return -EINVAL;
614 udelay(1000);
615 if ((status = sb1000_start_get_set_command(ioaddr, name)))
616 return status;
617 Command0[5] = frequency & 0xff;
618 frequency >>= 8;
619 Command0[4] = frequency & 0xff;
620 frequency >>= 8;
621 Command0[3] = frequency & 0xff;
622 frequency >>= 8;
623 Command0[2] = frequency & 0xff;
624 return card_send_command(ioaddr, name, Command0, st);
627 /* get SB1000 PIDs */
628 static int
629 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
631 static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
632 static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
633 static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
634 static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
636 unsigned char st[7];
637 int status;
639 udelay(1000);
640 if ((status = sb1000_start_get_set_command(ioaddr, name)))
641 return status;
643 if ((status = card_send_command(ioaddr, name, Command0, st)))
644 return status;
645 PID[0] = st[1] << 8 | st[2];
647 if ((status = card_send_command(ioaddr, name, Command1, st)))
648 return status;
649 PID[1] = st[1] << 8 | st[2];
651 if ((status = card_send_command(ioaddr, name, Command2, st)))
652 return status;
653 PID[2] = st[1] << 8 | st[2];
655 if ((status = card_send_command(ioaddr, name, Command3, st)))
656 return status;
657 PID[3] = st[1] << 8 | st[2];
659 return sb1000_end_get_set_command(ioaddr, name);
662 /* set SB1000 PIDs */
663 static int
664 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
666 static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
668 unsigned char st[7];
669 short p;
670 int status;
671 unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
672 unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
673 unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
674 unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
676 udelay(1000);
677 if ((status = sb1000_start_get_set_command(ioaddr, name)))
678 return status;
680 p = PID[0];
681 Command0[3] = p & 0xff;
682 p >>= 8;
683 Command0[2] = p & 0xff;
684 if ((status = card_send_command(ioaddr, name, Command0, st)))
685 return status;
687 p = PID[1];
688 Command1[3] = p & 0xff;
689 p >>= 8;
690 Command1[2] = p & 0xff;
691 if ((status = card_send_command(ioaddr, name, Command1, st)))
692 return status;
694 p = PID[2];
695 Command2[3] = p & 0xff;
696 p >>= 8;
697 Command2[2] = p & 0xff;
698 if ((status = card_send_command(ioaddr, name, Command2, st)))
699 return status;
701 p = PID[3];
702 Command3[3] = p & 0xff;
703 p >>= 8;
704 Command3[2] = p & 0xff;
705 if ((status = card_send_command(ioaddr, name, Command3, st)))
706 return status;
708 if ((status = card_send_command(ioaddr, name, Command4, st)))
709 return status;
710 return sb1000_end_get_set_command(ioaddr, name);
714 static void
715 sb1000_print_status_buffer(const char* name, unsigned char st[],
716 unsigned char buffer[], int size)
718 int i, j, k;
720 printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
721 if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
722 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
723 "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
724 buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
725 buffer[46] << 8 | buffer[47],
726 buffer[42], buffer[43], buffer[44], buffer[45],
727 buffer[48] << 8 | buffer[49]);
728 } else {
729 for (i = 0, k = 0; i < (size + 7) / 8; i++) {
730 printk(KERN_DEBUG "%s: %s", name, i ? " " : "buffer:");
731 for (j = 0; j < 8 && k < size; j++, k++)
732 printk(" %02x", buffer[k]);
733 printk("\n");
736 return;
740 * SB1000 commands for frame rx interrupt
742 /* receive a single frame and assemble datagram
743 * (this is the heart of the interrupt routine)
745 static int
746 sb1000_rx(struct net_device *dev)
749 #define FRAMESIZE 184
750 unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
751 short dlen;
752 int ioaddr, ns;
753 unsigned int skbsize;
754 struct sk_buff *skb;
755 struct sb1000_private *lp = netdev_priv(dev);
756 struct net_device_stats *stats = &dev->stats;
758 /* SB1000 frame constants */
759 const int FrameSize = FRAMESIZE;
