1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
31 #include <trace/events/f2fs.h>
33 static vm_fault_t
f2fs_filemap_fault(struct vm_fault
*vmf
)
35 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
38 down_read(&F2FS_I(inode
)->i_mmap_sem
);
39 ret
= filemap_fault(vmf
);
40 up_read(&F2FS_I(inode
)->i_mmap_sem
);
42 trace_f2fs_filemap_fault(inode
, vmf
->pgoff
, (unsigned long)ret
);
47 static vm_fault_t
f2fs_vm_page_mkwrite(struct vm_fault
*vmf
)
49 struct page
*page
= vmf
->page
;
50 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
51 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
52 struct dnode_of_data dn
= { .node_changed
= false };
55 if (unlikely(f2fs_cp_error(sbi
))) {
60 sb_start_pagefault(inode
->i_sb
);
62 f2fs_bug_on(sbi
, f2fs_has_inline_data(inode
));
64 file_update_time(vmf
->vma
->vm_file
);
65 down_read(&F2FS_I(inode
)->i_mmap_sem
);
67 if (unlikely(page
->mapping
!= inode
->i_mapping
||
68 page_offset(page
) > i_size_read(inode
) ||
69 !PageUptodate(page
))) {
75 /* block allocation */
76 __do_map_lock(sbi
, F2FS_GET_BLOCK_PRE_AIO
, true);
77 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
78 err
= f2fs_get_block(&dn
, page
->index
);
80 __do_map_lock(sbi
, F2FS_GET_BLOCK_PRE_AIO
, false);
87 f2fs_wait_on_page_writeback(page
, DATA
, false, true);
89 /* wait for GCed page writeback via META_MAPPING */
90 f2fs_wait_on_block_writeback(inode
, dn
.data_blkaddr
);
93 * check to see if the page is mapped already (no holes)
95 if (PageMappedToDisk(page
))
98 /* page is wholly or partially inside EOF */
99 if (((loff_t
)(page
->index
+ 1) << PAGE_SHIFT
) >
100 i_size_read(inode
)) {
103 offset
= i_size_read(inode
) & ~PAGE_MASK
;
104 zero_user_segment(page
, offset
, PAGE_SIZE
);
106 set_page_dirty(page
);
107 if (!PageUptodate(page
))
108 SetPageUptodate(page
);
110 f2fs_update_iostat(sbi
, APP_MAPPED_IO
, F2FS_BLKSIZE
);
111 f2fs_update_time(sbi
, REQ_TIME
);
113 trace_f2fs_vm_page_mkwrite(page
, DATA
);
115 up_read(&F2FS_I(inode
)->i_mmap_sem
);
117 f2fs_balance_fs(sbi
, dn
.node_changed
);
119 sb_end_pagefault(inode
->i_sb
);
121 return block_page_mkwrite_return(err
);
124 static const struct vm_operations_struct f2fs_file_vm_ops
= {
125 .fault
= f2fs_filemap_fault
,
126 .map_pages
= filemap_map_pages
,
127 .page_mkwrite
= f2fs_vm_page_mkwrite
,
130 static int get_parent_ino(struct inode
*inode
, nid_t
*pino
)
132 struct dentry
*dentry
;
134 inode
= igrab(inode
);
135 dentry
= d_find_any_alias(inode
);
140 *pino
= parent_ino(dentry
);
145 static inline enum cp_reason_type
need_do_checkpoint(struct inode
*inode
)
147 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
148 enum cp_reason_type cp_reason
= CP_NO_NEEDED
;
150 if (!S_ISREG(inode
->i_mode
))
151 cp_reason
= CP_NON_REGULAR
;
152 else if (inode
->i_nlink
!= 1)
153 cp_reason
= CP_HARDLINK
;
154 else if (is_sbi_flag_set(sbi
, SBI_NEED_CP
))
155 cp_reason
= CP_SB_NEED_CP
;
156 else if (file_wrong_pino(inode
))
157 cp_reason
= CP_WRONG_PINO
;
158 else if (!f2fs_space_for_roll_forward(sbi
))
159 cp_reason
= CP_NO_SPC_ROLL
;
160 else if (!f2fs_is_checkpointed_node(sbi
, F2FS_I(inode
)->i_pino
))
161 cp_reason
= CP_NODE_NEED_CP
;
162 else if (test_opt(sbi
, FASTBOOT
))
163 cp_reason
= CP_FASTBOOT_MODE
;
164 else if (F2FS_OPTION(sbi
).active_logs
== 2)
165 cp_reason
= CP_SPEC_LOG_NUM
;
166 else if (F2FS_OPTION(sbi
).fsync_mode
== FSYNC_MODE_STRICT
&&
167 f2fs_need_dentry_mark(sbi
, inode
->i_ino
) &&
168 f2fs_exist_written_data(sbi
, F2FS_I(inode
)->i_pino
,
170 cp_reason
= CP_RECOVER_DIR
;
175 static bool need_inode_page_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
177 struct page
*i
= find_get_page(NODE_MAPPING(sbi
), ino
);
179 /* But we need to avoid that there are some inode updates */
180 if ((i
&& PageDirty(i
)) || f2fs_need_inode_block_update(sbi
, ino
))
186 static void try_to_fix_pino(struct inode
*inode
)
188 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
191 down_write(&fi
->i_sem
);
192 if (file_wrong_pino(inode
) && inode
->i_nlink
== 1 &&
193 get_parent_ino(inode
, &pino
)) {
194 f2fs_i_pino_write(inode
, pino
);
195 file_got_pino(inode
);
197 up_write(&fi
->i_sem
);
200 static int f2fs_do_sync_file(struct file
*file
, loff_t start
, loff_t end
,
201 int datasync
, bool atomic
)
203 struct inode
*inode
= file
->f_mapping
->host
;
204 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
205 nid_t ino
= inode
->i_ino
;
207 enum cp_reason_type cp_reason
= 0;
208 struct writeback_control wbc
= {
209 .sync_mode
= WB_SYNC_ALL
,
210 .nr_to_write
= LONG_MAX
,
213 unsigned int seq_id
= 0;
215 if (unlikely(f2fs_readonly(inode
->i_sb
) ||
216 is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
219 trace_f2fs_sync_file_enter(inode
);
221 if (S_ISDIR(inode
->i_mode
))
224 /* if fdatasync is triggered, let's do in-place-update */
225 if (datasync
|| get_dirty_pages(inode
) <= SM_I(sbi
)->min_fsync_blocks
)
226 set_inode_flag(inode
, FI_NEED_IPU
);
227 ret
= file_write_and_wait_range(file
, start
, end
);
228 clear_inode_flag(inode
, FI_NEED_IPU
);
231 trace_f2fs_sync_file_exit(inode
, cp_reason
, datasync
, ret
);
235 /* if the inode is dirty, let's recover all the time */
236 if (!f2fs_skip_inode_update(inode
, datasync
)) {
237 f2fs_write_inode(inode
, NULL
);
242 * if there is no written data, don't waste time to write recovery info.
244 if (!is_inode_flag_set(inode
, FI_APPEND_WRITE
) &&
245 !f2fs_exist_written_data(sbi
, ino
, APPEND_INO
)) {
247 /* it may call write_inode just prior to fsync */
248 if (need_inode_page_update(sbi
, ino
))
251 if (is_inode_flag_set(inode
, FI_UPDATE_WRITE
) ||
252 f2fs_exist_written_data(sbi
, ino
, UPDATE_INO
))
258 * Both of fdatasync() and fsync() are able to be recovered from
261 down_read(&F2FS_I(inode
)->i_sem
);
262 cp_reason
= need_do_checkpoint(inode
);
263 up_read(&F2FS_I(inode
)->i_sem
);
266 /* all the dirty node pages should be flushed for POR */
267 ret
= f2fs_sync_fs(inode
->i_sb
, 1);
270 * We've secured consistency through sync_fs. Following pino
271 * will be used only for fsynced inodes after checkpoint.
273 try_to_fix_pino(inode
);
274 clear_inode_flag(inode
, FI_APPEND_WRITE
);
275 clear_inode_flag(inode
, FI_UPDATE_WRITE
);
279 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
280 ret
= f2fs_fsync_node_pages(sbi
, inode
, &wbc
, atomic
, &seq_id
);
281 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
285 /* if cp_error was enabled, we should avoid infinite loop */
286 if (unlikely(f2fs_cp_error(sbi
))) {
291 if (f2fs_need_inode_block_update(sbi
, ino
)) {
292 f2fs_mark_inode_dirty_sync(inode
, true);
293 f2fs_write_inode(inode
, NULL
);
298 * If it's atomic_write, it's just fine to keep write ordering. So
299 * here we don't need to wait for node write completion, since we use
300 * node chain which serializes node blocks. If one of node writes are
301 * reordered, we can see simply broken chain, resulting in stopping
302 * roll-forward recovery. It means we'll recover all or none node blocks
306 ret
= f2fs_wait_on_node_pages_writeback(sbi
, seq_id
);
311 /* once recovery info is written, don't need to tack this */
312 f2fs_remove_ino_entry(sbi
, ino
, APPEND_INO
);
313 clear_inode_flag(inode
, FI_APPEND_WRITE
);
315 if (!atomic
&& F2FS_OPTION(sbi
).fsync_mode
!= FSYNC_MODE_NOBARRIER
)
316 ret
= f2fs_issue_flush(sbi
, inode
->i_ino
);
318 f2fs_remove_ino_entry(sbi
, ino
, UPDATE_INO
);
319 clear_inode_flag(inode
, FI_UPDATE_WRITE
);
320 f2fs_remove_ino_entry(sbi
, ino
, FLUSH_INO
);
322 f2fs_update_time(sbi
, REQ_TIME
);
324 trace_f2fs_sync_file_exit(inode
, cp_reason
, datasync
, ret
);
325 f2fs_trace_ios(NULL
, 1);
329 int f2fs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
331 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file
)))))
333 return f2fs_do_sync_file(file
, start
, end
, datasync
, false);
336 static pgoff_t
__get_first_dirty_index(struct address_space
*mapping
,
337 pgoff_t pgofs
, int whence
)
342 if (whence
!= SEEK_DATA
)
345 /* find first dirty page index */
346 nr_pages
= find_get_pages_tag(mapping
, &pgofs
, PAGECACHE_TAG_DIRTY
,
355 static bool __found_offset(struct f2fs_sb_info
*sbi
, block_t blkaddr
,
356 pgoff_t dirty
, pgoff_t pgofs
, int whence
)
360 if ((blkaddr
== NEW_ADDR
&& dirty
== pgofs
) ||
361 __is_valid_data_blkaddr(blkaddr
))
365 if (blkaddr
== NULL_ADDR
)
372 static loff_t
f2fs_seek_block(struct file
*file
, loff_t offset
, int whence
)
374 struct inode
*inode
= file
->f_mapping
->host
;
375 loff_t maxbytes
= inode
->i_sb
->s_maxbytes
;
376 struct dnode_of_data dn
;
377 pgoff_t pgofs
, end_offset
, dirty
;
378 loff_t data_ofs
= offset
;
384 isize
= i_size_read(inode
);
388 /* handle inline data case */
389 if (f2fs_has_inline_data(inode
) || f2fs_has_inline_dentry(inode
)) {
390 if (whence
== SEEK_HOLE
)
395 pgofs
= (pgoff_t
)(offset
>> PAGE_SHIFT
);
397 dirty
= __get_first_dirty_index(inode
->i_mapping
, pgofs
, whence
);
399 for (; data_ofs
< isize
; data_ofs
= (loff_t
)pgofs
<< PAGE_SHIFT
) {
400 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
