1 // SPDX-License-Identifier: GPL-2.0
3 * srmmu.c: SRMMU specific routines for memory management.
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
54 enum mbus_module srmmu_modtype
;
55 static unsigned int hwbug_bitmask
;
57 EXPORT_SYMBOL(vac_cache_size
);
60 extern struct resource sparc_iomap
;
62 extern unsigned long last_valid_pfn
;
64 static pgd_t
*srmmu_swapper_pg_dir
;
66 const struct sparc32_cachetlb_ops
*sparc32_cachetlb_ops
;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops
);
70 const struct sparc32_cachetlb_ops
*local_ops
;
72 #define FLUSH_BEGIN(mm)
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
79 int flush_page_for_dma_global
= 1;
83 ctxd_t
*srmmu_ctx_table_phys
;
84 static ctxd_t
*srmmu_context_table
;
86 int viking_mxcc_present
;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
89 static int is_hypersparc
;
91 static int srmmu_cache_pagetables
;
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size
;
95 static unsigned long srmmu_nocache_end
;
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103 void *srmmu_nocache_pool
;
104 static struct bit_map srmmu_nocache_map
;
106 static inline int srmmu_pmd_none(pmd_t pmd
)
107 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
114 pte
= __pte((SRMMU_ET_PTD
| (__nocache_pa(pgdp
) >> 4)));
115 set_pte((pte_t
*)ctxp
, pte
);
119 * Locations of MSI Registers.
121 #define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
124 * Useful bits in the MSI Registers.
126 #define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
128 static void msi_set_sync(void)
130 __asm__
__volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN
),
134 "i" (ASI_M_CTL
), "r" (MSI_ASYNC_MODE
) : "g3");
137 void pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
139 unsigned long ptp
; /* Physical address, shifted right by 4 */
142 ptp
= __nocache_pa(ptep
) >> 4;
143 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
144 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
145 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
149 void pmd_populate(struct mm_struct
*mm
, pmd_t
*pmdp
, struct page
*ptep
)
151 unsigned long ptp
; /* Physical address, shifted right by 4 */
154 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
155 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
156 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
157 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
161 /* Find an entry in the third-level page table.. */
162 pte_t
*pte_offset_kernel(pmd_t
*dir
, unsigned long address
)
166 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
167 return (pte_t
*) pte
+
168 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
172 * size: bytes to allocate in the nocache area.
173 * align: bytes, number to align at.
174 * Returns the virtual address of the allocated area.
176 static void *__srmmu_get_nocache(int size
, int align
)
181 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
182 printk(KERN_ERR
"Size 0x%x too small for nocache request\n",
184 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
186 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
- 1)) {
187 printk(KERN_ERR
"Size 0x%x unaligned int nocache request\n",
189 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
- 1;
191 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
193 offset
= bit_map_string_get(&srmmu_nocache_map
,
194 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
195 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
197 printk(KERN_ERR
"srmmu: out of nocache %d: %d/%d\n",
198 size
, (int) srmmu_nocache_size
,
199 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
203 addr
= SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
207 void *srmmu_get_nocache(int size
, int align
)
211 tmp
= __srmmu_get_nocache(size
, align
);
214 memset(tmp
, 0, size
);
219 void srmmu_free_nocache(void *addr
, int size
)
224 vaddr
= (unsigned long)addr
;
225 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
230 if (vaddr
+ size
> srmmu_nocache_end
) {
231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 vaddr
, srmmu_nocache_end
);
235 if (!is_power_of_2(size
)) {
236 printk("Size 0x%x is not a power of 2\n", size
);
239 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
240 printk("Size 0x%x is too small\n", size
);
243 if (vaddr
& (size
- 1)) {
244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
248 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
249 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
251 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start
,
257 /* Return how much physical memory we have. */
258 static unsigned long __init
probe_memory(void)
260 unsigned long total
= 0;
263 for (i
= 0; sp_banks
[i
].num_bytes
; i
++)
264 total
+= sp_banks
[i
].num_bytes
;
270 * Reserve nocache dynamically proportionally to the amount of
271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
273 static void __init
srmmu_nocache_calcsize(void)
275 unsigned long sysmemavail
= probe_memory() / 1024;
276 int srmmu_nocache_npages
;
278 srmmu_nocache_npages
=
279 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
284 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
286 /* anything above 1280 blows up */
287 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
288 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
290 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
291 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
294 static void __init
srmmu_nocache_init(void)
296 void *srmmu_nocache_bitmap
;
297 unsigned int bitmap_bits
;
301 unsigned long paddr
, vaddr
;
302 unsigned long pteval
;
304 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
306 srmmu_nocache_pool
= memblock_alloc_from(srmmu_nocache_size
,
307 SRMMU_NOCACHE_ALIGN_MAX
, 0UL);
308 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
310 srmmu_nocache_bitmap
=
311 memblock_alloc_from(BITS_TO_LONGS(bitmap_bits
) * sizeof(long),
312 SMP_CACHE_BYTES
, 0UL);
313 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
315 srmmu_swapper_pg_dir
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
316 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
317 init_mm
.pgd
= srmmu_swapper_pg_dir
;
319 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
321 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
322 vaddr
= SRMMU_NOCACHE_VADDR
;
324 while (vaddr
< srmmu_nocache_end
) {
325 pgd
= pgd_offset_k(vaddr
);
326 pmd
= pmd_offset(__nocache_fix(pgd
), vaddr
);
327 pte
= pte_offset_kernel(__nocache_fix(pmd
), vaddr
);
329 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
331 if (srmmu_cache_pagetables
)
332 pteval
|= SRMMU_CACHE
;
334 set_pte(__nocache_fix(pte
), __pte(pteval
));
344 pgd_t
*get_pgd_fast(void)
348 pgd
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
350 pgd_t
*init
= pgd_offset_k(0);
351 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
352 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
353 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
360 * Hardware needs alignment to 256 only, but we align to whole page size
361 * to reduce fragmentation problems due to the buddy principle.
