Merge tag 'mtd/fixes-for-5.2-final' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-2.6-arm.git] / fs / f2fs / segment.c
blob8dee063c833fa8fb2c6fedc91859c7600226fe8c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
33 static unsigned long __reverse_ulong(unsigned char *str)
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
45 return tmp;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word)
54 int num = 0;
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
103 if (offset >= size)
104 return size;
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
109 while (1) {
110 if (*p == 0)
111 goto pass;
113 tmp = __reverse_ulong((unsigned char *)p);
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
139 if (offset >= size)
140 return size;
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
149 tmp = __reverse_ulong((unsigned char *)p);
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175 if (test_opt(sbi, LFS))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 struct f2fs_inode_info *fi = F2FS_I(inode);
190 struct inmem_pages *new;
192 f2fs_trace_pid(page);
194 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
198 /* add atomic page indices to the list */
199 new->page = page;
200 INIT_LIST_HEAD(&new->list);
202 /* increase reference count with clean state */
203 mutex_lock(&fi->inmem_lock);
204 get_page(page);
205 list_add_tail(&new->list, &fi->inmem_pages);
206 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
207 if (list_empty(&fi->inmem_ilist))
208 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
209 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
210 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
211 mutex_unlock(&fi->inmem_lock);
213 trace_f2fs_register_inmem_page(page, INMEM);
216 static int __revoke_inmem_pages(struct inode *inode,
217 struct list_head *head, bool drop, bool recover,
218 bool trylock)
220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 struct inmem_pages *cur, *tmp;
222 int err = 0;
224 list_for_each_entry_safe(cur, tmp, head, list) {
225 struct page *page = cur->page;
227 if (drop)
228 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230 if (trylock) {
232 * to avoid deadlock in between page lock and
233 * inmem_lock.
235 if (!trylock_page(page))
236 continue;
237 } else {
238 lock_page(page);
241 f2fs_wait_on_page_writeback(page, DATA, true, true);
243 if (recover) {
244 struct dnode_of_data dn;
245 struct node_info ni;
247 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
248 retry:
249 set_new_dnode(&dn, inode, NULL, NULL, 0);
250 err = f2fs_get_dnode_of_data(&dn, page->index,
251 LOOKUP_NODE);
252 if (err) {
253 if (err == -ENOMEM) {
254 congestion_wait(BLK_RW_ASYNC, HZ/50);
255 cond_resched();
256 goto retry;
258 err = -EAGAIN;
259 goto next;
262 err = f2fs_get_node_info(sbi, dn.nid, &ni);
263 if (err) {
264 f2fs_put_dnode(&dn);
265 return err;
268 if (cur->old_addr == NEW_ADDR) {
269 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
270 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
271 } else
272 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
273 cur->old_addr, ni.version, true, true);
274 f2fs_put_dnode(&dn);
276 next:
277 /* we don't need to invalidate this in the sccessful status */
278 if (drop || recover) {
279 ClearPageUptodate(page);
280 clear_cold_data(page);
282 f2fs_clear_page_private(page);
283 f2fs_put_page(page, 1);
285 list_del(&cur->list);
286 kmem_cache_free(inmem_entry_slab, cur);
287 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
289 return err;
292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
294 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
295 struct inode *inode;
296 struct f2fs_inode_info *fi;
297 next:
298 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
299 if (list_empty(head)) {
300 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301 return;
303 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
304 inode = igrab(&fi->vfs_inode);
305 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
307 if (inode) {
308 if (gc_failure) {
309 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
310 goto drop;
311 goto skip;
313 drop:
314 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
315 f2fs_drop_inmem_pages(inode);
316 iput(inode);
318 skip:
319 congestion_wait(BLK_RW_ASYNC, HZ/50);
320 cond_resched();
321 goto next;
324 void f2fs_drop_inmem_pages(struct inode *inode)
326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 struct f2fs_inode_info *fi = F2FS_I(inode);
329 while (!list_empty(&fi->inmem_pages)) {
330 mutex_lock(&fi->inmem_lock);
331 __revoke_inmem_pages(inode, &fi->inmem_pages,
332 true, false, true);
334 if (list_empty(&fi->inmem_pages)) {
335 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 if (!list_empty(&fi->inmem_ilist))
337 list_del_init(&fi->inmem_ilist);
338 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
340 mutex_unlock(&fi->inmem_lock);
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
345 stat_dec_atomic_write(inode);
348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 struct f2fs_inode_info *fi = F2FS_I(inode);
351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
352 struct list_head *head = &fi->inmem_pages;
353 struct inmem_pages *cur = NULL;
355 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357 mutex_lock(&fi->inmem_lock);
358 list_for_each_entry(cur, head, list) {
359 if (cur->page == page)
360 break;
363 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
364 list_del(&cur->list);
365 mutex_unlock(&fi->inmem_lock);
367 dec_page_count(sbi, F2FS_INMEM_PAGES);
368 kmem_cache_free(inmem_entry_slab, cur);
370 ClearPageUptodate(page);
371 f2fs_clear_page_private(page);
372 f2fs_put_page(page, 0);
374 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
377 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 struct f2fs_inode_info *fi = F2FS_I(inode);
381 struct inmem_pages *cur, *tmp;
382 struct f2fs_io_info fio = {
383 .sbi = sbi,
384 .ino = inode->i_ino,
385 .type = DATA,
386 .op = REQ_OP_WRITE,
387 .op_flags = REQ_SYNC | REQ_PRIO,
388 .io_type = FS_DATA_IO,
390 struct list_head revoke_list;
391 bool submit_bio = false;
392 int err = 0;
394 INIT_LIST_HEAD(&revoke_list);
396 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
397 struct page *page = cur->page;
399 lock_page(page);
400 if (page->mapping == inode->i_mapping) {
401 trace_f2fs_commit_inmem_page(page, INMEM);
403 f2fs_wait_on_page_writeback(page, DATA, true, true);
405 set_page_dirty(page);
406 if (clear_page_dirty_for_io(page)) {
407 inode_dec_dirty_pages(inode);
408 f2fs_remove_dirty_inode(inode);
410 retry:
411 fio.page = page;
412 fio.old_blkaddr = NULL_ADDR;
413 fio.encrypted_page = NULL;
414 fio.need_lock = LOCK_DONE;
415 err = f2fs_do_write_data_page(&fio);
416 if (err) {
417 if (err == -ENOMEM) {
418 congestion_wait(BLK_RW_ASYNC, HZ/50);
419 cond_resched();
420 goto retry;
422 unlock_page(page);
423 break;
425 /* record old blkaddr for revoking */
426 cur->old_addr = fio.old_blkaddr;
427 submit_bio = true;
429 unlock_page(page);
430 list_move_tail(&cur->list, &revoke_list);
433 if (submit_bio)
434 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
436 if (err) {
438 * try to revoke all committed pages, but still we could fail
439 * due to no memory or other reason, if that happened, EAGAIN
440 * will be returned, which means in such case, transaction is
441 * already not integrity, caller should use journal to do the
442 * recovery or rewrite & commit last transaction. For other
443 * error number, revoking was done by filesystem itself.
445 err = __revoke_inmem_pages(inode, &revoke_list,
446 false, true, false);
448 /* drop all uncommitted pages */
449 __revoke_inmem_pages(inode, &fi->inmem_pages,
450 true, false, false);
451 } else {
452 __revoke_inmem_pages(inode, &revoke_list,
453 false, false, false);
456 return err;
459 int f2fs_commit_inmem_pages(struct inode *inode)
461 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
462 struct f2fs_inode_info *fi = F2FS_I(inode);
463 int err;
465 f2fs_balance_fs(sbi, true);
467 down_write(&fi->i_gc_rwsem[WRITE]);
469 f2fs_lock_op(sbi);
470 set_inode_flag(inode, FI_ATOMIC_COMMIT);
472 mutex_lock(&fi->inmem_lock);
473 err = __f2fs_commit_inmem_pages(inode);
475 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
476 if (!list_empty(&fi->inmem_ilist))
477 list_del_init(&fi->inmem_ilist);
478 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
479 mutex_unlock(&fi->inmem_lock);
481 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
483 f2fs_unlock_op(sbi);
484 up_write(&fi->i_gc_rwsem[WRITE]);
486 return err;
490 * This function balances dirty node and dentry pages.
491 * In addition, it controls garbage collection.
493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
495 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
496 f2fs_show_injection_info(FAULT_CHECKPOINT);
497 f2fs_stop_checkpoint(sbi, false);
500 /* balance_fs_bg is able to be pending */
501 if (need && excess_cached_nats(sbi))
502 f2fs_balance_fs_bg(sbi);
504 if (f2fs_is_checkpoint_ready(sbi))
505 return;
508 * We should do GC or end up with checkpoint, if there are so many dirty
509 * dir/node pages without enough free segments.