401 err
= f2fs_get_dnode_of_data(&dn
, pgofs
, LOOKUP_NODE
);
402 if (err
&& err
!= -ENOENT
) {
404 } else if (err
== -ENOENT
) {
405 /* direct node does not exists */
406 if (whence
== SEEK_DATA
) {
407 pgofs
= f2fs_get_next_page_offset(&dn
, pgofs
);
414 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, inode
);
416 /* find data/hole in dnode block */
417 for (; dn
.ofs_in_node
< end_offset
;
418 dn
.ofs_in_node
++, pgofs
++,
419 data_ofs
= (loff_t
)pgofs
<< PAGE_SHIFT
) {
422 blkaddr
= datablock_addr(dn
.inode
,
423 dn
.node_page
, dn
.ofs_in_node
);
425 if (__is_valid_data_blkaddr(blkaddr
) &&
426 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode
),
427 blkaddr
, DATA_GENERIC_ENHANCE
)) {
432 if (__found_offset(F2FS_I_SB(inode
), blkaddr
, dirty
,
441 if (whence
== SEEK_DATA
)
444 if (whence
== SEEK_HOLE
&& data_ofs
> isize
)
447 return vfs_setpos(file
, data_ofs
, maxbytes
);
453 static loff_t
f2fs_llseek(struct file
*file
, loff_t offset
, int whence
)
455 struct inode
*inode
= file
->f_mapping
->host
;
456 loff_t maxbytes
= inode
->i_sb
->s_maxbytes
;
462 return generic_file_llseek_size(file
, offset
, whence
,
463 maxbytes
, i_size_read(inode
));
468 return f2fs_seek_block(file
, offset
, whence
);
474 static int f2fs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
476 struct inode
*inode
= file_inode(file
);
479 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
))))
482 /* we don't need to use inline_data strictly */
483 err
= f2fs_convert_inline_inode(inode
);
488 vma
->vm_ops
= &f2fs_file_vm_ops
;
492 static int f2fs_file_open(struct inode
*inode
, struct file
*filp
)
494 int err
= fscrypt_file_open(inode
, filp
);
499 filp
->f_mode
|= FMODE_NOWAIT
;
501 return dquot_file_open(inode
, filp
);
504 void f2fs_truncate_data_blocks_range(struct dnode_of_data
*dn
, int count
)
506 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
507 struct f2fs_node
*raw_node
;
508 int nr_free
= 0, ofs
= dn
->ofs_in_node
, len
= count
;
512 if (IS_INODE(dn
->node_page
) && f2fs_has_extra_attr(dn
->inode
))
513 base
= get_extra_isize(dn
->inode
);
515 raw_node
= F2FS_NODE(dn
->node_page
);
516 addr
= blkaddr_in_node(raw_node
) + base
+ ofs
;
518 for (; count
> 0; count
--, addr
++, dn
->ofs_in_node
++) {
519 block_t blkaddr
= le32_to_cpu(*addr
);
521 if (blkaddr
== NULL_ADDR
)
524 dn
->data_blkaddr
= NULL_ADDR
;
525 f2fs_set_data_blkaddr(dn
);
527 if (__is_valid_data_blkaddr(blkaddr
) &&
528 !f2fs_is_valid_blkaddr(sbi
, blkaddr
,
529 DATA_GENERIC_ENHANCE
))
532 f2fs_invalidate_blocks(sbi
, blkaddr
);
533 if (dn
->ofs_in_node
== 0 && IS_INODE(dn
->node_page
))
534 clear_inode_flag(dn
->inode
, FI_FIRST_BLOCK_WRITTEN
);
541 * once we invalidate valid blkaddr in range [ofs, ofs + count],
542 * we will invalidate all blkaddr in the whole range.
544 fofs
= f2fs_start_bidx_of_node(ofs_of_node(dn
->node_page
),
546 f2fs_update_extent_cache_range(dn
, fofs
, 0, len
);
547 dec_valid_block_count(sbi
, dn
->inode
, nr_free
);
549 dn
->ofs_in_node
= ofs
;
551 f2fs_update_time(sbi
, REQ_TIME
);
552 trace_f2fs_truncate_data_blocks_range(dn
->inode
, dn
->nid
,
553 dn
->ofs_in_node
, nr_free
);
556 void f2fs_truncate_data_blocks(struct dnode_of_data
*dn
)
558 f2fs_truncate_data_blocks_range(dn
, ADDRS_PER_BLOCK(dn
->inode
));
561 static int truncate_partial_data_page(struct inode
*inode
, u64 from
,
564 loff_t offset
= from
& (PAGE_SIZE
- 1);
565 pgoff_t index
= from
>> PAGE_SHIFT
;
566 struct address_space
*mapping
= inode
->i_mapping
;
569 if (!offset
&& !cache_only
)
573 page
= find_lock_page(mapping
, index
);
574 if (page
&& PageUptodate(page
))
576 f2fs_put_page(page
, 1);
580 page
= f2fs_get_lock_data_page(inode
, index
, true);
582 return PTR_ERR(page
) == -ENOENT
? 0 : PTR_ERR(page
);
584 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
585 zero_user(page
, offset
, PAGE_SIZE
- offset
);
587 /* An encrypted inode should have a key and truncate the last page. */
588 f2fs_bug_on(F2FS_I_SB(inode
), cache_only
&& IS_ENCRYPTED(inode
));
590 set_page_dirty(page
);
591 f2fs_put_page(page
, 1);
595 int f2fs_truncate_blocks(struct inode
*inode
, u64 from
, bool lock
)
597 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
598 struct dnode_of_data dn
;
600 int count
= 0, err
= 0;
602 bool truncate_page
= false;
604 trace_f2fs_truncate_blocks_enter(inode
, from
);
606 free_from
= (pgoff_t
)F2FS_BLK_ALIGN(from
);
608 if (free_from
>= sbi
->max_file_blocks
)
614 ipage
= f2fs_get_node_page(sbi
, inode
->i_ino
);
616 err
= PTR_ERR(ipage
);
620 if (f2fs_has_inline_data(inode
)) {
621 f2fs_truncate_inline_inode(inode
, ipage
, from
);
622 f2fs_put_page(ipage
, 1);
623 truncate_page
= true;
627 set_new_dnode(&dn
, inode
, ipage
, NULL
, 0);
628 err
= f2fs_get_dnode_of_data(&dn
, free_from
, LOOKUP_NODE_RA
);
635 count
= ADDRS_PER_PAGE(dn
.node_page
, inode
);
637 count
-= dn
.ofs_in_node
;
638 f2fs_bug_on(sbi
, count
< 0);
640 if (dn
.ofs_in_node
|| IS_INODE(dn
.node_page
)) {
641 f2fs_truncate_data_blocks_range(&dn
, count
);
647 err
= f2fs_truncate_inode_blocks(inode
, free_from
);
652 /* lastly zero out the first data page */
654 err
= truncate_partial_data_page(inode
, from
, truncate_page
);
656 trace_f2fs_truncate_blocks_exit(inode
, err
);
660 int f2fs_truncate(struct inode
*inode
)
664 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
))))
667 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
668 S_ISLNK(inode
->i_mode
)))
671 trace_f2fs_truncate(inode
);
673 if (time_to_inject(F2FS_I_SB(inode
), FAULT_TRUNCATE
)) {
674 f2fs_show_injection_info(FAULT_TRUNCATE
);
678 /* we should check inline_data size */
679 if (!f2fs_may_inline_data(inode
)) {
680 err
= f2fs_convert_inline_inode(inode
);
685 err
= f2fs_truncate_blocks(inode
, i_size_read(inode
), true);
689 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
690 f2fs_mark_inode_dirty_sync(inode
, false);
694 int f2fs_getattr(const struct path
*path
, struct kstat
*stat
,
695 u32 request_mask
, unsigned int query_flags
)
697 struct inode
*inode
= d_inode(path
->dentry
);
698 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
699 struct f2fs_inode
*ri
;
702 if (f2fs_has_extra_attr(inode
) &&
703 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode
)) &&
704 F2FS_FITS_IN_INODE(ri
, fi
->i_extra_isize
, i_crtime
)) {
705 stat
->result_mask
|= STATX_BTIME
;
706 stat
->btime
.tv_sec
= fi
->i_crtime
.tv_sec
;
707 stat
->btime
.tv_nsec
= fi
->i_crtime
.tv_nsec
;
710 flags
= fi
->i_flags
& F2FS_FL_USER_VISIBLE
;
711 if (flags
& F2FS_APPEND_FL
)
712 stat
->attributes
|= STATX_ATTR_APPEND
;
713 if (flags
& F2FS_COMPR_FL
)
714 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
715 if (IS_ENCRYPTED(inode
))
716 stat
->attributes
|= STATX_ATTR_ENCRYPTED
;
717 if (flags
& F2FS_IMMUTABLE_FL
)
718 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
719 if (flags
& F2FS_NODUMP_FL
)
720 stat
->attributes
|= STATX_ATTR_NODUMP
;
722 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
723 STATX_ATTR_COMPRESSED
|
724 STATX_ATTR_ENCRYPTED
|
725 STATX_ATTR_IMMUTABLE
|
728 generic_fillattr(inode
, stat
);
730 /* we need to show initial sectors used for inline_data/dentries */
731 if ((S_ISREG(inode
->i_mode
) && f2fs_has_inline_data(inode
)) ||
732 f2fs_has_inline_dentry(inode
))
733 stat
->blocks
+= (stat
->size
+ 511) >> 9;
738 #ifdef CONFIG_F2FS_FS_POSIX_ACL
739 static void __setattr_copy(struct inode
*inode
, const struct iattr
*attr
)
741 unsigned int ia_valid
= attr
->ia_valid
;
743 if (ia_valid
& ATTR_UID
)
744 inode
->i_uid
= attr
->ia_uid
;
745 if (ia_valid
& ATTR_GID
)
746 inode
->i_gid
= attr
->ia_gid
;
747 if (ia_valid
& ATTR_ATIME
)
748 inode
->i_atime
= timespec64_trunc(attr
->ia_atime
,
749 inode
->i_sb
->s_time_gran
);
750 if (ia_valid
& ATTR_MTIME
)
751 inode
->i_mtime
= timespec64_trunc(attr
->ia_mtime
,
752 inode
->i_sb
->s_time_gran
);
753 if (ia_valid
& ATTR_CTIME
)
754 inode
->i_ctime
= timespec64_trunc(attr
->ia_ctime
,
755 inode
->i_sb
->s_time_gran
);
756 if (ia_valid
& ATTR_MODE
) {
757 umode_t mode
= attr
->ia_mode
;
759 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
761 set_acl_inode(inode
, mode
);
765 #define __setattr_copy setattr_copy
768 int f2fs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
770 struct inode
*inode
= d_inode(dentry
);
773 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
))))
776 err
= setattr_prepare(dentry
, attr
);
780 err
= fscrypt_prepare_setattr(dentry
, attr
);
784 if (is_quota_modification(inode
, attr
)) {
785 err
= dquot_initialize(inode
);
789 if ((attr
->ia_valid
& ATTR_UID
&&
790 !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
791 (attr
->ia_valid
& ATTR_GID
&&
792 !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
793 f2fs_lock_op(F2FS_I_SB(inode
));
794 err
= dquot_transfer(inode
, attr
);
796 set_sbi_flag(F2FS_I_SB(inode
),
797 SBI_QUOTA_NEED_REPAIR
);
798 f2fs_unlock_op(F2FS_I_SB(inode
));
802 * update uid/gid under lock_op(), so that dquot and inode can
803 * be updated atomically.