362 * XXX Provide actual fragmentation statistics in /proc.
364 * Alignments up to the page size are the same for physical and virtual
365 * addresses of the nocache area.
367 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
372 if ((pte
= (unsigned long)pte_alloc_one_kernel(mm
, address
)) == 0)
374 page
= pfn_to_page(__nocache_pa(pte
) >> PAGE_SHIFT
);
375 if (!pgtable_page_ctor(page
)) {
382 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
386 pgtable_page_dtor(pte
);
387 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
390 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
392 /* free non cached virtual address*/
393 srmmu_free_nocache(__nocache_va(p
), PTE_SIZE
);
396 /* context handling - a dynamically sized pool is used */
397 #define NO_CONTEXT -1
400 struct ctx_list
*next
;
401 struct ctx_list
*prev
;
402 unsigned int ctx_number
;
403 struct mm_struct
*ctx_mm
;
406 static struct ctx_list
*ctx_list_pool
;
407 static struct ctx_list ctx_free
;
408 static struct ctx_list ctx_used
;
410 /* At boot time we determine the number of contexts */
411 static int num_contexts
;
413 static inline void remove_from_ctx_list(struct ctx_list
*entry
)
415 entry
->next
->prev
= entry
->prev
;
416 entry
->prev
->next
= entry
->next
;
419 static inline void add_to_ctx_list(struct ctx_list
*head
, struct ctx_list
*entry
)
422 (entry
->prev
= head
->prev
)->next
= entry
;
425 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
426 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
429 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
431 struct ctx_list
*ctxp
;
433 ctxp
= ctx_free
.next
;
434 if (ctxp
!= &ctx_free
) {
435 remove_from_ctx_list(ctxp
);
436 add_to_used_ctxlist(ctxp
);
437 mm
->context
= ctxp
->ctx_number
;
441 ctxp
= ctx_used
.next
;
442 if (ctxp
->ctx_mm
== old_mm
)
444 if (ctxp
== &ctx_used
)
445 panic("out of mmu contexts");
446 flush_cache_mm(ctxp
->ctx_mm
);
447 flush_tlb_mm(ctxp
->ctx_mm
);
448 remove_from_ctx_list(ctxp
);
449 add_to_used_ctxlist(ctxp
);
450 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
452 mm
->context
= ctxp
->ctx_number
;
455 static inline void free_context(int context
)
457 struct ctx_list
*ctx_old
;
459 ctx_old
= ctx_list_pool
+ context
;
460 remove_from_ctx_list(ctx_old
);
461 add_to_free_ctxlist(ctx_old
);
464 static void __init
sparc_context_init(int numctx
)
469 size
= numctx
* sizeof(struct ctx_list
);
470 ctx_list_pool
= memblock_alloc_from(size
, SMP_CACHE_BYTES
, 0UL);
472 for (ctx
= 0; ctx
< numctx
; ctx
++) {
473 struct ctx_list
*clist
;
475 clist
= (ctx_list_pool
+ ctx
);
476 clist
->ctx_number
= ctx
;
477 clist
->ctx_mm
= NULL
;
479 ctx_free
.next
= ctx_free
.prev
= &ctx_free
;
480 ctx_used
.next
= ctx_used
.prev
= &ctx_used
;
481 for (ctx
= 0; ctx
< numctx
; ctx
++)
482 add_to_free_ctxlist(ctx_list_pool
+ ctx
);
485 void switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
486 struct task_struct
*tsk
)
490 if (mm
->context
== NO_CONTEXT
) {
491 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
492 alloc_context(old_mm
, mm
);
493 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
494 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
497 if (sparc_cpu_model
== sparc_leon
)
501 hyper_flush_whole_icache();
503 srmmu_set_context(mm
->context
);
506 /* Low level IO area allocation on the SRMMU. */
507 static inline void srmmu_mapioaddr(unsigned long physaddr
,
508 unsigned long virt_addr
, int bus_type
)
515 physaddr
&= PAGE_MASK
;
516 pgdp
= pgd_offset_k(virt_addr
);
517 pmdp
= pmd_offset(pgdp
, virt_addr
);
518 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
519 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
521 /* I need to test whether this is consistent over all
522 * sun4m's. The bus_type represents the upper 4 bits of
523 * 36-bit physical address on the I/O space lines...
525 tmp
|= (bus_type
<< 28);
527 __flush_page_to_ram(virt_addr
);
528 set_pte(ptep
, __pte(tmp
));
531 void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
532 unsigned long xva
, unsigned int len
)
536 srmmu_mapioaddr(xpa
, xva
, bus
);
543 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
549 pgdp
= pgd_offset_k(virt_addr
);
550 pmdp
= pmd_offset(pgdp
, virt_addr
);
551 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
553 /* No need to flush uncacheable page. */
557 void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
561 srmmu_unmapioaddr(virt_addr
);
562 virt_addr
+= PAGE_SIZE
;
568 extern void tsunami_flush_cache_all(void);
569 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
570 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
571 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
572 extern void tsunami_flush_page_to_ram(unsigned long page
);
573 extern void tsunami_flush_page_for_dma(unsigned long page
);
574 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
575 extern void tsunami_flush_tlb_all(void);
576 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
577 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
578 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
579 extern void tsunami_setup_blockops(void);
582 extern void swift_flush_cache_all(void);
583 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
584 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
585 unsigned long start
, unsigned long end
);
586 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
587 extern void swift_flush_page_to_ram(unsigned long page
);
588 extern void swift_flush_page_for_dma(unsigned long page
);
589 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
590 extern void swift_flush_tlb_all(void);
591 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
592 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
593 unsigned long start
, unsigned long end
);
594 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
596 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
597 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
602 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
603 cctx
= srmmu_get_context();
604 /* Is context # ever different from current context? P3 */
606 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
607 srmmu_set_context(ctx1
);
608 swift_flush_page(page
);
609 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
610 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
611 srmmu_set_context(cctx
);
613 /* Rm. prot. bits from virt. c. */
614 /* swift_flush_cache_all(); */
615 /* swift_flush_cache_page(vma, page); */
616 swift_flush_page(page
);
618 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
619 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
620 /* same as above: srmmu_flush_tlb_page() */
627 * The following are all MBUS based SRMMU modules, and therefore could
628 * be found in a multiprocessor configuration. On the whole, these
629 * chips seems to be much more touchy about DVMA and page tables
630 * with respect to cache coherency.