760 const int NewDatagramHeaderSkip = 8;
761 const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
762 const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
763 const int ContDatagramHeaderSkip = 7;
764 const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
765 const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
766 const int TrailerSize = 4;
768 ioaddr = dev->base_addr;
770 insw(ioaddr, (unsigned short*) st, 1);
771 #ifdef XXXDEBUG
772 printk("cm0: received: %02x %02x\n", st[0], st[1]);
773 #endif /* XXXDEBUG */
774 lp->rx_frames++;
776 /* decide if it is a good or bad frame */
777 for (ns = 0; ns < NPIDS; ns++) {
778 session_id = lp->rx_session_id[ns];
779 frame_id = lp->rx_frame_id[ns];
780 if (st[0] == session_id) {
781 if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
782 goto good_frame;
783 } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
784 goto skipped_frame;
785 } else {
786 goto bad_frame;
788 } else if (st[0] == (session_id | 0x40)) {
789 if ((st[1] & 0xf0) == 0x30) {
790 goto skipped_frame;
791 } else {
792 goto bad_frame;
796 goto bad_frame;
798 skipped_frame:
799 stats->rx_frame_errors++;
800 skb = lp->rx_skb[ns];
801 if (sb1000_debug > 1)
802 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
803 "expecting %02x %02x\n", dev->name, st[0], st[1],
804 skb ? session_id : session_id | 0x40, frame_id);
805 if (skb) {
806 dev_kfree_skb(skb);
807 skb = NULL;
810 good_frame:
811 lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
812 /* new datagram */
813 if (st[0] & 0x40) {
814 /* get data length */
815 insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
816 #ifdef XXXDEBUG
817 printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
818 #endif /* XXXDEBUG */
819 if (buffer[0] != NewDatagramHeaderSkip) {
820 if (sb1000_debug > 1)
821 printk(KERN_WARNING "%s: new datagram header skip error: "
822 "got %02x expecting %02x\n", dev->name, buffer[0],
823 NewDatagramHeaderSkip);
824 stats->rx_length_errors++;
825 insw(ioaddr, buffer, NewDatagramDataSize / 2);
826 goto bad_frame_next;
828 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
829 buffer[NewDatagramHeaderSkip + 4]) - 17;
830 if (dlen > SB1000_MRU) {
831 if (sb1000_debug > 1)
832 printk(KERN_WARNING "%s: datagram length (%d) greater "
833 "than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
834 stats->rx_length_errors++;
835 insw(ioaddr, buffer, NewDatagramDataSize / 2);
836 goto bad_frame_next;
838 lp->rx_dlen[ns] = dlen;
839 /* compute size to allocate for datagram */
840 skbsize = dlen + FrameSize;
841 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
842 if (sb1000_debug > 1)
843 printk(KERN_WARNING "%s: can't allocate %d bytes long "
844 "skbuff\n", dev->name, skbsize);
845 stats->rx_dropped++;
846 insw(ioaddr, buffer, NewDatagramDataSize / 2);
847 goto dropped_frame;
849 skb->dev = dev;
850 skb_reset_mac_header(skb);
851 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
852 insw(ioaddr, skb_put(skb, NewDatagramDataSize),
853 NewDatagramDataSize / 2);
854 lp->rx_skb[ns] = skb;
855 } else {
856 /* continuation of previous datagram */
857 insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
858 if (buffer[0] != ContDatagramHeaderSkip) {
859 if (sb1000_debug > 1)
860 printk(KERN_WARNING "%s: cont datagram header skip error: "
861 "got %02x expecting %02x\n", dev->name, buffer[0],
862 ContDatagramHeaderSkip);
863 stats->rx_length_errors++;
864 insw(ioaddr, buffer, ContDatagramDataSize / 2);
865 goto bad_frame_next;
867 skb = lp->rx_skb[ns];
868 insw(ioaddr, skb_put(skb, ContDatagramDataSize),
869 ContDatagramDataSize / 2);
870 dlen = lp->rx_dlen[ns];
872 if (skb->len < dlen + TrailerSize) {
873 lp->rx_session_id[ns] &= ~0x40;
874 return 0;
877 /* datagram completed: send to upper level */
878 skb_trim(skb, dlen);
879 netif_rx(skb);
880 stats->rx_bytes+=dlen;
881 stats->rx_packets++;
882 lp->rx_skb[ns] = NULL;
883 lp->rx_session_id[ns] |= 0x40;
884 return 0;
886 bad_frame:
887 insw(ioaddr, buffer, FrameSize / 2);
888 if (sb1000_debug > 1)
889 printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
890 dev->name, st[0], st[1]);