511 if (has_not_enough_free_secs(sbi, 0, 0)) {
512 mutex_lock(&sbi->gc_mutex);
513 f2fs_gc(sbi, false, false, NULL_SEGNO);
517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
519 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
520 return;
522 /* try to shrink extent cache when there is no enough memory */
523 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
524 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
526 /* check the # of cached NAT entries */
527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
528 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
530 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
531 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
532 else
533 f2fs_build_free_nids(sbi, false, false);
535 if (!is_idle(sbi, REQ_TIME) &&
536 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
537 return;
539 /* checkpoint is the only way to shrink partial cached entries */
540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
541 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
542 excess_prefree_segs(sbi) ||
543 excess_dirty_nats(sbi) ||
544 excess_dirty_nodes(sbi) ||
545 f2fs_time_over(sbi, CP_TIME)) {
546 if (test_opt(sbi, DATA_FLUSH)) {
547 struct blk_plug plug;
549 blk_start_plug(&plug);
550 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
551 blk_finish_plug(&plug);
553 f2fs_sync_fs(sbi->sb, true);
554 stat_inc_bg_cp_count(sbi->stat_info);
558 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
559 struct block_device *bdev)
561 struct bio *bio;
562 int ret;
564 bio = f2fs_bio_alloc(sbi, 0, false);
565 if (!bio)
566 return -ENOMEM;
568 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
569 bio_set_dev(bio, bdev);
570 ret = submit_bio_wait(bio);
571 bio_put(bio);
573 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
574 test_opt(sbi, FLUSH_MERGE), ret);
575 return ret;
578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 int ret = 0;
581 int i;
583 if (!f2fs_is_multi_device(sbi))
584 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586 for (i = 0; i < sbi->s_ndevs; i++) {
587 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
588 continue;
589 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
590 if (ret)
591 break;
593 return ret;
596 static int issue_flush_thread(void *data)
598 struct f2fs_sb_info *sbi = data;
599 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
600 wait_queue_head_t *q = &fcc->flush_wait_queue;
601 repeat:
602 if (kthread_should_stop())
603 return 0;
605 sb_start_intwrite(sbi->sb);
607 if (!llist_empty(&fcc->issue_list)) {
608 struct flush_cmd *cmd, *next;
609 int ret;
611 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
612 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616 ret = submit_flush_wait(sbi, cmd->ino);
617 atomic_inc(&fcc->issued_flush);
619 llist_for_each_entry_safe(cmd, next,
620 fcc->dispatch_list, llnode) {
621 cmd->ret = ret;
622 complete(&cmd->wait);
624 fcc->dispatch_list = NULL;
627 sb_end_intwrite(sbi->sb);
629 wait_event_interruptible(*q,
630 kthread_should_stop() || !llist_empty(&fcc->issue_list));
631 goto repeat;
634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
637 struct flush_cmd cmd;
638 int ret;
640 if (test_opt(sbi, NOBARRIER))
641 return 0;
643 if (!test_opt(sbi, FLUSH_MERGE)) {
644 atomic_inc(&fcc->queued_flush);
645 ret = submit_flush_wait(sbi, ino);
646 atomic_dec(&fcc->queued_flush);
647 atomic_inc(&fcc->issued_flush);
648 return ret;
651 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
652 f2fs_is_multi_device(sbi)) {
653 ret = submit_flush_wait(sbi, ino);
654 atomic_dec(&fcc->queued_flush);
656 atomic_inc(&fcc->issued_flush);
657 return ret;
660 cmd.ino = ino;
661 init_completion(&cmd.wait);
663 llist_add(&cmd.llnode, &fcc->issue_list);
665 /* update issue_list before we wake up issue_flush thread */
666 smp_mb();
668 if (waitqueue_active(&fcc->flush_wait_queue))
669 wake_up(&fcc->flush_wait_queue);
671 if (fcc->f2fs_issue_flush) {
672 wait_for_completion(&cmd.wait);
673 atomic_dec(&fcc->queued_flush);
674 } else {
675 struct llist_node *list;
677 list = llist_del_all(&fcc->issue_list);
678 if (!list) {
679 wait_for_completion(&cmd.wait);
680 atomic_dec(&fcc->queued_flush);
681 } else {
682 struct flush_cmd *tmp, *next;
684 ret = submit_flush_wait(sbi, ino);
686 llist_for_each_entry_safe(tmp, next, list, llnode) {
687 if (tmp == &cmd) {
688 cmd.ret = ret;
689 atomic_dec(&fcc->queued_flush);
690 continue;
692 tmp->ret = ret;
693 complete(&tmp->wait);
698 return cmd.ret;
701 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 dev_t dev = sbi->sb->s_bdev->bd_dev;
704 struct flush_cmd_control *fcc;
705 int err = 0;
707 if (SM_I(sbi)->fcc_info) {
708 fcc = SM_I(sbi)->fcc_info;
709 if (fcc->f2fs_issue_flush)
710 return err;
711 goto init_thread;
714 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
715 if (!fcc)
716 return -ENOMEM;
717 atomic_set(&fcc->issued_flush, 0);
718 atomic_set(&fcc->queued_flush, 0);
719 init_waitqueue_head(&fcc->flush_wait_queue);
720 init_llist_head(&fcc->issue_list);
721 SM_I(sbi)->fcc_info = fcc;
722 if (!test_opt(sbi, FLUSH_MERGE))
723 return err;
725 init_thread:
726 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
727 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
728 if (IS_ERR(fcc->f2fs_issue_flush)) {
729 err = PTR_ERR(fcc->f2fs_issue_flush);
730 kvfree(fcc);
731 SM_I(sbi)->fcc_info = NULL;
732 return err;
735 return err;
738 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742 if (fcc && fcc->f2fs_issue_flush) {
743 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745 fcc->f2fs_issue_flush = NULL;
746 kthread_stop(flush_thread);
748 if (free) {
749 kvfree(fcc);
750 SM_I(sbi)->fcc_info = NULL;
754 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 int ret = 0, i;
758 if (!f2fs_is_multi_device(sbi))
759 return 0;
761 for (i = 1; i < sbi->s_ndevs; i++) {
762 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
763 continue;
764 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
765 if (ret)
766 break;
768 spin_lock(&sbi->dev_lock);
769 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
770 spin_unlock(&sbi->dev_lock);
773 return ret;
776 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
777 enum dirty_type dirty_type)
779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781 /* need not be added */
782 if (IS_CURSEG(sbi, segno))
783 return;
785 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
786 dirty_i->nr_dirty[dirty_type]++;
788 if (dirty_type == DIRTY) {
789 struct seg_entry *sentry = get_seg_entry(sbi, segno);
790 enum dirty_type t = sentry->type;
792 if (unlikely(t >= DIRTY)) {
793 f2fs_bug_on(sbi, 1);
794 return;
796 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
797 dirty_i->nr_dirty[t]++;
801 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
802 enum dirty_type dirty_type)
804 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
807 dirty_i->nr_dirty[dirty_type]--;
809 if (dirty_type == DIRTY) {
810 struct seg_entry *sentry = get_seg_entry(sbi, segno);
811 enum dirty_type t = sentry->type;
813 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
814 dirty_i->nr_dirty[t]--;
816 if (get_valid_blocks(sbi, segno, true) == 0)
817 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
818 dirty_i->victim_secmap);
823 * Should not occur error such as -ENOMEM.
824 * Adding dirty entry into seglist is not critical operation.
825 * If a given segment is one of current working segments, it won't be added.
827 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
829 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
830 unsigned short valid_blocks, ckpt_valid_blocks;
832 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
833 return;
835 mutex_lock(&dirty_i->seglist_lock);
837 valid_blocks = get_valid_blocks(sbi, segno, false);
838 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
840 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
841 ckpt_valid_blocks == sbi->blocks_per_seg)) {
842 __locate_dirty_segment(sbi, segno, PRE);
843 __remove_dirty_segment(sbi, segno, DIRTY);
844 } else if (valid_blocks < sbi->blocks_per_seg) {
845 __locate_dirty_segment(sbi, segno, DIRTY);
846 } else {
847 /* Recovery routine with SSR needs this */
848 __remove_dirty_segment(sbi, segno, DIRTY);
851 mutex_unlock(&dirty_i->seglist_lock);
854 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
855 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
857 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
858 unsigned int segno;
860 mutex_lock(&dirty_i->seglist_lock);
861 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
862 if (get_valid_blocks(sbi, segno, false))
863 continue;
864 if (IS_CURSEG(sbi, segno))
865 continue;
866 __locate_dirty_segment(sbi, segno, PRE);
867 __remove_dirty_segment(sbi, segno, DIRTY);
869 mutex_unlock(&dirty_i->seglist_lock);
872 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
874 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
875 block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
876 block_t holes[2] = {0, 0}; /* DATA and NODE */
877 struct seg_entry *se;
878 unsigned int segno;
880 mutex_lock(&dirty_i->seglist_lock);
881 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
882 se = get_seg_entry(sbi, segno);
883 if (IS_NODESEG(se->type))
884 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
885 else
886 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
888 mutex_unlock(&dirty_i->seglist_lock);
890 if (holes[DATA] > ovp || holes[NODE] > ovp)
891 return -EAGAIN;
892 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
893 dirty_segments(sbi) > overprovision_segments(sbi))
894 return -EAGAIN;
895 return 0;
898 /* This is only used by SBI_CP_DISABLED */
899 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
901 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
902 unsigned int segno = 0;
904 mutex_lock(&dirty_i->seglist_lock);
905 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
906 if (get_valid_blocks(sbi, segno, false))
907 continue;
908 if (get_ckpt_valid_blocks(sbi, segno))
909 continue;
910 mutex_unlock(&dirty_i->seglist_lock);
911 return segno;
913 mutex_unlock(&dirty_i->seglist_lock);
914 return NULL_SEGNO;
917 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
918 struct block_device *bdev, block_t lstart,
919 block_t start, block_t len)
921 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
922 struct list_head *pend_list;
923 struct discard_cmd *dc;
925 f2fs_bug_on(sbi, !len);
927 pend_list = &dcc->pend_list[plist_idx(len)];
929 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
930 INIT_LIST_HEAD(&dc->list);
931 dc->bdev = bdev;
932 dc->lstart = lstart;
933 dc->start = start;
934 dc->len = len;
935 dc->ref = 0;
936 dc->state = D_PREP;
937 dc->queued = 0;
938 dc->error = 0;
939 init_completion(&dc->wait);
940 list_add_tail(&dc->list, pend_list);
941 spin_lock_init(&dc->lock);
942 dc->bio_ref = 0;
943 atomic_inc(&dcc->discard_cmd_cnt);
944 dcc->undiscard_blks += len;
946 return dc;
949 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
950 struct block_device *bdev, block_t lstart,
951 block_t start, block_t len,
952 struct rb_node *parent, struct rb_node **p,
953 bool leftmost)
955 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
956 struct discard_cmd *dc;
958 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
960 rb_link_node(&dc->rb_node, parent, p);
961 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
963 return dc;
966 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
967 struct discard_cmd *dc)
969 if (dc->state == D_DONE)
970 atomic_sub(dc->queued, &dcc->queued_discard);
972 list_del(&dc->list);
973 rb_erase_cached(&dc->rb_node, &dcc->root);
974 dcc->undiscard_blks -= dc->len;
976 kmem_cache_free(discard_cmd_slab, dc);
978 atomic_dec(&dcc->discard_cmd_cnt);
981 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
982 struct discard_cmd *dc)
984 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
985 unsigned long flags;
987 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
989 spin_lock_irqsave(&dc->lock, flags);
990 if (dc->bio_ref) {
991 spin_unlock_irqrestore(&dc->lock, flags);
992 return;
994 spin_unlock_irqrestore(&dc->lock, flags);
996 f2fs_bug_on(sbi, dc->ref);
998 if (dc->error == -EOPNOTSUPP)
999 dc->error = 0;
1001 if (dc->error)
1002 printk_ratelimited(
1003 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1004 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1005 __detach_discard_cmd(dcc, dc);
1008 static void f2fs_submit_discard_endio(struct bio *bio)
1010 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1011 unsigned long flags;
1013 dc->error = blk_status_to_errno(bio->bi_status);
1015 spin_lock_irqsave(&dc->lock, flags);
1016 dc->bio_ref--;
1017 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1018 dc->state = D_DONE;
1019 complete_all(&dc->wait);
1021 spin_unlock_irqrestore(&dc->lock, flags);
1022 bio_put(bio);
1025 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1026 block_t start, block_t end)
