ARM: omap2: remove unnecessary boot_lock
[linux-2.6/linux-2.6-arm.git] / fs / ubifs / super.c
blob1fac1133dadd291b7491527802e70782ab8544e8
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 static struct kmem_cache *ubifs_inode_slab;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 .scan_objects = ubifs_shrink_scan,
53 .count_objects = ubifs_shrink_count,
54 .seeks = DEFAULT_SEEKS,
57 /**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err(c, "inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 return 2;
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
89 if (ui->xattr && !S_ISREG(inode->i_mode))
90 return 5;
92 if (!ubifs_compr_present(c, ui->compr_type)) {
93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
97 err = dbg_check_dir(c, inode);
98 return err;
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
110 dbg_gen("inode %lu", inum);
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
125 ino_key_init(c, &key, inode->i_ino);
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
131 inode->i_flags |= S_NOCMTIME;
132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 inode->i_flags |= S_NOATIME;
134 #endif
135 set_nlink(inode, le32_to_cpu(ino->nlink));
136 i_uid_write(inode, le32_to_cpu(ino->uid));
137 i_gid_write(inode, le32_to_cpu(ino->gid));
138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 inode->i_mode = le32_to_cpu(ino->mode);
145 inode->i_size = le64_to_cpu(ino->size);
147 ui->data_len = le32_to_cpu(ino->data_len);
148 ui->flags = le32_to_cpu(ino->flags);
149 ui->compr_type = le16_to_cpu(ino->compr_type);
150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
152 ui->xattr_size = le32_to_cpu(ino->xattr_size);
153 ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 ui->synced_i_size = ui->ui_size = inode->i_size;
156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
158 err = validate_inode(c, inode);
159 if (err)
160 goto out_invalid;
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
247 out_invalid:
248 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
249 ubifs_dump_node(c, ino);
250 ubifs_dump_inode(c, inode);
251 err = -EINVAL;
252 out_ino:
253 kfree(ino);
254 out:
255 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
262 struct ubifs_inode *ui;
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
275 static void ubifs_i_callback(struct rcu_head *head)
277 struct inode *inode = container_of(head, struct inode, i_rcu);
278 struct ubifs_inode *ui = ubifs_inode(inode);
279 kmem_cache_free(ubifs_inode_slab, ui);
282 static void ubifs_destroy_inode(struct inode *inode)
284 struct ubifs_inode *ui = ubifs_inode(inode);
286 kfree(ui->data);
287 call_rcu(&inode->i_rcu, ubifs_i_callback);
291 * Note, Linux write-back code calls this without 'i_mutex'.
293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
295 int err = 0;
296 struct ubifs_info *c = inode->i_sb->s_fs_info;
297 struct ubifs_inode *ui = ubifs_inode(inode);
299 ubifs_assert(c, !ui->xattr);
300 if (is_bad_inode(inode))
301 return 0;
303 mutex_lock(&ui->ui_mutex);
305 * Due to races between write-back forced by budgeting
306 * (see 'sync_some_inodes()') and background write-back, the inode may
307 * have already been synchronized, do not do this again. This might
308 * also happen if it was synchronized in an VFS operation, e.g.
309 * 'ubifs_link()'.
311 if (!ui->dirty) {
312 mutex_unlock(&ui->ui_mutex);
313 return 0;
317 * As an optimization, do not write orphan inodes to the media just
318 * because this is not needed.
320 dbg_gen("inode %lu, mode %#x, nlink %u",
321 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
322 if (inode->i_nlink) {
323 err = ubifs_jnl_write_inode(c, inode);
324 if (err)
325 ubifs_err(c, "can't write inode %lu, error %d",
326 inode->i_ino, err);
327 else
328 err = dbg_check_inode_size(c, inode, ui->ui_size);
331 ui->dirty = 0;
332 mutex_unlock(&ui->ui_mutex);
333 ubifs_release_dirty_inode_budget(c, ui);
334 return err;
337 static void ubifs_evict_inode(struct inode *inode)
339 int err;
340 struct ubifs_info *c = inode->i_sb->s_fs_info;
341 struct ubifs_inode *ui = ubifs_inode(inode);
343 if (ui->xattr)
345 * Extended attribute inode deletions are fully handled in
346 * 'ubifs_removexattr()'. These inodes are special and have
347 * limited usage, so there is nothing to do here.
349 goto out;
351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
352 ubifs_assert(c, !atomic_read(&inode->i_count));
354 truncate_inode_pages_final(&inode->i_data);
356 if (inode->i_nlink)
357 goto done;
359 if (is_bad_inode(inode))
360 goto out;
362 ui->ui_size = inode->i_size = 0;
363 err = ubifs_jnl_delete_inode(c, inode);
364 if (err)
366 * Worst case we have a lost orphan inode wasting space, so a
367 * simple error message is OK here.
369 ubifs_err(c, "can't delete inode %lu, error %d",
370 inode->i_ino, err);
372 out:
373 if (ui->dirty)
374 ubifs_release_dirty_inode_budget(c, ui);
375 else {
376 /* We've deleted something - clean the "no space" flags */
377 c->bi.nospace = c->bi.nospace_rp = 0;
378 smp_wmb();
380 done:
381 clear_inode(inode);
382 fscrypt_put_encryption_info(inode);
385 static void ubifs_dirty_inode(struct inode *inode, int flags)
387 struct ubifs_info *c = inode->i_sb->s_fs_info;
388 struct ubifs_inode *ui = ubifs_inode(inode);
390 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
391 if (!ui->dirty) {
392 ui->dirty = 1;
393 dbg_gen("inode %lu", inode->i_ino);
397 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
399 struct ubifs_info *c = dentry->d_sb->s_fs_info;
400 unsigned long long free;
401 __le32 *uuid = (__le32 *)c->uuid;
403 free = ubifs_get_free_space(c);
404 dbg_gen("free space %lld bytes (%lld blocks)",
405 free, free >> UBIFS_BLOCK_SHIFT);
407 buf->f_type = UBIFS_SUPER_MAGIC;
408 buf->f_bsize = UBIFS_BLOCK_SIZE;
409 buf->f_blocks = c->block_cnt;
410 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
411 if (free > c->report_rp_size)
412 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
413 else
414 buf->f_bavail = 0;
415 buf->f_files = 0;
416 buf->f_ffree = 0;
417 buf->f_namelen = UBIFS_MAX_NLEN;
418 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
419 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
420 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
421 return 0;
424 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
426 struct ubifs_info *c = root->d_sb->s_fs_info;
428 if (c->mount_opts.unmount_mode == 2)
429 seq_puts(s, ",fast_unmount");
430 else if (c->mount_opts.unmount_mode == 1)
431 seq_puts(s, ",norm_unmount");
433 if (c->mount_opts.bulk_read == 2)
434 seq_puts(s, ",bulk_read");
435 else if (c->mount_opts.bulk_read == 1)
436 seq_puts(s, ",no_bulk_read");
438 if (c->mount_opts.chk_data_crc == 2)
439 seq_puts(s, ",chk_data_crc");
440 else if (c->mount_opts.chk_data_crc == 1)
441 seq_puts(s, ",no_chk_data_crc");
443 if (c->mount_opts.override_compr) {
444 seq_printf(s, ",compr=%s",
445 ubifs_compr_name(c, c->mount_opts.compr_type));
448 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
449 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
451 return 0;
454 static int ubifs_sync_fs(struct super_block *sb, int wait)
456 int i, err;
457 struct ubifs_info *c = sb->s_fs_info;
460 * Zero @wait is just an advisory thing to help the file system shove
461 * lots of data into the queues, and there will be the second
462 * '->sync_fs()' call, with non-zero @wait.
