ARM: omap2: remove unnecessary boot_lock
[linux-2.6/linux-2.6-arm.git] / drivers / rtc / rtc-armada38x.c
blob9e78f004670b39bfffc41ebf9c145690ef8b89cf
1 /*
2 * RTC driver for the Armada 38x Marvell SoCs
4 * Copyright (C) 2015 Marvell
6 * Gregory Clement <gregory.clement@free-electrons.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/platform_device.h>
21 #include <linux/rtc.h>
23 #define RTC_STATUS 0x0
24 #define RTC_STATUS_ALARM1 BIT(0)
25 #define RTC_STATUS_ALARM2 BIT(1)
26 #define RTC_IRQ1_CONF 0x4
27 #define RTC_IRQ2_CONF 0x8
28 #define RTC_IRQ_AL_EN BIT(0)
29 #define RTC_IRQ_FREQ_EN BIT(1)
30 #define RTC_IRQ_FREQ_1HZ BIT(2)
31 #define RTC_CCR 0x18
32 #define RTC_CCR_MODE BIT(15)
33 #define RTC_CONF_TEST 0x1C
34 #define RTC_NOMINAL_TIMING BIT(13)
36 #define RTC_TIME 0xC
37 #define RTC_ALARM1 0x10
38 #define RTC_ALARM2 0x14
40 /* Armada38x SoC registers */
41 #define RTC_38X_BRIDGE_TIMING_CTL 0x0
42 #define RTC_38X_PERIOD_OFFS 0
43 #define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
44 #define RTC_38X_READ_DELAY_OFFS 26
45 #define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
47 /* Armada 7K/8K registers */
48 #define RTC_8K_BRIDGE_TIMING_CTL0 0x0
49 #define RTC_8K_WRCLK_PERIOD_OFFS 0
50 #define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
51 #define RTC_8K_WRCLK_SETUP_OFFS 16
52 #define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
53 #define RTC_8K_BRIDGE_TIMING_CTL1 0x4
54 #define RTC_8K_READ_DELAY_OFFS 0
55 #define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
57 #define RTC_8K_ISR 0x10
58 #define RTC_8K_IMR 0x14
59 #define RTC_8K_ALARM2 BIT(0)
61 #define SOC_RTC_INTERRUPT 0x8
62 #define SOC_RTC_ALARM1 BIT(0)
63 #define SOC_RTC_ALARM2 BIT(1)
64 #define SOC_RTC_ALARM1_MASK BIT(2)
65 #define SOC_RTC_ALARM2_MASK BIT(3)
67 #define SAMPLE_NR 100
69 struct value_to_freq {
70 u32 value;
71 u8 freq;
74 struct armada38x_rtc {
75 struct rtc_device *rtc_dev;
76 void __iomem *regs;
77 void __iomem *regs_soc;
78 spinlock_t lock;
79 int irq;
80 bool initialized;
81 struct value_to_freq *val_to_freq;
82 struct armada38x_rtc_data *data;
85 #define ALARM1 0
86 #define ALARM2 1
88 #define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
90 struct armada38x_rtc_data {
91 /* Initialize the RTC-MBUS bridge timing */
92 void (*update_mbus_timing)(struct armada38x_rtc *rtc);
93 u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
94 void (*clear_isr)(struct armada38x_rtc *rtc);
95 void (*unmask_interrupt)(struct armada38x_rtc *rtc);
96 u32 alarm;
100 * According to the datasheet, the OS should wait 5us after every
101 * register write to the RTC hard macro so that the required update
102 * can occur without holding off the system bus
103 * According to errata RES-3124064, Write to any RTC register
104 * may fail. As a workaround, before writing to RTC
105 * register, issue a dummy write of 0x0 twice to RTC Status
106 * register.