891 stats->rx_frame_errors++;
892 bad_frame_next:
893 if (sb1000_debug > 2)
894 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
895 dropped_frame:
896 stats->rx_errors++;
897 if (ns < NPIDS) {
898 if ((skb = lp->rx_skb[ns])) {
899 dev_kfree_skb(skb);
900 lp->rx_skb[ns] = NULL;
902 lp->rx_session_id[ns] |= 0x40;
904 return -1;
907 static void
908 sb1000_error_dpc(struct net_device *dev)
910 static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
912 char *name;
913 unsigned char st[5];
914 int ioaddr[2];
915 struct sb1000_private *lp = netdev_priv(dev);
916 const int ErrorDpcCounterInitialize = 200;
918 ioaddr[0] = dev->base_addr;
919 /* mem_start holds the second I/O address */
920 ioaddr[1] = dev->mem_start;
921 name = dev->name;
923 sb1000_wait_for_ready_clear(ioaddr, name);
924 sb1000_send_command(ioaddr, name, Command0);
925 sb1000_wait_for_ready(ioaddr, name);
926 sb1000_read_status(ioaddr, st);
927 if (st[1] & 0x10)
928 lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
929 return;
934 * Linux interface functions
936 static int
937 sb1000_open(struct net_device *dev)
939 char *name;
940 int ioaddr[2], status;
941 struct sb1000_private *lp = netdev_priv(dev);
942 const unsigned short FirmwareVersion[] = {0x01, 0x01};
944 ioaddr[0] = dev->base_addr;
945 /* mem_start holds the second I/O address */
946 ioaddr[1] = dev->mem_start;
947 name = dev->name;
949 /* initialize sb1000 */
950 if ((status = sb1000_reset(ioaddr, name)))
951 return status;
952 ssleep(1);
953 if ((status = sb1000_check_CRC(ioaddr, name)))
954 return status;
956 /* initialize private data before board can catch interrupts */
957 lp->rx_skb[0] = NULL;
958 lp->rx_skb[1] = NULL;
959 lp->rx_skb[2] = NULL;
960 lp->rx_skb[3] = NULL;
961 lp->rx_dlen[0] = 0;
962 lp->rx_dlen[1] = 0;
963 lp->rx_dlen[2] = 0;
964 lp->rx_dlen[3] = 0;
965 lp->rx_frames = 0;
966 lp->rx_error_count = 0;
967 lp->rx_error_dpc_count = 0;
968 lp->rx_session_id[0] = 0x50;
969 lp->rx_session_id[0] = 0x48;
970 lp->rx_session_id[0] = 0x44;
971 lp->rx_session_id[0] = 0x42;
972 lp->rx_frame_id[0] = 0;
973 lp->rx_frame_id[1] = 0;
974 lp->rx_frame_id[2] = 0;
975 lp->rx_frame_id[3] = 0;
976 if (request_irq(dev->irq, sb1000_interrupt, 0, "sb1000", dev)) {
977 return -EAGAIN;
980 if (sb1000_debug > 2)
981 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
983 /* Activate board and check firmware version */
984 udelay(1000);
985 if ((status = sb1000_activate(ioaddr, name)))
986 return status;
987 udelay(0);
988 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
989 return status;
990 if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
991 printk(KERN_WARNING "%s: found firmware version %x.%02x "
992 "(should be %x.%02x)\n", name, version[0], version[1],
993 FirmwareVersion[0], FirmwareVersion[1]);
996 netif_start_queue(dev);
997 return 0; /* Always succeed */
1000 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1002 char* name;
1003 unsigned char version[2];
1004 short PID[4];
1005 int ioaddr[2], status, frequency;
1006 unsigned int stats[5];
1007 struct sb1000_private *lp = netdev_priv(dev);
1009 if (!(dev && dev->flags & IFF_UP))
1010 return -ENODEV;
1012 ioaddr[0] = dev->base_addr;
1013 /* mem_start holds the second I/O address */
1014 ioaddr[1] = dev->mem_start;
1015 name = dev->name;
1017 switch (cmd) {
1018 case SIOCGCMSTATS: /* get statistics */
1019 stats[0] = dev->stats.rx_bytes;
1020 stats[1] = lp->rx_frames;
1021 stats[2] = dev->stats.rx_packets;
1022 stats[3] = dev->stats.rx_errors;
1023 stats[4] = dev->stats.rx_dropped;
1024 if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1025 return -EFAULT;
1026 status = 0;
1027 break;
1029 case SIOCGCMFIRMWARE: /* get firmware version */
1030 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1031 return status;
1032 if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1033 return -EFAULT;
1034 break;
1036 case SIOCGCMFREQUENCY: /* get frequency */
1037 if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1038 return status;
1039 if(put_user(frequency, (int __user *) ifr->ifr_data))
1040 return -EFAULT;
1041 break;