805 if (attr
->ia_valid
& ATTR_UID
)
806 inode
->i_uid
= attr
->ia_uid
;
807 if (attr
->ia_valid
& ATTR_GID
)
808 inode
->i_gid
= attr
->ia_gid
;
809 f2fs_mark_inode_dirty_sync(inode
, true);
810 f2fs_unlock_op(F2FS_I_SB(inode
));
813 if (attr
->ia_valid
& ATTR_SIZE
) {
814 bool to_smaller
= (attr
->ia_size
<= i_size_read(inode
));
816 down_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
817 down_write(&F2FS_I(inode
)->i_mmap_sem
);
819 truncate_setsize(inode
, attr
->ia_size
);
822 err
= f2fs_truncate(inode
);
824 * do not trim all blocks after i_size if target size is
825 * larger than i_size.
827 up_write(&F2FS_I(inode
)->i_mmap_sem
);
828 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
834 /* should convert inline inode here */
835 if (!f2fs_may_inline_data(inode
)) {
836 err
= f2fs_convert_inline_inode(inode
);
840 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
843 down_write(&F2FS_I(inode
)->i_sem
);
844 F2FS_I(inode
)->last_disk_size
= i_size_read(inode
);
845 up_write(&F2FS_I(inode
)->i_sem
);
848 __setattr_copy(inode
, attr
);
850 if (attr
->ia_valid
& ATTR_MODE
) {
851 err
= posix_acl_chmod(inode
, f2fs_get_inode_mode(inode
));
852 if (err
|| is_inode_flag_set(inode
, FI_ACL_MODE
)) {
853 inode
->i_mode
= F2FS_I(inode
)->i_acl_mode
;
854 clear_inode_flag(inode
, FI_ACL_MODE
);
858 /* file size may changed here */
859 f2fs_mark_inode_dirty_sync(inode
, true);
861 /* inode change will produce dirty node pages flushed by checkpoint */
862 f2fs_balance_fs(F2FS_I_SB(inode
), true);
867 const struct inode_operations f2fs_file_inode_operations
= {
868 .getattr
= f2fs_getattr
,
869 .setattr
= f2fs_setattr
,
870 .get_acl
= f2fs_get_acl
,
871 .set_acl
= f2fs_set_acl
,
872 #ifdef CONFIG_F2FS_FS_XATTR
873 .listxattr
= f2fs_listxattr
,
875 .fiemap
= f2fs_fiemap
,
878 static int fill_zero(struct inode
*inode
, pgoff_t index
,
879 loff_t start
, loff_t len
)
881 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
887 f2fs_balance_fs(sbi
, true);
890 page
= f2fs_get_new_data_page(inode
, NULL
, index
, false);
894 return PTR_ERR(page
);
896 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
897 zero_user(page
, start
, len
);
898 set_page_dirty(page
);
899 f2fs_put_page(page
, 1);
903 int f2fs_truncate_hole(struct inode
*inode
, pgoff_t pg_start
, pgoff_t pg_end
)
907 while (pg_start
< pg_end
) {
908 struct dnode_of_data dn
;
909 pgoff_t end_offset
, count
;
911 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
912 err
= f2fs_get_dnode_of_data(&dn
, pg_start
, LOOKUP_NODE
);
914 if (err
== -ENOENT
) {
915 pg_start
= f2fs_get_next_page_offset(&dn
,
922 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, inode
);
923 count
= min(end_offset
- dn
.ofs_in_node
, pg_end
- pg_start
);
925 f2fs_bug_on(F2FS_I_SB(inode
), count
== 0 || count
> end_offset
);
927 f2fs_truncate_data_blocks_range(&dn
, count
);
935 static int punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
937 pgoff_t pg_start
, pg_end
;
938 loff_t off_start
, off_end
;
941 ret
= f2fs_convert_inline_inode(inode
);
945 pg_start
= ((unsigned long long) offset
) >> PAGE_SHIFT
;
946 pg_end
= ((unsigned long long) offset
+ len
) >> PAGE_SHIFT
;
948 off_start
= offset
& (PAGE_SIZE
- 1);
949 off_end
= (offset
+ len
) & (PAGE_SIZE
- 1);
951 if (pg_start
== pg_end
) {
952 ret
= fill_zero(inode
, pg_start
, off_start
,
953 off_end
- off_start
);
958 ret
= fill_zero(inode
, pg_start
++, off_start
,
959 PAGE_SIZE
- off_start
);
964 ret
= fill_zero(inode
, pg_end
, 0, off_end
);
969 if (pg_start
< pg_end
) {
970 struct address_space
*mapping
= inode
->i_mapping
;
971 loff_t blk_start
, blk_end
;
972 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
974 f2fs_balance_fs(sbi
, true);
976 blk_start
= (loff_t
)pg_start
<< PAGE_SHIFT
;
977 blk_end
= (loff_t
)pg_end
<< PAGE_SHIFT
;
979 down_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
980 down_write(&F2FS_I(inode
)->i_mmap_sem
);
982 truncate_inode_pages_range(mapping
, blk_start
,
986 ret
= f2fs_truncate_hole(inode
, pg_start
, pg_end
);
989 up_write(&F2FS_I(inode
)->i_mmap_sem
);
990 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
997 static int __read_out_blkaddrs(struct inode
*inode
, block_t
*blkaddr
,
998 int *do_replace
, pgoff_t off
, pgoff_t len
)
1000 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1001 struct dnode_of_data dn
;
1005 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
1006 ret
= f2fs_get_dnode_of_data(&dn
, off
, LOOKUP_NODE_RA
);
1007 if (ret
&& ret
!= -ENOENT
) {
1009 } else if (ret
== -ENOENT
) {
1010 if (dn
.max_level
== 0)
1012 done
= min((pgoff_t
)ADDRS_PER_BLOCK(inode
) - dn
.ofs_in_node
,
1019 done
= min((pgoff_t
)ADDRS_PER_PAGE(dn
.node_page
, inode
) -
1020 dn
.ofs_in_node
, len
);
1021 for (i
= 0; i
< done
; i
++, blkaddr
++, do_replace
++, dn
.ofs_in_node
++) {
1022 *blkaddr
= datablock_addr(dn
.inode
,
1023 dn
.node_page
, dn
.ofs_in_node
);
1025 if (__is_valid_data_blkaddr(*blkaddr
) &&
1026 !f2fs_is_valid_blkaddr(sbi
, *blkaddr
,
1027 DATA_GENERIC_ENHANCE
)) {
1028 f2fs_put_dnode(&dn
);
1032 if (!f2fs_is_checkpointed_data(sbi
, *blkaddr
)) {
1034 if (test_opt(sbi
, LFS
)) {
1035 f2fs_put_dnode(&dn
);
1039 /* do not invalidate this block address */
1040 f2fs_update_data_blkaddr(&dn
, NULL_ADDR
);
1044 f2fs_put_dnode(&dn
);
1053 static int __roll_back_blkaddrs(struct inode
*inode
, block_t
*blkaddr
,
1054 int *do_replace
, pgoff_t off
, int len
)
1056 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1057 struct dnode_of_data dn
;
1060 for (i
= 0; i
< len
; i
++, do_replace
++, blkaddr
++) {
1061 if (*do_replace
== 0)
1064 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
1065 ret
= f2fs_get_dnode_of_data(&dn
, off
+ i
, LOOKUP_NODE_RA
);
1067 dec_valid_block_count(sbi
, inode
, 1);
1068 f2fs_invalidate_blocks(sbi
, *blkaddr
);
1070 f2fs_update_data_blkaddr(&dn
, *blkaddr
);
1072 f2fs_put_dnode(&dn
);
1077 static int __clone_blkaddrs(struct inode
*src_inode
, struct inode
*dst_inode
,
1078 block_t
*blkaddr
, int *do_replace
,
1079 pgoff_t src
, pgoff_t dst
, pgoff_t len
, bool full
)
1081 struct f2fs_sb_info
*sbi
= F2FS_I_SB(src_inode
);
1086 if (blkaddr
[i
] == NULL_ADDR
&& !full
) {
1091 if (do_replace
[i
] || blkaddr
[i
] == NULL_ADDR
) {
1092 struct dnode_of_data dn
;
1093 struct node_info ni
;
1097 set_new_dnode(&dn
, dst_inode
, NULL
, NULL
, 0);
1098 ret
= f2fs_get_dnode_of_data(&dn
, dst
+ i
, ALLOC_NODE
);
1102 ret
= f2fs_get_node_info(sbi
, dn
.nid
, &ni
);
1104 f2fs_put_dnode(&dn
);
1108 ilen
= min((pgoff_t
)
1109 ADDRS_PER_PAGE(dn
.node_page
, dst_inode
) -
1110 dn
.ofs_in_node
, len
- i
);
1112 dn
.data_blkaddr
= datablock_addr(dn
.inode
,
1113 dn
.node_page
, dn
.ofs_in_node
);
1114 f2fs_truncate_data_blocks_range(&dn
, 1);
1116 if (do_replace
[i
]) {
1117 f2fs_i_blocks_write(src_inode
,
1119 f2fs_i_blocks_write(dst_inode
,
1121 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
1122 blkaddr
[i
], ni
.version
, true, false);
1128 new_size
= (dst
+ i
) << PAGE_SHIFT
;
1129 if (dst_inode
->i_size
< new_size
)
1130 f2fs_i_size_write(dst_inode
, new_size
);
1131 } while (--ilen
&& (do_replace
[i
] || blkaddr
[i
] == NULL_ADDR
));
1133 f2fs_put_dnode(&dn
);
1135 struct page
*psrc
, *pdst
;
1137 psrc
= f2fs_get_lock_data_page(src_inode
,
1140 return PTR_ERR(psrc
);
1141 pdst
= f2fs_get_new_data_page(dst_inode
, NULL
, dst
+ i
,
1144 f2fs_put_page(psrc
, 1);
1145 return PTR_ERR(pdst
);
1147 f2fs_copy_page(psrc
, pdst
);
1148 set_page_dirty(pdst
);
1149 f2fs_put_page(pdst
, 1);
1150 f2fs_put_page(psrc
, 1);
1152 ret
= f2fs_truncate_hole(src_inode
,
1153 src
+ i
, src
+ i
+ 1);
1162 static int __exchange_data_block(struct inode
*src_inode
,
1163 struct inode
*dst_inode
, pgoff_t src
, pgoff_t dst
,
1164 pgoff_t len
, bool full
)
1166 block_t
*src_blkaddr
;
1172 olen
= min((pgoff_t
)4 * ADDRS_PER_BLOCK(src_inode
), len
);
1174 src_blkaddr
= f2fs_kvzalloc(F2FS_I_SB(src_inode
),
1175 array_size(olen
, sizeof(block_t
)),
1180 do_replace
= f2fs_kvzalloc(F2FS_I_SB(src_inode
),
1181 array_size(olen
, sizeof(int)),
1184 kvfree(src_blkaddr
);
1188 ret
= __read_out_blkaddrs(src_inode
, src_blkaddr
,
1189 do_replace
, src
, olen
);
1193 ret
= __clone_blkaddrs(src_inode
, dst_inode
, src_blkaddr
,
1194 do_replace
, src
, dst
, olen
, full
);
1202 kvfree(src_blkaddr
);
1208 __roll_back_blkaddrs(src_inode
, src_blkaddr
, do_replace
, src
, olen
);
1209 kvfree(src_blkaddr
);
1214 static int f2fs_do_collapse(struct inode
*inode
, loff_t offset
, loff_t len
)
1216 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1217 pgoff_t nrpages
= (i_size_read(inode
) + PAGE_SIZE
- 1) / PAGE_SIZE
;
1218 pgoff_t start
= offset
>> PAGE_SHIFT
;
1219 pgoff_t end
= (offset
+ len
) >> PAGE_SHIFT
;
1222 f2fs_balance_fs(sbi
, true);
1224 /* avoid gc operation during block exchange */
1225 down_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1226 down_write(&F2FS_I(inode
)->i_mmap_sem
);
1229 f2fs_drop_extent_tree(inode
);
1230 truncate_pagecache(inode
, offset
);
1231 ret
= __exchange_data_block(inode
, inode
, end
