ARM: omap2: remove unnecessary boot_lock
[linux-2.6/linux-2.6-arm.git] / drivers / iommu / ipmmu-vmsa.c
blobb98a031895803a16b8e2d9d0df0a4b1686789aef
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IPMMU VMSA
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 */
8 #include <linux/bitmap.h>
9 #include <linux/delay.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iommu.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/of_iommu.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
27 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
28 #include <asm/dma-iommu.h>
29 #include <asm/pgalloc.h>
30 #else
31 #define arm_iommu_create_mapping(...) NULL
32 #define arm_iommu_attach_device(...) -ENODEV
33 #define arm_iommu_release_mapping(...) do {} while (0)
34 #define arm_iommu_detach_device(...) do {} while (0)
35 #endif
37 #include "io-pgtable.h"
39 #define IPMMU_CTX_MAX 8
41 struct ipmmu_features {
42 bool use_ns_alias_offset;
43 bool has_cache_leaf_nodes;
44 unsigned int number_of_contexts;
45 bool setup_imbuscr;
46 bool twobit_imttbcr_sl0;
47 bool reserved_context;
50 struct ipmmu_vmsa_device {
51 struct device *dev;
52 void __iomem *base;
53 struct iommu_device iommu;
54 struct ipmmu_vmsa_device *root;
55 const struct ipmmu_features *features;
56 unsigned int num_utlbs;
57 unsigned int num_ctx;
58 spinlock_t lock; /* Protects ctx and domains[] */
59 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
60 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
62 struct iommu_group *group;
63 struct dma_iommu_mapping *mapping;
66 struct ipmmu_vmsa_domain {
67 struct ipmmu_vmsa_device *mmu;
68 struct iommu_domain io_domain;
70 struct io_pgtable_cfg cfg;
71 struct io_pgtable_ops *iop;
73 unsigned int context_id;
74 struct mutex mutex; /* Protects mappings */
77 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
79 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
82 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
84 return dev->iommu_fwspec ? dev->iommu_fwspec->iommu_priv : NULL;
87 #define TLB_LOOP_TIMEOUT 100 /* 100us */
89 /* -----------------------------------------------------------------------------
90 * Registers Definition
93 #define IM_NS_ALIAS_OFFSET 0x800
95 #define IM_CTX_SIZE 0x40
97 #define IMCTR 0x0000
98 #define IMCTR_TRE (1 << 17)
99 #define IMCTR_AFE (1 << 16)
100 #define IMCTR_RTSEL_MASK (3 << 4)
101 #define IMCTR_RTSEL_SHIFT 4
102 #define IMCTR_TREN (1 << 3)
103 #define IMCTR_INTEN (1 << 2)
104 #define IMCTR_FLUSH (1 << 1)
105 #define IMCTR_MMUEN (1 << 0)
107 #define IMCAAR 0x0004
109 #define IMTTBCR 0x0008
110 #define IMTTBCR_EAE (1 << 31)
111 #define IMTTBCR_PMB (1 << 30)
112 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
113 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
114 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
115 #define IMTTBCR_SH1_MASK (3 << 28)
116 #define IMTTBCR_ORGN1_NC (0 << 26)
117 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
118 #define IMTTBCR_ORGN1_WT (2 << 26)
119 #define IMTTBCR_ORGN1_WB (3 << 26)
120 #define IMTTBCR_ORGN1_MASK (3 << 26)
121 #define IMTTBCR_IRGN1_NC (0 << 24)
122 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
123 #define IMTTBCR_IRGN1_WT (2 << 24)
124 #define IMTTBCR_IRGN1_WB (3 << 24)
125 #define IMTTBCR_IRGN1_MASK (3 << 24)
126 #define IMTTBCR_TSZ1_MASK (7 << 16)
127 #define IMTTBCR_TSZ1_SHIFT 16
128 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
129 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
130 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
131 #define IMTTBCR_SH0_MASK (3 << 12)
132 #define IMTTBCR_ORGN0_NC (0 << 10)
133 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