634 extern void viking_flush_cache_all(void);
635 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
636 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
638 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
639 extern void viking_flush_page_to_ram(unsigned long page
);
640 extern void viking_flush_page_for_dma(unsigned long page
);
641 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
642 extern void viking_flush_page(unsigned long page
);
643 extern void viking_mxcc_flush_page(unsigned long page
);
644 extern void viking_flush_tlb_all(void);
645 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
646 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
648 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
650 extern void sun4dsmp_flush_tlb_all(void);
651 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
652 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
654 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
658 extern void hypersparc_flush_cache_all(void);
659 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
660 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
661 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
662 extern void hypersparc_flush_page_to_ram(unsigned long page
);
663 extern void hypersparc_flush_page_for_dma(unsigned long page
);
664 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
665 extern void hypersparc_flush_tlb_all(void);
666 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
667 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
668 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
669 extern void hypersparc_setup_blockops(void);
672 * NOTE: All of this startup code assumes the low 16mb (approx.) of
673 * kernel mappings are done with one single contiguous chunk of
674 * ram. On small ram machines (classics mainly) we only get
675 * around 8mb mapped for us.
678 static void __init
early_pgtable_allocfail(char *type
)
680 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
684 static void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
,
691 while (start
< end
) {
692 pgdp
= pgd_offset_k(start
);
693 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
694 pmdp
= __srmmu_get_nocache(
695 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
697 early_pgtable_allocfail("pmd");
698 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
699 pgd_set(__nocache_fix(pgdp
), pmdp
);
701 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
702 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
703 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
705 early_pgtable_allocfail("pte");
706 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
707 pmd_set(__nocache_fix(pmdp
), ptep
);
709 if (start
> (0xffffffffUL
- PMD_SIZE
))
711 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
715 static void __init
srmmu_allocate_ptable_skeleton(unsigned long start
,
722 while (start
< end
) {
723 pgdp
= pgd_offset_k(start
);
724 if (pgd_none(*pgdp
)) {
725 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
727 early_pgtable_allocfail("pmd");
728 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
731 pmdp
= pmd_offset(pgdp
, start
);
732 if (srmmu_pmd_none(*pmdp
)) {
733 ptep
= __srmmu_get_nocache(PTE_SIZE
,
736 early_pgtable_allocfail("pte");
737 memset(ptep
, 0, PTE_SIZE
);
740 if (start
> (0xffffffffUL
- PMD_SIZE
))
742 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
746 /* These flush types are not available on all chips... */
747 static inline unsigned long srmmu_probe(unsigned long vaddr
)
749 unsigned long retval
;
751 if (sparc_cpu_model
!= sparc_leon
) {
754 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
756 "r" (vaddr
| 0x400), "i" (ASI_M_FLUSH_PROBE
));
758 retval
= leon_swprobe(vaddr
, NULL
);
764 * This is much cleaner than poking around physical address space
765 * looking at the prom's page table directly which is what most
766 * other OS's do. Yuck... this is much better.
768 static void __init
srmmu_inherit_prom_mappings(unsigned long start
,
771 unsigned long probed
;
776 int what
; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
778 while (start
<= end
) {
780 break; /* probably wrap around */
781 if (start
== 0xfef00000)
782 start
= KADB_DEBUGGER_BEGVM
;
783 probed
= srmmu_probe(start
);
785 /* continue probing until we find an entry */
790 /* A red snapper, see what it really is. */
792 addr
= start
- PAGE_SIZE
;
794 if (!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
795 if (srmmu_probe(addr
+ SRMMU_REAL_PMD_SIZE
) == probed
)
799 if (!(start
& ~(SRMMU_PGDIR_MASK
))) {
800 if (srmmu_probe(addr
+ SRMMU_PGDIR_SIZE
) == probed
)
804 pgdp
= pgd_offset_k(start
);
806 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(probed
);
807 start
+= SRMMU_PGDIR_SIZE
;
810 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
811 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
,
812 SRMMU_PMD_TABLE_SIZE
);
814 early_pgtable_allocfail("pmd");
815 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
816 pgd_set(__nocache_fix(pgdp
), pmdp
);
818 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
819 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
820 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
822 early_pgtable_allocfail("pte");
823 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
824 pmd_set(__nocache_fix(pmdp
), ptep
);
827 /* We bend the rule where all 16 PTPs in a pmd_t point
828 * inside the same PTE page, and we leak a perfectly
829 * good hardware PTE piece. Alternatives seem worse.