464 if (!wait)
465 return 0;
468 * Synchronize write buffers, because 'ubifs_run_commit()' does not
469 * do this if it waits for an already running commit.
471 for (i = 0; i < c->jhead_cnt; i++) {
472 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
473 if (err)
474 return err;
478 * Strictly speaking, it is not necessary to commit the journal here,
479 * synchronizing write-buffers would be enough. But committing makes
480 * UBIFS free space predictions much more accurate, so we want to let
481 * the user be able to get more accurate results of 'statfs()' after
482 * they synchronize the file system.
484 err = ubifs_run_commit(c);
485 if (err)
486 return err;
488 return ubi_sync(c->vi.ubi_num);
492 * init_constants_early - initialize UBIFS constants.
493 * @c: UBIFS file-system description object
495 * This function initialize UBIFS constants which do not need the superblock to
496 * be read. It also checks that the UBI volume satisfies basic UBIFS
497 * requirements. Returns zero in case of success and a negative error code in
498 * case of failure.
500 static int init_constants_early(struct ubifs_info *c)
502 if (c->vi.corrupted) {
503 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
504 c->ro_media = 1;
507 if (c->di.ro_mode) {
508 ubifs_msg(c, "read-only UBI device");
509 c->ro_media = 1;
512 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
513 ubifs_msg(c, "static UBI volume - read-only mode");
514 c->ro_media = 1;
517 c->leb_cnt = c->vi.size;
518 c->leb_size = c->vi.usable_leb_size;
519 c->leb_start = c->di.leb_start;
520 c->half_leb_size = c->leb_size / 2;
521 c->min_io_size = c->di.min_io_size;
522 c->min_io_shift = fls(c->min_io_size) - 1;
523 c->max_write_size = c->di.max_write_size;
524 c->max_write_shift = fls(c->max_write_size) - 1;
526 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
527 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
528 c->leb_size, UBIFS_MIN_LEB_SZ);
529 return -EINVAL;
532 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
533 ubifs_errc(c, "too few LEBs (%d), min. is %d",
534 c->leb_cnt, UBIFS_MIN_LEB_CNT);
535 return -EINVAL;
538 if (!is_power_of_2(c->min_io_size)) {
539 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
540 return -EINVAL;
544 * Maximum write size has to be greater or equivalent to min. I/O
545 * size, and be multiple of min. I/O size.
547 if (c->max_write_size < c->min_io_size ||
548 c->max_write_size % c->min_io_size ||
549 !is_power_of_2(c->max_write_size)) {
550 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
551 c->max_write_size, c->min_io_size);
552 return -EINVAL;
556 * UBIFS aligns all node to 8-byte boundary, so to make function in
557 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
558 * less than 8.
560 if (c->min_io_size < 8) {
561 c->min_io_size = 8;
562 c->min_io_shift = 3;
563 if (c->max_write_size < c->min_io_size) {
564 c->max_write_size = c->min_io_size;
565 c->max_write_shift = c->min_io_shift;
569 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
570 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
573 * Initialize node length ranges which are mostly needed for node
574 * length validation.
576 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
577 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
578 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
579 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
580 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
581 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
582 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
583 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
584 UBIFS_MAX_HMAC_LEN;
586 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
587 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
588 c->ranges[UBIFS_ORPH_NODE].min_len =
589 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
590 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
591 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
592 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
593 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
594 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
595 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
596 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
598 * Minimum indexing node size is amended later when superblock is
599 * read and the key length is known.
601 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
603 * Maximum indexing node size is amended later when superblock is
604 * read and the fanout is known.
606 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
609 * Initialize dead and dark LEB space watermarks. See gc.c for comments
610 * about these values.
612 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
613 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
616 * Calculate how many bytes would be wasted at the end of LEB if it was
617 * fully filled with data nodes of maximum size. This is used in
618 * calculations when reporting free space.
620 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
622 /* Buffer size for bulk-reads */
623 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
624 if (c->max_bu_buf_len > c->leb_size)
625 c->max_bu_buf_len = c->leb_size;
626 return 0;
630 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
631 * @c: UBIFS file-system description object
632 * @lnum: LEB the write-buffer was synchronized to
633 * @free: how many free bytes left in this LEB
634 * @pad: how many bytes were padded
636 * This is a callback function which is called by the I/O unit when the
637 * write-buffer is synchronized. We need this to correctly maintain space
638 * accounting in bud logical eraseblocks. This function returns zero in case of
639 * success and a negative error code in case of failure.
641 * This function actually belongs to the journal, but we keep it here because
642 * we want to keep it static.
644 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
646 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
650 * init_constants_sb - initialize UBIFS constants.
651 * @c: UBIFS file-system description object
653 * This is a helper function which initializes various UBIFS constants after
654 * the superblock has been read. It also checks various UBIFS parameters and
655 * makes sure they are all right. Returns zero in case of success and a
656 * negative error code in case of failure.
658 static int init_constants_sb(struct ubifs_info *c)
660 int tmp, err;
661 long long tmp64;
663 c->main_bytes = (long long)c->main_lebs * c->leb_size;
664 c->max_znode_sz = sizeof(struct ubifs_znode) +
665 c->fanout * sizeof(struct ubifs_zbranch);
667 tmp = ubifs_idx_node_sz(c, 1);
668 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
669 c->min_idx_node_sz = ALIGN(tmp, 8);
671 tmp = ubifs_idx_node_sz(c, c->fanout);
672 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
673 c->max_idx_node_sz = ALIGN(tmp, 8);
675 /* Make sure LEB size is large enough to fit full commit */
676 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
677 tmp = ALIGN(tmp, c->min_io_size);
678 if (tmp > c->leb_size) {
679 ubifs_err(c, "too small LEB size %d, at least %d needed",
680 c->leb_size, tmp);
681 return -EINVAL;
685 * Make sure that the log is large enough to fit reference nodes for
686 * all buds plus one reserved LEB.
688 tmp64 = c->max_bud_bytes + c->leb_size - 1;
689 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
690 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
691 tmp /= c->leb_size;
692 tmp += 1;
693 if (c->log_lebs < tmp) {
694 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
695 c->log_lebs, tmp);
696 return -EINVAL;
700 * When budgeting we assume worst-case scenarios when the pages are not
701 * be compressed and direntries are of the maximum size.
703 * Note, data, which may be stored in inodes is budgeted separately, so
704 * it is not included into 'c->bi.inode_budget'.
706 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
707 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
708 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
711 * When the amount of flash space used by buds becomes
712 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
713 * The writers are unblocked when the commit is finished. To avoid
714 * writers to be blocked UBIFS initiates background commit in advance,
715 * when number of bud bytes becomes above the limit defined below.
717 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
720 * Ensure minimum journal size. All the bytes in the journal heads are
721 * considered to be used, when calculating the current journal usage.
722 * Consequently, if the journal is too small, UBIFS will treat it as
723 * always full.
725 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
726 if (c->bg_bud_bytes < tmp64)
727 c->bg_bud_bytes = tmp64;
728 if (c->max_bud_bytes < tmp64 + c->leb_size)
729 c->max_bud_bytes = tmp64 + c->leb_size;
731 err = ubifs_calc_lpt_geom(c);
732 if (err)
733 return err;
735 /* Initialize effective LEB size used in budgeting calculations */
736 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
737 return 0;
741 * init_constants_master - initialize UBIFS constants.
742 * @c: UBIFS file-system description object
744 * This is a helper function which initializes various UBIFS constants after
745 * the master node has been read. It also checks various UBIFS parameters and
746 * makes sure they are all right.
748 static void init_constants_master(struct ubifs_info *c)
750 long long tmp64;
752 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
753 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
756 * Calculate total amount of FS blocks. This number is not used
757 * internally because it does not make much sense for UBIFS, but it is
758 * necessary to report something for the 'statfs()' call.