134 #define IMTTBCR_ORGN0_WT (2 << 10)
135 #define IMTTBCR_ORGN0_WB (3 << 10)
136 #define IMTTBCR_ORGN0_MASK (3 << 10)
137 #define IMTTBCR_IRGN0_NC (0 << 8)
138 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
139 #define IMTTBCR_IRGN0_WT (2 << 8)
140 #define IMTTBCR_IRGN0_WB (3 << 8)
141 #define IMTTBCR_IRGN0_MASK (3 << 8)
142 #define IMTTBCR_SL0_LVL_2 (0 << 4)
143 #define IMTTBCR_SL0_LVL_1 (1 << 4)
144 #define IMTTBCR_TSZ0_MASK (7 << 0)
145 #define IMTTBCR_TSZ0_SHIFT O
147 #define IMTTBCR_SL0_TWOBIT_LVL_3 (0 << 6)
148 #define IMTTBCR_SL0_TWOBIT_LVL_2 (1 << 6)
149 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6)
151 #define IMBUSCR 0x000c
152 #define IMBUSCR_DVM (1 << 2)
153 #define IMBUSCR_BUSSEL_SYS (0 << 0)
154 #define IMBUSCR_BUSSEL_CCI (1 << 0)
155 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
156 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
157 #define IMBUSCR_BUSSEL_MASK (3 << 0)
159 #define IMTTLBR0 0x0010
160 #define IMTTUBR0 0x0014
161 #define IMTTLBR1 0x0018
162 #define IMTTUBR1 0x001c
164 #define IMSTR 0x0020
165 #define IMSTR_ERRLVL_MASK (3 << 12)
166 #define IMSTR_ERRLVL_SHIFT 12
167 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
168 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
169 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
170 #define IMSTR_ERRCODE_MASK (7 << 8)
171 #define IMSTR_MHIT (1 << 4)
172 #define IMSTR_ABORT (1 << 2)
173 #define IMSTR_PF (1 << 1)
174 #define IMSTR_TF (1 << 0)
176 #define IMMAIR0 0x0028
177 #define IMMAIR1 0x002c
178 #define IMMAIR_ATTR_MASK 0xff
179 #define IMMAIR_ATTR_DEVICE 0x04
180 #define IMMAIR_ATTR_NC 0x44
181 #define IMMAIR_ATTR_WBRWA 0xff
182 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
183 #define IMMAIR_ATTR_IDX_NC 0
184 #define IMMAIR_ATTR_IDX_WBRWA 1
185 #define IMMAIR_ATTR_IDX_DEV 2
187 #define IMEAR 0x0030
189 #define IMPCTR 0x0200
190 #define IMPSTR 0x0208
191 #define IMPEAR 0x020c
192 #define IMPMBA(n) (0x0280 + ((n) * 4))
193 #define IMPMBD(n) (0x02c0 + ((n) * 4))
195 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
196 #define IMUCTR0(n) (0x0300 + ((n) * 16))
197 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16))
198 #define IMUCTR_FIXADDEN (1 << 31)
199 #define IMUCTR_FIXADD_MASK (0xff << 16)
200 #define IMUCTR_FIXADD_SHIFT 16
201 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
202 #define IMUCTR_TTSEL_PMB (8 << 4)
203 #define IMUCTR_TTSEL_MASK (15 << 4)
204 #define IMUCTR_FLUSH (1 << 1)
205 #define IMUCTR_MMUEN (1 << 0)
207 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
208 #define IMUASID0(n) (0x0308 + ((n) * 16))
209 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16))
210 #define IMUASID_ASID8_MASK (0xff << 8)
211 #define IMUASID_ASID8_SHIFT 8
212 #define IMUASID_ASID0_MASK (0xff << 0)
213 #define IMUASID_ASID0_SHIFT 0
215 /* -----------------------------------------------------------------------------
216 * Root device handling
219 static struct platform_driver ipmmu_driver;
221 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
223 return mmu->root == mmu;
226 static int __ipmmu_check_device(struct device *dev, void *data)
228 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
229 struct ipmmu_vmsa_device **rootp = data;
231 if (ipmmu_is_root(mmu))
232 *rootp = mmu;
234 return 0;
237 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
239 struct ipmmu_vmsa_device *root = NULL;
241 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
242 __ipmmu_check_device) == 0 ? root : NULL;
245 /* -----------------------------------------------------------------------------
246 * Read/Write Access
249 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