1043 case SIOCSCMFREQUENCY: /* set frequency */
1044 if (!capable(CAP_NET_ADMIN))
1045 return -EPERM;
1046 if(get_user(frequency, (int __user *) ifr->ifr_data))
1047 return -EFAULT;
1048 if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1049 return status;
1050 break;
1052 case SIOCGCMPIDS: /* get PIDs */
1053 if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1054 return status;
1055 if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1056 return -EFAULT;
1057 break;
1059 case SIOCSCMPIDS: /* set PIDs */
1060 if (!capable(CAP_NET_ADMIN))
1061 return -EPERM;
1062 if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1063 return -EFAULT;
1064 if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1065 return status;
1066 /* set session_id, frame_id and pkt_type too */
1067 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1068 lp->rx_session_id[1] = 0x48;
1069 lp->rx_session_id[2] = 0x44;
1070 lp->rx_session_id[3] = 0x42;
1071 lp->rx_frame_id[0] = 0;
1072 lp->rx_frame_id[1] = 0;
1073 lp->rx_frame_id[2] = 0;
1074 lp->rx_frame_id[3] = 0;
1075 break;
1077 default:
1078 status = -EINVAL;
1079 break;
1081 return status;
1084 /* transmit function: do nothing since SB1000 can't send anything out */
1085 static netdev_tx_t
1086 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1088 printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1089 /* sb1000 can't xmit datagrams */
1090 dev_kfree_skb(skb);
1091 return NETDEV_TX_OK;
1094 /* SB1000 interrupt handler. */
1095 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1097 static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1098 static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1100 char *name;
1101 unsigned char st;
1102 int ioaddr[2];
1103 struct net_device *dev = dev_id;
1104 struct sb1000_private *lp = netdev_priv(dev);
1106 const int MaxRxErrorCount = 6;
1108 ioaddr[0] = dev->base_addr;
1109 /* mem_start holds the second I/O address */
1110 ioaddr[1] = dev->mem_start;
1111 name = dev->name;
1113 /* is it a good interrupt? */
1114 st = inb(ioaddr[1] + 6);
1115 if (!(st & 0x08 && st & 0x20)) {
1116 return IRQ_NONE;
1119 if (sb1000_debug > 3)
1120 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1122 st = inb(ioaddr[0] + 7);
1123 if (sb1000_rx(dev))
1124 lp->rx_error_count++;
1125 #ifdef SB1000_DELAY
1126 udelay(SB1000_DELAY);
1127 #endif /* SB1000_DELAY */
1128 sb1000_issue_read_command(ioaddr, name);
1129 if (st & 0x01) {
1130 sb1000_error_dpc(dev);
1131 sb1000_issue_read_command(ioaddr, name);
1133 if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1134 sb1000_wait_for_ready_clear(ioaddr, name);
1135 sb1000_send_command(ioaddr, name, Command0);
1136 sb1000_wait_for_ready(ioaddr, name);
1137 sb1000_issue_read_command(ioaddr, name);
1139 if (lp->rx_error_count >= MaxRxErrorCount) {
1140 sb1000_wait_for_ready_clear(ioaddr, name);
1141 sb1000_send_command(ioaddr, name, Command1);
1142 sb1000_wait_for_ready(ioaddr, name);
1143 sb1000_issue_read_command(ioaddr, name);
1144 lp->rx_error_count = 0;
1147 return IRQ_HANDLED;
1150 static int sb1000_close(struct net_device *dev)
1152 int i;
1153 int ioaddr[2];
1154 struct sb1000_private *lp = netdev_priv(dev);
1156 if (sb1000_debug > 2)
1157 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1159 netif_stop_queue(dev);
1161 ioaddr[0] = dev->base_addr;
1162 /* mem_start holds the second I/O address */
1163 ioaddr[1] = dev->mem_start;
1165 free_irq(dev->irq, dev);
1166 /* If we don't do this, we can't re-insmod it later. */
1167 release_region(ioaddr[1], SB1000_IO_EXTENT);
1168 release_region(ioaddr[0], SB1000_IO_EXTENT);
1170 /* free rx_skb's if needed */
1171 for (i=0; i<4; i++) {
1172 if (lp->rx_skb[i]) {
1173 dev_kfree_skb(lp->rx_skb[i]);
1176 return 0;
1179 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1180 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1181 MODULE_LICENSE("GPL");
1183 static int __init
1184 sb1000_init(void)
1186 return pnp_register_driver(&sb1000_driver);
1189 static void __exit
1190 sb1000_exit(void)
1192 pnp_unregister_driver(&sb1000_driver);
1195 module_init(sb1000_init);
1196 module_exit(sb1000_exit);