831 unsigned int x
; /* Index of HW PMD in soft cluster */
833 x
= (start
>> PMD_SHIFT
) & 15;
834 val
= &pmdp
->pmdv
[x
];
835 *(unsigned long *)__nocache_fix(val
) = probed
;
836 start
+= SRMMU_REAL_PMD_SIZE
;
839 ptep
= pte_offset_kernel(__nocache_fix(pmdp
), start
);
840 *(pte_t
*)__nocache_fix(ptep
) = __pte(probed
);
845 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
847 /* Create a third-level SRMMU 16MB page mapping. */
848 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
850 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
851 unsigned long big_pte
;
853 big_pte
= KERNEL_PTE(phys_base
>> 4);
854 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
857 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
858 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
860 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
861 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
862 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
863 /* Map "low" memory only */
864 const unsigned long min_vaddr
= PAGE_OFFSET
;
865 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
867 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
870 if (vend
> max_vaddr
|| vend
< min_vaddr
)
873 while (vstart
< vend
) {
874 do_large_mapping(vstart
, pstart
);
875 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
880 static void __init
map_kernel(void)
885 do_large_mapping(PAGE_OFFSET
, phys_base
);
888 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
889 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
893 void (*poke_srmmu
)(void) = NULL
;
895 void __init
srmmu_paging_init(void)
903 unsigned long pages_avail
;
905 init_mm
.context
= (unsigned long) NO_CONTEXT
;
906 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
908 if (sparc_cpu_model
== sun4d
)
909 num_contexts
= 65536; /* We know it is Viking */
911 /* Find the number of contexts on the srmmu. */
912 cpunode
= prom_getchild(prom_root_node
);
914 while (cpunode
!= 0) {
915 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
916 if (!strcmp(node_str
, "cpu")) {
917 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
920 cpunode
= prom_getsibling(cpunode
);
925 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
930 last_valid_pfn
= bootmem_init(&pages_avail
);
932 srmmu_nocache_calcsize();
933 srmmu_nocache_init();
934 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM
- PAGE_SIZE
));
937 /* ctx table has to be physically aligned to its size */
938 srmmu_context_table
= __srmmu_get_nocache(num_contexts
* sizeof(ctxd_t
), num_contexts
* sizeof(ctxd_t
));
939 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa(srmmu_context_table
);
941 for (i
= 0; i
< num_contexts
; i
++)
942 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
945 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
947 /* Stop from hanging here... */
948 local_ops
->tlb_all();
954 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
955 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
957 srmmu_allocate_ptable_skeleton(
958 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
959 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
961 pgd
= pgd_offset_k(PKMAP_BASE
);
962 pmd
= pmd_offset(pgd
, PKMAP_BASE
);
963 pte
= pte_offset_kernel(pmd
, PKMAP_BASE
);
964 pkmap_page_table
= pte
;
969 sparc_context_init(num_contexts
);
974 unsigned long zones_size
[MAX_NR_ZONES
];
975 unsigned long zholes_size
[MAX_NR_ZONES
];
976 unsigned long npages
;
979 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
980 zones_size
[znum
] = zholes_size
[znum
] = 0;
982 npages
= max_low_pfn
- pfn_base
;
984 zones_size
[ZONE_DMA
] = npages
;
985 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
987 npages
= highend_pfn
- max_low_pfn
;
988 zones_size
[ZONE_HIGHMEM
] = npages
;
989 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
991 free_area_init_node(0, zones_size
, pfn_base
, zholes_size
);
995 void mmu_info(struct seq_file
*m
)
1000 "nocache total\t: %ld\n"
1001 "nocache used\t: %d\n",
1005 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
1008 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
1010 mm
->context
= NO_CONTEXT
;
1014 void destroy_context(struct mm_struct
*mm
)
1016 unsigned long flags
;
1018 if (mm
->context
!= NO_CONTEXT
) {
1020 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
1022 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
1023 free_context(mm
->context
);
1024 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
1025 mm
->context
= NO_CONTEXT
;
1029 /* Init various srmmu chip types. */
1030 static void __init
srmmu_is_bad(void)
1032 prom_printf("Could not determine SRMMU chip type.\n");
1036 static void __init
init_vac_layout(void)
1043 unsigned long max_size
= 0;
1044 unsigned long min_line_size
= 0x10000000;
1047 nd
= prom_getchild(prom_root_node
);
1048 while ((nd
= prom_getsibling(nd
)) != 0) {
1049 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1050 if (!strcmp(node_str
, "cpu")) {
1051 vac_line_size
= prom_getint(nd
, "cache-line-size");
1052 if (vac_line_size
== -1) {
1053 prom_printf("can't determine cache-line-size, halting.\n");
1056 cache_lines
= prom_getint(nd
, "cache-nlines");
1057 if (cache_lines
== -1) {
1058 prom_printf("can't determine cache-nlines, halting.\n");
1062 vac_cache_size
= cache_lines
* vac_line_size
;
1064 if (vac_cache_size
> max_size
)
1065 max_size
= vac_cache_size
;
1066 if (vac_line_size
< min_line_size
)
1067 min_line_size
= vac_line_size
;
1068 //FIXME: cpus not contiguous!!