251 return ioread32(mmu->base + offset);
254 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
255 u32 data)
257 iowrite32(data, mmu->base + offset);
260 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
261 unsigned int reg)
263 return ipmmu_read(domain->mmu->root,
264 domain->context_id * IM_CTX_SIZE + reg);
267 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
268 unsigned int reg, u32 data)
270 ipmmu_write(domain->mmu->root,
271 domain->context_id * IM_CTX_SIZE + reg, data);
274 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
275 unsigned int reg, u32 data)
277 if (domain->mmu != domain->mmu->root)
278 ipmmu_write(domain->mmu,
279 domain->context_id * IM_CTX_SIZE + reg, data);
281 ipmmu_write(domain->mmu->root,
282 domain->context_id * IM_CTX_SIZE + reg, data);
285 /* -----------------------------------------------------------------------------
286 * TLB and microTLB Management
289 /* Wait for any pending TLB invalidations to complete */
290 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
292 unsigned int count = 0;
294 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
295 cpu_relax();
296 if (++count == TLB_LOOP_TIMEOUT) {
297 dev_err_ratelimited(domain->mmu->dev,
298 "TLB sync timed out -- MMU may be deadlocked\n");
299 return;
301 udelay(1);
305 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
307 u32 reg;
309 reg = ipmmu_ctx_read_root(domain, IMCTR);
310 reg |= IMCTR_FLUSH;
311 ipmmu_ctx_write_all(domain, IMCTR, reg);
313 ipmmu_tlb_sync(domain);
317 * Enable MMU translation for the microTLB.
319 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
320 unsigned int utlb)
322 struct ipmmu_vmsa_device *mmu = domain->mmu;
325 * TODO: Reference-count the microTLB as several bus masters can be
326 * connected to the same microTLB.
329 /* TODO: What should we set the ASID to ? */
330 ipmmu_write(mmu, IMUASID(utlb), 0);
331 /* TODO: Do we need to flush the microTLB ? */
332 ipmmu_write(mmu, IMUCTR(utlb),
333 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
334 IMUCTR_MMUEN);
338 * Disable MMU translation for the microTLB.
340 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
341 unsigned int utlb)
343 struct ipmmu_vmsa_device *mmu = domain->mmu;
345 ipmmu_write(mmu, IMUCTR(utlb), 0);
348 static void ipmmu_tlb_flush_all(void *cookie)
350 struct ipmmu_vmsa_domain *domain = cookie;
352 ipmmu_tlb_invalidate(domain);
355 static void ipmmu_tlb_add_flush(unsigned long iova, size_t size,
356 size_t granule, bool leaf, void *cookie)
358 /* The hardware doesn't support selective TLB flush. */
361 static const struct iommu_gather_ops ipmmu_gather_ops = {
362 .tlb_flush_all = ipmmu_tlb_flush_all,
363 .tlb_add_flush = ipmmu_tlb_add_flush,
364 .tlb_sync = ipmmu_tlb_flush_all,
367 /* -----------------------------------------------------------------------------
368 * Domain/Context Management
371 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
372 struct ipmmu_vmsa_domain *domain)
374 unsigned long flags;
375 int ret;
377 spin_lock_irqsave(&mmu->lock, flags);
379 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
380 if (ret != mmu->num_ctx) {
381 mmu->domains[ret] = domain;
382 set_bit(ret, mmu->ctx);
383 } else
384 ret = -EBUSY;
386 spin_unlock_irqrestore(&mmu->lock, flags);
388 return ret;
391 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
392 unsigned int context_id)
394 unsigned long flags;
396 spin_lock_irqsave(&mmu->lock, flags);
398 clear_bit(context_id, mmu->ctx);
399 mmu->domains[context_id] = NULL;
401 spin_unlock_irqrestore(&mmu->lock, flags);
404 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
406 u64 ttbr;
407 u32 tmp;
408 int ret;
411 * Allocate the page table operations.