760 * Subtract the LEB reserved for GC, the LEB which is reserved for
761 * deletions, minimum LEBs for the index, and assume only one journal
762 * head is available.
764 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
765 tmp64 *= (long long)c->leb_size - c->leb_overhead;
766 tmp64 = ubifs_reported_space(c, tmp64);
767 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
771 * take_gc_lnum - reserve GC LEB.
772 * @c: UBIFS file-system description object
774 * This function ensures that the LEB reserved for garbage collection is marked
775 * as "taken" in lprops. We also have to set free space to LEB size and dirty
776 * space to zero, because lprops may contain out-of-date information if the
777 * file-system was un-mounted before it has been committed. This function
778 * returns zero in case of success and a negative error code in case of
779 * failure.
781 static int take_gc_lnum(struct ubifs_info *c)
783 int err;
785 if (c->gc_lnum == -1) {
786 ubifs_err(c, "no LEB for GC");
787 return -EINVAL;
790 /* And we have to tell lprops that this LEB is taken */
791 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
792 LPROPS_TAKEN, 0, 0);
793 return err;
797 * alloc_wbufs - allocate write-buffers.
798 * @c: UBIFS file-system description object
800 * This helper function allocates and initializes UBIFS write-buffers. Returns
801 * zero in case of success and %-ENOMEM in case of failure.
803 static int alloc_wbufs(struct ubifs_info *c)
805 int i, err;
807 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
808 GFP_KERNEL);
809 if (!c->jheads)
810 return -ENOMEM;
812 /* Initialize journal heads */
813 for (i = 0; i < c->jhead_cnt; i++) {
814 INIT_LIST_HEAD(&c->jheads[i].buds_list);
815 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
816 if (err)
817 return err;
819 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
820 c->jheads[i].wbuf.jhead = i;
821 c->jheads[i].grouped = 1;
822 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
823 if (IS_ERR(c->jheads[i].log_hash))
824 goto out;
828 * Garbage Collector head does not need to be synchronized by timer.
829 * Also GC head nodes are not grouped.
831 c->jheads[GCHD].wbuf.no_timer = 1;
832 c->jheads[GCHD].grouped = 0;
834 return 0;
836 out:
837 while (i--)
838 kfree(c->jheads[i].log_hash);
840 return err;
844 * free_wbufs - free write-buffers.
845 * @c: UBIFS file-system description object
847 static void free_wbufs(struct ubifs_info *c)
849 int i;
851 if (c->jheads) {
852 for (i = 0; i < c->jhead_cnt; i++) {
853 kfree(c->jheads[i].wbuf.buf);
854 kfree(c->jheads[i].wbuf.inodes);
855 kfree(c->jheads[i].log_hash);
857 kfree(c->jheads);
858 c->jheads = NULL;
863 * free_orphans - free orphans.
864 * @c: UBIFS file-system description object
866 static void free_orphans(struct ubifs_info *c)
868 struct ubifs_orphan *orph;
870 while (c->orph_dnext) {
871 orph = c->orph_dnext;
872 c->orph_dnext = orph->dnext;
873 list_del(&orph->list);
874 kfree(orph);
877 while (!list_empty(&c->orph_list)) {
878 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
879 list_del(&orph->list);
880 kfree(orph);
881 ubifs_err(c, "orphan list not empty at unmount");
884 vfree(c->orph_buf);
885 c->orph_buf = NULL;
889 * free_buds - free per-bud objects.
890 * @c: UBIFS file-system description object
892 static void free_buds(struct ubifs_info *c)
894 struct ubifs_bud *bud, *n;
896 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
897 kfree(bud);
901 * check_volume_empty - check if the UBI volume is empty.
902 * @c: UBIFS file-system description object
904 * This function checks if the UBIFS volume is empty by looking if its LEBs are
905 * mapped or not. The result of checking is stored in the @c->empty variable.
906 * Returns zero in case of success and a negative error code in case of
907 * failure.
909 static int check_volume_empty(struct ubifs_info *c)
911 int lnum, err;
913 c->empty = 1;
914 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
915 err = ubifs_is_mapped(c, lnum);
916 if (unlikely(err < 0))
917 return err;
918 if (err == 1) {
919 c->empty = 0;
920 break;
923 cond_resched();
926 return 0;
930 * UBIFS mount options.
932 * Opt_fast_unmount: do not run a journal commit before un-mounting
933 * Opt_norm_unmount: run a journal commit before un-mounting
934 * Opt_bulk_read: enable bulk-reads
935 * Opt_no_bulk_read: disable bulk-reads
936 * Opt_chk_data_crc: check CRCs when reading data nodes
937 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
938 * Opt_override_compr: override default compressor
939 * Opt_assert: set ubifs_assert() action
940 * Opt_auth_key: The key name used for authentication
941 * Opt_auth_hash_name: The hash type used for authentication
942 * Opt_err: just end of array marker
944 enum {
945 Opt_fast_unmount,
946 Opt_norm_unmount,
947 Opt_bulk_read,
948 Opt_no_bulk_read,
949 Opt_chk_data_crc,
950 Opt_no_chk_data_crc,
951 Opt_override_compr,
952 Opt_assert,
953 Opt_auth_key,
954 Opt_auth_hash_name,
955 Opt_ignore,
956 Opt_err,
959 static const match_table_t tokens = {
960 {Opt_fast_unmount, "fast_unmount"},
961 {Opt_norm_unmount, "norm_unmount"},
962 {Opt_bulk_read, "bulk_read"},
963 {Opt_no_bulk_read, "no_bulk_read"},
964 {Opt_chk_data_crc, "chk_data_crc"},
965 {Opt_no_chk_data_crc, "no_chk_data_crc"},
966 {Opt_override_compr, "compr=%s"},
967 {Opt_auth_key, "auth_key=%s"},
968 {Opt_auth_hash_name, "auth_hash_name=%s"},
969 {Opt_ignore, "ubi=%s"},
970 {Opt_ignore, "vol=%s"},
971 {Opt_assert, "assert=%s"},
972 {Opt_err, NULL},
976 * parse_standard_option - parse a standard mount option.
977 * @option: the option to parse
979 * Normally, standard mount options like "sync" are passed to file-systems as
980 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
981 * be present in the options string. This function tries to deal with this
982 * situation and parse standard options. Returns 0 if the option was not
983 * recognized, and the corresponding integer flag if it was.
985 * UBIFS is only interested in the "sync" option, so do not check for anything
986 * else.
988 static int parse_standard_option(const char *option)
991 pr_notice("UBIFS: parse %s\n", option);
992 if (!strcmp(option, "sync"))
993 return SB_SYNCHRONOUS;
994 return 0;
998 * ubifs_parse_options - parse mount parameters.
999 * @c: UBIFS file-system description object
1000 * @options: parameters to parse
1001 * @is_remount: non-zero if this is FS re-mount
1003 * This function parses UBIFS mount options and returns zero in case success
1004 * and a negative error code in case of failure.
1006 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1007 int is_remount)
1009 char *p;
1010 substring_t args[MAX_OPT_ARGS];
1012 if (!options)
1013 return 0;
1015 while ((p = strsep(&options, ","))) {
1016 int token;
1018 if (!*p)
1019 continue;
1021 token = match_token(p, tokens, args);
1022 switch (token) {
1024 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1025 * We accept them in order to be backward-compatible. But this
1026 * should be removed at some point.