, start
, nrpages
- end
, true);
1232 f2fs_unlock_op(sbi
);
1234 up_write(&F2FS_I(inode
)->i_mmap_sem
);
1235 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1239 static int f2fs_collapse_range(struct inode
*inode
, loff_t offset
, loff_t len
)
1244 if (offset
+ len
>= i_size_read(inode
))
1247 /* collapse range should be aligned to block size of f2fs. */
1248 if (offset
& (F2FS_BLKSIZE
- 1) || len
& (F2FS_BLKSIZE
- 1))
1251 ret
= f2fs_convert_inline_inode(inode
);
1255 /* write out all dirty pages from offset */
1256 ret
= filemap_write_and_wait_range(inode
->i_mapping
, offset
, LLONG_MAX
);
1260 ret
= f2fs_do_collapse(inode
, offset
, len
);
1264 /* write out all moved pages, if possible */
1265 down_write(&F2FS_I(inode
)->i_mmap_sem
);
1266 filemap_write_and_wait_range(inode
->i_mapping
, offset
, LLONG_MAX
);
1267 truncate_pagecache(inode
, offset
);
1269 new_size
= i_size_read(inode
) - len
;
1270 truncate_pagecache(inode
, new_size
);
1272 ret
= f2fs_truncate_blocks(inode
, new_size
, true);
1273 up_write(&F2FS_I(inode
)->i_mmap_sem
);
1275 f2fs_i_size_write(inode
, new_size
);
1279 static int f2fs_do_zero_range(struct dnode_of_data
*dn
, pgoff_t start
,
1282 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1283 pgoff_t index
= start
;
1284 unsigned int ofs_in_node
= dn
->ofs_in_node
;
1288 for (; index
< end
; index
++, dn
->ofs_in_node
++) {
1289 if (datablock_addr(dn
->inode
, dn
->node_page
,
1290 dn
->ofs_in_node
) == NULL_ADDR
)
1294 dn
->ofs_in_node
= ofs_in_node
;
1295 ret
= f2fs_reserve_new_blocks(dn
, count
);
1299 dn
->ofs_in_node
= ofs_in_node
;
1300 for (index
= start
; index
< end
; index
++, dn
->ofs_in_node
++) {
1301 dn
->data_blkaddr
= datablock_addr(dn
->inode
,
1302 dn
->node_page
, dn
->ofs_in_node
);
1304 * f2fs_reserve_new_blocks will not guarantee entire block
1307 if (dn
->data_blkaddr
== NULL_ADDR
) {
1311 if (dn
->data_blkaddr
!= NEW_ADDR
) {
1312 f2fs_invalidate_blocks(sbi
, dn
->data_blkaddr
);
1313 dn
->data_blkaddr
= NEW_ADDR
;
1314 f2fs_set_data_blkaddr(dn
);
1318 f2fs_update_extent_cache_range(dn
, start
, 0, index
- start
);
1323 static int f2fs_zero_range(struct inode
*inode
, loff_t offset
, loff_t len
,
1326 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1327 struct address_space
*mapping
= inode
->i_mapping
;
1328 pgoff_t index
, pg_start
, pg_end
;
1329 loff_t new_size
= i_size_read(inode
);
1330 loff_t off_start
, off_end
;
1333 ret
= inode_newsize_ok(inode
, (len
+ offset
));
1337 ret
= f2fs_convert_inline_inode(inode
);
1341 ret
= filemap_write_and_wait_range(mapping
, offset
, offset
+ len
- 1);
1345 pg_start
= ((unsigned long long) offset
) >> PAGE_SHIFT
;
1346 pg_end
= ((unsigned long long) offset
+ len
) >> PAGE_SHIFT
;
1348 off_start
= offset
& (PAGE_SIZE
- 1);
1349 off_end
= (offset
+ len
) & (PAGE_SIZE
- 1);
1351 if (pg_start
== pg_end
) {
1352 ret
= fill_zero(inode
, pg_start
, off_start
,
1353 off_end
- off_start
);
1357 new_size
= max_t(loff_t
, new_size
, offset
+ len
);
1360 ret
= fill_zero(inode
, pg_start
++, off_start
,
1361 PAGE_SIZE
- off_start
);
1365 new_size
= max_t(loff_t
, new_size
,
1366 (loff_t
)pg_start
<< PAGE_SHIFT
);
1369 for (index
= pg_start
; index
< pg_end
;) {
1370 struct dnode_of_data dn
;
1371 unsigned int end_offset
;
1374 down_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1375 down_write(&F2FS_I(inode
)->i_mmap_sem
);
1377 truncate_pagecache_range(inode
,
1378 (loff_t
)index
<< PAGE_SHIFT
,
1379 ((loff_t
)pg_end
<< PAGE_SHIFT
) - 1);
1383 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
1384 ret
= f2fs_get_dnode_of_data(&dn
, index
, ALLOC_NODE
);
1386 f2fs_unlock_op(sbi
);
1387 up_write(&F2FS_I(inode
)->i_mmap_sem
);
1388 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1392 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, inode
);
1393 end
= min(pg_end
, end_offset
- dn
.ofs_in_node
+ index
);
1395 ret
= f2fs_do_zero_range(&dn
, index
, end
);
1396 f2fs_put_dnode(&dn
);
1398 f2fs_unlock_op(sbi
);
1399 up_write(&F2FS_I(inode
)->i_mmap_sem
);
1400 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1402 f2fs_balance_fs(sbi
, dn
.node_changed
);
1408 new_size
= max_t(loff_t
, new_size
,
1409 (loff_t
)index
<< PAGE_SHIFT
);
1413 ret
= fill_zero(inode
, pg_end
, 0, off_end
);
1417 new_size
= max_t(loff_t
, new_size
, offset
+ len
);
1422 if (new_size
> i_size_read(inode
)) {
1423 if (mode
& FALLOC_FL_KEEP_SIZE
)
1424 file_set_keep_isize(inode
);
1426 f2fs_i_size_write(inode
, new_size
);
1431 static int f2fs_insert_range(struct inode
*inode
, loff_t offset
, loff_t len
)
1433 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1434 pgoff_t nr
, pg_start
, pg_end
, delta
, idx
;
1438 new_size
= i_size_read(inode
) + len
;
1439 ret
= inode_newsize_ok(inode
, new_size
);
1443 if (offset
>= i_size_read(inode
))
1446 /* insert range should be aligned to block size of f2fs. */
1447 if (offset
& (F2FS_BLKSIZE
- 1) || len
& (F2FS_BLKSIZE
- 1))
1450 ret
= f2fs_convert_inline_inode(inode
);
1454 f2fs_balance_fs(sbi
, true);
1456 down_write(&F2FS_I(inode
)->i_mmap_sem
);
1457 ret
= f2fs_truncate_blocks(inode
, i_size_read(inode
), true);
1458 up_write(&F2FS_I(inode
)->i_mmap_sem
);
1462 /* write out all dirty pages from offset */
1463 ret
= filemap_write_and_wait_range(inode
->i_mapping
, offset
, LLONG_MAX
);
1467 pg_start
= offset
>> PAGE_SHIFT
;
1468 pg_end
= (offset
+ len
) >> PAGE_SHIFT
;
1469 delta
= pg_end
- pg_start
;
1470 idx
= (i_size_read(inode
) + PAGE_SIZE
- 1) / PAGE_SIZE
;
1472 /* avoid gc operation during block exchange */
1473 down_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1474 down_write(&F2FS_I(inode
)->i_mmap_sem
);
1475 truncate_pagecache(inode
, offset
);
1477 while (!ret
&& idx
> pg_start
) {
1478 nr
= idx
- pg_start
;
1484 f2fs_drop_extent_tree(inode
);
1486 ret
= __exchange_data_block(inode
, inode
, idx
,
1487 idx
+ delta
, nr
, false);
1488 f2fs_unlock_op(sbi
);
1490 up_write(&F2FS_I(inode
)->i_mmap_sem
);
1491 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1493 /* write out all moved pages, if possible */
1494 down_write(&F2FS_I(inode
)->i_mmap_sem
);
1495 filemap_write_and_wait_range(inode
->i_mapping
, offset
, LLONG_MAX
);
1496 truncate_pagecache(inode
, offset
);
1497 up_write(&F2FS_I(inode
)->i_mmap_sem
);
1500 f2fs_i_size_write(inode
, new_size
);
1504 static int expand_inode_data(struct inode
*inode
, loff_t offset
,
1505 loff_t len
, int mode
)
1507 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1508 struct f2fs_map_blocks map
= { .m_next_pgofs
= NULL
,
1509 .m_next_extent
= NULL
, .m_seg_type
= NO_CHECK_TYPE
,
1510 .m_may_create
= true };
1512 loff_t new_size
= i_size_read(inode
);
1516 err
= inode_newsize_ok(inode
, (len
+ offset
));
1520 err
= f2fs_convert_inline_inode(inode
);
1524 f2fs_balance_fs(sbi
, true);
1526 pg_end
= ((unsigned long long)offset
+ len
) >> PAGE_SHIFT
;
1527 off_end
= (offset
+ len
) & (PAGE_SIZE
- 1);
1529 map
.m_lblk
= ((unsigned long long)offset
) >> PAGE_SHIFT
;
1530 map
.m_len
= pg_end
- map
.m_lblk
;
1534 err
= f2fs_map_blocks(inode
, &map
, 1, F2FS_GET_BLOCK_PRE_AIO
);
1541 last_off
= map
.m_lblk
+ map
.m_len
- 1;
1543 /* update new size to the failed position */
1544 new_size
= (last_off
== pg_end
) ? offset
+ len
:
1545 (loff_t
)(last_off
+ 1) << PAGE_SHIFT
;
1547 new_size
= ((loff_t
)pg_end
<< PAGE_SHIFT
) + off_end
;
1550 if (new_size
> i_size_read(inode
)) {
1551 if (mode
& FALLOC_FL_KEEP_SIZE
)
1552 file_set_keep_isize(inode
);
1554 f2fs_i_size_write(inode
, new_size
);
1560 static long f2fs_fallocate(struct file
*file
, int mode
,
1561 loff_t offset
, loff_t len
)
1563 struct inode
*inode
= file_inode(file
);
1566 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
))))
1569 /* f2fs only support ->fallocate for regular file */
1570 if (!S_ISREG(inode
->i_mode
))
1573 if (IS_ENCRYPTED(inode
) &&
1574 (mode
& (FALLOC_FL_COLLAPSE_RANGE
| FALLOC_FL_INSERT_RANGE
)))
1577 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
|
1578 FALLOC_FL_COLLAPSE_RANGE
| FALLOC_FL_ZERO_RANGE
|
1579 FALLOC_FL_INSERT_RANGE
))
1584 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1585 if (offset
>= inode
->i_size
)
1588 ret
= punch_hole(inode
, offset
, len
);
1589 } else if (mode
& FALLOC_FL_COLLAPSE_RANGE
) {
1590 ret
= f2fs_collapse_range(inode
, offset
, len
);
1591 } else if (mode
& FALLOC_FL_ZERO_RANGE
) {
1592 ret
= f2fs_zero_range(inode
, offset
, len
, mode
);
1593 } else if (mode
& FALLOC_FL_INSERT_RANGE
) {
1594 ret
= f2fs_insert_range(inode
, offset
, len
);
1596 ret
= expand_inode_data(inode
, offset
, len
, mode
);
1600 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1601 f2fs_mark_inode_dirty_sync(inode
, false);
1602 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
1606 inode_unlock(inode
);
1608 trace_f2fs_fallocate(inode
, mode
, offset
, len
, ret
);
1612 static int f2fs_release_file(struct inode
*inode
, struct file
*filp
)
1615 * f2fs_relase_file is called at every close calls. So we should
1616 * not drop any inmemory pages by close called by other process.