109 static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
111 writel(0, rtc->regs + RTC_STATUS);
112 writel(0, rtc->regs + RTC_STATUS);
113 writel(val, rtc->regs + offset);
114 udelay(5);
117 /* Update RTC-MBUS bridge timing parameters */
118 static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
120 u32 reg;
122 reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
123 reg &= ~RTC_38X_PERIOD_MASK;
124 reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
125 reg &= ~RTC_38X_READ_DELAY_MASK;
126 reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
127 writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
130 static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
132 u32 reg;
134 reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
135 reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
136 reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
137 reg &= ~RTC_8K_WRCLK_SETUP_MASK;
138 reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
139 writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
141 reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
142 reg &= ~RTC_8K_READ_DELAY_MASK;
143 reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
144 writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
147 static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
149 return readl(rtc->regs + rtc_reg);
152 static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
154 int i, index_max = 0, max = 0;
156 for (i = 0; i < SAMPLE_NR; i++) {
157 rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
158 rtc->val_to_freq[i].freq = 0;
161 for (i = 0; i < SAMPLE_NR; i++) {
162 int j = 0;
163 u32 value = rtc->val_to_freq[i].value;
165 while (rtc->val_to_freq[j].freq) {
166 if (rtc->val_to_freq[j].value == value) {
167 rtc->val_to_freq[j].freq++;
168 break;
170 j++;
173 if (!rtc->val_to_freq[j].freq) {
174 rtc->val_to_freq[j].value = value;
175 rtc->val_to_freq[j].freq = 1;
178 if (rtc->val_to_freq[j].freq > max) {
179 index_max = j;
180 max = rtc->val_to_freq[j].freq;
184 * If a value already has half of the sample this is the most
185 * frequent one and we can stop the research right now
187 if (max > SAMPLE_NR / 2)
188 break;
191 return rtc->val_to_freq[index_max].value;
194 static void armada38x_clear_isr(struct armada38x_rtc *rtc)
196 u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
198 writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
201 static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
203 u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
205 writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
208 static void armada8k_clear_isr(struct armada38x_rtc *rtc)
210 writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
213 static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
215 writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
218 static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
220 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
221 unsigned long time, flags;
223 spin_lock_irqsave(&rtc->lock, flags);
224 time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
225 spin_unlock_irqrestore(&rtc->lock, flags);
227 rtc_time64_to_tm(time, tm);
229 return 0;
232 static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
234 u32 reg;
236 reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
237 /* If bits [7:0] are non-zero, assume RTC was uninitialized */
238 if (reg & 0xff) {
239 rtc_delayed_write(0, rtc, RTC_CONF_TEST);
240 msleep(500); /* Oscillator startup time */
241 rtc_delayed_write(0, rtc, RTC_TIME);
242 rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
243 RTC_STATUS);
244 rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
246 rtc->initialized = true;
249 static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
251 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
252 unsigned long time, flags;
254 time = rtc_tm_to_time64(tm);
256 if (!rtc->initialized)
257 armada38x_rtc_reset(rtc);
259 spin_lock_irqsave(&rtc->lock, flags);
260 rtc_delayed_write(time, rtc, RTC_TIME);
261 spin_unlock_irqrestore(&rtc->lock, flags);
263 return 0;
266 static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
268 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
269 unsigned long time, flags;
270 u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
271 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
272 u32 val;
274 spin_lock_irqsave(&rtc->lock, flags);
276 time = rtc->data->read_rtc_reg(rtc, reg);
277 val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
279 spin_unlock_irqrestore(&rtc->lock, flags);
281 alrm->enabled = val ? 1 : 0;
282 rtc_time64_to_tm(time, &alrm->time);
284 return 0;
287 static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
289 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
290 u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
291 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
292 unsigned long time, flags;
294 time = rtc_tm_to_time64(&alrm->time);
296 spin_lock_irqsave(&rtc->lock, flags);
298 rtc_delayed_write(time, rtc, reg);
300 if (alrm->enabled) {
301 rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
302 rtc->data->unmask_interrupt(rtc);
305 spin_unlock_irqrestore(&rtc->lock, flags);
307 return 0;
310 static int armada38x_rtc_alarm_irq_enable(struct device *dev,
311 unsigned int enabled)
313 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
314 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
315 unsigned long flags;
317 spin_lock_irqsave(&rtc->lock, flags);
319 if (enabled)
320 rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
321 else
322 rtc_delayed_write(0, rtc, reg_irq);
324 spin_unlock_irqrestore(&rtc->lock, flags);
326 return 0;
329 static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
331 struct armada38x_rtc *rtc = data;
332 u32 val;
333 int event = RTC_IRQF | RTC_AF;
334 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
336 dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
338 spin_lock(&rtc->lock);
340 rtc->data->clear_isr(rtc);
341 val = rtc->data->read_rtc_reg(rtc, reg_irq);
342 /* disable all the interrupts for alarm*/
343 rtc_delayed_write(0, rtc, reg_irq);
344 /* Ack the event */
345 rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
347 spin_unlock(&rtc->lock);
349 if (val & RTC_IRQ_FREQ_EN) {
350 if (val & RTC_IRQ_FREQ_1HZ)
351 event |= RTC_UF;
352 else
353 event |= RTC_PF;
356 rtc_update_irq(rtc->rtc_dev, 1, event);
358 return IRQ_HANDLED;
362 * The information given in the Armada 388 functional spec is complex.