1028 #ifdef CONFIG_F2FS_CHECK_FS
1029 struct seg_entry *sentry;
1030 unsigned int segno;
1031 block_t blk = start;
1032 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1033 unsigned long *map;
1035 while (blk < end) {
1036 segno = GET_SEGNO(sbi, blk);
1037 sentry = get_seg_entry(sbi, segno);
1038 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1040 if (end < START_BLOCK(sbi, segno + 1))
1041 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1042 else
1043 size = max_blocks;
1044 map = (unsigned long *)(sentry->cur_valid_map);
1045 offset = __find_rev_next_bit(map, size, offset);
1046 f2fs_bug_on(sbi, offset != size);
1047 blk = START_BLOCK(sbi, segno + 1);
1049 #endif
1052 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1053 struct discard_policy *dpolicy,
1054 int discard_type, unsigned int granularity)
1056 /* common policy */
1057 dpolicy->type = discard_type;
1058 dpolicy->sync = true;
1059 dpolicy->ordered = false;
1060 dpolicy->granularity = granularity;
1062 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1063 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1064 dpolicy->timeout = 0;
1066 if (discard_type == DPOLICY_BG) {
1067 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1068 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1069 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1070 dpolicy->io_aware = true;
1071 dpolicy->sync = false;
1072 dpolicy->ordered = true;
1073 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1074 dpolicy->granularity = 1;
1075 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1077 } else if (discard_type == DPOLICY_FORCE) {
1078 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1079 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1080 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1081 dpolicy->io_aware = false;
1082 } else if (discard_type == DPOLICY_FSTRIM) {
1083 dpolicy->io_aware = false;
1084 } else if (discard_type == DPOLICY_UMOUNT) {
1085 dpolicy->max_requests = UINT_MAX;
1086 dpolicy->io_aware = false;
1087 /* we need to issue all to keep CP_TRIMMED_FLAG */
1088 dpolicy->granularity = 1;
1092 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1093 struct block_device *bdev, block_t lstart,
1094 block_t start, block_t len);
1095 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1096 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1097 struct discard_policy *dpolicy,
1098 struct discard_cmd *dc,
1099 unsigned int *issued)
1101 struct block_device *bdev = dc->bdev;
1102 struct request_queue *q = bdev_get_queue(bdev);
1103 unsigned int max_discard_blocks =
1104 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1105 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1106 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1107 &(dcc->fstrim_list) : &(dcc->wait_list);
1108 int flag = dpolicy->sync ? REQ_SYNC : 0;
1109 block_t lstart, start, len, total_len;
1110 int err = 0;
1112 if (dc->state != D_PREP)
1113 return 0;
1115 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1116 return 0;
1118 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1120 lstart = dc->lstart;
1121 start = dc->start;
1122 len = dc->len;
1123 total_len = len;
1125 dc->len = 0;
1127 while (total_len && *issued < dpolicy->max_requests && !err) {
1128 struct bio *bio = NULL;
1129 unsigned long flags;
1130 bool last = true;
1132 if (len > max_discard_blocks) {
1133 len = max_discard_blocks;
1134 last = false;
1137 (*issued)++;
1138 if (*issued == dpolicy->max_requests)
1139 last = true;
1141 dc->len += len;
1143 if (time_to_inject(sbi, FAULT_DISCARD)) {
1144 f2fs_show_injection_info(FAULT_DISCARD);
1145 err = -EIO;
1146 goto submit;
1148 err = __blkdev_issue_discard(bdev,
1149 SECTOR_FROM_BLOCK(start),
1150 SECTOR_FROM_BLOCK(len),
1151 GFP_NOFS, 0, &bio);
1152 submit:
1153 if (err) {
1154 spin_lock_irqsave(&dc->lock, flags);
1155 if (dc->state == D_PARTIAL)
1156 dc->state = D_SUBMIT;
1157 spin_unlock_irqrestore(&dc->lock, flags);
1159 break;
1162 f2fs_bug_on(sbi, !bio);
1165 * should keep before submission to avoid D_DONE
1166 * right away
1168 spin_lock_irqsave(&dc->lock, flags);
1169 if (last)
1170 dc->state = D_SUBMIT;
1171 else
1172 dc->state = D_PARTIAL;
1173 dc->bio_ref++;
1174 spin_unlock_irqrestore(&dc->lock, flags);
1176 atomic_inc(&dcc->queued_discard);
1177 dc->queued++;
1178 list_move_tail(&dc->list, wait_list);
1180 /* sanity check on discard range */
1181 __check_sit_bitmap(sbi, lstart, lstart + len);
1183 bio->bi_private = dc;
1184 bio->bi_end_io = f2fs_submit_discard_endio;
1185 bio->bi_opf |= flag;
1186 submit_bio(bio);
1188 atomic_inc(&dcc->issued_discard);
1190 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1192 lstart += len;
1193 start += len;
1194 total_len -= len;
1195 len = total_len;
1198 if (!err && len)
1199 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1200 return err;
1203 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1204 struct block_device *bdev, block_t lstart,
1205 block_t start, block_t len,
1206 struct rb_node **insert_p,
1207 struct rb_node *insert_parent)
1209 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1210 struct rb_node **p;
1211 struct rb_node *parent = NULL;
1212 struct discard_cmd *dc = NULL;
1213 bool leftmost = true;
1215 if (insert_p && insert_parent) {
1216 parent = insert_parent;
1217 p = insert_p;
1218 goto do_insert;
1221 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1222 lstart, &leftmost);
1223 do_insert:
1224 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1225 p, leftmost);
1226 if (!dc)
1227 return NULL;
1229 return dc;
1232 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1233 struct discard_cmd *dc)
1235 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1238 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1239 struct discard_cmd *dc, block_t blkaddr)
1241 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1242 struct discard_info di = dc->di;
1243 bool modified = false;
1245 if (dc->state == D_DONE || dc->len == 1) {
1246 __remove_discard_cmd(sbi, dc);
1247 return;
1250 dcc->undiscard_blks -= di.len;
1252 if (blkaddr > di.lstart) {
1253 dc->len = blkaddr - dc->lstart;
1254 dcc->undiscard_blks += dc->len;
1255 __relocate_discard_cmd(dcc, dc);
1256 modified = true;
1259 if (blkaddr < di.lstart + di.len - 1) {
1260 if (modified) {
1261 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1262 di.start + blkaddr + 1 - di.lstart,
1263 di.lstart + di.len - 1 - blkaddr,
1264 NULL, NULL);
1265 } else {
1266 dc->lstart++;
1267 dc->len--;
1268 dc->start++;
1269 dcc->undiscard_blks += dc->len;
1270 __relocate_discard_cmd(dcc, dc);
1275 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1276 struct block_device *bdev, block_t lstart,
1277 block_t start, block_t len)
1279 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1280 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1281 struct discard_cmd *dc;
1282 struct discard_info di = {0};
1283 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1284 struct request_queue *q = bdev_get_queue(bdev);
1285 unsigned int max_discard_blocks =
1286 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1287 block_t end = lstart + len;
1289 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1290 NULL, lstart,
1291 (struct rb_entry **)&prev_dc,
1292 (struct rb_entry **)&next_dc,
1293 &insert_p, &insert_parent, true, NULL);
1294 if (dc)
1295 prev_dc = dc;
1297 if (!prev_dc) {
1298 di.lstart = lstart;
1299 di.len = next_dc ? next_dc->lstart - lstart : len;
1300 di.len = min(di.len, len);
1301 di.start = start;
1304 while (1) {
1305 struct rb_node *node;
1306 bool merged = false;
1307 struct discard_cmd *tdc = NULL;
1309 if (prev_dc) {
1310 di.lstart = prev_dc->lstart + prev_dc->len;
1311 if (di.lstart < lstart)
1312 di.lstart = lstart;
1313 if (di.lstart >= end)
1314 break;
1316 if (!next_dc || next_dc->lstart > end)
1317 di.len = end - di.lstart;
1318 else
1319 di.len = next_dc->lstart - di.lstart;
1320 di.start = start + di.lstart - lstart;
1323 if (!di.len)
1324 goto next;
1326 if (prev_dc && prev_dc->state == D_PREP &&
1327 prev_dc->bdev == bdev &&
1328 __is_discard_back_mergeable(&di, &prev_dc->di,
1329 max_discard_blocks)) {
1330 prev_dc->di.len += di.len;
1331 dcc->undiscard_blks += di.len;
1332 __relocate_discard_cmd(dcc, prev_dc);
1333 di = prev_dc->di;
1334 tdc = prev_dc;
1335 merged = true;
1338 if (next_dc && next_dc->state == D_PREP &&
1339 next_dc->bdev == bdev &&
1340 __is_discard_front_mergeable(&di, &next_dc->di,
1341 max_discard_blocks)) {
1342 next_dc->di.lstart = di.lstart;
1343 next_dc->di.len += di.len;
1344 next_dc->di.start = di.start;
1345 dcc->undiscard_blks += di.len;
1346 __relocate_discard_cmd(dcc, next_dc);
1347 if (tdc)
1348 __remove_discard_cmd(sbi, tdc);
1349 merged = true;
1352 if (!merged) {
1353 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1354 di.len, NULL, NULL);
1356 next:
1357 prev_dc = next_dc;
1358 if (!prev_dc)
1359 break;
1361 node = rb_next(&prev_dc->rb_node);
1362 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1366 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1367 struct block_device *bdev, block_t blkstart, block_t blklen)
1369 block_t lblkstart = blkstart;
1371 if (!f2fs_bdev_support_discard(bdev))
1372 return 0;
1374 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1376 if (f2fs_is_multi_device(sbi)) {
1377 int devi = f2fs_target_device_index(sbi, blkstart);
1379 blkstart -= FDEV(devi).start_blk;
1381 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1382 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1383 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1384 return 0;
1387 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1388 struct discard_policy *dpolicy)
1390 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1391 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1392 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1393 struct discard_cmd *dc;
1394 struct blk_plug plug;
1395 unsigned int pos = dcc->next_pos;
1396 unsigned int issued = 0;
1397 bool io_interrupted = false;
1399 mutex_lock(&dcc->cmd_lock);
1400 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1401 NULL, pos,
1402 (struct rb_entry **)&prev_dc,
1403 (struct rb_entry **)&next_dc,
1404 &insert_p, &insert_parent, true, NULL);
1405 if (!dc)
1406 dc = next_dc;
1408 blk_start_plug(&plug);
1410 while (dc) {
1411 struct rb_node *node;
1412 int err = 0;
1414 if (dc->state != D_PREP)
1415 goto next;
1417 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1418 io_interrupted = true;
1419 break;
1422 dcc->next_pos = dc->lstart + dc->len;
1423 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1425 if (issued >= dpolicy->max_requests)
1426 break;
1427 next:
1428 node = rb_next(&dc->rb_node);
1429 if (err)
1430 __remove_discard_cmd(sbi, dc);
1431 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1434 blk_finish_plug(&plug);
1436 if (!dc)
1437 dcc->next_pos = 0;
1439 mutex_unlock(&dcc->cmd_lock);
1441 if (!issued && io_interrupted)
1442 issued = -1;
1444 return issued;
1447 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1448 struct discard_policy *dpolicy)
1450 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1451 struct list_head *pend_list;
1452 struct discard_cmd *dc, *tmp;
1453 struct blk_plug plug;
1454 int i, issued = 0;
1455 bool io_interrupted = false;
1457 if (dpolicy->timeout != 0)
1458 f2fs_update_time(sbi, dpolicy->timeout);
1460 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1461 if (dpolicy->timeout != 0 &&
1462 f2fs_time_over(sbi, dpolicy->timeout))
1463 break;
1465 if (i + 1 < dpolicy->granularity)
1466 break;
1468 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1469 return __issue_discard_cmd_orderly(sbi, dpolicy);
1471 pend_list = &dcc->pend_list[i];
1473 mutex_lock(&dcc->cmd_lock);
1474 if (list_empty(pend_list))
1475 goto next;
1476 if (unlikely(dcc->rbtree_check))
1477 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1478 &dcc->root));
1479 blk_start_plug(&plug);
1480 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1481 f2fs_bug_on(sbi, dc->state != D_PREP);
1483 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1484 !is_idle(sbi, DISCARD_TIME)) {
1485 io_interrupted = true;
1486 break;
1489 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1491 if (issued >= dpolicy->max_requests)
1492 break;
1494 blk_finish_plug(&plug);
1495 next:
1496 mutex_unlock(&dcc->cmd_lock);
1498 if (issued >= dpolicy->max_requests || io_interrupted)
1499 break;
1502 if (!issued && io_interrupted)
1503 issued = -1;
1505 return issued;
1508 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1510 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1511 struct list_head *pend_list;
1512 struct discard_cmd *dc, *tmp;
1513 int i;
1514 bool dropped = false;
1516 mutex_lock(&dcc->cmd_lock);
1517 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1518 pend_list = &dcc->pend_list[i];
1519 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1520 f2fs_bug_on(sbi, dc->state != D_PREP);