1618 if (!(filp
->f_mode
& FMODE_WRITE
) ||
1619 atomic_read(&inode
->i_writecount
) != 1)
1622 /* some remained atomic pages should discarded */
1623 if (f2fs_is_atomic_file(inode
))
1624 f2fs_drop_inmem_pages(inode
);
1625 if (f2fs_is_volatile_file(inode
)) {
1626 set_inode_flag(inode
, FI_DROP_CACHE
);
1627 filemap_fdatawrite(inode
->i_mapping
);
1628 clear_inode_flag(inode
, FI_DROP_CACHE
);
1629 clear_inode_flag(inode
, FI_VOLATILE_FILE
);
1630 stat_dec_volatile_write(inode
);
1635 static int f2fs_file_flush(struct file
*file
, fl_owner_t id
)
1637 struct inode
*inode
= file_inode(file
);
1640 * If the process doing a transaction is crashed, we should do
1641 * roll-back. Otherwise, other reader/write can see corrupted database
1642 * until all the writers close its file. Since this should be done
1643 * before dropping file lock, it needs to do in ->flush.
1645 if (f2fs_is_atomic_file(inode
) &&
1646 F2FS_I(inode
)->inmem_task
== current
)
1647 f2fs_drop_inmem_pages(inode
);
1651 static int f2fs_ioc_getflags(struct file
*filp
, unsigned long arg
)
1653 struct inode
*inode
= file_inode(filp
);
1654 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
1655 unsigned int flags
= fi
->i_flags
;
1657 if (IS_ENCRYPTED(inode
))
1658 flags
|= F2FS_ENCRYPT_FL
;
1659 if (f2fs_has_inline_data(inode
) || f2fs_has_inline_dentry(inode
))
1660 flags
|= F2FS_INLINE_DATA_FL
;
1661 if (is_inode_flag_set(inode
, FI_PIN_FILE
))
1662 flags
|= F2FS_NOCOW_FL
;
1664 flags
&= F2FS_FL_USER_VISIBLE
;
1666 return put_user(flags
, (int __user
*)arg
);
1669 static int __f2fs_ioc_setflags(struct inode
*inode
, unsigned int flags
)
1671 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
1672 unsigned int oldflags
;
1674 /* Is it quota file? Do not allow user to mess with it */
1675 if (IS_NOQUOTA(inode
))
1678 flags
= f2fs_mask_flags(inode
->i_mode
, flags
);
1680 oldflags
= fi
->i_flags
;
1682 if ((flags
^ oldflags
) & (F2FS_APPEND_FL
| F2FS_IMMUTABLE_FL
))
1683 if (!capable(CAP_LINUX_IMMUTABLE
))
1686 flags
= flags
& F2FS_FL_USER_MODIFIABLE
;
1687 flags
|= oldflags
& ~F2FS_FL_USER_MODIFIABLE
;
1688 fi
->i_flags
= flags
;
1690 if (fi
->i_flags
& F2FS_PROJINHERIT_FL
)
1691 set_inode_flag(inode
, FI_PROJ_INHERIT
);
1693 clear_inode_flag(inode
, FI_PROJ_INHERIT
);
1695 inode
->i_ctime
= current_time(inode
);
1696 f2fs_set_inode_flags(inode
);
1697 f2fs_mark_inode_dirty_sync(inode
, true);
1701 static int f2fs_ioc_setflags(struct file
*filp
, unsigned long arg
)
1703 struct inode
*inode
= file_inode(filp
);
1707 if (!inode_owner_or_capable(inode
))
1710 if (get_user(flags
, (int __user
*)arg
))
1713 ret
= mnt_want_write_file(filp
);
1719 ret
= __f2fs_ioc_setflags(inode
, flags
);
1721 inode_unlock(inode
);
1722 mnt_drop_write_file(filp
);
1726 static int f2fs_ioc_getversion(struct file
*filp
, unsigned long arg
)
1728 struct inode
*inode
= file_inode(filp
);
1730 return put_user(inode
->i_generation
, (int __user
*)arg
);
1733 static int f2fs_ioc_start_atomic_write(struct file
*filp
)
1735 struct inode
*inode
= file_inode(filp
);
1738 if (!inode_owner_or_capable(inode
))
1741 if (!S_ISREG(inode
->i_mode
))
1744 ret
= mnt_want_write_file(filp
);
1750 if (f2fs_is_atomic_file(inode
)) {
1751 if (is_inode_flag_set(inode
, FI_ATOMIC_REVOKE_REQUEST
))
1756 ret
= f2fs_convert_inline_inode(inode
);
1760 down_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1763 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
1764 * f2fs_is_atomic_file.
1766 if (get_dirty_pages(inode
))
1767 f2fs_msg(F2FS_I_SB(inode
)->sb
, KERN_WARNING
,
1768 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1769 inode
->i_ino
, get_dirty_pages(inode
));
1770 ret
= filemap_write_and_wait_range(inode
->i_mapping
, 0, LLONG_MAX
);
1772 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1776 set_inode_flag(inode
, FI_ATOMIC_FILE
);
1777 clear_inode_flag(inode
, FI_ATOMIC_REVOKE_REQUEST
);
1778 up_write(&F2FS_I(inode
)->i_gc_rwsem
[WRITE
]);
1780 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
1781 F2FS_I(inode
)->inmem_task
= current
;
1782 stat_inc_atomic_write(inode
);
1783 stat_update_max_atomic_write(inode
);
1785 inode_unlock(inode
);
1786 mnt_drop_write_file(filp
);
1790 static int f2fs_ioc_commit_atomic_write(struct file
*filp
)
1792 struct inode
*inode
= file_inode(filp
);
1795 if (!inode_owner_or_capable(inode
))
1798 ret
= mnt_want_write_file(filp
);
1802 f2fs_balance_fs(F2FS_I_SB(inode
), true);
1806 if (f2fs_is_volatile_file(inode
)) {
1811 if (f2fs_is_atomic_file(inode
)) {
1812 ret
= f2fs_commit_inmem_pages(inode
);
1816 ret
= f2fs_do_sync_file(filp
, 0, LLONG_MAX
, 0, true);
1818 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
1819 F2FS_I(inode
)->i_gc_failures
[GC_FAILURE_ATOMIC
] = 0;
1820 stat_dec_atomic_write(inode
);
1823 ret
= f2fs_do_sync_file(filp
, 0, LLONG_MAX
, 1, false);
1826 if (is_inode_flag_set(inode
, FI_ATOMIC_REVOKE_REQUEST
)) {
1827 clear_inode_flag(inode
, FI_ATOMIC_REVOKE_REQUEST
);
1830 inode_unlock(inode
);
1831 mnt_drop_write_file(filp
);
1835 static int f2fs_ioc_start_volatile_write(struct file
*filp
)
1837 struct inode
*inode
= file_inode(filp
);
1840 if (!inode_owner_or_capable(inode
))
1843 if (!S_ISREG(inode
->i_mode
))
1846 ret
= mnt_want_write_file(filp
);
1852 if (f2fs_is_volatile_file(inode
))
1855 ret
= f2fs_convert_inline_inode(inode
);
1859 stat_inc_volatile_write(inode
);
1860 stat_update_max_volatile_write(inode
);
1862 set_inode_flag(inode
, FI_VOLATILE_FILE
);
1863 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
1865 inode_unlock(inode
);
1866 mnt_drop_write_file(filp
);
1870 static int f2fs_ioc_release_volatile_write(struct file
*filp
)
1872 struct inode
*inode
= file_inode(filp
);
1875 if (!inode_owner_or_capable(inode
))
1878 ret
= mnt_want_write_file(filp
);
1884 if (!f2fs_is_volatile_file(inode
))
1887 if (!f2fs_is_first_block_written(inode
)) {
1888 ret
= truncate_partial_data_page(inode
, 0, true);
1892 ret
= punch_hole(inode
, 0, F2FS_BLKSIZE
);
1894 inode_unlock(inode
);
1895 mnt_drop_write_file(filp
);
1899 static int f2fs_ioc_abort_volatile_write(struct file
*filp
)
1901 struct inode
*inode
= file_inode(filp
);
1904 if (!inode_owner_or_capable(inode
))
1907 ret
= mnt_want_write_file(filp
);
1913 if (f2fs_is_atomic_file(inode
))
1914 f2fs_drop_inmem_pages(inode
);
1915 if (f2fs_is_volatile_file(inode
)) {
1916 clear_inode_flag(inode
, FI_VOLATILE_FILE
);
1917 stat_dec_volatile_write(inode
);
1918 ret
= f2fs_do_sync_file(filp
, 0, LLONG_MAX
, 0, true);
1921 clear_inode_flag(inode
, FI_ATOMIC_REVOKE_REQUEST
);
1923 inode_unlock(inode
);
1925 mnt_drop_write_file(filp
);
1926 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
1930 static int f2fs_ioc_shutdown(struct file
*filp
, unsigned long arg
)
1932 struct inode
*inode
= file_inode(filp
);
1933 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1934 struct super_block
*sb
= sbi
->sb
;
1938 if (!capable(CAP_SYS_ADMIN
))
1941 if (get_user(in
, (__u32 __user
*)arg
))
1944 if (in
!= F2FS_GOING_DOWN_FULLSYNC
) {
1945 ret
= mnt_want_write_file(filp
);
1951 case F2FS_GOING_DOWN_FULLSYNC
:
1952 sb
= freeze_bdev(sb
->s_bdev
);
1958 f2fs_stop_checkpoint(sbi
, false);
1959 set_sbi_flag(sbi
, SBI_IS_SHUTDOWN
);
1960 thaw_bdev(sb
->s_bdev
, sb
);
1963 case F2FS_GOING_DOWN_METASYNC
:
1964 /* do checkpoint only */
1965 ret
= f2fs_sync_fs(sb
, 1);
1968 f2fs_stop_checkpoint(sbi
, false);
1969 set_sbi_flag(sbi
, SBI_IS_SHUTDOWN
);
1971 case F2FS_GOING_DOWN_NOSYNC
:
1972 f2fs_stop_checkpoint(sbi
, false);
1973 set_sbi_flag(sbi
, SBI_IS_SHUTDOWN
);
1975 case F2FS_GOING_DOWN_METAFLUSH
:
1976 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_META_IO
);
1977 f2fs_stop_checkpoint(sbi
, false);
1978 set_sbi_flag(sbi
, SBI_IS_SHUTDOWN
);
1980 case F2FS_GOING_DOWN_NEED_FSCK
:
1981 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
1982 set_sbi_flag(sbi
, SBI_CP_DISABLED_QUICK
);
1983 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1984 /* do checkpoint only */
1985 ret
= f2fs_sync_fs(sb
, 1);
1992 f2fs_stop_gc_thread(sbi
);
1993 f2fs_stop_discard_thread(sbi
);
1995 f2fs_drop_discard_cmd(sbi
);
1996 clear_opt(sbi