1070 if (cpu
>= nr_cpu_ids
|| !cpu_online(cpu
))
1078 prom_printf("No CPU nodes found, halting.\n");
1082 vac_cache_size
= max_size
;
1083 vac_line_size
= min_line_size
;
1085 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1086 (int)vac_cache_size
, (int)vac_line_size
);
1089 static void poke_hypersparc(void)
1091 volatile unsigned long clear
;
1092 unsigned long mreg
= srmmu_get_mmureg();
1094 hyper_flush_unconditional_combined();
1096 mreg
&= ~(HYPERSPARC_CWENABLE
);
1097 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1098 mreg
|= (HYPERSPARC_CMODE
);
1100 srmmu_set_mmureg(mreg
);
1102 #if 0 /* XXX I think this is bad news... -DaveM */
1103 hyper_clear_all_tags();
1106 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1107 hyper_flush_whole_icache();
1108 clear
= srmmu_get_faddr();
1109 clear
= srmmu_get_fstatus();
1112 static const struct sparc32_cachetlb_ops hypersparc_ops
= {
1113 .cache_all
= hypersparc_flush_cache_all
,
1114 .cache_mm
= hypersparc_flush_cache_mm
,
1115 .cache_page
= hypersparc_flush_cache_page
,
1116 .cache_range
= hypersparc_flush_cache_range
,
1117 .tlb_all
= hypersparc_flush_tlb_all
,
1118 .tlb_mm
= hypersparc_flush_tlb_mm
,
1119 .tlb_page
= hypersparc_flush_tlb_page
,
1120 .tlb_range
= hypersparc_flush_tlb_range
,
1121 .page_to_ram
= hypersparc_flush_page_to_ram
,
1122 .sig_insns
= hypersparc_flush_sig_insns
,
1123 .page_for_dma
= hypersparc_flush_page_for_dma
,
1126 static void __init
init_hypersparc(void)
1128 srmmu_name
= "ROSS HyperSparc";
1129 srmmu_modtype
= HyperSparc
;
1134 sparc32_cachetlb_ops
= &hypersparc_ops
;
1136 poke_srmmu
= poke_hypersparc
;
1138 hypersparc_setup_blockops();
1141 static void poke_swift(void)
1145 /* Clear any crap from the cache or else... */
1146 swift_flush_cache_all();
1148 /* Enable I & D caches */
1149 mreg
= srmmu_get_mmureg();
1150 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1152 * The Swift branch folding logic is completely broken. At
1153 * trap time, if things are just right, if can mistakenly
1154 * think that a trap is coming from kernel mode when in fact
1155 * it is coming from user mode (it mis-executes the branch in
1156 * the trap code). So you see things like crashme completely
1157 * hosing your machine which is completely unacceptable. Turn
1158 * this shit off... nice job Fujitsu.
1160 mreg
&= ~(SWIFT_BF
);
1161 srmmu_set_mmureg(mreg
);
1164 static const struct sparc32_cachetlb_ops swift_ops
= {
1165 .cache_all
= swift_flush_cache_all
,
1166 .cache_mm
= swift_flush_cache_mm
,
1167 .cache_page
= swift_flush_cache_page
,
1168 .cache_range
= swift_flush_cache_range
,
1169 .tlb_all
= swift_flush_tlb_all
,
1170 .tlb_mm
= swift_flush_tlb_mm
,
1171 .tlb_page
= swift_flush_tlb_page
,
1172 .tlb_range
= swift_flush_tlb_range
,
1173 .page_to_ram
= swift_flush_page_to_ram
,
1174 .sig_insns
= swift_flush_sig_insns
,
1175 .page_for_dma
= swift_flush_page_for_dma
,
1178 #define SWIFT_MASKID_ADDR 0x10003018
1179 static void __init
init_swift(void)
1181 unsigned long swift_rev
;
1183 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1184 "srl %0, 0x18, %0\n\t" :
1186 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1187 srmmu_name
= "Fujitsu Swift";
1188 switch (swift_rev
) {
1193 srmmu_modtype
= Swift_lots_o_bugs
;
1194 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1196 * Gee george, I wonder why Sun is so hush hush about
1197 * this hardware bug... really braindamage stuff going
1198 * on here. However I think we can find a way to avoid
1199 * all of the workaround overhead under Linux. Basically,
1200 * any page fault can cause kernel pages to become user
1201 * accessible (the mmu gets confused and clears some of
1202 * the ACC bits in kernel ptes). Aha, sounds pretty
1203 * horrible eh? But wait, after extensive testing it appears
1204 * that if you use pgd_t level large kernel pte's (like the
1205 * 4MB pages on the Pentium) the bug does not get tripped
1206 * at all. This avoids almost all of the major overhead.
1207 * Welcome to a world where your vendor tells you to,
1208 * "apply this kernel patch" instead of "sorry for the
1209 * broken hardware, send it back and we'll give you
1210 * properly functioning parts"
1215 srmmu_modtype
= Swift_bad_c
;
1216 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1218 * You see Sun allude to this hardware bug but never
1219 * admit things directly, they'll say things like,
1220 * "the Swift chip cache problems" or similar.
1224 srmmu_modtype
= Swift_ok
;
1228 sparc32_cachetlb_ops
= &swift_ops
;
1229 flush_page_for_dma_global
= 0;
1232 * Are you now convinced that the Swift is one of the
1233 * biggest VLSI abortions of all time? Bravo Fujitsu!
1234 * Fujitsu, the !#?!%$'d up processor people. I bet if
1235 * you examined the microcode of the Swift you'd find
1236 * XXX's all over the place.