1521 __remove_discard_cmd(sbi, dc);
1522 dropped = true;
1525 mutex_unlock(&dcc->cmd_lock);
1527 return dropped;
1530 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1532 __drop_discard_cmd(sbi);
1535 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1536 struct discard_cmd *dc)
1538 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1539 unsigned int len = 0;
1541 wait_for_completion_io(&dc->wait);
1542 mutex_lock(&dcc->cmd_lock);
1543 f2fs_bug_on(sbi, dc->state != D_DONE);
1544 dc->ref--;
1545 if (!dc->ref) {
1546 if (!dc->error)
1547 len = dc->len;
1548 __remove_discard_cmd(sbi, dc);
1550 mutex_unlock(&dcc->cmd_lock);
1552 return len;
1555 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1556 struct discard_policy *dpolicy,
1557 block_t start, block_t end)
1559 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1560 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1561 &(dcc->fstrim_list) : &(dcc->wait_list);
1562 struct discard_cmd *dc, *tmp;
1563 bool need_wait;
1564 unsigned int trimmed = 0;
1566 next:
1567 need_wait = false;
1569 mutex_lock(&dcc->cmd_lock);
1570 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1571 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1572 continue;
1573 if (dc->len < dpolicy->granularity)
1574 continue;
1575 if (dc->state == D_DONE && !dc->ref) {
1576 wait_for_completion_io(&dc->wait);
1577 if (!dc->error)
1578 trimmed += dc->len;
1579 __remove_discard_cmd(sbi, dc);
1580 } else {
1581 dc->ref++;
1582 need_wait = true;
1583 break;
1586 mutex_unlock(&dcc->cmd_lock);
1588 if (need_wait) {
1589 trimmed += __wait_one_discard_bio(sbi, dc);
1590 goto next;
1593 return trimmed;
1596 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1597 struct discard_policy *dpolicy)
1599 struct discard_policy dp;
1600 unsigned int discard_blks;
1602 if (dpolicy)
1603 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1605 /* wait all */
1606 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1607 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1608 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1609 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1611 return discard_blks;
1614 /* This should be covered by global mutex, &sit_i->sentry_lock */
1615 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1617 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618 struct discard_cmd *dc;
1619 bool need_wait = false;
1621 mutex_lock(&dcc->cmd_lock);
1622 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1623 NULL, blkaddr);
1624 if (dc) {
1625 if (dc->state == D_PREP) {
1626 __punch_discard_cmd(sbi, dc, blkaddr);
1627 } else {
1628 dc->ref++;
1629 need_wait = true;
1632 mutex_unlock(&dcc->cmd_lock);
1634 if (need_wait)
1635 __wait_one_discard_bio(sbi, dc);
1638 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1640 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642 if (dcc && dcc->f2fs_issue_discard) {
1643 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1645 dcc->f2fs_issue_discard = NULL;
1646 kthread_stop(discard_thread);
1650 /* This comes from f2fs_put_super */
1651 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1653 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1654 struct discard_policy dpolicy;
1655 bool dropped;
1657 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1658 dcc->discard_granularity);
1659 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1660 __issue_discard_cmd(sbi, &dpolicy);
1661 dropped = __drop_discard_cmd(sbi);
1663 /* just to make sure there is no pending discard commands */
1664 __wait_all_discard_cmd(sbi, NULL);
1666 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1667 return dropped;
1670 static int issue_discard_thread(void *data)
1672 struct f2fs_sb_info *sbi = data;
1673 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1674 wait_queue_head_t *q = &dcc->discard_wait_queue;
1675 struct discard_policy dpolicy;
1676 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1677 int issued;
1679 set_freezable();
1681 do {
1682 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1683 dcc->discard_granularity);
1685 wait_event_interruptible_timeout(*q,
1686 kthread_should_stop() || freezing(current) ||
1687 dcc->discard_wake,
1688 msecs_to_jiffies(wait_ms));
1690 if (dcc->discard_wake)
1691 dcc->discard_wake = 0;
1693 /* clean up pending candidates before going to sleep */
1694 if (atomic_read(&dcc->queued_discard))
1695 __wait_all_discard_cmd(sbi, NULL);
1697 if (try_to_freeze())
1698 continue;
1699 if (f2fs_readonly(sbi->sb))
1700 continue;
1701 if (kthread_should_stop())
1702 return 0;
1703 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1704 wait_ms = dpolicy.max_interval;
1705 continue;
1708 if (sbi->gc_mode == GC_URGENT)
1709 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1711 sb_start_intwrite(sbi->sb);
1713 issued = __issue_discard_cmd(sbi, &dpolicy);
1714 if (issued > 0) {
1715 __wait_all_discard_cmd(sbi, &dpolicy);
1716 wait_ms = dpolicy.min_interval;
1717 } else if (issued == -1){
1718 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1719 if (!wait_ms)
1720 wait_ms = dpolicy.mid_interval;
1721 } else {
1722 wait_ms = dpolicy.max_interval;
1725 sb_end_intwrite(sbi->sb);
1727 } while (!kthread_should_stop());
1728 return 0;
1731 #ifdef CONFIG_BLK_DEV_ZONED
1732 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1733 struct block_device *bdev, block_t blkstart, block_t blklen)
1735 sector_t sector, nr_sects;
1736 block_t lblkstart = blkstart;
1737 int devi = 0;
1739 if (f2fs_is_multi_device(sbi)) {
1740 devi = f2fs_target_device_index(sbi, blkstart);
1741 if (blkstart < FDEV(devi).start_blk ||
1742 blkstart > FDEV(devi).end_blk) {
1743 f2fs_msg(sbi->sb, KERN_ERR, "Invalid block %x",
1744 blkstart);
1745 return -EIO;
1747 blkstart -= FDEV(devi).start_blk;
1750 /* For sequential zones, reset the zone write pointer */
1751 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1752 sector = SECTOR_FROM_BLOCK(blkstart);
1753 nr_sects = SECTOR_FROM_BLOCK(blklen);
1755 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1756 nr_sects != bdev_zone_sectors(bdev)) {
1757 f2fs_msg(sbi->sb, KERN_ERR,
1758 "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1759 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1760 blkstart, blklen);
1761 return -EIO;
1763 trace_f2fs_issue_reset_zone(bdev, blkstart);
1764 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1767 /* For conventional zones, use regular discard if supported */
1768 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1770 #endif
1772 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1773 struct block_device *bdev, block_t blkstart, block_t blklen)
1775 #ifdef CONFIG_BLK_DEV_ZONED
1776 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1777 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1778 #endif
1779 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1782 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1783 block_t blkstart, block_t blklen)
1785 sector_t start = blkstart, len = 0;
1786 struct block_device *bdev;
1787 struct seg_entry *se;
1788 unsigned int offset;
1789 block_t i;
1790 int err = 0;
1792 bdev = f2fs_target_device(sbi, blkstart, NULL);
1794 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1795 if (i != start) {
1796 struct block_device *bdev2 =
1797 f2fs_target_device(sbi, i, NULL);
1799 if (bdev2 != bdev) {
1800 err = __issue_discard_async(sbi, bdev,
1801 start, len);
1802 if (err)
1803 return err;
1804 bdev = bdev2;
1805 start = i;
1806 len = 0;
1810 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1811 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1813 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1814 sbi->discard_blks--;
1817 if (len)
1818 err = __issue_discard_async(sbi, bdev, start, len);
1819 return err;
1822 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1823 bool check_only)
1825 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1826 int max_blocks = sbi->blocks_per_seg;
1827 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1828 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1829 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1830 unsigned long *discard_map = (unsigned long *)se->discard_map;
1831 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1832 unsigned int start = 0, end = -1;
1833 bool force = (cpc->reason & CP_DISCARD);
1834 struct discard_entry *de = NULL;
1835 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1836 int i;
1838 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1839 return false;
1841 if (!force) {
1842 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1843 SM_I(sbi)->dcc_info->nr_discards >=
1844 SM_I(sbi)->dcc_info->max_discards)
1845 return false;
1848 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1849 for (i = 0; i < entries; i++)
1850 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1851 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1853 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1854 SM_I(sbi)->dcc_info->max_discards) {
1855 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1856 if (start >= max_blocks)
1857 break;
1859 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1860 if (force && start && end != max_blocks
1861 && (end - start) < cpc->trim_minlen)
1862 continue;
1864 if (check_only)
1865 return true;
1867 if (!de) {
1868 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1869 GFP_F2FS_ZERO);
1870 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1871 list_add_tail(&de->list, head);
1874 for (i = start; i < end; i++)
1875 __set_bit_le(i, (void *)de->discard_map);
1877 SM_I(sbi)->dcc_info->nr_discards += end - start;
1879 return false;
1882 static void release_discard_addr(struct discard_entry *entry)
1884 list_del(&entry->list);
1885 kmem_cache_free(discard_entry_slab, entry);
1888 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1890 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1891 struct discard_entry *entry, *this;
1893 /* drop caches */
1894 list_for_each_entry_safe(entry, this, head, list)
1895 release_discard_addr(entry);
1899 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1901 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1903 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1904 unsigned int segno;
1906 mutex_lock(&dirty_i->seglist_lock);
1907 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1908 __set_test_and_free(sbi, segno);
1909 mutex_unlock(&dirty_i->seglist_lock);
1912 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1913 struct cp_control *cpc)
1915 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1916 struct list_head *head = &dcc->entry_list;
1917 struct discard_entry *entry, *this;
1918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1919 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1920 unsigned int start = 0, end = -1;
1921 unsigned int secno, start_segno;
1922 bool force = (cpc->reason & CP_DISCARD);
1923 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1925 mutex_lock(&dirty_i->seglist_lock);
1927 while (1) {
1928 int i;
1930 if (need_align && end != -1)
1931 end--;
1932 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1933 if (start >= MAIN_SEGS(sbi))
1934 break;
1935 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1936 start + 1);
1938 if (need_align) {
1939 start = rounddown(start, sbi->segs_per_sec);
1940 end = roundup(end, sbi->segs_per_sec);
1943 for (i = start; i < end; i++) {
1944 if (test_and_clear_bit(i, prefree_map))
1945 dirty_i->nr_dirty[PRE]--;
1948 if (!f2fs_realtime_discard_enable(sbi))
1949 continue;
1951 if (force && start >= cpc->trim_start &&
1952 (end - 1) <= cpc->trim_end)
1953 continue;
1955 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1956 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1957 (end - start) << sbi->log_blocks_per_seg);
1958 continue;
1960 next:
1961 secno = GET_SEC_FROM_SEG(sbi, start);
1962 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1963 if (!IS_CURSEC(sbi, secno) &&
1964 !get_valid_blocks(sbi, start, true))
1965 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1966 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1968 start = start_segno + sbi->segs_per_sec;
1969 if (start < end)
1970 goto next;
1971 else
1972 end = start - 1;
1974 mutex_unlock(&dirty_i->seglist_lock);
1976 /* send small discards */
1977 list_for_each_entry_safe(entry, this, head, list) {
1978 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1979 bool is_valid = test_bit_le(0, entry->discard_map);
1981 find_next:
1982 if (is_valid) {
1983 next_pos = find_next_zero_bit_le(entry->discard_map,
1984 sbi->blocks_per_seg, cur_pos);
1985 len = next_pos - cur_pos;
1987 if (f2fs_sb_has_blkzoned(sbi) ||
1988 (force && len < cpc->trim_minlen))
1989 goto skip;
1991 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1992 len);
1993 total_len += len;
1994 } else {
1995 next_pos = find_next_bit_le(entry->discard_map,
1996 sbi->blocks_per_seg, cur_pos);
1998 skip:
1999 cur_pos = next_pos;
2000 is_valid = !is_valid;