, DISCARD
);
1998 f2fs_update_time(sbi
, REQ_TIME
);
2000 if (in
!= F2FS_GOING_DOWN_FULLSYNC
)
2001 mnt_drop_write_file(filp
);
2003 trace_f2fs_shutdown(sbi
, in
, ret
);
2008 static int f2fs_ioc_fitrim(struct file
*filp
, unsigned long arg
)
2010 struct inode
*inode
= file_inode(filp
);
2011 struct super_block
*sb
= inode
->i_sb
;
2012 struct request_queue
*q
= bdev_get_queue(sb
->s_bdev
);
2013 struct fstrim_range range
;
2016 if (!capable(CAP_SYS_ADMIN
))
2019 if (!f2fs_hw_support_discard(F2FS_SB(sb
)))
2022 if (copy_from_user(&range
, (struct fstrim_range __user
*)arg
,
2026 ret
= mnt_want_write_file(filp
);
2030 range
.minlen
= max((unsigned int)range
.minlen
,
2031 q
->limits
.discard_granularity
);
2032 ret
= f2fs_trim_fs(F2FS_SB(sb
), &range
);
2033 mnt_drop_write_file(filp
);
2037 if (copy_to_user((struct fstrim_range __user
*)arg
, &range
,
2040 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
2044 static bool uuid_is_nonzero(__u8 u
[16])
2048 for (i
= 0; i
< 16; i
++)
2054 static int f2fs_ioc_set_encryption_policy(struct file
*filp
, unsigned long arg
)
2056 struct inode
*inode
= file_inode(filp
);
2058 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode
)))
2061 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
2063 return fscrypt_ioctl_set_policy(filp
, (const void __user
*)arg
);
2066 static int f2fs_ioc_get_encryption_policy(struct file
*filp
, unsigned long arg
)
2068 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp
))))
2070 return fscrypt_ioctl_get_policy(filp
, (void __user
*)arg
);
2073 static int f2fs_ioc_get_encryption_pwsalt(struct file
*filp
, unsigned long arg
)
2075 struct inode
*inode
= file_inode(filp
);
2076 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2079 if (!f2fs_sb_has_encrypt(sbi
))
2082 err
= mnt_want_write_file(filp
);
2086 down_write(&sbi
->sb_lock
);
2088 if (uuid_is_nonzero(sbi
->raw_super
->encrypt_pw_salt
))
2091 /* update superblock with uuid */
2092 generate_random_uuid(sbi
->raw_super
->encrypt_pw_salt
);
2094 err
= f2fs_commit_super(sbi
, false);
2097 memset(sbi
->raw_super
->encrypt_pw_salt
, 0, 16);
2101 if (copy_to_user((__u8 __user
*)arg
, sbi
->raw_super
->encrypt_pw_salt
,
2105 up_write(&sbi
->sb_lock
);
2106 mnt_drop_write_file(filp
);
2110 static int f2fs_ioc_gc(struct file
*filp
, unsigned long arg
)
2112 struct inode
*inode
= file_inode(filp
);
2113 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2117 if (!capable(CAP_SYS_ADMIN
))
2120 if (get_user(sync
, (__u32 __user
*)arg
))
2123 if (f2fs_readonly(sbi
->sb
))
2126 ret
= mnt_want_write_file(filp
);
2131 if (!mutex_trylock(&sbi
->gc_mutex
)) {
2136 mutex_lock(&sbi
->gc_mutex
);
2139 ret
= f2fs_gc(sbi
, sync
, true, NULL_SEGNO
);
2141 mnt_drop_write_file(filp
);
2145 static int f2fs_ioc_gc_range(struct file
*filp
, unsigned long arg
)
2147 struct inode
*inode
= file_inode(filp
);
2148 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2149 struct f2fs_gc_range range
;
2153 if (!capable(CAP_SYS_ADMIN
))
2156 if (copy_from_user(&range
, (struct f2fs_gc_range __user
*)arg
,
2160 if (f2fs_readonly(sbi
->sb
))
2163 end
= range
.start
+ range
.len
;
2164 if (range
.start
< MAIN_BLKADDR(sbi
) || end
>= MAX_BLKADDR(sbi
)) {
2168 ret
= mnt_want_write_file(filp
);
2174 if (!mutex_trylock(&sbi
->gc_mutex
)) {
2179 mutex_lock(&sbi
->gc_mutex
);
2182 ret
= f2fs_gc(sbi
, range
.sync
, true, GET_SEGNO(sbi
, range
.start
));
2183 range
.start
+= BLKS_PER_SEC(sbi
);
2184 if (range
.start
<= end
)
2187 mnt_drop_write_file(filp
);
2191 static int f2fs_ioc_write_checkpoint(struct file
*filp
, unsigned long arg
)
2193 struct inode
*inode
= file_inode(filp
);
2194 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2197 if (!capable(CAP_SYS_ADMIN
))
2200 if (f2fs_readonly(sbi
->sb
))
2203 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
2204 f2fs_msg(sbi
->sb
, KERN_INFO
,
2205 "Skipping Checkpoint. Checkpoints currently disabled.");
2209 ret
= mnt_want_write_file(filp
);
2213 ret
= f2fs_sync_fs(sbi
->sb
, 1);
2215 mnt_drop_write_file(filp
);
2219 static int f2fs_defragment_range(struct f2fs_sb_info
*sbi
,
2221 struct f2fs_defragment
*range
)
2223 struct inode
*inode
= file_inode(filp
);
2224 struct f2fs_map_blocks map
= { .m_next_extent
= NULL
,
2225 .m_seg_type
= NO_CHECK_TYPE
,
2226 .m_may_create
= false };
2227 struct extent_info ei
= {0, 0, 0};
2228 pgoff_t pg_start
, pg_end
, next_pgofs
;
2229 unsigned int blk_per_seg
= sbi
->blocks_per_seg
;
2230 unsigned int total
= 0, sec_num
;
2231 block_t blk_end
= 0;
2232 bool fragmented
= false;
2235 /* if in-place-update policy is enabled, don't waste time here */
2236 if (f2fs_should_update_inplace(inode
, NULL
))
2239 pg_start
= range
->start
>> PAGE_SHIFT
;
2240 pg_end
= (range
->start
+ range
->len
) >> PAGE_SHIFT
;
2242 f2fs_balance_fs(sbi
, true);
2246 /* writeback all dirty pages in the range */
2247 err
= filemap_write_and_wait_range(inode
->i_mapping
, range
->start
,
2248 range
->start
+ range
->len
- 1);
2253 * lookup mapping info in extent cache, skip defragmenting if physical
2254 * block addresses are continuous.
2256 if (f2fs_lookup_extent_cache(inode
, pg_start
, &ei
)) {
2257 if (ei
.fofs
+ ei
.len
>= pg_end
)
2261 map
.m_lblk
= pg_start
;
2262 map
.m_next_pgofs
= &next_pgofs
;
2265 * lookup mapping info in dnode page cache, skip defragmenting if all
2266 * physical block addresses are continuous even if there are hole(s)
2267 * in logical blocks.
2269 while (map
.m_lblk
< pg_end
) {
2270 map
.m_len
= pg_end
- map
.m_lblk
;
2271 err
= f2fs_map_blocks(inode
, &map
, 0, F2FS_GET_BLOCK_DEFAULT
);
2275 if (!(map
.m_flags
& F2FS_MAP_FLAGS
)) {
2276 map
.m_lblk
= next_pgofs
;
2280 if (blk_end
&& blk_end
!= map
.m_pblk
)
2283 /* record total count of block that we're going to move */
2286 blk_end
= map
.m_pblk
+ map
.m_len
;
2288 map
.m_lblk
+= map
.m_len
;
2294 sec_num
= (total
+ BLKS_PER_SEC(sbi
) - 1) / BLKS_PER_SEC(sbi
);
2297 * make sure there are enough free section for LFS allocation, this can
2298 * avoid defragment running in SSR mode when free section are allocated
2301 if (has_not_enough_free_secs(sbi
, 0, sec_num
)) {
2306 map
.m_lblk
= pg_start
;
2307 map
.m_len
= pg_end
- pg_start
;
2310 while (map
.m_lblk
< pg_end
) {
2315 map
.m_len
= pg_end
- map
.m_lblk
;
2316 err
= f2fs_map_blocks(inode
, &map
, 0, F2FS_GET_BLOCK_DEFAULT
);
2320 if (!(map
.m_flags
& F2FS_MAP_FLAGS
)) {
2321 map
.m_lblk
= next_pgofs
;
2325 set_inode_flag(inode
, FI_DO_DEFRAG
);
2328 while (idx
< map
.m_lblk
+ map
.m_len
&& cnt
< blk_per_seg
) {
2331 page
= f2fs_get_lock_data_page(inode
, idx
, true);
2333 err
= PTR_ERR(page
);
2337 set_page_dirty(page
);
2338 f2fs_put_page(page
, 1);
2347 if (idx
< pg_end
&& cnt
< blk_per_seg
)
2350 clear_inode_flag(inode
, FI_DO_DEFRAG
);
2352 err
= filemap_fdatawrite(inode
->i_mapping
);
2357 clear_inode_flag(inode
, FI_DO_DEFRAG
);
2359 inode_unlock(inode
);
2361 range
->len
= (u64
)total
<< PAGE_SHIFT
;
2365 static int f2fs_ioc_defragment(struct file
*filp
, unsigned long arg
)
2367 struct inode
*inode
= file_inode(filp
);
2368 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2369 struct f2fs_defragment range
;
2372 if (!capable(CAP_SYS_ADMIN
))
2375 if (!S_ISREG(inode
->i_mode
) || f2fs_is_atomic_file(inode
))
2378 if (f2fs_readonly(sbi
->sb
))
2381 if (copy_from_user(&range
, (struct f2fs_defragment __user
*)arg
,
2385 /* verify alignment of offset & size */
2386 if (range
.start
& (F2FS_BLKSIZE
- 1) || range
.len
& (F2FS_BLKSIZE
- 1))
2389 if (unlikely((range
.start
+ range
.len
) >> PAGE_SHIFT
>
2390 sbi
->max_file_blocks
))
2393 err
= mnt_want_write_file(filp
);
2397 err
= f2fs_defragment_range(sbi
, filp
, &range
);
2398 mnt_drop_write_file(filp
);
2400 f2fs_update_time(sbi
, REQ_TIME
);
2404 if (copy_to_user((struct f2fs_defragment __user
*)arg
, &range
,
2411 static int f2fs_move_file_range(struct file
*file_in
, loff_t pos_in
,
2412 struct file
*file_out
, loff_t pos_out
, size_t len
)
2414 struct inode
*src
= file_inode(file_in
);
2415 struct inode
*dst
= file_inode(file_out
);
2416 struct f2fs_sb_info
*sbi
= F2FS_I_SB(src
);
2417 size_t olen
= len
, dst_max_i_size
= 0;