1028 case Opt_fast_unmount:
1029 c->mount_opts.unmount_mode = 2;
1030 break;
1031 case Opt_norm_unmount:
1032 c->mount_opts.unmount_mode = 1;
1033 break;
1034 case Opt_bulk_read:
1035 c->mount_opts.bulk_read = 2;
1036 c->bulk_read = 1;
1037 break;
1038 case Opt_no_bulk_read:
1039 c->mount_opts.bulk_read = 1;
1040 c->bulk_read = 0;
1041 break;
1042 case Opt_chk_data_crc:
1043 c->mount_opts.chk_data_crc = 2;
1044 c->no_chk_data_crc = 0;
1045 break;
1046 case Opt_no_chk_data_crc:
1047 c->mount_opts.chk_data_crc = 1;
1048 c->no_chk_data_crc = 1;
1049 break;
1050 case Opt_override_compr:
1052 char *name = match_strdup(&args[0]);
1054 if (!name)
1055 return -ENOMEM;
1056 if (!strcmp(name, "none"))
1057 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1058 else if (!strcmp(name, "lzo"))
1059 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1060 else if (!strcmp(name, "zlib"))
1061 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1062 else {
1063 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1064 kfree(name);
1065 return -EINVAL;
1067 kfree(name);
1068 c->mount_opts.override_compr = 1;
1069 c->default_compr = c->mount_opts.compr_type;
1070 break;
1072 case Opt_assert:
1074 char *act = match_strdup(&args[0]);
1076 if (!act)
1077 return -ENOMEM;
1078 if (!strcmp(act, "report"))
1079 c->assert_action = ASSACT_REPORT;
1080 else if (!strcmp(act, "read-only"))
1081 c->assert_action = ASSACT_RO;
1082 else if (!strcmp(act, "panic"))
1083 c->assert_action = ASSACT_PANIC;
1084 else {
1085 ubifs_err(c, "unknown assert action \"%s\"", act);
1086 kfree(act);
1087 return -EINVAL;
1089 kfree(act);
1090 break;
1092 case Opt_auth_key:
1093 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1094 if (!c->auth_key_name)
1095 return -ENOMEM;
1096 break;
1097 case Opt_auth_hash_name:
1098 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1099 if (!c->auth_hash_name)
1100 return -ENOMEM;
1101 break;
1102 case Opt_ignore:
1103 break;
1104 default:
1106 unsigned long flag;
1107 struct super_block *sb = c->vfs_sb;
1109 flag = parse_standard_option(p);
1110 if (!flag) {
1111 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1113 return -EINVAL;
1115 sb->s_flags |= flag;
1116 break;
1121 return 0;
1125 * destroy_journal - destroy journal data structures.
1126 * @c: UBIFS file-system description object
1128 * This function destroys journal data structures including those that may have
1129 * been created by recovery functions.
1131 static void destroy_journal(struct ubifs_info *c)
1133 while (!list_empty(&c->unclean_leb_list)) {
1134 struct ubifs_unclean_leb *ucleb;
1136 ucleb = list_entry(c->unclean_leb_list.next,
1137 struct ubifs_unclean_leb, list);
1138 list_del(&ucleb->list);
1139 kfree(ucleb);
1141 while (!list_empty(&c->old_buds)) {
1142 struct ubifs_bud *bud;
1144 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1145 list_del(&bud->list);
1146 kfree(bud);
1148 ubifs_destroy_idx_gc(c);
1149 ubifs_destroy_size_tree(c);
1150 ubifs_tnc_close(c);
1151 free_buds(c);
1155 * bu_init - initialize bulk-read information.
1156 * @c: UBIFS file-system description object
1158 static void bu_init(struct ubifs_info *c)
1160 ubifs_assert(c, c->bulk_read == 1);
1162 if (c->bu.buf)
1163 return; /* Already initialized */
1165 again:
1166 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1167 if (!c->bu.buf) {
1168 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1169 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1170 goto again;
1173 /* Just disable bulk-read */
1174 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1175 c->max_bu_buf_len);
1176 c->mount_opts.bulk_read = 1;
1177 c->bulk_read = 0;
1178 return;
1183 * check_free_space - check if there is enough free space to mount.
1184 * @c: UBIFS file-system description object
1186 * This function makes sure UBIFS has enough free space to be mounted in
1187 * read/write mode. UBIFS must always have some free space to allow deletions.
1189 static int check_free_space(struct ubifs_info *c)
1191 ubifs_assert(c, c->dark_wm > 0);
1192 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1193 ubifs_err(c, "insufficient free space to mount in R/W mode");
1194 ubifs_dump_budg(c, &c->bi);
1195 ubifs_dump_lprops(c);
1196 return -ENOSPC;
1198 return 0;
1202 * mount_ubifs - mount UBIFS file-system.
1203 * @c: UBIFS file-system description object
1205 * This function mounts UBIFS file system. Returns zero in case of success and
1206 * a negative error code in case of failure.
1208 static int mount_ubifs(struct ubifs_info *c)
1210 int err;
1211 long long x, y;
1212 size_t sz;
1214 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1215 /* Suppress error messages while probing if SB_SILENT is set */
1216 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1218 err = init_constants_early(c);
1219 if (err)
1220 return err;
1222 err = ubifs_debugging_init(c);
1223 if (err)
1224 return err;
1226 err = check_volume_empty(c);
1227 if (err)
1228 goto out_free;
1230 if (c->empty && (c->ro_mount || c->ro_media)) {
1232 * This UBI volume is empty, and read-only, or the file system
1233 * is mounted read-only - we cannot format it.
1235 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1236 c->ro_media ? "UBI volume" : "mount");
1237 err = -EROFS;
1238 goto out_free;
1241 if (c->ro_media && !c->ro_mount) {
1242 ubifs_err(c, "cannot mount read-write - read-only media");
1243 err = -EROFS;
1244 goto out_free;
1248 * The requirement for the buffer is that it should fit indexing B-tree
1249 * height amount of integers. We assume the height if the TNC tree will
1250 * never exceed 64.
1252 err = -ENOMEM;
1253 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1254 GFP_KERNEL);
1255 if (!c->bottom_up_buf)
1256 goto out_free;
1258 c->sbuf = vmalloc(c->leb_size);
1259 if (!c->sbuf)
1260 goto out_free;
1262 if (!c->ro_mount) {
1263 c->ileb_buf = vmalloc(c->leb_size);
1264 if (!c->ileb_buf)
1265 goto out_free;
1268 if (c->bulk_read == 1)
1269 bu_init(c);
1271 if (!c->ro_mount) {
1272 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1273 UBIFS_CIPHER_BLOCK_SIZE,
1274 GFP_KERNEL);
1275 if (!c->write_reserve_buf)
1276 goto out_free;
1279 c->mounting = 1;
1281 if (c->auth_key_name) {
1282 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1283 err = ubifs_init_authentication(c);
1284 if (err)
1285 goto out_free;
1286 } else {
1287 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1288 " authentication support");
1289 err = -EINVAL;
1290 goto out_free;
1294 err = ubifs_read_superblock(c);
1295 if (err)
1296 goto out_free;
1298 c->probing = 0;
1301 * Make sure the compressor which is set as default in the superblock
1302 * or overridden by mount options is actually compiled in.