2002 if (cur_pos < sbi->blocks_per_seg)
2003 goto find_next;
2005 release_discard_addr(entry);
2006 dcc->nr_discards -= total_len;
2009 wake_up_discard_thread(sbi, false);
2012 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2014 dev_t dev = sbi->sb->s_bdev->bd_dev;
2015 struct discard_cmd_control *dcc;
2016 int err = 0, i;
2018 if (SM_I(sbi)->dcc_info) {
2019 dcc = SM_I(sbi)->dcc_info;
2020 goto init_thread;
2023 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2024 if (!dcc)
2025 return -ENOMEM;
2027 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2028 INIT_LIST_HEAD(&dcc->entry_list);
2029 for (i = 0; i < MAX_PLIST_NUM; i++)
2030 INIT_LIST_HEAD(&dcc->pend_list[i]);
2031 INIT_LIST_HEAD(&dcc->wait_list);
2032 INIT_LIST_HEAD(&dcc->fstrim_list);
2033 mutex_init(&dcc->cmd_lock);
2034 atomic_set(&dcc->issued_discard, 0);
2035 atomic_set(&dcc->queued_discard, 0);
2036 atomic_set(&dcc->discard_cmd_cnt, 0);
2037 dcc->nr_discards = 0;
2038 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2039 dcc->undiscard_blks = 0;
2040 dcc->next_pos = 0;
2041 dcc->root = RB_ROOT_CACHED;
2042 dcc->rbtree_check = false;
2044 init_waitqueue_head(&dcc->discard_wait_queue);
2045 SM_I(sbi)->dcc_info = dcc;
2046 init_thread:
2047 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2048 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2049 if (IS_ERR(dcc->f2fs_issue_discard)) {
2050 err = PTR_ERR(dcc->f2fs_issue_discard);
2051 kvfree(dcc);
2052 SM_I(sbi)->dcc_info = NULL;
2053 return err;
2056 return err;
2059 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2061 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2063 if (!dcc)
2064 return;
2066 f2fs_stop_discard_thread(sbi);
2068 kvfree(dcc);
2069 SM_I(sbi)->dcc_info = NULL;
2072 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2074 struct sit_info *sit_i = SIT_I(sbi);
2076 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2077 sit_i->dirty_sentries++;
2078 return false;
2081 return true;
2084 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2085 unsigned int segno, int modified)
2087 struct seg_entry *se = get_seg_entry(sbi, segno);
2088 se->type = type;
2089 if (modified)
2090 __mark_sit_entry_dirty(sbi, segno);
2093 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2095 struct seg_entry *se;
2096 unsigned int segno, offset;
2097 long int new_vblocks;
2098 bool exist;
2099 #ifdef CONFIG_F2FS_CHECK_FS
2100 bool mir_exist;
2101 #endif
2103 segno = GET_SEGNO(sbi, blkaddr);
2105 se = get_seg_entry(sbi, segno);
2106 new_vblocks = se->valid_blocks + del;
2107 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2109 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2110 (new_vblocks > sbi->blocks_per_seg)));
2112 se->valid_blocks = new_vblocks;
2113 se->mtime = get_mtime(sbi, false);
2114 if (se->mtime > SIT_I(sbi)->max_mtime)
2115 SIT_I(sbi)->max_mtime = se->mtime;
2117 /* Update valid block bitmap */
2118 if (del > 0) {
2119 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2120 #ifdef CONFIG_F2FS_CHECK_FS
2121 mir_exist = f2fs_test_and_set_bit(offset,
2122 se->cur_valid_map_mir);
2123 if (unlikely(exist != mir_exist)) {
2124 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2125 "when setting bitmap, blk:%u, old bit:%d",
2126 blkaddr, exist);
2127 f2fs_bug_on(sbi, 1);
2129 #endif
2130 if (unlikely(exist)) {
2131 f2fs_msg(sbi->sb, KERN_ERR,
2132 "Bitmap was wrongly set, blk:%u", blkaddr);
2133 f2fs_bug_on(sbi, 1);
2134 se->valid_blocks--;
2135 del = 0;
2138 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2139 sbi->discard_blks--;
2141 /* don't overwrite by SSR to keep node chain */
2142 if (IS_NODESEG(se->type) &&
2143 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2144 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2145 se->ckpt_valid_blocks++;
2147 } else {
2148 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2149 #ifdef CONFIG_F2FS_CHECK_FS
2150 mir_exist = f2fs_test_and_clear_bit(offset,
2151 se->cur_valid_map_mir);
2152 if (unlikely(exist != mir_exist)) {
2153 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2154 "when clearing bitmap, blk:%u, old bit:%d",
2155 blkaddr, exist);
2156 f2fs_bug_on(sbi, 1);
2158 #endif
2159 if (unlikely(!exist)) {
2160 f2fs_msg(sbi->sb, KERN_ERR,
2161 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2162 f2fs_bug_on(sbi, 1);
2163 se->valid_blocks++;
2164 del = 0;
2165 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2167 * If checkpoints are off, we must not reuse data that
2168 * was used in the previous checkpoint. If it was used
2169 * before, we must track that to know how much space we
2170 * really have.
2172 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2173 spin_lock(&sbi->stat_lock);
2174 sbi->unusable_block_count++;
2175 spin_unlock(&sbi->stat_lock);
2179 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2180 sbi->discard_blks++;
2182 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2183 se->ckpt_valid_blocks += del;
2185 __mark_sit_entry_dirty(sbi, segno);
2187 /* update total number of valid blocks to be written in ckpt area */
2188 SIT_I(sbi)->written_valid_blocks += del;
2190 if (__is_large_section(sbi))
2191 get_sec_entry(sbi, segno)->valid_blocks += del;
2194 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2196 unsigned int segno = GET_SEGNO(sbi, addr);
2197 struct sit_info *sit_i = SIT_I(sbi);
2199 f2fs_bug_on(sbi, addr == NULL_ADDR);
2200 if (addr == NEW_ADDR)
2201 return;
2203 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2205 /* add it into sit main buffer */
2206 down_write(&sit_i->sentry_lock);
2208 update_sit_entry(sbi, addr, -1);
2210 /* add it into dirty seglist */
2211 locate_dirty_segment(sbi, segno);
2213 up_write(&sit_i->sentry_lock);
2216 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2218 struct sit_info *sit_i = SIT_I(sbi);
2219 unsigned int segno, offset;
2220 struct seg_entry *se;
2221 bool is_cp = false;
2223 if (!__is_valid_data_blkaddr(blkaddr))
2224 return true;
2226 down_read(&sit_i->sentry_lock);
2228 segno = GET_SEGNO(sbi, blkaddr);
2229 se = get_seg_entry(sbi, segno);
2230 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2233 is_cp = true;
2235 up_read(&sit_i->sentry_lock);
2237 return is_cp;
2241 * This function should be resided under the curseg_mutex lock
2243 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2244 struct f2fs_summary *sum)
2246 struct curseg_info *curseg = CURSEG_I(sbi, type);
2247 void *addr = curseg->sum_blk;
2248 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2249 memcpy(addr, sum, sizeof(struct f2fs_summary));
2253 * Calculate the number of current summary pages for writing
2255 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2257 int valid_sum_count = 0;
2258 int i, sum_in_page;
2260 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2261 if (sbi->ckpt->alloc_type[i] == SSR)
2262 valid_sum_count += sbi->blocks_per_seg;
2263 else {
2264 if (for_ra)
2265 valid_sum_count += le16_to_cpu(
2266 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2267 else
2268 valid_sum_count += curseg_blkoff(sbi, i);
2272 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2273 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2274 if (valid_sum_count <= sum_in_page)
2275 return 1;
2276 else if ((valid_sum_count - sum_in_page) <=
2277 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2278 return 2;
2279 return 3;
2283 * Caller should put this summary page
2285 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2287 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2290 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2291 void *src, block_t blk_addr)
2293 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2295 memcpy(page_address(page), src, PAGE_SIZE);
2296 set_page_dirty(page);
2297 f2fs_put_page(page, 1);
2300 static void write_sum_page(struct f2fs_sb_info *sbi,
2301 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2303 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2306 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2307 int type, block_t blk_addr)
2309 struct curseg_info *curseg = CURSEG_I(sbi, type);
2310 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311 struct f2fs_summary_block *src = curseg->sum_blk;
2312 struct f2fs_summary_block *dst;
2314 dst = (struct f2fs_summary_block *)page_address(page);
2315 memset(dst, 0, PAGE_SIZE);
2317 mutex_lock(&curseg->curseg_mutex);
2319 down_read(&curseg->journal_rwsem);
2320 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2321 up_read(&curseg->journal_rwsem);
2323 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2324 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2326 mutex_unlock(&curseg->curseg_mutex);
2328 set_page_dirty(page);
2329 f2fs_put_page(page, 1);
2332 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2334 struct curseg_info *curseg = CURSEG_I(sbi, type);
2335 unsigned int segno = curseg->segno + 1;
2336 struct free_segmap_info *free_i = FREE_I(sbi);
2338 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2339 return !test_bit(segno, free_i->free_segmap);
2340 return 0;
2344 * Find a new segment from the free segments bitmap to right order
2345 * This function should be returned with success, otherwise BUG
2347 static void get_new_segment(struct f2fs_sb_info *sbi,
2348 unsigned int *newseg, bool new_sec, int dir)
2350 struct free_segmap_info *free_i = FREE_I(sbi);
2351 unsigned int segno, secno, zoneno;
2352 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2353 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2354 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2355 unsigned int left_start = hint;
2356 bool init = true;
2357 int go_left = 0;
2358 int i;
2360 spin_lock(&free_i->segmap_lock);
2362 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2363 segno = find_next_zero_bit(free_i->free_segmap,
2364 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2365 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2366 goto got_it;
2368 find_other_zone:
2369 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2370 if (secno >= MAIN_SECS(sbi)) {
2371 if (dir == ALLOC_RIGHT) {
2372 secno = find_next_zero_bit(free_i->free_secmap,
2373 MAIN_SECS(sbi), 0);
2374 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2375 } else {
2376 go_left = 1;
2377 left_start = hint - 1;
2380 if (go_left == 0)
2381 goto skip_left;
2383 while (test_bit(left_start, free_i->free_secmap)) {
2384 if (left_start > 0) {
2385 left_start--;
2386 continue;
2388 left_start = find_next_zero_bit(free_i->free_secmap,
2389 MAIN_SECS(sbi), 0);
2390 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2391 break;
2393 secno = left_start;
2394 skip_left:
2395 segno = GET_SEG_FROM_SEC(sbi, secno);
2396 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2398 /* give up on finding another zone */
2399 if (!init)
2400 goto got_it;
2401 if (sbi->secs_per_zone == 1)
2402 goto got_it;
2403 if (zoneno == old_zoneno)
2404 goto got_it;
2405 if (dir == ALLOC_LEFT) {
2406 if (!go_left && zoneno + 1 >= total_zones)
2407 goto got_it;
2408 if (go_left && zoneno == 0)
2409 goto got_it;
2411 for (i = 0; i < NR_CURSEG_TYPE; i++)
2412 if (CURSEG_I(sbi, i)->zone == zoneno)
2413 break;
2415 if (i < NR_CURSEG_TYPE) {
2416 /* zone is in user, try another */
2417 if (go_left)
2418 hint = zoneno * sbi->secs_per_zone - 1;
2419 else if (zoneno + 1 >= total_zones)
2420 hint = 0;
2421 else
2422 hint = (zoneno + 1) * sbi->secs_per_zone;
2423 init = false;
2424 goto find_other_zone;
2426 got_it:
2427 /* set it as dirty segment in free segmap */
2428 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2429 __set_inuse(sbi, segno);
2430 *newseg = segno;
2431 spin_unlock(&free_i->segmap_lock);
2434 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2436 struct curseg_info *curseg = CURSEG_I(sbi, type);
2437 struct summary_footer *sum_footer;
2439 curseg->segno = curseg->next_segno;
2440 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2441 curseg->next_blkoff = 0;
2442 curseg->next_segno = NULL_SEGNO;
2444 sum_footer = &(curseg->sum_blk->footer);
2445 memset(sum_footer, 0, sizeof(struct summary_footer));
2446 if (IS_DATASEG(type))
2447 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2448 if (IS_NODESEG(type))
2449 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2450 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2453 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2455 /* if segs_per_sec is large than 1, we need to keep original policy. */
2456 if (__is_large_section(sbi))
2457 return CURSEG_I(sbi, type)->segno;
2459 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2460 return 0;
2462 if (test_opt(sbi, NOHEAP) &&
2463 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2464 return 0;
2466 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2467 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2469 /* find segments from 0 to reuse freed segments */
2470 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2471 return 0;
2473 return CURSEG_I(sbi, type)->segno;
2477 * Allocate a current working segment.