413 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
414 * access, Long-descriptor format" that the NStable bit being set in a
415 * table descriptor will result in the NStable and NS bits of all child
416 * entries being ignored and considered as being set. The IPMMU seems
417 * not to comply with this, as it generates a secure access page fault
418 * if any of the NStable and NS bits isn't set when running in
419 * non-secure mode.
421 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
422 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
423 domain->cfg.ias = 32;
424 domain->cfg.oas = 40;
425 domain->cfg.tlb = &ipmmu_gather_ops;
426 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
427 domain->io_domain.geometry.force_aperture = true;
429 * TODO: Add support for coherent walk through CCI with DVM and remove
430 * cache handling. For now, delegate it to the io-pgtable code.
432 domain->cfg.iommu_dev = domain->mmu->root->dev;
435 * Find an unused context.
437 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
438 if (ret < 0)
439 return ret;
441 domain->context_id = ret;
443 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
444 domain);
445 if (!domain->iop) {
446 ipmmu_domain_free_context(domain->mmu->root,
447 domain->context_id);
448 return -EINVAL;
451 /* TTBR0 */
452 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
453 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
454 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
457 * TTBCR
458 * We use long descriptors with inner-shareable WBWA tables and allocate
459 * the whole 32-bit VA space to TTBR0.
461 if (domain->mmu->features->twobit_imttbcr_sl0)
462 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
463 else
464 tmp = IMTTBCR_SL0_LVL_1;
466 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE |
467 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
468 IMTTBCR_IRGN0_WB_WA | tmp);
470 /* MAIR0 */
471 ipmmu_ctx_write_root(domain, IMMAIR0,
472 domain->cfg.arm_lpae_s1_cfg.mair[0]);
474 /* IMBUSCR */
475 if (domain->mmu->features->setup_imbuscr)
476 ipmmu_ctx_write_root(domain, IMBUSCR,
477 ipmmu_ctx_read_root(domain, IMBUSCR) &
478 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
481 * IMSTR
482 * Clear all interrupt flags.
484 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
487 * IMCTR
488 * Enable the MMU and interrupt generation. The long-descriptor
489 * translation table format doesn't use TEX remapping. Don't enable AF
490 * software management as we have no use for it. Flush the TLB as
491 * required when modifying the context registers.
493 ipmmu_ctx_write_all(domain, IMCTR,
494 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
496 return 0;
499 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
502 * Disable the context. Flush the TLB as required when modifying the
503 * context registers.
505 * TODO: Is TLB flush really needed ?
507 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
508 ipmmu_tlb_sync(domain);
509 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
512 /* -----------------------------------------------------------------------------
513 * Fault Handling
516 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
518 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
519 struct ipmmu_vmsa_device *mmu = domain->mmu;
520 u32 status;
521 u32 iova;
523 status = ipmmu_ctx_read_root(domain, IMSTR);
524 if (!(status & err_mask))
525 return IRQ_NONE;
527 iova = ipmmu_ctx_read_root(domain, IMEAR);
530 * Clear the error status flags. Unlike traditional interrupt flag
531 * registers that must be cleared by writing 1, this status register
532 * seems to require 0. The error address register must be read before,
533 * otherwise its value will be 0.
535 ipmmu_ctx_write_root(domain, IMSTR, 0);
537 /* Log fatal errors. */
538 if (status & IMSTR_MHIT)
539 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
540 iova);
541 if (status & IMSTR_ABORT)
542 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
543 iova);
545 if (!(status & (IMSTR_PF | IMSTR_TF)))
546 return IRQ_NONE;
549 * Try to handle page faults and translation faults.