1304 if (!ubifs_compr_present(c, c->default_compr)) {
1305 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1306 ubifs_compr_name(c, c->default_compr));
1307 err = -ENOTSUPP;
1308 goto out_free;
1311 err = init_constants_sb(c);
1312 if (err)
1313 goto out_free;
1315 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1316 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1317 c->cbuf = kmalloc(sz, GFP_NOFS);
1318 if (!c->cbuf) {
1319 err = -ENOMEM;
1320 goto out_free;
1323 err = alloc_wbufs(c);
1324 if (err)
1325 goto out_cbuf;
1327 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1328 if (!c->ro_mount) {
1329 /* Create background thread */
1330 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1331 if (IS_ERR(c->bgt)) {
1332 err = PTR_ERR(c->bgt);
1333 c->bgt = NULL;
1334 ubifs_err(c, "cannot spawn \"%s\", error %d",
1335 c->bgt_name, err);
1336 goto out_wbufs;
1338 wake_up_process(c->bgt);
1341 err = ubifs_read_master(c);
1342 if (err)
1343 goto out_master;
1345 init_constants_master(c);
1347 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1348 ubifs_msg(c, "recovery needed");
1349 c->need_recovery = 1;
1352 if (c->need_recovery && !c->ro_mount) {
1353 err = ubifs_recover_inl_heads(c, c->sbuf);
1354 if (err)
1355 goto out_master;
1358 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1359 if (err)
1360 goto out_master;
1362 if (!c->ro_mount && c->space_fixup) {
1363 err = ubifs_fixup_free_space(c);
1364 if (err)
1365 goto out_lpt;
1368 if (!c->ro_mount && !c->need_recovery) {
1370 * Set the "dirty" flag so that if we reboot uncleanly we
1371 * will notice this immediately on the next mount.
1373 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1374 err = ubifs_write_master(c);
1375 if (err)
1376 goto out_lpt;
1379 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1380 if (err)
1381 goto out_lpt;
1383 err = ubifs_replay_journal(c);
1384 if (err)
1385 goto out_journal;
1387 /* Calculate 'min_idx_lebs' after journal replay */
1388 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1390 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1391 if (err)
1392 goto out_orphans;
1394 if (!c->ro_mount) {
1395 int lnum;
1397 err = check_free_space(c);
1398 if (err)
1399 goto out_orphans;
1401 /* Check for enough log space */
1402 lnum = c->lhead_lnum + 1;
1403 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1404 lnum = UBIFS_LOG_LNUM;
1405 if (lnum == c->ltail_lnum) {
1406 err = ubifs_consolidate_log(c);
1407 if (err)
1408 goto out_orphans;
1411 if (c->need_recovery) {
1412 if (!ubifs_authenticated(c)) {
1413 err = ubifs_recover_size(c, true);
1414 if (err)
1415 goto out_orphans;
1418 err = ubifs_rcvry_gc_commit(c);
1419 if (err)
1420 goto out_orphans;
1422 if (ubifs_authenticated(c)) {
1423 err = ubifs_recover_size(c, false);
1424 if (err)
1425 goto out_orphans;
1427 } else {
1428 err = take_gc_lnum(c);
1429 if (err)
1430 goto out_orphans;
1433 * GC LEB may contain garbage if there was an unclean
1434 * reboot, and it should be un-mapped.
1436 err = ubifs_leb_unmap(c, c->gc_lnum);
1437 if (err)
1438 goto out_orphans;
1441 err = dbg_check_lprops(c);
1442 if (err)
1443 goto out_orphans;
1444 } else if (c->need_recovery) {
1445 err = ubifs_recover_size(c, false);
1446 if (err)
1447 goto out_orphans;
1448 } else {
1450 * Even if we mount read-only, we have to set space in GC LEB
1451 * to proper value because this affects UBIFS free space
1452 * reporting. We do not want to have a situation when
1453 * re-mounting from R/O to R/W changes amount of free space.
1455 err = take_gc_lnum(c);
1456 if (err)
1457 goto out_orphans;
1460 spin_lock(&ubifs_infos_lock);
1461 list_add_tail(&c->infos_list, &ubifs_infos);
1462 spin_unlock(&ubifs_infos_lock);
1464 if (c->need_recovery) {
1465 if (c->ro_mount)
1466 ubifs_msg(c, "recovery deferred");
1467 else {
1468 c->need_recovery = 0;
1469 ubifs_msg(c, "recovery completed");
1471 * GC LEB has to be empty and taken at this point. But
1472 * the journal head LEBs may also be accounted as
1473 * "empty taken" if they are empty.
1475 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1477 } else
1478 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1480 err = dbg_check_filesystem(c);
1481 if (err)
1482 goto out_infos;
1484 err = dbg_debugfs_init_fs(c);
1485 if (err)
1486 goto out_infos;
1488 c->mounting = 0;
1490 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1491 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1492 c->ro_mount ? ", R/O mode" : "");
1493 x = (long long)c->main_lebs * c->leb_size;
1494 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1495 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1496 c->leb_size, c->leb_size >> 10, c->min_io_size,
1497 c->max_write_size);
1498 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1499 x, x >> 20, c->main_lebs,
1500 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1501 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1502 c->report_rp_size, c->report_rp_size >> 10);
1503 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1504 c->fmt_version, c->ro_compat_version,
1505 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1506 c->big_lpt ? ", big LPT model" : ", small LPT model");
1508 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1509 dbg_gen("data journal heads: %d",
1510 c->jhead_cnt - NONDATA_JHEADS_CNT);
1511 dbg_gen("log LEBs: %d (%d - %d)",
1512 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1513 dbg_gen("LPT area LEBs: %d (%d - %d)",
1514 c->lpt_lebs, c->lpt_first, c->lpt_last);
1515 dbg_gen("orphan area LEBs: %d (%d - %d)",
1516 c->orph_lebs, c->orph_first, c->orph_last);
1517 dbg_gen("main area LEBs: %d (%d - %d)",
1518 c->main_lebs, c->main_first, c->leb_cnt - 1);
1519 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1520 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1521 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1522 c->bi.old_idx_sz >> 20);
1523 dbg_gen("key hash type: %d", c->key_hash_type);
1524 dbg_gen("tree fanout: %d", c->fanout);
1525 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1526 dbg_gen("max. znode size %d", c->max_znode_sz);
1527 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1528 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1529 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1530 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1531 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1532 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1533 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1534 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1535 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1536 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1537 dbg_gen("dead watermark: %d", c->dead_wm);
1538 dbg_gen("dark watermark: %d", c->dark_wm);
1539 dbg_gen("LEB overhead: %d", c->leb_overhead);
1540 x = (long long)c->main_lebs * c->dark_wm;
1541 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1542 x, x >> 10, x >> 20);
1543 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1544 c->max_bud_bytes, c->max_bud_bytes >> 10,
1545 c->max_bud_bytes >> 20);
1546 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1547 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1548 c->bg_bud_bytes >> 20);
1549 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1550 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1551 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1552 dbg_gen("commit number: %llu", c->cmt_no);
1554 return 0;
1556 out_infos:
1557 spin_lock(&ubifs_infos_lock);
1558 list_del(&c->infos_list);
1559 spin_unlock(&ubifs_infos_lock);
1560 out_orphans:
1561 free_orphans(c);
1562 out_journal:
1563 destroy_journal(c);
1564 out_lpt:
1565 ubifs_lpt_free(c, 0);
1566 out_master:
1567 kfree(c->mst_node);
1568 kfree(c->rcvrd_mst_node);
1569 if (c->bgt)
1570 kthread_stop(c->bgt);
1571 out_wbufs:
1572 free_wbufs(c);
1573 out_cbuf:
1574 kfree(c->cbuf);
1575 out_free:
1576 kfree(c->write_reserve_buf);
1577 kfree(c->bu.buf);
1578 vfree(c->ileb_buf);
1579 vfree(c->sbuf);
1580 kfree(c->bottom_up_buf);
1581 ubifs_debugging_exit(c);
1582 return err;
1586 * ubifs_umount - un-mount UBIFS file-system.
1587 * @c: UBIFS file-system description object
1589 * Note, this function is called to free allocated resourced when un-mounting,
1590 * as well as free resources when an error occurred while we were half way
1591 * through mounting (error path cleanup function). So it has to make sure the
1592 * resource was actually allocated before freeing it.