2478 * This function always allocates a free segment in LFS manner.
2480 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2482 struct curseg_info *curseg = CURSEG_I(sbi, type);
2483 unsigned int segno = curseg->segno;
2484 int dir = ALLOC_LEFT;
2486 write_sum_page(sbi, curseg->sum_blk,
2487 GET_SUM_BLOCK(sbi, segno));
2488 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2489 dir = ALLOC_RIGHT;
2491 if (test_opt(sbi, NOHEAP))
2492 dir = ALLOC_RIGHT;
2494 segno = __get_next_segno(sbi, type);
2495 get_new_segment(sbi, &segno, new_sec, dir);
2496 curseg->next_segno = segno;
2497 reset_curseg(sbi, type, 1);
2498 curseg->alloc_type = LFS;
2501 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2502 struct curseg_info *seg, block_t start)
2504 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2505 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2506 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2507 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2508 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2509 int i, pos;
2511 for (i = 0; i < entries; i++)
2512 target_map[i] = ckpt_map[i] | cur_map[i];
2514 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2516 seg->next_blkoff = pos;
2520 * If a segment is written by LFS manner, next block offset is just obtained
2521 * by increasing the current block offset. However, if a segment is written by
2522 * SSR manner, next block offset obtained by calling __next_free_blkoff
2524 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2525 struct curseg_info *seg)
2527 if (seg->alloc_type == SSR)
2528 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2529 else
2530 seg->next_blkoff++;
2534 * This function always allocates a used segment(from dirty seglist) by SSR
2535 * manner, so it should recover the existing segment information of valid blocks
2537 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2539 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2540 struct curseg_info *curseg = CURSEG_I(sbi, type);
2541 unsigned int new_segno = curseg->next_segno;
2542 struct f2fs_summary_block *sum_node;
2543 struct page *sum_page;
2545 write_sum_page(sbi, curseg->sum_blk,
2546 GET_SUM_BLOCK(sbi, curseg->segno));
2547 __set_test_and_inuse(sbi, new_segno);
2549 mutex_lock(&dirty_i->seglist_lock);
2550 __remove_dirty_segment(sbi, new_segno, PRE);
2551 __remove_dirty_segment(sbi, new_segno, DIRTY);
2552 mutex_unlock(&dirty_i->seglist_lock);
2554 reset_curseg(sbi, type, 1);
2555 curseg->alloc_type = SSR;
2556 __next_free_blkoff(sbi, curseg, 0);
2558 sum_page = f2fs_get_sum_page(sbi, new_segno);
2559 f2fs_bug_on(sbi, IS_ERR(sum_page));
2560 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2561 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2562 f2fs_put_page(sum_page, 1);
2565 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2567 struct curseg_info *curseg = CURSEG_I(sbi, type);
2568 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2569 unsigned segno = NULL_SEGNO;
2570 int i, cnt;
2571 bool reversed = false;
2573 /* f2fs_need_SSR() already forces to do this */
2574 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2575 curseg->next_segno = segno;
2576 return 1;
2579 /* For node segments, let's do SSR more intensively */
2580 if (IS_NODESEG(type)) {
2581 if (type >= CURSEG_WARM_NODE) {
2582 reversed = true;
2583 i = CURSEG_COLD_NODE;
2584 } else {
2585 i = CURSEG_HOT_NODE;
2587 cnt = NR_CURSEG_NODE_TYPE;
2588 } else {
2589 if (type >= CURSEG_WARM_DATA) {
2590 reversed = true;
2591 i = CURSEG_COLD_DATA;
2592 } else {
2593 i = CURSEG_HOT_DATA;
2595 cnt = NR_CURSEG_DATA_TYPE;
2598 for (; cnt-- > 0; reversed ? i-- : i++) {
2599 if (i == type)
2600 continue;
2601 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2602 curseg->next_segno = segno;
2603 return 1;
2607 /* find valid_blocks=0 in dirty list */
2608 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2609 segno = get_free_segment(sbi);
2610 if (segno != NULL_SEGNO) {
2611 curseg->next_segno = segno;
2612 return 1;
2615 return 0;
2619 * flush out current segment and replace it with new segment
2620 * This function should be returned with success, otherwise BUG
2622 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2623 int type, bool force)
2625 struct curseg_info *curseg = CURSEG_I(sbi, type);
2627 if (force)
2628 new_curseg(sbi, type, true);
2629 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2630 type == CURSEG_WARM_NODE)
2631 new_curseg(sbi, type, false);
2632 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2633 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2634 new_curseg(sbi, type, false);
2635 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2636 change_curseg(sbi, type);
2637 else
2638 new_curseg(sbi, type, false);
2640 stat_inc_seg_type(sbi, curseg);
2643 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2645 struct curseg_info *curseg;
2646 unsigned int old_segno;
2647 int i;
2649 down_write(&SIT_I(sbi)->sentry_lock);
2651 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2652 curseg = CURSEG_I(sbi, i);
2653 old_segno = curseg->segno;
2654 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2655 locate_dirty_segment(sbi, old_segno);
2658 up_write(&SIT_I(sbi)->sentry_lock);
2661 static const struct segment_allocation default_salloc_ops = {
2662 .allocate_segment = allocate_segment_by_default,
2665 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2666 struct cp_control *cpc)
2668 __u64 trim_start = cpc->trim_start;
2669 bool has_candidate = false;
2671 down_write(&SIT_I(sbi)->sentry_lock);
2672 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2673 if (add_discard_addrs(sbi, cpc, true)) {
2674 has_candidate = true;
2675 break;
2678 up_write(&SIT_I(sbi)->sentry_lock);
2680 cpc->trim_start = trim_start;
2681 return has_candidate;
2684 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2685 struct discard_policy *dpolicy,
2686 unsigned int start, unsigned int end)
2688 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2689 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2690 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2691 struct discard_cmd *dc;
2692 struct blk_plug plug;
2693 int issued;
2694 unsigned int trimmed = 0;
2696 next:
2697 issued = 0;
2699 mutex_lock(&dcc->cmd_lock);
2700 if (unlikely(dcc->rbtree_check))
2701 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2702 &dcc->root));
2704 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2705 NULL, start,
2706 (struct rb_entry **)&prev_dc,
2707 (struct rb_entry **)&next_dc,
2708 &insert_p, &insert_parent, true, NULL);
2709 if (!dc)
2710 dc = next_dc;
2712 blk_start_plug(&plug);
2714 while (dc && dc->lstart <= end) {
2715 struct rb_node *node;
2716 int err = 0;
2718 if (dc->len < dpolicy->granularity)
2719 goto skip;
2721 if (dc->state != D_PREP) {
2722 list_move_tail(&dc->list, &dcc->fstrim_list);
2723 goto skip;
2726 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2728 if (issued >= dpolicy->max_requests) {
2729 start = dc->lstart + dc->len;
2731 if (err)
2732 __remove_discard_cmd(sbi, dc);
2734 blk_finish_plug(&plug);
2735 mutex_unlock(&dcc->cmd_lock);
2736 trimmed += __wait_all_discard_cmd(sbi, NULL);
2737 congestion_wait(BLK_RW_ASYNC, HZ/50);
2738 goto next;
2740 skip:
2741 node = rb_next(&dc->rb_node);
2742 if (err)
2743 __remove_discard_cmd(sbi, dc);
2744 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2746 if (fatal_signal_pending(current))
2747 break;
2750 blk_finish_plug(&plug);
2751 mutex_unlock(&dcc->cmd_lock);
2753 return trimmed;
2756 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2758 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2759 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2760 unsigned int start_segno, end_segno;
2761 block_t start_block, end_block;
2762 struct cp_control cpc;
2763 struct discard_policy dpolicy;
2764 unsigned long long trimmed = 0;
2765 int err = 0;
2766 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2768 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2769 return -EINVAL;
2771 if (end < MAIN_BLKADDR(sbi))
2772 goto out;
2774 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2775 f2fs_msg(sbi->sb, KERN_WARNING,
2776 "Found FS corruption, run fsck to fix.");
2777 return -EIO;
2780 /* start/end segment number in main_area */
2781 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2782 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2783 GET_SEGNO(sbi, end);
2784 if (need_align) {
2785 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2786 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2789 cpc.reason = CP_DISCARD;
2790 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2791 cpc.trim_start = start_segno;
2792 cpc.trim_end = end_segno;
2794 if (sbi->discard_blks == 0)
2795 goto out;
2797 mutex_lock(&sbi->gc_mutex);
2798 err = f2fs_write_checkpoint(sbi, &cpc);
2799 mutex_unlock(&sbi->gc_mutex);
2800 if (err)
2801 goto out;
2804 * We filed discard candidates, but actually we don't need to wait for
2805 * all of them, since they'll be issued in idle time along with runtime
2806 * discard option. User configuration looks like using runtime discard
2807 * or periodic fstrim instead of it.