1238 poke_srmmu
= poke_swift
;
1241 static void turbosparc_flush_cache_all(void)
1243 flush_user_windows();
1244 turbosparc_idflash_clear();
1247 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1250 flush_user_windows();
1251 turbosparc_idflash_clear();
1255 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1257 FLUSH_BEGIN(vma
->vm_mm
)
1258 flush_user_windows();
1259 turbosparc_idflash_clear();
1263 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1265 FLUSH_BEGIN(vma
->vm_mm
)
1266 flush_user_windows();
1267 if (vma
->vm_flags
& VM_EXEC
)
1268 turbosparc_flush_icache();
1269 turbosparc_flush_dcache();
1273 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1274 static void turbosparc_flush_page_to_ram(unsigned long page
)
1276 #ifdef TURBOSPARC_WRITEBACK
1277 volatile unsigned long clear
;
1279 if (srmmu_probe(page
))
1280 turbosparc_flush_page_cache(page
);
1281 clear
= srmmu_get_fstatus();
1285 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1289 static void turbosparc_flush_page_for_dma(unsigned long page
)
1291 turbosparc_flush_dcache();
1294 static void turbosparc_flush_tlb_all(void)
1296 srmmu_flush_whole_tlb();
1299 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1302 srmmu_flush_whole_tlb();
1306 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1308 FLUSH_BEGIN(vma
->vm_mm
)
1309 srmmu_flush_whole_tlb();
1313 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1315 FLUSH_BEGIN(vma
->vm_mm
)
1316 srmmu_flush_whole_tlb();
1321 static void poke_turbosparc(void)
1323 unsigned long mreg
= srmmu_get_mmureg();
1324 unsigned long ccreg
;
1326 /* Clear any crap from the cache or else... */
1327 turbosparc_flush_cache_all();
1328 /* Temporarily disable I & D caches */
1329 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
);
1330 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1331 srmmu_set_mmureg(mreg
);
1333 ccreg
= turbosparc_get_ccreg();
1335 #ifdef TURBOSPARC_WRITEBACK
1336 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1337 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1338 /* Write-back D-cache, emulate VLSI
1339 * abortion number three, not number one */
1341 /* For now let's play safe, optimize later */
1342 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1343 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1344 ccreg
&= ~(TURBOSPARC_uS2
);
1345 /* Emulate VLSI abortion number three, not number one */
1348 switch (ccreg
& 7) {
1349 case 0: /* No SE cache */
1350 case 7: /* Test mode */
1353 ccreg
|= (TURBOSPARC_SCENABLE
);
1355 turbosparc_set_ccreg(ccreg
);
1357 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1358 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1359 srmmu_set_mmureg(mreg
);
1362 static const struct sparc32_cachetlb_ops turbosparc_ops
= {
1363 .cache_all
= turbosparc_flush_cache_all
,
1364 .cache_mm
= turbosparc_flush_cache_mm
,
1365 .cache_page
= turbosparc_flush_cache_page
,
1366 .cache_range
= turbosparc_flush_cache_range
,
1367 .tlb_all
= turbosparc_flush_tlb_all
,
1368 .tlb_mm
= turbosparc_flush_tlb_mm
,
1369 .tlb_page
= turbosparc_flush_tlb_page
,
1370 .tlb_range
= turbosparc_flush_tlb_range
,
1371 .page_to_ram
= turbosparc_flush_page_to_ram
,
1372 .sig_insns
= turbosparc_flush_sig_insns
,
1373 .page_for_dma
= turbosparc_flush_page_for_dma
,
1376 static void __init
init_turbosparc(void)
1378 srmmu_name
= "Fujitsu TurboSparc";
1379 srmmu_modtype
= TurboSparc
;
1380 sparc32_cachetlb_ops
= &turbosparc_ops
;
1381 poke_srmmu
= poke_turbosparc
;
1384 static void poke_tsunami(void)
1386 unsigned long mreg
= srmmu_get_mmureg();
1388 tsunami_flush_icache();
1389 tsunami_flush_dcache();
1390 mreg
&= ~TSUNAMI_ITD
;
1391 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1392 srmmu_set_mmureg(mreg
);
1395 static const struct sparc32_cachetlb_ops tsunami_ops
= {
1396 .cache_all
= tsunami_flush_cache_all
,
1397 .cache_mm
= tsunami_flush_cache_mm
,
1398 .cache_page
= tsunami_flush_cache_page
,
1399 .cache_range
= tsunami_flush_cache_range
,
1400 .tlb_all
= tsunami_flush_tlb_all
,
1401 .tlb_mm
= tsunami_flush_tlb_mm
,
1402 .tlb_page
= tsunami_flush_tlb_page
,
1403 .tlb_range
= tsunami_flush_tlb_range
,
1404 .page_to_ram
= tsunami_flush_page_to_ram
,
1405 .sig_insns
= tsunami_flush_sig_insns
,
1406 .page_for_dma
= tsunami_flush_page_for_dma
,
1409 static void __init
init_tsunami(void)
1412 * Tsunami's pretty sane, Sun and TI actually got it
1413 * somewhat right this time. Fujitsu should have
1414 * taken some lessons from them.
1417 srmmu_name
= "TI Tsunami";
1418 srmmu_modtype
= Tsunami
;
1419 sparc32_cachetlb_ops
= &tsunami_ops
;
1420 poke_srmmu
= poke_tsunami
;
1422 tsunami_setup_blockops();
1425 static void poke_viking(void)
1427 unsigned long mreg
= srmmu_get_mmureg();
1428 static int smp_catch
;
1430 if (viking_mxcc_present
) {
1431 unsigned long mxcc_control
= mxcc_get_creg();
1433 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1434 mxcc_control
&= ~(MXCC_CTL_RRC
);
1435 mxcc_set_creg(mxcc_control
);
1438 * We don't need memory parity checks.
1439 * XXX This is a mess, have to dig out later. ecd.