363 * They give two different formulas for calculating the offset value,
364 * but when considering "Offset" as an 8-bit signed integer, they both
365 * reduce down to (we shall rename "Offset" as "val" here):
367 * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768
369 * Converting to time, f = 1/t:
370 * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768
372 * => t_measured / t_ideal = val * resolution + 1
374 * "offset" in the RTC interface is defined as:
375 * t = t0 * (1 + offset * 1e-9)
376 * where t is the desired period, t0 is the measured period with a zero
377 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
378 * offset = (t_ideal / t_measured - 1) / 1e-9
380 * => t_ideal / t_measured = offset * 1e-9 + 1
382 * so:
384 * offset * 1e-9 + 1 = 1 / (val * resolution + 1)
386 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
387 * offset = 1e18 / (val * R + 1e9) - 1e9
388 * val = (1e18 / (offset + 1e9) - 1e9) / R
389 * with a common transformation:
390 * f(x) = 1e18 / (x + 1e9) - 1e9
391 * offset = f(val * R)
392 * val = f(offset) / R
394 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
396 static long armada38x_ppb_convert(long ppb)
398 long div = ppb + 1000000000L;
400 return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
403 static int armada38x_rtc_read_offset(struct device *dev, long *offset)
405 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
406 unsigned long ccr, flags;
407 long ppb_cor;
409 spin_lock_irqsave(&rtc->lock, flags);
410 ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
411 spin_unlock_irqrestore(&rtc->lock, flags);
413 ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
414 /* ppb_cor + 1000000000L can never be zero */
415 *offset = armada38x_ppb_convert(ppb_cor);
417 return 0;
420 static int armada38x_rtc_set_offset(struct device *dev, long offset)
422 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
423 unsigned long ccr = 0;
424 long ppb_cor, off;
427 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
428 * need to clamp the input. This equates to -484270 .. 488558.
429 * Not only is this to stop out of range "off" but also to
430 * avoid the division by zero in armada38x_ppb_convert().
432 offset = clamp(offset, -484270L, 488558L);
434 ppb_cor = armada38x_ppb_convert(offset);
437 * Use low update mode where possible, which gives a better
438 * resolution of correction.