2809 if (f2fs_realtime_discard_enable(sbi))
2810 goto out;
2812 start_block = START_BLOCK(sbi, start_segno);
2813 end_block = START_BLOCK(sbi, end_segno + 1);
2815 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2816 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2817 start_block, end_block);
2819 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2820 start_block, end_block);
2821 out:
2822 if (!err)
2823 range->len = F2FS_BLK_TO_BYTES(trimmed);
2824 return err;
2827 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2829 struct curseg_info *curseg = CURSEG_I(sbi, type);
2830 if (curseg->next_blkoff < sbi->blocks_per_seg)
2831 return true;
2832 return false;
2835 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2837 switch (hint) {
2838 case WRITE_LIFE_SHORT:
2839 return CURSEG_HOT_DATA;
2840 case WRITE_LIFE_EXTREME:
2841 return CURSEG_COLD_DATA;
2842 default:
2843 return CURSEG_WARM_DATA;
2847 /* This returns write hints for each segment type. This hints will be
2848 * passed down to block layer. There are mapping tables which depend on
2849 * the mount option 'whint_mode'.
2851 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2853 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2855 * User F2FS Block
2856 * ---- ---- -----
2857 * META WRITE_LIFE_NOT_SET
2858 * HOT_NODE "
2859 * WARM_NODE "
2860 * COLD_NODE "
2861 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2862 * extension list " "
2864 * -- buffered io
2865 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2866 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2867 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2868 * WRITE_LIFE_NONE " "
2869 * WRITE_LIFE_MEDIUM " "
2870 * WRITE_LIFE_LONG " "
2872 * -- direct io
2873 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2874 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2875 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2876 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2877 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2878 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2880 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2882 * User F2FS Block
2883 * ---- ---- -----
2884 * META WRITE_LIFE_MEDIUM;
2885 * HOT_NODE WRITE_LIFE_NOT_SET
2886 * WARM_NODE "
2887 * COLD_NODE WRITE_LIFE_NONE
2888 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2889 * extension list " "
2891 * -- buffered io
2892 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2893 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2894 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2895 * WRITE_LIFE_NONE " "
2896 * WRITE_LIFE_MEDIUM " "
2897 * WRITE_LIFE_LONG " "
2899 * -- direct io
2900 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2901 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2902 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2903 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2904 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2905 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2908 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2909 enum page_type type, enum temp_type temp)
2911 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2912 if (type == DATA) {
2913 if (temp == WARM)
2914 return WRITE_LIFE_NOT_SET;
2915 else if (temp == HOT)
2916 return WRITE_LIFE_SHORT;
2917 else if (temp == COLD)
2918 return WRITE_LIFE_EXTREME;
2919 } else {
2920 return WRITE_LIFE_NOT_SET;
2922 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2923 if (type == DATA) {
2924 if (temp == WARM)
2925 return WRITE_LIFE_LONG;
2926 else if (temp == HOT)
2927 return WRITE_LIFE_SHORT;
2928 else if (temp == COLD)
2929 return WRITE_LIFE_EXTREME;
2930 } else if (type == NODE) {
2931 if (temp == WARM || temp == HOT)
2932 return WRITE_LIFE_NOT_SET;
2933 else if (temp == COLD)
2934 return WRITE_LIFE_NONE;
2935 } else if (type == META) {
2936 return WRITE_LIFE_MEDIUM;
2939 return WRITE_LIFE_NOT_SET;
2942 static int __get_segment_type_2(struct f2fs_io_info *fio)
2944 if (fio->type == DATA)
2945 return CURSEG_HOT_DATA;
2946 else
2947 return CURSEG_HOT_NODE;
2950 static int __get_segment_type_4(struct f2fs_io_info *fio)
2952 if (fio->type == DATA) {
2953 struct inode *inode = fio->page->mapping->host;
2955 if (S_ISDIR(inode->i_mode))
2956 return CURSEG_HOT_DATA;
2957 else
2958 return CURSEG_COLD_DATA;
2959 } else {
2960 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2961 return CURSEG_WARM_NODE;
2962 else
2963 return CURSEG_COLD_NODE;
2967 static int __get_segment_type_6(struct f2fs_io_info *fio)
2969 if (fio->type == DATA) {
2970 struct inode *inode = fio->page->mapping->host;
2972 if (is_cold_data(fio->page) || file_is_cold(inode))
2973 return CURSEG_COLD_DATA;
2974 if (file_is_hot(inode) ||
2975 is_inode_flag_set(inode, FI_HOT_DATA) ||
2976 f2fs_is_atomic_file(inode) ||
2977 f2fs_is_volatile_file(inode))
2978 return CURSEG_HOT_DATA;
2979 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2980 } else {
2981 if (IS_DNODE(fio->page))
2982 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2983 CURSEG_HOT_NODE;
2984 return CURSEG_COLD_NODE;
2988 static int __get_segment_type(struct f2fs_io_info *fio)
2990 int type = 0;
2992 switch (F2FS_OPTION(fio->sbi).active_logs) {
2993 case 2:
2994 type = __get_segment_type_2(fio);
2995 break;
2996 case 4:
2997 type = __get_segment_type_4(fio);
2998 break;
2999 case 6:
3000 type = __get_segment_type_6(fio);
3001 break;
3002 default:
3003 f2fs_bug_on(fio->sbi, true);
3006 if (IS_HOT(type))
3007 fio->temp = HOT;
3008 else if (IS_WARM(type))
3009 fio->temp = WARM;
3010 else
3011 fio->temp = COLD;
3012 return type;
3015 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3016 block_t old_blkaddr, block_t *new_blkaddr,
3017 struct f2fs_summary *sum, int type,
3018 struct f2fs_io_info *fio, bool add_list)
3020 struct sit_info *sit_i = SIT_I(sbi);
3021 struct curseg_info *curseg = CURSEG_I(sbi, type);
3023 down_read(&SM_I(sbi)->curseg_lock);
3025 mutex_lock(&curseg->curseg_mutex);
3026 down_write(&sit_i->sentry_lock);
3028 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3030 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3033 * __add_sum_entry should be resided under the curseg_mutex
3034 * because, this function updates a summary entry in the
3035 * current summary block.
3037 __add_sum_entry(sbi, type, sum);
3039 __refresh_next_blkoff(sbi, curseg);
3041 stat_inc_block_count(sbi, curseg);
3044 * SIT information should be updated before segment allocation,
3045 * since SSR needs latest valid block information.
3047 update_sit_entry(sbi, *new_blkaddr, 1);
3048 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3049 update_sit_entry(sbi, old_blkaddr, -1);
3051 if (!__has_curseg_space(sbi, type))
3052 sit_i->s_ops->allocate_segment(sbi, type, false);
3055 * segment dirty status should be updated after segment allocation,
3056 * so we just need to update status only one time after previous
3057 * segment being closed.
3059 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3060 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3062 up_write(&sit_i->sentry_lock);
3064 if (page && IS_NODESEG(type)) {
3065 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3067 f2fs_inode_chksum_set(sbi, page);
3070 if (add_list) {
3071 struct f2fs_bio_info *io;
3073 INIT_LIST_HEAD(&fio->list);
3074 fio->in_list = true;
3075 fio->retry = false;
3076 io = sbi->write_io[fio->type] + fio->temp;
3077 spin_lock(&io->io_lock);
3078 list_add_tail(&fio->list, &io->io_list);
3079 spin_unlock(&io->io_lock);
3082 mutex_unlock(&curseg->curseg_mutex);
3084 up_read(&SM_I(sbi)->curseg_lock);
3087 static void update_device_state(struct f2fs_io_info *fio)
3089 struct f2fs_sb_info *sbi = fio->sbi;
3090 unsigned int devidx;
3092 if (!f2fs_is_multi_device(sbi))
3093 return;
3095 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3097 /* update device state for fsync */
3098 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3100 /* update device state for checkpoint */
3101 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3102 spin_lock(&sbi->dev_lock);
3103 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3104 spin_unlock(&sbi->dev_lock);
3108 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3110 int type = __get_segment_type(fio);
3111 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3113 if (keep_order)
3114 down_read(&fio->sbi->io_order_lock);
3115 reallocate:
3116 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3117 &fio->new_blkaddr, sum, type, fio, true);
3118 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3119 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3120 fio->old_blkaddr, fio->old_blkaddr);
3122 /* writeout dirty page into bdev */
3123 f2fs_submit_page_write(fio);
3124 if (fio->retry) {
3125 fio->old_blkaddr = fio->new_blkaddr;
3126 goto reallocate;
3129 update_device_state(fio);
3131 if (keep_order)
3132 up_read(&fio->sbi->io_order_lock);
3135 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3136 enum iostat_type io_type)
3138 struct f2fs_io_info fio = {
3139 .sbi = sbi,
3140 .type = META,
3141 .temp = HOT,
3142 .op = REQ_OP_WRITE,
3143 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3144 .old_blkaddr = page->index,
3145 .new_blkaddr = page->index,
3146 .page = page,
3147 .encrypted_page = NULL,
3148 .in_list = false,
3151 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3152 fio.op_flags &= ~REQ_META;
3154 set_page_writeback(page);
3155 ClearPageError(page);
3156 f2fs_submit_page_write(&fio);
3158 stat_inc_meta_count(sbi, page->index);
3159 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3162 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3164 struct f2fs_summary sum;
3166 set_summary(&sum, nid, 0, 0);
3167 do_write_page(&sum, fio);
3169 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3172 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3173 struct f2fs_io_info *fio)
3175 struct f2fs_sb_info *sbi = fio->sbi;
3176 struct f2fs_summary sum;
3178 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3179 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3180 do_write_page(&sum, fio);
3181 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3183 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3186 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3188 int err;
3189 struct f2fs_sb_info *sbi = fio->sbi;
3190 unsigned int segno;
3192 fio->new_blkaddr = fio->old_blkaddr;
3193 /* i/o temperature is needed for passing down write hints */
3194 __get_segment_type(fio);
3196 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3198 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3199 set_sbi_flag(sbi, SBI_NEED_FSCK);
3200 return -EFAULT;
3203 stat_inc_inplace_blocks(fio->sbi);
3205 err = f2fs_submit_page_bio(fio);
3206 if (!err) {
3207 update_device_state(fio);
3208 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3211 return err;
3214 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3215 unsigned int segno)
3217 int i;
3219 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3220 if (CURSEG_I(sbi, i)->segno == segno)
3221 break;
3223 return i;
3226 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3227 block_t old_blkaddr, block_t new_blkaddr,
3228 bool recover_curseg, bool recover_newaddr)
3230 struct sit_info *sit_i = SIT_I(sbi);
3231 struct curseg_info *curseg;
3232 unsigned int segno, old_cursegno;
3233 struct seg_entry *se;
3234 int type;
3235 unsigned short old_blkoff;
3237 segno = GET_SEGNO(sbi, new_blkaddr);
3238 se = get_seg_entry(sbi, segno);
3239 type = se->type;
3241 down_write(&SM_I(sbi)->curseg_lock);
3243 if (!recover_curseg) {
3244 /* for recovery flow */
3245 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3246 if (old_blkaddr == NULL_ADDR)
3247 type = CURSEG_COLD_DATA;
3248 else
3249 type = CURSEG_WARM_DATA;
3251 } else {
3252 if (IS_CURSEG(sbi, segno)) {
3253 /* se->type is volatile as SSR allocation */
3254 type = __f2fs_get_curseg(sbi, segno);
3255 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3256 } else {
3257 type = CURSEG_WARM_DATA;
3261 f2fs_bug_on(sbi, !IS_DATASEG(type));