551 * TODO: We need to look up the faulty device based on the I/O VA. Use
552 * the IOMMU device for now.
554 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
555 return IRQ_HANDLED;
557 dev_err_ratelimited(mmu->dev,
558 "Unhandled fault: status 0x%08x iova 0x%08x\n",
559 status, iova);
561 return IRQ_HANDLED;
564 static irqreturn_t ipmmu_irq(int irq, void *dev)
566 struct ipmmu_vmsa_device *mmu = dev;
567 irqreturn_t status = IRQ_NONE;
568 unsigned int i;
569 unsigned long flags;
571 spin_lock_irqsave(&mmu->lock, flags);
574 * Check interrupts for all active contexts.
576 for (i = 0; i < mmu->num_ctx; i++) {
577 if (!mmu->domains[i])
578 continue;
579 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
580 status = IRQ_HANDLED;
583 spin_unlock_irqrestore(&mmu->lock, flags);
585 return status;
588 /* -----------------------------------------------------------------------------
589 * IOMMU Operations
592 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
594 struct ipmmu_vmsa_domain *domain;
596 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
597 if (!domain)
598 return NULL;
600 mutex_init(&domain->mutex);
602 return &domain->io_domain;
605 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
607 struct iommu_domain *io_domain = NULL;
609 switch (type) {
610 case IOMMU_DOMAIN_UNMANAGED:
611 io_domain = __ipmmu_domain_alloc(type);
612 break;
614 case IOMMU_DOMAIN_DMA:
615 io_domain = __ipmmu_domain_alloc(type);
616 if (io_domain && iommu_get_dma_cookie(io_domain)) {
617 kfree(io_domain);
618 io_domain = NULL;
620 break;
623 return io_domain;
626 static void ipmmu_domain_free(struct iommu_domain *io_domain)
628 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
631 * Free the domain resources. We assume that all devices have already
632 * been detached.
634 iommu_put_dma_cookie(io_domain);
635 ipmmu_domain_destroy_context(domain);
636 free_io_pgtable_ops(domain->iop);
637 kfree(domain);
640 static int ipmmu_attach_device(struct iommu_domain *io_domain,
641 struct device *dev)
643 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
644 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
645 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
646 unsigned int i;
647 int ret = 0;
649 if (!mmu) {
650 dev_err(dev, "Cannot attach to IPMMU\n");
651 return -ENXIO;
654 mutex_lock(&domain->mutex);
656 if (!domain->mmu) {
657 /* The domain hasn't been used yet, initialize it. */
658 domain->mmu = mmu;
659 ret = ipmmu_domain_init_context(domain);
660 if (ret < 0) {
661 dev_err(dev, "Unable to initialize IPMMU context\n");
662 domain->mmu = NULL;
663 } else {
664 dev_info(dev, "Using IPMMU context %u\n",
665 domain->context_id);
667 } else if (domain->mmu != mmu) {
669 * Something is wrong, we can't attach two devices using
670 * different IOMMUs to the same domain.
672 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
673 dev_name(mmu->dev), dev_name(domain->mmu->dev));
674 ret = -EINVAL;
675 } else
676 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
678 mutex_unlock(&domain->mutex);
680 if (ret < 0)
681 return ret;
683 for (i = 0; i < fwspec->num_ids; ++i)
684 ipmmu_utlb_enable(domain, fwspec->ids[i]);
686 return 0;
689 static void ipmmu_detach_device(struct iommu_domain *io_domain,
690 struct device *dev)
692 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
693 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
694 unsigned int i;
696 for (i = 0; i < fwspec->num_ids; ++i)
697 ipmmu_utlb_disable(domain, fwspec->ids[i]);
700 * TODO: Optimize by disabling the context when no device is attached.