1594 static void ubifs_umount(struct ubifs_info *c)
1596 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1597 c->vi.vol_id);
1599 dbg_debugfs_exit_fs(c);
1600 spin_lock(&ubifs_infos_lock);
1601 list_del(&c->infos_list);
1602 spin_unlock(&ubifs_infos_lock);
1604 if (c->bgt)
1605 kthread_stop(c->bgt);
1607 destroy_journal(c);
1608 free_wbufs(c);
1609 free_orphans(c);
1610 ubifs_lpt_free(c, 0);
1611 ubifs_exit_authentication(c);
1613 kfree(c->auth_key_name);
1614 kfree(c->auth_hash_name);
1615 kfree(c->cbuf);
1616 kfree(c->rcvrd_mst_node);
1617 kfree(c->mst_node);
1618 kfree(c->write_reserve_buf);
1619 kfree(c->bu.buf);
1620 vfree(c->ileb_buf);
1621 vfree(c->sbuf);
1622 kfree(c->bottom_up_buf);
1623 ubifs_debugging_exit(c);
1627 * ubifs_remount_rw - re-mount in read-write mode.
1628 * @c: UBIFS file-system description object
1630 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1631 * mode. This function allocates the needed resources and re-mounts UBIFS in
1632 * read-write mode.
1634 static int ubifs_remount_rw(struct ubifs_info *c)
1636 int err, lnum;
1638 if (c->rw_incompat) {
1639 ubifs_err(c, "the file-system is not R/W-compatible");
1640 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1641 c->fmt_version, c->ro_compat_version,
1642 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1643 return -EROFS;
1646 mutex_lock(&c->umount_mutex);
1647 dbg_save_space_info(c);
1648 c->remounting_rw = 1;
1649 c->ro_mount = 0;
1651 if (c->space_fixup) {
1652 err = ubifs_fixup_free_space(c);
1653 if (err)
1654 goto out;
1657 err = check_free_space(c);
1658 if (err)
1659 goto out;
1661 if (c->old_leb_cnt != c->leb_cnt) {
1662 struct ubifs_sb_node *sup = c->sup_node;
1664 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1665 err = ubifs_write_sb_node(c, sup);
1666 if (err)
1667 goto out;
1670 if (c->need_recovery) {
1671 ubifs_msg(c, "completing deferred recovery");
1672 err = ubifs_write_rcvrd_mst_node(c);
1673 if (err)
1674 goto out;
1675 if (!ubifs_authenticated(c)) {
1676 err = ubifs_recover_size(c, true);
1677 if (err)
1678 goto out;
1680 err = ubifs_clean_lebs(c, c->sbuf);
1681 if (err)
1682 goto out;
1683 err = ubifs_recover_inl_heads(c, c->sbuf);
1684 if (err)
1685 goto out;
1686 } else {
1687 /* A readonly mount is not allowed to have orphans */
1688 ubifs_assert(c, c->tot_orphans == 0);
1689 err = ubifs_clear_orphans(c);
1690 if (err)
1691 goto out;
1694 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1695 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1696 err = ubifs_write_master(c);
1697 if (err)
1698 goto out;
1701 c->ileb_buf = vmalloc(c->leb_size);
1702 if (!c->ileb_buf) {
1703 err = -ENOMEM;
1704 goto out;
1707 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1708 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1709 if (!c->write_reserve_buf) {
1710 err = -ENOMEM;
1711 goto out;
1714 err = ubifs_lpt_init(c, 0, 1);
1715 if (err)
1716 goto out;
1718 /* Create background thread */
1719 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1720 if (IS_ERR(c->bgt)) {
1721 err = PTR_ERR(c->bgt);
1722 c->bgt = NULL;
1723 ubifs_err(c, "cannot spawn \"%s\", error %d",
1724 c->bgt_name, err);
1725 goto out;
1727 wake_up_process(c->bgt);
1729 c->orph_buf = vmalloc(c->leb_size);
1730 if (!c->orph_buf) {
1731 err = -ENOMEM;
1732 goto out;
1735 /* Check for enough log space */
1736 lnum = c->lhead_lnum + 1;
1737 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1738 lnum = UBIFS_LOG_LNUM;
1739 if (lnum == c->ltail_lnum) {
1740 err = ubifs_consolidate_log(c);
1741 if (err)
1742 goto out;
1745 if (c->need_recovery) {
1746 err = ubifs_rcvry_gc_commit(c);
1747 if (err)
1748 goto out;
1750 if (ubifs_authenticated(c)) {
1751 err = ubifs_recover_size(c, false);
1752 if (err)
1753 goto out;
1755 } else {
1756 err = ubifs_leb_unmap(c, c->gc_lnum);
1758 if (err)
1759 goto out;
1761 dbg_gen("re-mounted read-write");
1762 c->remounting_rw = 0;
1764 if (c->need_recovery) {
1765 c->need_recovery = 0;
1766 ubifs_msg(c, "deferred recovery completed");
1767 } else {
1769 * Do not run the debugging space check if the were doing
1770 * recovery, because when we saved the information we had the
1771 * file-system in a state where the TNC and lprops has been
1772 * modified in memory, but all the I/O operations (including a
1773 * commit) were deferred. So the file-system was in
1774 * "non-committed" state. Now the file-system is in committed
1775 * state, and of course the amount of free space will change
1776 * because, for example, the old index size was imprecise.
1778 err = dbg_check_space_info(c);
1781 mutex_unlock(&c->umount_mutex);
1782 return err;
1784 out:
1785 c->ro_mount = 1;
1786 vfree(c->orph_buf);
1787 c->orph_buf = NULL;
1788 if (c->bgt) {
1789 kthread_stop(c->bgt);
1790 c->bgt = NULL;
1792 free_wbufs(c);
1793 kfree(c->write_reserve_buf);
1794 c->write_reserve_buf = NULL;
1795 vfree(c->ileb_buf);
1796 c->ileb_buf = NULL;
1797 ubifs_lpt_free(c, 1);
1798 c->remounting_rw = 0;
1799 mutex_unlock(&c->umount_mutex);
1800 return err;
1804 * ubifs_remount_ro - re-mount in read-only mode.
1805 * @c: UBIFS file-system description object
1807 * We assume VFS has stopped writing. Possibly the background thread could be
1808 * running a commit, however kthread_stop will wait in that case.
1810 static void ubifs_remount_ro(struct ubifs_info *c)
1812 int i, err;
1814 ubifs_assert(c, !c->need_recovery);
1815 ubifs_assert(c, !c->ro_mount);
1817 mutex_lock(&c->umount_mutex);
1818 if (c->bgt) {
1819 kthread_stop(c->bgt);
1820 c->bgt = NULL;
1823 dbg_save_space_info(c);
1825 for (i = 0; i < c->jhead_cnt; i++) {
1826 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1827 if (err)
1828 ubifs_ro_mode(c, err);
1831 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1832 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1833 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1834 err = ubifs_write_master(c);
1835 if (err)
1836 ubifs_ro_mode(c, err);
1838 vfree(c->orph_buf);
1839 c->orph_buf = NULL;
1840 kfree(c->write_reserve_buf);
1841 c->write_reserve_buf = NULL;
1842 vfree(c->ileb_buf);
1843 c->ileb_buf = NULL;
1844 ubifs_lpt_free(c, 1);
1845 c->ro_mount = 1;
1846 err = dbg_check_space_info(c);
1847 if (err)
1848 ubifs_ro_mode(c, err);
1849 mutex_unlock(&c->umount_mutex);
1852 static void ubifs_put_super(struct super_block *sb)
1854 int i;
1855 struct ubifs_info *c = sb->s_fs_info;
1857 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1860 * The following asserts are only valid if there has not been a failure
1861 * of the media. For example, there will be dirty inodes if we failed
1862 * to write them back because of I/O errors.