1440 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1443 /* We do cache ptables on MXCC. */
1444 mreg
|= VIKING_TCENABLE
;
1446 unsigned long bpreg
;
1448 mreg
&= ~(VIKING_TCENABLE
);
1450 /* Must disable mixed-cmd mode here for other cpu's. */
1451 bpreg
= viking_get_bpreg();
1452 bpreg
&= ~(VIKING_ACTION_MIX
);
1453 viking_set_bpreg(bpreg
);
1455 /* Just in case PROM does something funny. */
1460 mreg
|= VIKING_SPENABLE
;
1461 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1462 mreg
|= VIKING_SBENABLE
;
1463 mreg
&= ~(VIKING_ACENABLE
);
1464 srmmu_set_mmureg(mreg
);
1467 static struct sparc32_cachetlb_ops viking_ops __ro_after_init
= {
1468 .cache_all
= viking_flush_cache_all
,
1469 .cache_mm
= viking_flush_cache_mm
,
1470 .cache_page
= viking_flush_cache_page
,
1471 .cache_range
= viking_flush_cache_range
,
1472 .tlb_all
= viking_flush_tlb_all
,
1473 .tlb_mm
= viking_flush_tlb_mm
,
1474 .tlb_page
= viking_flush_tlb_page
,
1475 .tlb_range
= viking_flush_tlb_range
,
1476 .page_to_ram
= viking_flush_page_to_ram
,
1477 .sig_insns
= viking_flush_sig_insns
,
1478 .page_for_dma
= viking_flush_page_for_dma
,
1482 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1483 * perform the local TLB flush and all the other cpus will see it.
1484 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1485 * that requires that we add some synchronization to these flushes.
1487 * The bug is that the fifo which keeps track of all the pending TLB
1488 * broadcasts in the system is an entry or two too small, so if we
1489 * have too many going at once we'll overflow that fifo and lose a TLB
1490 * flush resulting in corruption.
1492 * Our workaround is to take a global spinlock around the TLB flushes,
1493 * which guarentees we won't ever have too many pending. It's a big
1494 * hammer, but a semaphore like system to make sure we only have N TLB
1495 * flushes going at once will require SMP locking anyways so there's
1496 * no real value in trying any harder than this.
1498 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init
= {
1499 .cache_all
= viking_flush_cache_all
,
1500 .cache_mm
= viking_flush_cache_mm
,
1501 .cache_page
= viking_flush_cache_page
,
1502 .cache_range
= viking_flush_cache_range
,
1503 .tlb_all
= sun4dsmp_flush_tlb_all
,
1504 .tlb_mm
= sun4dsmp_flush_tlb_mm
,
1505 .tlb_page
= sun4dsmp_flush_tlb_page
,
1506 .tlb_range
= sun4dsmp_flush_tlb_range
,
1507 .page_to_ram
= viking_flush_page_to_ram
,
1508 .sig_insns
= viking_flush_sig_insns
,
1509 .page_for_dma
= viking_flush_page_for_dma
,
1513 static void __init
init_viking(void)
1515 unsigned long mreg
= srmmu_get_mmureg();
1517 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1518 if (mreg
& VIKING_MMODE
) {
1519 srmmu_name
= "TI Viking";
1520 viking_mxcc_present
= 0;
1524 * We need this to make sure old viking takes no hits
1525 * on it's cache for dma snoops to workaround the
1526 * "load from non-cacheable memory" interrupt bug.
1527 * This is only necessary because of the new way in
1528 * which we use the IOMMU.
1530 viking_ops
.page_for_dma
= viking_flush_page
;
1532 viking_sun4d_smp_ops
.page_for_dma
= viking_flush_page
;
1534 flush_page_for_dma_global
= 0;
1536 srmmu_name
= "TI Viking/MXCC";
1537 viking_mxcc_present
= 1;
1538 srmmu_cache_pagetables
= 1;
1541 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1544 if (sparc_cpu_model
== sun4d
)
1545 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1546 &viking_sun4d_smp_ops
;
1549 poke_srmmu
= poke_viking
;
1552 /* Probe for the srmmu chip version. */
1553 static void __init
get_srmmu_type(void)
1555 unsigned long mreg
, psr
;
1556 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1558 srmmu_modtype
= SRMMU_INVAL_MOD
;
1561 mreg
= srmmu_get_mmureg(); psr
= get_psr();
1562 mod_typ
= (mreg
& 0xf0000000) >> 28;
1563 mod_rev
= (mreg
& 0x0f000000) >> 24;
1564 psr_typ
= (psr
>> 28) & 0xf;
1565 psr_vers
= (psr
>> 24) & 0xf;
1567 /* First, check for sparc-leon. */
1568 if (sparc_cpu_model
== sparc_leon
) {
1573 /* Second, check for HyperSparc or Cypress. */
1577 /* UP or MP Hypersparc */
1589 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1596 /* Now Fujitsu TurboSparc. It might happen that it is
1597 * in Swift emulation mode, so we will check later...