704 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
705 phys_addr_t paddr, size_t size, int prot)
707 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
709 if (!domain)
710 return -ENODEV;
712 return domain->iop->map(domain->iop, iova, paddr, size, prot);
715 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
716 size_t size)
718 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
720 return domain->iop->unmap(domain->iop, iova, size);
723 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain)
725 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
727 if (domain->mmu)
728 ipmmu_tlb_flush_all(domain);
731 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
732 dma_addr_t iova)
734 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
736 /* TODO: Is locking needed ? */
738 return domain->iop->iova_to_phys(domain->iop, iova);
741 static int ipmmu_init_platform_device(struct device *dev,
742 struct of_phandle_args *args)
744 struct platform_device *ipmmu_pdev;
746 ipmmu_pdev = of_find_device_by_node(args->np);
747 if (!ipmmu_pdev)
748 return -ENODEV;
750 dev->iommu_fwspec->iommu_priv = platform_get_drvdata(ipmmu_pdev);
751 return 0;
754 static bool ipmmu_slave_whitelist(struct device *dev)
756 /* By default, do not allow use of IPMMU */
757 return false;
760 static const struct soc_device_attribute soc_rcar_gen3[] = {
761 { .soc_id = "r8a7795", },
762 { .soc_id = "r8a7796", },
763 { .soc_id = "r8a77965", },
764 { .soc_id = "r8a77970", },
765 { .soc_id = "r8a77995", },
766 { /* sentinel */ }
769 static int ipmmu_of_xlate(struct device *dev,
770 struct of_phandle_args *spec)
772 /* For R-Car Gen3 use a white list to opt-in slave devices */
773 if (soc_device_match(soc_rcar_gen3) && !ipmmu_slave_whitelist(dev))
774 return -ENODEV;
776 iommu_fwspec_add_ids(dev, spec->args, 1);
778 /* Initialize once - xlate() will call multiple times */
779 if (to_ipmmu(dev))
780 return 0;
782 return ipmmu_init_platform_device(dev, spec);
785 static int ipmmu_init_arm_mapping(struct device *dev)
787 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
788 struct iommu_group *group;
789 int ret;
791 /* Create a device group and add the device to it. */
792 group = iommu_group_alloc();
793 if (IS_ERR(group)) {
794 dev_err(dev, "Failed to allocate IOMMU group\n");
795 return PTR_ERR(group);
798 ret = iommu_group_add_device(group, dev);
799 iommu_group_put(group);
801 if (ret < 0) {
802 dev_err(dev, "Failed to add device to IPMMU group\n");
803 return ret;
807 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
808 * VAs. This will allocate a corresponding IOMMU domain.
810 * TODO:
811 * - Create one mapping per context (TLB).
812 * - Make the mapping size configurable ? We currently use a 2GB mapping
813 * at a 1GB offset to ensure that NULL VAs will fault.
815 if (!mmu->mapping) {
816 struct dma_iommu_mapping *mapping;
818 mapping = arm_iommu_create_mapping(&platform_bus_type,
819 SZ_1G, SZ_2G);
820 if (IS_ERR(mapping)) {
821 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
822 ret = PTR_ERR(mapping);
823 goto error;
826 mmu->mapping = mapping;
829 /* Attach the ARM VA mapping to the device. */
830 ret = arm_iommu_attach_device(dev, mmu->mapping);
831 if (ret < 0) {
832 dev_err(dev, "Failed to attach device to VA mapping\n");
833 goto error;
836 return 0;
838 error:
839 iommu_group_remove_device(dev);
840 if (mmu->mapping)
841 arm_iommu_release_mapping(mmu->mapping);
843 return ret;
846 static int ipmmu_add_device(struct device *dev)
848 struct iommu_group *group;
851 * Only let through devices that have been verified in xlate()
853 if (!to_ipmmu(dev))