440 off = DIV_ROUND_CLOSEST(ppb_cor, 954);
441 if (off > 127 || off < -128) {
442 ccr = RTC_CCR_MODE;
443 off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
447 * Armada 388 requires a bit pattern in bits 14..8 depending on
448 * the sign bit: { 0, ~S, S, S, S, S, S }
450 ccr |= (off & 0x3fff) ^ 0x2000;
451 rtc_delayed_write(ccr, rtc, RTC_CCR);
453 return 0;
456 static const struct rtc_class_ops armada38x_rtc_ops = {
457 .read_time = armada38x_rtc_read_time,
458 .set_time = armada38x_rtc_set_time,
459 .read_alarm = armada38x_rtc_read_alarm,
460 .set_alarm = armada38x_rtc_set_alarm,
461 .alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
462 .read_offset = armada38x_rtc_read_offset,
463 .set_offset = armada38x_rtc_set_offset,
466 static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
467 .read_time = armada38x_rtc_read_time,
468 .set_time = armada38x_rtc_set_time,
469 .read_alarm = armada38x_rtc_read_alarm,
470 .read_offset = armada38x_rtc_read_offset,
471 .set_offset = armada38x_rtc_set_offset,
474 static const struct armada38x_rtc_data armada38x_data = {
475 .update_mbus_timing = rtc_update_38x_mbus_timing_params,
476 .read_rtc_reg = read_rtc_register_38x_wa,
477 .clear_isr = armada38x_clear_isr,
478 .unmask_interrupt = armada38x_unmask_interrupt,
479 .alarm = ALARM1,
482 static const struct armada38x_rtc_data armada8k_data = {
483 .update_mbus_timing = rtc_update_8k_mbus_timing_params,
484 .read_rtc_reg = read_rtc_register,
485 .clear_isr = armada8k_clear_isr,
486 .unmask_interrupt = armada8k_unmask_interrupt,
487 .alarm = ALARM2,
490 #ifdef CONFIG_OF
491 static const struct of_device_id armada38x_rtc_of_match_table[] = {
493 .compatible = "marvell,armada-380-rtc",
494 .data = &armada38x_data,
497 .compatible = "marvell,armada-8k-rtc",
498 .data = &armada8k_data,
502 MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
503 #endif
505 static __init int armada38x_rtc_probe(struct platform_device *pdev)
507 struct resource *res;
508 struct armada38x_rtc *rtc;
509 const struct of_device_id *match;
510 int ret;
512 match = of_match_device(armada38x_rtc_of_match_table, &pdev->dev);
513 if (!match)
514 return -ENODEV;
516 rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
517 GFP_KERNEL);
518 if (!rtc)
519 return -ENOMEM;
521 rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
522 sizeof(struct value_to_freq), GFP_KERNEL);
523 if (!rtc->val_to_freq)
524 return -ENOMEM;
526 spin_lock_init(&rtc->lock);
528 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
529 rtc->regs = devm_ioremap_resource(&pdev->dev, res);
530 if (IS_ERR(rtc->regs))
531 return PTR_ERR(rtc->regs);
532 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
533 rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
534 if (IS_ERR(rtc->regs_soc))
535 return PTR_ERR(rtc->regs_soc);
537 rtc->irq = platform_get_irq(pdev, 0);
539 if (rtc->irq < 0) {
540 dev_err(&pdev->dev, "no irq\n");
541 return rtc->irq;
544 rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
545 if (IS_ERR(rtc->rtc_dev))
546 return PTR_ERR(rtc->rtc_dev);
548 if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
549 0, pdev->name, rtc) < 0) {
550 dev_warn(&pdev->dev, "Interrupt not available.\n");
551 rtc->irq = -1;
553 platform_set_drvdata(pdev, rtc);
555 if (rtc->irq != -1) {
556 device_init_wakeup(&pdev->dev, 1);
557 rtc->rtc_dev->ops = &armada38x_rtc_ops;
558 } else {
560 * If there is no interrupt available then we can't
561 * use the alarm
563 rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq;
565 rtc->data = (struct armada38x_rtc_data *)match->data;
567 /* Update RTC-MBUS bridge timing parameters */
568 rtc->data->update_mbus_timing(rtc);
570 rtc->rtc_dev->range_max = U32_MAX;
572 ret = rtc_register_device(rtc->rtc_dev);
573 if (ret)
574 dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
576 return ret;
579 #ifdef CONFIG_PM_SLEEP
580 static int armada38x_rtc_suspend(struct device *dev)
582 if (device_may_wakeup(dev)) {
583 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
585 return enable_irq_wake(rtc->irq);
588 return 0;
591 static int armada38x_rtc_resume(struct device *dev)
593 if (device_may_wakeup(dev)) {
594 struct armada38x_rtc *rtc = dev_get_drvdata(dev);
596 /* Update RTC-MBUS bridge timing parameters */
597 rtc->data->update_mbus_timing(rtc);
599 return disable_irq_wake(rtc->irq);
602 return 0;
604 #endif
606 static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
607 armada38x_rtc_suspend, armada38x_rtc_resume);
609 static struct platform_driver armada38x_rtc_driver = {
610 .driver = {
611 .name = "armada38x-rtc",
612 .pm = &armada38x_rtc_pm_ops,
613 .of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
617 module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
619 MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
620 MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
621 MODULE_LICENSE("GPL");