1599 if (psr_typ
== 0 && psr_vers
== 5) {
1604 /* Next check for Fujitsu Swift. */
1605 if (psr_typ
== 0 && psr_vers
== 4) {
1609 /* Look if it is not a TurboSparc emulating Swift... */
1610 cpunode
= prom_getchild(prom_root_node
);
1611 while ((cpunode
= prom_getsibling(cpunode
)) != 0) {
1612 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1613 if (!strcmp(node_str
, "cpu")) {
1614 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
1615 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
1627 /* Now the Viking family of srmmu. */
1630 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
1635 /* Finally the Tsunami. */
1636 if (psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
1646 /* Local cross-calls. */
1647 static void smp_flush_page_for_dma(unsigned long page
)
1649 xc1((smpfunc_t
) local_ops
->page_for_dma
, page
);
1650 local_ops
->page_for_dma(page
);
1653 static void smp_flush_cache_all(void)
1655 xc0((smpfunc_t
) local_ops
->cache_all
);
1656 local_ops
->cache_all();
1659 static void smp_flush_tlb_all(void)
1661 xc0((smpfunc_t
) local_ops
->tlb_all
);
1662 local_ops
->tlb_all();
1665 static void smp_flush_cache_mm(struct mm_struct
*mm
)
1667 if (mm
->context
!= NO_CONTEXT
) {
1669 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1670 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1671 if (!cpumask_empty(&cpu_mask
))
1672 xc1((smpfunc_t
) local_ops
->cache_mm
, (unsigned long) mm
);
1673 local_ops
->cache_mm(mm
);
1677 static void smp_flush_tlb_mm(struct mm_struct
*mm
)
1679 if (mm
->context
!= NO_CONTEXT
) {
1681 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1682 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1683 if (!cpumask_empty(&cpu_mask
)) {
1684 xc1((smpfunc_t
) local_ops
->tlb_mm
, (unsigned long) mm
);
1685 if (atomic_read(&mm
->mm_users
) == 1 && current
->active_mm
== mm
)
1686 cpumask_copy(mm_cpumask(mm
),
1687 cpumask_of(smp_processor_id()));
1689 local_ops
->tlb_mm(mm
);
1693 static void smp_flush_cache_range(struct vm_area_struct
*vma
,
1694 unsigned long start
,
1697 struct mm_struct
*mm
= vma
->vm_mm
;
1699 if (mm
->context
!= NO_CONTEXT
) {
1701 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1702 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1703 if (!cpumask_empty(&cpu_mask
))
1704 xc3((smpfunc_t
) local_ops
->cache_range
,
1705 (unsigned long) vma
, start
, end
);
1706 local_ops
->cache_range(vma
, start
, end
);
1710 static void smp_flush_tlb_range(struct vm_area_struct
*vma
,
1711 unsigned long start
,
1714 struct mm_struct
*mm
= vma
->vm_mm
;
1716 if (mm
->context
!= NO_CONTEXT
) {
1718 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1719 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1720 if (!cpumask_empty(&cpu_mask
))
1721 xc3((smpfunc_t
) local_ops
->tlb_range
,
1722 (unsigned long) vma
, start
, end
);
1723 local_ops
->tlb_range(vma
, start
, end
);
1727 static void smp_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1729 struct mm_struct
*mm
= vma
->vm_mm
;
1731 if (mm
->context
!= NO_CONTEXT
) {
1733 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1734 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1735 if (!cpumask_empty(&cpu_mask
))
1736 xc2((smpfunc_t
) local_ops
->cache_page
,
1737 (unsigned long) vma
, page
);
1738 local_ops
->cache_page(vma
, page
);
1742 static void smp_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1744 struct mm_struct
*mm
= vma
->vm_mm
;
1746 if (mm
->context
!= NO_CONTEXT
) {
1748 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1749 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1750 if (!cpumask_empty(&cpu_mask
))
1751 xc2((smpfunc_t
) local_ops
->tlb_page
,
1752 (unsigned long) vma
, page
);
1753 local_ops
->tlb_page(vma
, page
);
1757 static void smp_flush_page_to_ram(unsigned long page
)
1759 /* Current theory is that those who call this are the one's
1760 * who have just dirtied their cache with the pages contents
1761 * in kernel space, therefore we only run this on local cpu.
1763 * XXX This experiment failed, research further... -DaveM
1766 xc1((smpfunc_t
) local_ops
->page_to_ram
, page
);
1768 local_ops
->page_to_ram(page
);
1771 static void smp_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1774 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1775 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1776 if (!cpumask_empty(&cpu_mask
))
1777 xc2((smpfunc_t
) local_ops
->sig_insns
,
1778 (unsigned long) mm
, insn_addr
);
1779 local_ops
->sig_insns(mm
, insn_addr
);
1782 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init
= {
1783 .cache_all
= smp_flush_cache_all
,
1784 .cache_mm
= smp_flush_cache_mm
,
1785 .cache_page
= smp_flush_cache_page
,
1786 .cache_range
= smp_flush_cache_range
,
1787 .tlb_all
= smp_flush_tlb_all
,
1788 .tlb_mm
= smp_flush_tlb_mm
,
1789 .tlb_page
= smp_flush_tlb_page
,
1790 .tlb_range
= smp_flush_tlb_range
,
1791 .page_to_ram
= smp_flush_page_to_ram
,
1792 .sig_insns
= smp_flush_sig_insns
,
1793 .page_for_dma
= smp_flush_page_for_dma
,
1797 /* Load up routines and constants for sun4m and sun4d mmu */
1798 void __init
load_mmu(void)
1804 /* El switcheroo... */
1805 local_ops
= sparc32_cachetlb_ops
;
1807 if (sparc_cpu_model
== sun4d
|| sparc_cpu_model
== sparc_leon
) {
1808 smp_cachetlb_ops
.tlb_all
= local_ops
->tlb_all
;
1809 smp_cachetlb_ops
.tlb_mm
= local_ops
->tlb_mm
;
1810 smp_cachetlb_ops
.tlb_range
= local_ops
->tlb_range
;
1811 smp_cachetlb_ops
.tlb_page
= local_ops
->tlb_page
;
1814 if (poke_srmmu
== poke_viking
) {
1815 /* Avoid unnecessary cross calls. */
1816 smp_cachetlb_ops
.cache_all
= local_ops
->cache_all
;
1817 smp_cachetlb_ops
.cache_mm
= local_ops
->cache_mm
;
1818 smp_cachetlb_ops
.cache_range
= local_ops
->cache_range
;
1819 smp_cachetlb_ops
.cache_page
= local_ops
->cache_page
;
1821 smp_cachetlb_ops
.page_to_ram
= local_ops
->page_to_ram
;
1822 smp_cachetlb_ops
.sig_insns
= local_ops
->sig_insns
;
1823 smp_cachetlb_ops
.page_for_dma
= local_ops
->page_for_dma
;
1826 /* It really is const after this point. */
1827 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1831 if (sparc_cpu_model
== sun4d
)
1836 if (sparc_cpu_model
== sun4d
)
1838 else if (sparc_cpu_model
== sparc_leon
)