1864 if (!c->ro_error) {
1865 ubifs_assert(c, c->bi.idx_growth == 0);
1866 ubifs_assert(c, c->bi.dd_growth == 0);
1867 ubifs_assert(c, c->bi.data_growth == 0);
1871 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1872 * and file system un-mount. Namely, it prevents the shrinker from
1873 * picking this superblock for shrinking - it will be just skipped if
1874 * the mutex is locked.
1876 mutex_lock(&c->umount_mutex);
1877 if (!c->ro_mount) {
1879 * First of all kill the background thread to make sure it does
1880 * not interfere with un-mounting and freeing resources.
1882 if (c->bgt) {
1883 kthread_stop(c->bgt);
1884 c->bgt = NULL;
1888 * On fatal errors c->ro_error is set to 1, in which case we do
1889 * not write the master node.
1891 if (!c->ro_error) {
1892 int err;
1894 /* Synchronize write-buffers */
1895 for (i = 0; i < c->jhead_cnt; i++) {
1896 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1897 if (err)
1898 ubifs_ro_mode(c, err);
1902 * We are being cleanly unmounted which means the
1903 * orphans were killed - indicate this in the master
1904 * node. Also save the reserved GC LEB number.
1906 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1907 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1908 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1909 err = ubifs_write_master(c);
1910 if (err)
1912 * Recovery will attempt to fix the master area
1913 * next mount, so we just print a message and
1914 * continue to unmount normally.
1916 ubifs_err(c, "failed to write master node, error %d",
1917 err);
1918 } else {
1919 for (i = 0; i < c->jhead_cnt; i++)
1920 /* Make sure write-buffer timers are canceled */
1921 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1925 ubifs_umount(c);
1926 ubi_close_volume(c->ubi);
1927 mutex_unlock(&c->umount_mutex);
1930 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1932 int err;
1933 struct ubifs_info *c = sb->s_fs_info;
1935 sync_filesystem(sb);
1936 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1938 err = ubifs_parse_options(c, data, 1);
1939 if (err) {
1940 ubifs_err(c, "invalid or unknown remount parameter");
1941 return err;
1944 if (c->ro_mount && !(*flags & SB_RDONLY)) {
1945 if (c->ro_error) {
1946 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1947 return -EROFS;
1949 if (c->ro_media) {
1950 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1951 return -EROFS;
1953 err = ubifs_remount_rw(c);
1954 if (err)
1955 return err;
1956 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1957 if (c->ro_error) {
1958 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1959 return -EROFS;
1961 ubifs_remount_ro(c);
1964 if (c->bulk_read == 1)
1965 bu_init(c);
1966 else {
1967 dbg_gen("disable bulk-read");
1968 mutex_lock(&c->bu_mutex);
1969 kfree(c->bu.buf);
1970 c->bu.buf = NULL;
1971 mutex_unlock(&c->bu_mutex);
1974 if (!c->need_recovery)
1975 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1977 return 0;
1980 const struct super_operations ubifs_super_operations = {
1981 .alloc_inode = ubifs_alloc_inode,
1982 .destroy_inode = ubifs_destroy_inode,
1983 .put_super = ubifs_put_super,
1984 .write_inode = ubifs_write_inode,
1985 .evict_inode = ubifs_evict_inode,
1986 .statfs = ubifs_statfs,
1987 .dirty_inode = ubifs_dirty_inode,
1988 .remount_fs = ubifs_remount_fs,
1989 .show_options = ubifs_show_options,
1990 .sync_fs = ubifs_sync_fs,
1994 * open_ubi - parse UBI device name string and open the UBI device.
1995 * @name: UBI volume name
1996 * @mode: UBI volume open mode
1998 * The primary method of mounting UBIFS is by specifying the UBI volume
1999 * character device node path. However, UBIFS may also be mounted withoug any
2000 * character device node using one of the following methods:
2002 * o ubiX_Y - mount UBI device number X, volume Y;
2003 * o ubiY - mount UBI device number 0, volume Y;
2004 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2005 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2007 * Alternative '!' separator may be used instead of ':' (because some shells
2008 * like busybox may interpret ':' as an NFS host name separator). This function
2009 * returns UBI volume description object in case of success and a negative
2010 * error code in case of failure.
2012 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2014 struct ubi_volume_desc *ubi;
2015 int dev, vol;
2016 char *endptr;
2018 if (!name || !*name)
2019 return ERR_PTR(-EINVAL);
2021 /* First, try to open using the device node path method */
2022 ubi = ubi_open_volume_path(name, mode);
2023 if (!IS_ERR(ubi))
2024 return ubi;
2026 /* Try the "nodev" method */
2027 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2028 return ERR_PTR(-EINVAL);
2030 /* ubi:NAME method */
2031 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2032 return ubi_open_volume_nm(0, name + 4, mode);
2034 if (!isdigit(name[3]))
2035 return ERR_PTR(-EINVAL);
2037 dev = simple_strtoul(name + 3, &endptr, 0);
2039 /* ubiY method */
2040 if (*endptr == '\0')
2041 return ubi_open_volume(0, dev, mode);
2043 /* ubiX_Y method */
2044 if (*endptr == '_' && isdigit(endptr[1])) {
2045 vol = simple_strtoul(endptr + 1, &endptr, 0);
2046 if (*endptr != '\0')
2047 return ERR_PTR(-EINVAL);
2048 return ubi_open_volume(dev, vol, mode);
2051 /* ubiX:NAME method */
2052 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2053 return ubi_open_volume_nm(dev, ++endptr, mode);
2055 return ERR_PTR(-EINVAL);
2058 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2060 struct ubifs_info *c;
2062 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2063 if (c) {
2064 spin_lock_init(&c->cnt_lock);
2065 spin_lock_init(&c->cs_lock);
2066 spin_lock_init(&c->buds_lock);
2067 spin_lock_init(&c->space_lock);
2068 spin_lock_init(&c->orphan_lock);
2069 init_rwsem(&c->commit_sem);
2070 mutex_init(&c->lp_mutex);
2071 mutex_init(&c->tnc_mutex);
2072 mutex_init(&c->log_mutex);
2073 mutex_init(&c->umount_mutex);
2074 mutex_init(&c->bu_mutex);
2075 mutex_init(&c->write_reserve_mutex);
2076 init_waitqueue_head(&c->cmt_wq);
2077 c->buds = RB_ROOT;
2078 c->old_idx = RB_ROOT;
2079 c->size_tree = RB_ROOT;
2080 c->orph_tree = RB_ROOT;
2081 INIT_LIST_HEAD(&c->infos_list);
2082 INIT_LIST_HEAD(&c->idx_gc);
2083 INIT_LIST_HEAD(&c->replay_list);
2084 INIT_LIST_HEAD(&c->replay_buds);
2085 INIT_LIST_HEAD(&c->uncat_list);
2086 INIT_LIST_HEAD(&c->empty_list);
2087 INIT_LIST_HEAD(&c->freeable_list);
2088 INIT_LIST_HEAD(&c->frdi_idx_list);
2089 INIT_LIST_HEAD(&c->unclean_leb_list);
2090 INIT_LIST_HEAD(&c->old_buds);
2091 INIT_LIST_HEAD(&c->orph_list);
2092 INIT_LIST_HEAD(&c->orph_new);
2093 c->no_chk_data_crc = 1;
2094 c->assert_action = ASSACT_RO;
2096 c->highest_inum = UBIFS_FIRST_INO;
2097 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2099 ubi_get_volume_info(ubi, &c->vi);
2100 ubi_get_device_info(c->vi.ubi_num, &c->di);
2102 return c;
2105 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2107 struct ubifs_info *c = sb->s_fs_info;
2108 struct inode *root;
2109 int err;
2111 c->vfs_sb = sb;
2112 /* Re-open the UBI device in read-write mode */
2113 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2114 if (IS_ERR(c->ubi)) {
2115 err = PTR_ERR(c->ubi);
2116 goto out;
2119 err = ubifs_parse_options(c, data, 0);
2120 if (err)
2121 goto out_close;
2124 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2125 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2126 * which means the user would have to wait not just for their own I/O
2127 * but the read-ahead I/O as well i.e. completely pointless.