2421 if (file_in
->f_path
.mnt
!= file_out
->f_path
.mnt
||
2422 src
->i_sb
!= dst
->i_sb
)
2425 if (unlikely(f2fs_readonly(src
->i_sb
)))
2428 if (!S_ISREG(src
->i_mode
) || !S_ISREG(dst
->i_mode
))
2431 if (IS_ENCRYPTED(src
) || IS_ENCRYPTED(dst
))
2435 if (pos_in
== pos_out
)
2437 if (pos_out
> pos_in
&& pos_out
< pos_in
+ len
)
2444 if (!inode_trylock(dst
))
2449 if (pos_in
+ len
> src
->i_size
|| pos_in
+ len
< pos_in
)
2452 olen
= len
= src
->i_size
- pos_in
;
2453 if (pos_in
+ len
== src
->i_size
)
2454 len
= ALIGN(src
->i_size
, F2FS_BLKSIZE
) - pos_in
;
2460 dst_osize
= dst
->i_size
;
2461 if (pos_out
+ olen
> dst
->i_size
)
2462 dst_max_i_size
= pos_out
+ olen
;
2464 /* verify the end result is block aligned */
2465 if (!IS_ALIGNED(pos_in
, F2FS_BLKSIZE
) ||
2466 !IS_ALIGNED(pos_in
+ len
, F2FS_BLKSIZE
) ||
2467 !IS_ALIGNED(pos_out
, F2FS_BLKSIZE
))
2470 ret
= f2fs_convert_inline_inode(src
);
2474 ret
= f2fs_convert_inline_inode(dst
);
2478 /* write out all dirty pages from offset */
2479 ret
= filemap_write_and_wait_range(src
->i_mapping
,
2480 pos_in
, pos_in
+ len
);
2484 ret
= filemap_write_and_wait_range(dst
->i_mapping
,
2485 pos_out
, pos_out
+ len
);
2489 f2fs_balance_fs(sbi
, true);
2491 down_write(&F2FS_I(src
)->i_gc_rwsem
[WRITE
]);
2494 if (!down_write_trylock(&F2FS_I(dst
)->i_gc_rwsem
[WRITE
]))
2499 ret
= __exchange_data_block(src
, dst
, pos_in
>> F2FS_BLKSIZE_BITS
,
2500 pos_out
>> F2FS_BLKSIZE_BITS
,
2501 len
>> F2FS_BLKSIZE_BITS
, false);
2505 f2fs_i_size_write(dst
, dst_max_i_size
);
2506 else if (dst_osize
!= dst
->i_size
)
2507 f2fs_i_size_write(dst
, dst_osize
);
2509 f2fs_unlock_op(sbi
);
2512 up_write(&F2FS_I(dst
)->i_gc_rwsem
[WRITE
]);
2514 up_write(&F2FS_I(src
)->i_gc_rwsem
[WRITE
]);
2523 static int f2fs_ioc_move_range(struct file
*filp
, unsigned long arg
)
2525 struct f2fs_move_range range
;
2529 if (!(filp
->f_mode
& FMODE_READ
) ||
2530 !(filp
->f_mode
& FMODE_WRITE
))
2533 if (copy_from_user(&range
, (struct f2fs_move_range __user
*)arg
,
2537 dst
= fdget(range
.dst_fd
);
2541 if (!(dst
.file
->f_mode
& FMODE_WRITE
)) {
2546 err
= mnt_want_write_file(filp
);
2550 err
= f2fs_move_file_range(filp
, range
.pos_in
, dst
.file
,
2551 range
.pos_out
, range
.len
);
2553 mnt_drop_write_file(filp
);
2557 if (copy_to_user((struct f2fs_move_range __user
*)arg
,
2558 &range
, sizeof(range
)))
2565 static int f2fs_ioc_flush_device(struct file
*filp
, unsigned long arg
)
2567 struct inode
*inode
= file_inode(filp
);
2568 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2569 struct sit_info
*sm
= SIT_I(sbi
);
2570 unsigned int start_segno
= 0, end_segno
= 0;
2571 unsigned int dev_start_segno
= 0, dev_end_segno
= 0;
2572 struct f2fs_flush_device range
;
2575 if (!capable(CAP_SYS_ADMIN
))
2578 if (f2fs_readonly(sbi
->sb
))
2581 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
2584 if (copy_from_user(&range
, (struct f2fs_flush_device __user
*)arg
,
2588 if (!f2fs_is_multi_device(sbi
) || sbi
->s_ndevs
- 1 <= range
.dev_num
||
2589 __is_large_section(sbi
)) {
2590 f2fs_msg(sbi
->sb
, KERN_WARNING
,
2591 "Can't flush %u in %d for segs_per_sec %u != 1",
2592 range
.dev_num
, sbi
->s_ndevs
,
2597 ret
= mnt_want_write_file(filp
);
2601 if (range
.dev_num
!= 0)
2602 dev_start_segno
= GET_SEGNO(sbi
, FDEV(range
.dev_num
).start_blk
);
2603 dev_end_segno
= GET_SEGNO(sbi
, FDEV(range
.dev_num
).end_blk
);
2605 start_segno
= sm
->last_victim
[FLUSH_DEVICE
];
2606 if (start_segno
< dev_start_segno
|| start_segno
>= dev_end_segno
)
2607 start_segno
= dev_start_segno
;
2608 end_segno
= min(start_segno
+ range
.segments
, dev_end_segno
);
2610 while (start_segno
< end_segno
) {
2611 if (!mutex_trylock(&sbi
->gc_mutex
)) {
2615 sm
->last_victim
[GC_CB
] = end_segno
+ 1;
2616 sm
->last_victim
[GC_GREEDY
] = end_segno
+ 1;
2617 sm
->last_victim
[ALLOC_NEXT
] = end_segno
+ 1;
2618 ret
= f2fs_gc(sbi
, true, true, start_segno
);
2626 mnt_drop_write_file(filp
);
2630 static int f2fs_ioc_get_features(struct file
*filp
, unsigned long arg
)
2632 struct inode
*inode
= file_inode(filp
);
2633 u32 sb_feature
= le32_to_cpu(F2FS_I_SB(inode
)->raw_super
->feature
);
2635 /* Must validate to set it with SQLite behavior in Android. */
2636 sb_feature
|= F2FS_FEATURE_ATOMIC_WRITE
;
2638 return put_user(sb_feature
, (u32 __user
*)arg
);
2642 int f2fs_transfer_project_quota(struct inode
*inode
, kprojid_t kprojid
)
2644 struct dquot
*transfer_to
[MAXQUOTAS
] = {};
2645 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2646 struct super_block
*sb
= sbi
->sb
;
2649 transfer_to
[PRJQUOTA
] = dqget(sb
, make_kqid_projid(kprojid
));
2650 if (!IS_ERR(transfer_to
[PRJQUOTA
])) {
2651 err
= __dquot_transfer(inode
, transfer_to
);
2653 set_sbi_flag(sbi
, SBI_QUOTA_NEED_REPAIR
);
2654 dqput(transfer_to
[PRJQUOTA
]);
2659 static int f2fs_ioc_setproject(struct file
*filp
, __u32 projid
)
2661 struct inode
*inode
= file_inode(filp
);
2662 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
2663 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2668 if (!f2fs_sb_has_project_quota(sbi
)) {
2669 if (projid
!= F2FS_DEF_PROJID
)
2675 if (!f2fs_has_extra_attr(inode
))
2678 kprojid
= make_kprojid(&init_user_ns
, (projid_t
)projid
);
2680 if (projid_eq(kprojid
, F2FS_I(inode
)->i_projid
))
2684 /* Is it quota file? Do not allow user to mess with it */
2685 if (IS_NOQUOTA(inode
))
2688 ipage
= f2fs_get_node_page(sbi
, inode
->i_ino
);
2690 return PTR_ERR(ipage
);
2692 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage
), fi
->i_extra_isize
,
2695 f2fs_put_page(ipage
, 1);
2698 f2fs_put_page(ipage
, 1);
2700 err
= dquot_initialize(inode
);
2705 err
= f2fs_transfer_project_quota(inode
, kprojid
);
2709 F2FS_I(inode
)->i_projid
= kprojid
;
2710 inode
->i_ctime
= current_time(inode
);
2711 f2fs_mark_inode_dirty_sync(inode
, true);
2713 f2fs_unlock_op(sbi
);
2717 int f2fs_transfer_project_quota(struct inode
*inode
, kprojid_t kprojid
)
2722 static int f2fs_ioc_setproject(struct file
*filp
, __u32 projid
)
2724 if (projid
!= F2FS_DEF_PROJID
)
2730 /* Transfer internal flags to xflags */
2731 static inline __u32
f2fs_iflags_to_xflags(unsigned long iflags
)
2735 if (iflags
& F2FS_SYNC_FL
)
2736 xflags
|= FS_XFLAG_SYNC
;
2737 if (iflags
& F2FS_IMMUTABLE_FL
)
2738 xflags
|= FS_XFLAG_IMMUTABLE
;
2739 if (iflags
& F2FS_APPEND_FL
)
2740 xflags
|= FS_XFLAG_APPEND
;
2741 if (iflags
& F2FS_NODUMP_FL
)
2742 xflags
|= FS_XFLAG_NODUMP
;
2743 if (iflags
& F2FS_NOATIME_FL
)
2744 xflags
|= FS_XFLAG_NOATIME
;
2745 if (iflags
& F2FS_PROJINHERIT_FL
)
2746 xflags
|= FS_XFLAG_PROJINHERIT
;
2750 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2751 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2752 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2754 /* Transfer xflags flags to internal */
2755 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags
)
2757 unsigned long iflags
= 0;
2759 if (xflags
& FS_XFLAG_SYNC
)
2760 iflags
|= F2FS_SYNC_FL
;
2761 if (xflags
& FS_XFLAG_IMMUTABLE
)
2762 iflags
|= F2FS_IMMUTABLE_FL
;
2763 if (xflags
& FS_XFLAG_APPEND
)
2764 iflags
|= F2FS_APPEND_FL
;
2765 if (xflags
& FS_XFLAG_NODUMP
)
2766 iflags
|= F2FS_NODUMP_FL
;
2767 if (xflags
& FS_XFLAG_NOATIME
)
2768 iflags
|= F2FS_NOATIME_FL
;
2769 if (xflags
& FS_XFLAG_PROJINHERIT
)
2770 iflags
|= F2FS_PROJINHERIT_FL
;
2775 static int f2fs_ioc_fsgetxattr(struct file
*filp
, unsigned long arg
)
2777 struct inode
*inode
= file_inode(filp
);
2778 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
2781 memset(&fa
, 0, sizeof(struct fsxattr
));
2782 fa
.fsx_xflags
= f2fs_iflags_to_xflags(fi
->i_flags
&
2783 F2FS_FL_USER_VISIBLE
);
2785 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode
)))
2786 fa
.fsx_projid
= (__u32
)from_kprojid(&init_user_ns
,
2789 if (copy_to_user((struct fsxattr __user
*)arg
, &fa
, sizeof(fa
)))
2794 static int f2fs_ioctl_check_project(struct inode
*inode
, struct fsxattr
*fa
)
2797 * Project Quota ID state is only allowed to change from within the init
2798 * namespace. Enforce that restriction only if we are trying to change
2799 * the quota ID state. Everything else is allowed in user namespaces.