854 return -ENODEV;
856 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
857 return ipmmu_init_arm_mapping(dev);
859 group = iommu_group_get_for_dev(dev);
860 if (IS_ERR(group))
861 return PTR_ERR(group);
863 iommu_group_put(group);
864 return 0;
867 static void ipmmu_remove_device(struct device *dev)
869 arm_iommu_detach_device(dev);
870 iommu_group_remove_device(dev);
873 static struct iommu_group *ipmmu_find_group(struct device *dev)
875 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
876 struct iommu_group *group;
878 if (mmu->group)
879 return iommu_group_ref_get(mmu->group);
881 group = iommu_group_alloc();
882 if (!IS_ERR(group))
883 mmu->group = group;
885 return group;
888 static const struct iommu_ops ipmmu_ops = {
889 .domain_alloc = ipmmu_domain_alloc,
890 .domain_free = ipmmu_domain_free,
891 .attach_dev = ipmmu_attach_device,
892 .detach_dev = ipmmu_detach_device,
893 .map = ipmmu_map,
894 .unmap = ipmmu_unmap,
895 .flush_iotlb_all = ipmmu_iotlb_sync,
896 .iotlb_sync = ipmmu_iotlb_sync,
897 .iova_to_phys = ipmmu_iova_to_phys,
898 .add_device = ipmmu_add_device,
899 .remove_device = ipmmu_remove_device,
900 .device_group = ipmmu_find_group,
901 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
902 .of_xlate = ipmmu_of_xlate,
905 /* -----------------------------------------------------------------------------
906 * Probe/remove and init
909 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
911 unsigned int i;
913 /* Disable all contexts. */
914 for (i = 0; i < mmu->num_ctx; ++i)
915 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
918 static const struct ipmmu_features ipmmu_features_default = {
919 .use_ns_alias_offset = true,
920 .has_cache_leaf_nodes = false,
921 .number_of_contexts = 1, /* software only tested with one context */
922 .setup_imbuscr = true,
923 .twobit_imttbcr_sl0 = false,
924 .reserved_context = false,
927 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
928 .use_ns_alias_offset = false,
929 .has_cache_leaf_nodes = true,
930 .number_of_contexts = 8,
931 .setup_imbuscr = false,
932 .twobit_imttbcr_sl0 = true,
933 .reserved_context = true,
936 static const struct of_device_id ipmmu_of_ids[] = {
938 .compatible = "renesas,ipmmu-vmsa",
939 .data = &ipmmu_features_default,
940 }, {
941 .compatible = "renesas,ipmmu-r8a7795",
942 .data = &ipmmu_features_rcar_gen3,
943 }, {
944 .compatible = "renesas,ipmmu-r8a7796",
945 .data = &ipmmu_features_rcar_gen3,
946 }, {
947 .compatible = "renesas,ipmmu-r8a77965",
948 .data = &ipmmu_features_rcar_gen3,
949 }, {
950 .compatible = "renesas,ipmmu-r8a77970",
951 .data = &ipmmu_features_rcar_gen3,
952 }, {
953 .compatible = "renesas,ipmmu-r8a77995",
954 .data = &ipmmu_features_rcar_gen3,
955 }, {
956 /* Terminator */
960 MODULE_DEVICE_TABLE(of, ipmmu_of_ids);
962 static int ipmmu_probe(struct platform_device *pdev)
964 struct ipmmu_vmsa_device *mmu;
965 struct resource *res;
966 int irq;
967 int ret;
969 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
970 if (!mmu) {
971 dev_err(&pdev->dev, "cannot allocate device data\n");
972 return -ENOMEM;
975 mmu->dev = &pdev->dev;
976 mmu->num_utlbs = 48;
977 spin_lock_init(&mmu->lock);
978 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
979 mmu->features = of_device_get_match_data(&pdev->dev);
980 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
982 /* Map I/O memory and request IRQ. */
983 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
984 mmu->base = devm_ioremap_resource(&pdev->dev, res);
985 if (IS_ERR(mmu->base))
986 return PTR_ERR(mmu->base);
989 * The IPMMU has two register banks, for secure and non-secure modes.