2129 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2130 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2131 * writeback happening.
2133 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2134 c->vi.vol_id);
2135 if (err)
2136 goto out_close;
2138 sb->s_fs_info = c;
2139 sb->s_magic = UBIFS_SUPER_MAGIC;
2140 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2141 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2142 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2143 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2144 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2145 sb->s_op = &ubifs_super_operations;
2146 #ifdef CONFIG_UBIFS_FS_XATTR
2147 sb->s_xattr = ubifs_xattr_handlers;
2148 #endif
2149 #ifdef CONFIG_UBIFS_FS_ENCRYPTION
2150 sb->s_cop = &ubifs_crypt_operations;
2151 #endif
2153 mutex_lock(&c->umount_mutex);
2154 err = mount_ubifs(c);
2155 if (err) {
2156 ubifs_assert(c, err < 0);
2157 goto out_unlock;
2160 /* Read the root inode */
2161 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2162 if (IS_ERR(root)) {
2163 err = PTR_ERR(root);
2164 goto out_umount;
2167 sb->s_root = d_make_root(root);
2168 if (!sb->s_root) {
2169 err = -ENOMEM;
2170 goto out_umount;
2173 mutex_unlock(&c->umount_mutex);
2174 return 0;
2176 out_umount:
2177 ubifs_umount(c);
2178 out_unlock:
2179 mutex_unlock(&c->umount_mutex);
2180 out_close:
2181 ubi_close_volume(c->ubi);
2182 out:
2183 return err;
2186 static int sb_test(struct super_block *sb, void *data)
2188 struct ubifs_info *c1 = data;
2189 struct ubifs_info *c = sb->s_fs_info;
2191 return c->vi.cdev == c1->vi.cdev;
2194 static int sb_set(struct super_block *sb, void *data)
2196 sb->s_fs_info = data;
2197 return set_anon_super(sb, NULL);
2200 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2201 const char *name, void *data)
2203 struct ubi_volume_desc *ubi;
2204 struct ubifs_info *c;
2205 struct super_block *sb;
2206 int err;
2208 dbg_gen("name %s, flags %#x", name, flags);
2211 * Get UBI device number and volume ID. Mount it read-only so far
2212 * because this might be a new mount point, and UBI allows only one
2213 * read-write user at a time.
2215 ubi = open_ubi(name, UBI_READONLY);
2216 if (IS_ERR(ubi)) {
2217 if (!(flags & SB_SILENT))
2218 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2219 current->pid, name, (int)PTR_ERR(ubi));
2220 return ERR_CAST(ubi);
2223 c = alloc_ubifs_info(ubi);
2224 if (!c) {
2225 err = -ENOMEM;
2226 goto out_close;
2229 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2231 sb = sget(fs_type, sb_test, sb_set, flags, c);
2232 if (IS_ERR(sb)) {
2233 err = PTR_ERR(sb);
2234 kfree(c);
2235 goto out_close;
2238 if (sb->s_root) {
2239 struct ubifs_info *c1 = sb->s_fs_info;
2240 kfree(c);
2241 /* A new mount point for already mounted UBIFS */
2242 dbg_gen("this ubi volume is already mounted");
2243 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2244 err = -EBUSY;
2245 goto out_deact;
2247 } else {
2248 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2249 if (err)
2250 goto out_deact;
2251 /* We do not support atime */
2252 sb->s_flags |= SB_ACTIVE;
2253 #ifndef CONFIG_UBIFS_ATIME_SUPPORT
2254 sb->s_flags |= SB_NOATIME;
2255 #else
2256 ubifs_msg(c, "full atime support is enabled.");
2257 #endif
2260 /* 'fill_super()' opens ubi again so we must close it here */
2261 ubi_close_volume(ubi);
2263 return dget(sb->s_root);
2265 out_deact:
2266 deactivate_locked_super(sb);
2267 out_close:
2268 ubi_close_volume(ubi);
2269 return ERR_PTR(err);
2272 static void kill_ubifs_super(struct super_block *s)
2274 struct ubifs_info *c = s->s_fs_info;
2275 kill_anon_super(s);
2276 kfree(c);
2279 static struct file_system_type ubifs_fs_type = {
2280 .name = "ubifs",
2281 .owner = THIS_MODULE,
2282 .mount = ubifs_mount,
2283 .kill_sb = kill_ubifs_super,
2285 MODULE_ALIAS_FS("ubifs");
2288 * Inode slab cache constructor.
2290 static void inode_slab_ctor(void *obj)
2292 struct ubifs_inode *ui = obj;
2293 inode_init_once(&ui->vfs_inode);
2296 static int __init ubifs_init(void)
2298 int err;
2300 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2302 /* Make sure node sizes are 8-byte aligned */
2303 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2304 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2305 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2306 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2307 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2308 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2309 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2310 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2311 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2312 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2313 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2315 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2316 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2317 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2318 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2319 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2320 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2322 /* Check min. node size */
2323 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2324 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2325 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2326 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2328 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2329 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2330 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2331 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2333 /* Defined node sizes */
2334 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2335 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2336 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2337 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2340 * We use 2 bit wide bit-fields to store compression type, which should
2341 * be amended if more compressors are added. The bit-fields are:
2342 * @compr_type in 'struct ubifs_inode', @default_compr in
2343 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2345 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2348 * We require that PAGE_SIZE is greater-than-or-equal-to
2349 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2351 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2352 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2353 current->pid, (unsigned int)PAGE_SIZE);
2354 return -EINVAL;
2357 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2358 sizeof(struct ubifs_inode), 0,
2359 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2360 SLAB_ACCOUNT, &inode_slab_ctor);
2361 if (!ubifs_inode_slab)
2362 return -ENOMEM;
2364 err = register_shrinker(&ubifs_shrinker_info);
2365 if (err)
2366 goto out_slab;
2368 err = ubifs_compressors_init();
2369 if (err)
2370 goto out_shrinker;
2372 err = dbg_debugfs_init();
2373 if (err)
2374 goto out_compr;
2376 err = register_filesystem(&ubifs_fs_type);
2377 if (err) {
2378 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2379 current->pid, err);
2380 goto out_dbg;
2382 return 0;
2384 out_dbg:
2385 dbg_debugfs_exit();
2386 out_compr:
2387 ubifs_compressors_exit();
2388 out_shrinker:
2389 unregister_shrinker(&ubifs_shrinker_info);
2390 out_slab:
2391 kmem_cache_destroy(ubifs_inode_slab);
2392 return err;
2394 /* late_initcall to let compressors initialize first */
2395 late_initcall(ubifs_init);
2397 static void __exit ubifs_exit(void)
2399 WARN_ON(!list_empty(&ubifs_infos));
2400 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2402 dbg_debugfs_exit();
2403 ubifs_compressors_exit();
2404 unregister_shrinker(&ubifs_shrinker_info);
2407 * Make sure all delayed rcu free inodes are flushed before we
2408 * destroy cache.
2410 rcu_barrier();
2411 kmem_cache_destroy(ubifs_inode_slab);
2412 unregister_filesystem(&ubifs_fs_type);
2414 module_exit(ubifs_exit);
2416 MODULE_LICENSE("GPL");
2417 MODULE_VERSION(__stringify(UBIFS_VERSION));
2418 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2419 MODULE_DESCRIPTION("UBIFS - UBI File System");