2801 if (current_user_ns() == &init_user_ns
)
2804 if (__kprojid_val(F2FS_I(inode
)->i_projid
) != fa
->fsx_projid
)
2807 if (F2FS_I(inode
)->i_flags
& F2FS_PROJINHERIT_FL
) {
2808 if (!(fa
->fsx_xflags
& FS_XFLAG_PROJINHERIT
))
2811 if (fa
->fsx_xflags
& FS_XFLAG_PROJINHERIT
)
2818 static int f2fs_ioc_fssetxattr(struct file
*filp
, unsigned long arg
)
2820 struct inode
*inode
= file_inode(filp
);
2821 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
2826 if (copy_from_user(&fa
, (struct fsxattr __user
*)arg
, sizeof(fa
)))
2829 /* Make sure caller has proper permission */
2830 if (!inode_owner_or_capable(inode
))
2833 if (fa
.fsx_xflags
& ~F2FS_SUPPORTED_FS_XFLAGS
)
2836 flags
= f2fs_xflags_to_iflags(fa
.fsx_xflags
);
2837 if (f2fs_mask_flags(inode
->i_mode
, flags
) != flags
)
2840 err
= mnt_want_write_file(filp
);
2845 err
= f2fs_ioctl_check_project(inode
, &fa
);
2848 flags
= (fi
->i_flags
& ~F2FS_FL_XFLAG_VISIBLE
) |
2849 (flags
& F2FS_FL_XFLAG_VISIBLE
);
2850 err
= __f2fs_ioc_setflags(inode
, flags
);
2854 err
= f2fs_ioc_setproject(filp
, fa
.fsx_projid
);
2856 inode_unlock(inode
);
2857 mnt_drop_write_file(filp
);
2861 int f2fs_pin_file_control(struct inode
*inode
, bool inc
)
2863 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
2864 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2866 /* Use i_gc_failures for normal file as a risk signal. */
2868 f2fs_i_gc_failures_write(inode
,
2869 fi
->i_gc_failures
[GC_FAILURE_PIN
] + 1);
2871 if (fi
->i_gc_failures
[GC_FAILURE_PIN
] > sbi
->gc_pin_file_threshold
) {
2872 f2fs_msg(sbi
->sb
, KERN_WARNING
,
2873 "%s: Enable GC = ino %lx after %x GC trials",
2874 __func__
, inode
->i_ino
,
2875 fi
->i_gc_failures
[GC_FAILURE_PIN
]);
2876 clear_inode_flag(inode
, FI_PIN_FILE
);
2882 static int f2fs_ioc_set_pin_file(struct file
*filp
, unsigned long arg
)
2884 struct inode
*inode
= file_inode(filp
);
2888 if (!capable(CAP_SYS_ADMIN
))
2891 if (get_user(pin
, (__u32 __user
*)arg
))
2894 if (!S_ISREG(inode
->i_mode
))
2897 if (f2fs_readonly(F2FS_I_SB(inode
)->sb
))
2900 ret
= mnt_want_write_file(filp
);
2906 if (f2fs_should_update_outplace(inode
, NULL
)) {
2912 clear_inode_flag(inode
, FI_PIN_FILE
);
2913 f2fs_i_gc_failures_write(inode
, 0);
2917 if (f2fs_pin_file_control(inode
, false)) {
2921 ret
= f2fs_convert_inline_inode(inode
);
2925 set_inode_flag(inode
, FI_PIN_FILE
);
2926 ret
= F2FS_I(inode
)->i_gc_failures
[GC_FAILURE_PIN
];
2928 f2fs_update_time(F2FS_I_SB(inode
), REQ_TIME
);
2930 inode_unlock(inode
);
2931 mnt_drop_write_file(filp
);
2935 static int f2fs_ioc_get_pin_file(struct file
*filp
, unsigned long arg
)
2937 struct inode
*inode
= file_inode(filp
);
2940 if (is_inode_flag_set(inode
, FI_PIN_FILE
))
2941 pin
= F2FS_I(inode
)->i_gc_failures
[GC_FAILURE_PIN
];
2942 return put_user(pin
, (u32 __user
*)arg
);
2945 int f2fs_precache_extents(struct inode
*inode
)
2947 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
2948 struct f2fs_map_blocks map
;
2949 pgoff_t m_next_extent
;
2953 if (is_inode_flag_set(inode
, FI_NO_EXTENT
))
2957 map
.m_next_pgofs
= NULL
;
2958 map
.m_next_extent
= &m_next_extent
;
2959 map
.m_seg_type
= NO_CHECK_TYPE
;
2960 map
.m_may_create
= false;
2961 end
= F2FS_I_SB(inode
)->max_file_blocks
;
2963 while (map
.m_lblk
< end
) {
2964 map
.m_len
= end
- map
.m_lblk
;
2966 down_write(&fi
->i_gc_rwsem
[WRITE
]);
2967 err
= f2fs_map_blocks(inode
, &map
, 0, F2FS_GET_BLOCK_PRECACHE
);
2968 up_write(&fi
->i_gc_rwsem
[WRITE
]);
2972 map
.m_lblk
= m_next_extent
;
2978 static int f2fs_ioc_precache_extents(struct file
*filp
, unsigned long arg
)
2980 return f2fs_precache_extents(file_inode(filp
));
2983 long f2fs_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
2985 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp
)))))
2989 case F2FS_IOC_GETFLAGS
:
2990 return f2fs_ioc_getflags(filp
, arg
);
2991 case F2FS_IOC_SETFLAGS
:
2992 return f2fs_ioc_setflags(filp
, arg
);
2993 case F2FS_IOC_GETVERSION
:
2994 return f2fs_ioc_getversion(filp
, arg
);
2995 case F2FS_IOC_START_ATOMIC_WRITE
:
2996 return f2fs_ioc_start_atomic_write(filp
);
2997 case F2FS_IOC_COMMIT_ATOMIC_WRITE
:
2998 return f2fs_ioc_commit_atomic_write(filp
);
2999 case F2FS_IOC_START_VOLATILE_WRITE
:
3000 return f2fs_ioc_start_volatile_write(filp
);
3001 case F2FS_IOC_RELEASE_VOLATILE_WRITE
:
3002 return f2fs_ioc_release_volatile_write(filp
);
3003 case F2FS_IOC_ABORT_VOLATILE_WRITE
:
3004 return f2fs_ioc_abort_volatile_write(filp
);
3005 case F2FS_IOC_SHUTDOWN
:
3006 return f2fs_ioc_shutdown(filp
, arg
);
3008 return f2fs_ioc_fitrim(filp
, arg
);
3009 case F2FS_IOC_SET_ENCRYPTION_POLICY
:
3010 return f2fs_ioc_set_encryption_policy(filp
, arg
);
3011 case F2FS_IOC_GET_ENCRYPTION_POLICY
:
3012 return f2fs_ioc_get_encryption_policy(filp
, arg
);
3013 case F2FS_IOC_GET_ENCRYPTION_PWSALT
:
3014 return f2fs_ioc_get_encryption_pwsalt(filp
, arg
);
3015 case F2FS_IOC_GARBAGE_COLLECT
:
3016 return f2fs_ioc_gc(filp
, arg
);
3017 case F2FS_IOC_GARBAGE_COLLECT_RANGE
:
3018 return f2fs_ioc_gc_range(filp
, arg
);
3019 case F2FS_IOC_WRITE_CHECKPOINT
:
3020 return f2fs_ioc_write_checkpoint(filp
, arg
);
3021 case F2FS_IOC_DEFRAGMENT
:
3022 return f2fs_ioc_defragment(filp
, arg
);
3023 case F2FS_IOC_MOVE_RANGE
:
3024 return f2fs_ioc_move_range(filp
, arg
);
3025 case F2FS_IOC_FLUSH_DEVICE
:
3026 return f2fs_ioc_flush_device(filp
, arg
);
3027 case F2FS_IOC_GET_FEATURES
:
3028 return f2fs_ioc_get_features(filp
, arg
);
3029 case F2FS_IOC_FSGETXATTR
:
3030 return f2fs_ioc_fsgetxattr(filp
, arg
);
3031 case F2FS_IOC_FSSETXATTR
:
3032 return f2fs_ioc_fssetxattr(filp
, arg
);
3033 case F2FS_IOC_GET_PIN_FILE
:
3034 return f2fs_ioc_get_pin_file(filp
, arg
);
3035 case F2FS_IOC_SET_PIN_FILE
:
3036 return f2fs_ioc_set_pin_file(filp
, arg
);
3037 case F2FS_IOC_PRECACHE_EXTENTS
:
3038 return f2fs_ioc_precache_extents(filp
, arg
);
3044 static ssize_t
f2fs_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3046 struct file
*file
= iocb
->ki_filp
;
3047 struct inode
*inode
= file_inode(file
);
3050 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
)))) {
3055 if ((iocb
->ki_flags
& IOCB_NOWAIT
) && !(iocb
->ki_flags
& IOCB_DIRECT
)) {
3060 if (!inode_trylock(inode
)) {
3061 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
3068 ret
= generic_write_checks(iocb
, from
);
3070 bool preallocated
= false;
3071 size_t target_size
= 0;
3074 if (iov_iter_fault_in_readable(from
, iov_iter_count(from
)))
3075 set_inode_flag(inode
, FI_NO_PREALLOC
);
3077 if ((iocb
->ki_flags
& IOCB_NOWAIT
)) {
3078 if (!f2fs_overwrite_io(inode
, iocb
->ki_pos
,
3079 iov_iter_count(from
)) ||
3080 f2fs_has_inline_data(inode
) ||
3081 f2fs_force_buffered_io(inode
, iocb
, from
)) {
3082 clear_inode_flag(inode
, FI_NO_PREALLOC
);
3083 inode_unlock(inode
);
3088 preallocated
= true;
3089 target_size
= iocb
->ki_pos
+ iov_iter_count(from
);
3091 err
= f2fs_preallocate_blocks(iocb
, from
);
3093 clear_inode_flag(inode
, FI_NO_PREALLOC
);
3094 inode_unlock(inode
);
3099 ret
= __generic_file_write_iter(iocb
, from
);
3100 clear_inode_flag(inode
, FI_NO_PREALLOC
);
3102 /* if we couldn't write data, we should deallocate blocks. */
3103 if (preallocated
&& i_size_read(inode
) < target_size
)
3104 f2fs_truncate(inode
);
3107 f2fs_update_iostat(F2FS_I_SB(inode
), APP_WRITE_IO
, ret
);
3109 inode_unlock(inode
);
3111 trace_f2fs_file_write_iter(inode
, iocb
->ki_pos
,
3112 iov_iter_count(from
), ret
);
3114 ret
= generic_write_sync(iocb
, ret
);
3118 #ifdef CONFIG_COMPAT
3119 long f2fs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3122 case F2FS_IOC32_GETFLAGS
:
3123 cmd
= F2FS_IOC_GETFLAGS
;
3125 case F2FS_IOC32_SETFLAGS
:
3126 cmd
= F2FS_IOC_SETFLAGS
;
3128 case F2FS_IOC32_GETVERSION
:
3129 cmd
= F2FS_IOC_GETVERSION
;
3131 case F2FS_IOC_START_ATOMIC_WRITE
:
3132 case F2FS_IOC_COMMIT_ATOMIC_WRITE
:
3133 case F2FS_IOC_START_VOLATILE_WRITE
:
3134 case F2FS_IOC_RELEASE_VOLATILE_WRITE
:
3135 case F2FS_IOC_ABORT_VOLATILE_WRITE
:
3136 case F2FS_IOC_SHUTDOWN
:
3137 case F2FS_IOC_SET_ENCRYPTION_POLICY
:
3138 case F2FS_IOC_GET_ENCRYPTION_PWSALT
:
3139 case F2FS_IOC_GET_ENCRYPTION_POLICY
:
3140 case F2FS_IOC_GARBAGE_COLLECT
:
3141 case F2FS_IOC_GARBAGE_COLLECT_RANGE
:
3142 case F2FS_IOC_WRITE_CHECKPOINT
:
3143 case F2FS_IOC_DEFRAGMENT
:
3144 case F2FS_IOC_MOVE_RANGE
:
3145 case F2FS_IOC_FLUSH_DEVICE
:
3146 case F2FS_IOC_GET_FEATURES
:
3147 case F2FS_IOC_FSGETXATTR
:
3148 case F2FS_IOC_FSSETXATTR
:
3149 case F2FS_IOC_GET_PIN_FILE
:
3150 case F2FS_IOC_SET_PIN_FILE
:
3151 case F2FS_IOC_PRECACHE_EXTENTS
:
3154 return -ENOIOCTLCMD
;
3156 return f2fs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));
3160 const struct file_operations f2fs_file_operations
= {
3161 .llseek
= f2fs_llseek
,
3162 .read_iter
= generic_file_read_iter
,
3163 .write_iter
= f2fs_file_write_iter
,
3164 .open
= f2fs_file_open
,
3165 .release
= f2fs_release_file
,
3166 .mmap
= f2fs_file_mmap
,
3167 .flush
= f2fs_file_flush
,
3168 .fsync
= f2fs_sync_file
,
3169 .fallocate
= f2fs_fallocate
,
3170 .unlocked_ioctl
= f2fs_ioctl
,
3171 #ifdef CONFIG_COMPAT
3172 .compat_ioctl
= f2fs_compat_ioctl
,
3174 .splice_read
= generic_file_splice_read
,
3175 .splice_write
= iter_file_splice_write
,