990 * The bank mapped at the beginning of the IPMMU address space
991 * corresponds to the running mode of the CPU. When running in secure
992 * mode the non-secure register bank is also available at an offset.
994 * Secure mode operation isn't clearly documented and is thus currently
995 * not implemented in the driver. Furthermore, preliminary tests of
996 * non-secure operation with the main register bank were not successful.
997 * Offset the registers base unconditionally to point to the non-secure
998 * alias space for now.
1000 if (mmu->features->use_ns_alias_offset)
1001 mmu->base += IM_NS_ALIAS_OFFSET;
1003 mmu->num_ctx = min_t(unsigned int, IPMMU_CTX_MAX,
1004 mmu->features->number_of_contexts);
1006 irq = platform_get_irq(pdev, 0);
1009 * Determine if this IPMMU instance is a root device by checking for
1010 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1012 if (!mmu->features->has_cache_leaf_nodes ||
1013 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1014 mmu->root = mmu;
1015 else
1016 mmu->root = ipmmu_find_root();
1019 * Wait until the root device has been registered for sure.
1021 if (!mmu->root)
1022 return -EPROBE_DEFER;
1024 /* Root devices have mandatory IRQs */
1025 if (ipmmu_is_root(mmu)) {
1026 if (irq < 0) {
1027 dev_err(&pdev->dev, "no IRQ found\n");
1028 return irq;
1031 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1032 dev_name(&pdev->dev), mmu);
1033 if (ret < 0) {
1034 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1035 return ret;
1038 ipmmu_device_reset(mmu);
1040 if (mmu->features->reserved_context) {
1041 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1042 set_bit(0, mmu->ctx);
1047 * Register the IPMMU to the IOMMU subsystem in the following cases:
1048 * - R-Car Gen2 IPMMU (all devices registered)
1049 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1051 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1052 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1053 dev_name(&pdev->dev));
1054 if (ret)
1055 return ret;
1057 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1058 iommu_device_set_fwnode(&mmu->iommu,
1059 &pdev->dev.of_node->fwnode);
1061 ret = iommu_device_register(&mmu->iommu);
1062 if (ret)
1063 return ret;
1065 #if defined(CONFIG_IOMMU_DMA)
1066 if (!iommu_present(&platform_bus_type))
1067 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1068 #endif
1072 * We can't create the ARM mapping here as it requires the bus to have
1073 * an IOMMU, which only happens when bus_set_iommu() is called in
1074 * ipmmu_init() after the probe function returns.
1077 platform_set_drvdata(pdev, mmu);
1079 return 0;
1082 static int ipmmu_remove(struct platform_device *pdev)
1084 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1086 iommu_device_sysfs_remove(&mmu->iommu);
1087 iommu_device_unregister(&mmu->iommu);
1089 arm_iommu_release_mapping(mmu->mapping);
1091 ipmmu_device_reset(mmu);
1093 return 0;
1096 static struct platform_driver ipmmu_driver = {
1097 .driver = {
1098 .name = "ipmmu-vmsa",
1099 .of_match_table = of_match_ptr(ipmmu_of_ids),
1101 .probe = ipmmu_probe,
1102 .remove = ipmmu_remove,
1105 static int __init ipmmu_init(void)
1107 struct device_node *np;
1108 static bool setup_done;
1109 int ret;
1111 if (setup_done)
1112 return 0;
1114 np = of_find_matching_node(NULL, ipmmu_of_ids);
1115 if (!np)
1116 return 0;
1118 of_node_put(np);
1120 ret = platform_driver_register(&ipmmu_driver);
1121 if (ret < 0)
1122 return ret;
1124 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1125 if (!iommu_present(&platform_bus_type))
1126 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1127 #endif
1129 setup_done = true;
1130 return 0;
1133 static void __exit ipmmu_exit(void)
1135 return platform_driver_unregister(&ipmmu_driver);
1138 subsys_initcall(ipmmu_init);
1139 module_exit(ipmmu_exit);
1141 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1142 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1143 MODULE_LICENSE("GPL v2");