3262 curseg = CURSEG_I(sbi, type);
3264 mutex_lock(&curseg->curseg_mutex);
3265 down_write(&sit_i->sentry_lock);
3267 old_cursegno = curseg->segno;
3268 old_blkoff = curseg->next_blkoff;
3270 /* change the current segment */
3271 if (segno != curseg->segno) {
3272 curseg->next_segno = segno;
3273 change_curseg(sbi, type);
3276 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3277 __add_sum_entry(sbi, type, sum);
3279 if (!recover_curseg || recover_newaddr)
3280 update_sit_entry(sbi, new_blkaddr, 1);
3281 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3282 invalidate_mapping_pages(META_MAPPING(sbi),
3283 old_blkaddr, old_blkaddr);
3284 update_sit_entry(sbi, old_blkaddr, -1);
3287 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3288 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3290 locate_dirty_segment(sbi, old_cursegno);
3292 if (recover_curseg) {
3293 if (old_cursegno != curseg->segno) {
3294 curseg->next_segno = old_cursegno;
3295 change_curseg(sbi, type);
3297 curseg->next_blkoff = old_blkoff;
3300 up_write(&sit_i->sentry_lock);
3301 mutex_unlock(&curseg->curseg_mutex);
3302 up_write(&SM_I(sbi)->curseg_lock);
3305 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3306 block_t old_addr, block_t new_addr,
3307 unsigned char version, bool recover_curseg,
3308 bool recover_newaddr)
3310 struct f2fs_summary sum;
3312 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3314 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3315 recover_curseg, recover_newaddr);
3317 f2fs_update_data_blkaddr(dn, new_addr);
3320 void f2fs_wait_on_page_writeback(struct page *page,
3321 enum page_type type, bool ordered, bool locked)
3323 if (PageWriteback(page)) {
3324 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3326 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3327 if (ordered) {
3328 wait_on_page_writeback(page);
3329 f2fs_bug_on(sbi, locked && PageWriteback(page));
3330 } else {
3331 wait_for_stable_page(page);
3336 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3338 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3339 struct page *cpage;
3341 if (!f2fs_post_read_required(inode))
3342 return;
3344 if (!__is_valid_data_blkaddr(blkaddr))
3345 return;
3347 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3348 if (cpage) {
3349 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3350 f2fs_put_page(cpage, 1);
3354 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3355 block_t len)
3357 block_t i;
3359 for (i = 0; i < len; i++)
3360 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3363 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3365 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3366 struct curseg_info *seg_i;
3367 unsigned char *kaddr;
3368 struct page *page;
3369 block_t start;
3370 int i, j, offset;
3372 start = start_sum_block(sbi);
3374 page = f2fs_get_meta_page(sbi, start++);
3375 if (IS_ERR(page))
3376 return PTR_ERR(page);
3377 kaddr = (unsigned char *)page_address(page);
3379 /* Step 1: restore nat cache */
3380 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3381 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3383 /* Step 2: restore sit cache */
3384 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3385 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3386 offset = 2 * SUM_JOURNAL_SIZE;
3388 /* Step 3: restore summary entries */
3389 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3390 unsigned short blk_off;
3391 unsigned int segno;
3393 seg_i = CURSEG_I(sbi, i);
3394 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3395 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3396 seg_i->next_segno = segno;
3397 reset_curseg(sbi, i, 0);
3398 seg_i->alloc_type = ckpt->alloc_type[i];
3399 seg_i->next_blkoff = blk_off;
3401 if (seg_i->alloc_type == SSR)
3402 blk_off = sbi->blocks_per_seg;
3404 for (j = 0; j < blk_off; j++) {
3405 struct f2fs_summary *s;
3406 s = (struct f2fs_summary *)(kaddr + offset);
3407 seg_i->sum_blk->entries[j] = *s;
3408 offset += SUMMARY_SIZE;
3409 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3410 SUM_FOOTER_SIZE)
3411 continue;
3413 f2fs_put_page(page, 1);
3414 page = NULL;
3416 page = f2fs_get_meta_page(sbi, start++);
3417 if (IS_ERR(page))
3418 return PTR_ERR(page);
3419 kaddr = (unsigned char *)page_address(page);
3420 offset = 0;
3423 f2fs_put_page(page, 1);
3424 return 0;
3427 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3429 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3430 struct f2fs_summary_block *sum;
3431 struct curseg_info *curseg;
3432 struct page *new;
3433 unsigned short blk_off;
3434 unsigned int segno = 0;
3435 block_t blk_addr = 0;
3436 int err = 0;
3438 /* get segment number and block addr */
3439 if (IS_DATASEG(type)) {
3440 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3441 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3442 CURSEG_HOT_DATA]);
3443 if (__exist_node_summaries(sbi))
3444 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3445 else
3446 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3447 } else {
3448 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3449 CURSEG_HOT_NODE]);
3450 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3451 CURSEG_HOT_NODE]);
3452 if (__exist_node_summaries(sbi))
3453 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3454 type - CURSEG_HOT_NODE);
3455 else
3456 blk_addr = GET_SUM_BLOCK(sbi, segno);
3459 new = f2fs_get_meta_page(sbi, blk_addr);
3460 if (IS_ERR(new))
3461 return PTR_ERR(new);
3462 sum = (struct f2fs_summary_block *)page_address(new);
3464 if (IS_NODESEG(type)) {
3465 if (__exist_node_summaries(sbi)) {
3466 struct f2fs_summary *ns = &sum->entries[0];
3467 int i;
3468 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3469 ns->version = 0;
3470 ns->ofs_in_node = 0;
3472 } else {
3473 err = f2fs_restore_node_summary(sbi, segno, sum);
3474 if (err)
3475 goto out;
3479 /* set uncompleted segment to curseg */
3480 curseg = CURSEG_I(sbi, type);
3481 mutex_lock(&curseg->curseg_mutex);
3483 /* update journal info */
3484 down_write(&curseg->journal_rwsem);
3485 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3486 up_write(&curseg->journal_rwsem);
3488 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3489 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3490 curseg->next_segno = segno;
3491 reset_curseg(sbi, type, 0);
3492 curseg->alloc_type = ckpt->alloc_type[type];
3493 curseg->next_blkoff = blk_off;
3494 mutex_unlock(&curseg->curseg_mutex);
3495 out:
3496 f2fs_put_page(new, 1);
3497 return err;
3500 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3502 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3503 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3504 int type = CURSEG_HOT_DATA;
3505 int err;
3507 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3508 int npages = f2fs_npages_for_summary_flush(sbi, true);
3510 if (npages >= 2)
3511 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3512 META_CP, true);
3514 /* restore for compacted data summary */
3515 err = read_compacted_summaries(sbi);
3516 if (err)
3517 return err;
3518 type = CURSEG_HOT_NODE;
3521 if (__exist_node_summaries(sbi))
3522 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3523 NR_CURSEG_TYPE - type, META_CP, true);
3525 for (; type <= CURSEG_COLD_NODE; type++) {
3526 err = read_normal_summaries(sbi, type);
3527 if (err)
3528 return err;
3531 /* sanity check for summary blocks */
3532 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3533 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3534 return -EINVAL;
3536 return 0;
3539 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3541 struct page *page;
3542 unsigned char *kaddr;
3543 struct f2fs_summary *summary;
3544 struct curseg_info *seg_i;
3545 int written_size = 0;
3546 int i, j;
3548 page = f2fs_grab_meta_page(sbi, blkaddr++);
3549 kaddr = (unsigned char *)page_address(page);
3550 memset(kaddr, 0, PAGE_SIZE);
3552 /* Step 1: write nat cache */
3553 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3554 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3555 written_size += SUM_JOURNAL_SIZE;
3557 /* Step 2: write sit cache */
3558 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3559 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3560 written_size += SUM_JOURNAL_SIZE;
3562 /* Step 3: write summary entries */
3563 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3564 unsigned short blkoff;
3565 seg_i = CURSEG_I(sbi, i);
3566 if (sbi->ckpt->alloc_type[i] == SSR)
3567 blkoff = sbi->blocks_per_seg;
3568 else
3569 blkoff = curseg_blkoff(sbi, i);
3571 for (j = 0; j < blkoff; j++) {
3572 if (!page) {
3573 page = f2fs_grab_meta_page(sbi, blkaddr++);
3574 kaddr = (unsigned char *)page_address(page);
3575 memset(kaddr, 0, PAGE_SIZE);
3576 written_size = 0;
3578 summary = (struct f2fs_summary *)(kaddr + written_size);
3579 *summary = seg_i->sum_blk->entries[j];
3580 written_size += SUMMARY_SIZE;
3582 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3583 SUM_FOOTER_SIZE)
3584 continue;
3586 set_page_dirty(page);
3587 f2fs_put_page(page, 1);
3588 page = NULL;
3591 if (page) {
3592 set_page_dirty(page);
3593 f2fs_put_page(page, 1);
3597 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3598 block_t blkaddr, int type)
3600 int i, end;
3601 if (IS_DATASEG(type))
3602 end = type + NR_CURSEG_DATA_TYPE;
3603 else
3604 end = type + NR_CURSEG_NODE_TYPE;
3606 for (i = type; i < end; i++)
3607 write_current_sum_page(sbi, i, blkaddr + (i - type));
3610 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3612 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3613 write_compacted_summaries(sbi, start_blk);
3614 else
3615 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3618 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3620 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3623 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3624 unsigned int val, int alloc)
3626 int i;
3628 if (type == NAT_JOURNAL) {
3629 for (i = 0; i < nats_in_cursum(journal); i++) {
3630 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3631 return i;
3633 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3634 return update_nats_in_cursum(journal, 1);
3635 } else if (type == SIT_JOURNAL) {
3636 for (i = 0; i < sits_in_cursum(journal); i++)
3637 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3638 return i;
3639 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3640 return update_sits_in_cursum(journal, 1);
3642 return -1;
3645 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3646 unsigned int segno)
3648 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3651 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3652 unsigned int start)
3654 struct sit_info *sit_i = SIT_I(sbi);
3655 struct page *page;
3656 pgoff_t src_off, dst_off;
3658 src_off = current_sit_addr(sbi, start);
3659 dst_off = next_sit_addr(sbi, src_off);
3661 page = f2fs_grab_meta_page(sbi, dst_off);
3662 seg_info_to_sit_page(sbi, page, start);
3664 set_page_dirty(page);
3665 set_to_next_sit(sit_i, start);
3667 return page;
3670 static struct sit_entry_set *grab_sit_entry_set(void)
3672 struct sit_entry_set *ses =
3673 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3675 ses->entry_cnt = 0;
3676 INIT_LIST_HEAD(&ses->set_list);
3677 return ses;
3680 static void release_sit_entry_set(struct sit_entry_set *ses)
3682 list_del(&ses->set_list);
3683 kmem_cache_free(sit_entry_set_slab, ses);
3686 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3687 struct list_head *head)
3689 struct sit_entry_set *next = ses;
3691 if (list_is_last(&ses->set_list, head))
3692 return;
3694 list_for_each_entry_continue(next, head, set_list)
3695 if (ses->entry_cnt <= next->entry_cnt)
3696 break;
3698 list_move_tail(&ses->set_list, &next->set_list);
3701 static void add_sit_entry(unsigned int segno, struct list_head *head)
3703 struct sit_entry_set *ses;
3704 unsigned int start_segno = START_SEGNO(segno);
3706 list_for_each_entry(ses, head, set_list) {
3707 if (ses->start_segno == start_segno) {
3708 ses->entry_cnt++;
3709 adjust_sit_entry_set(ses, head);
3710 return;
3714 ses = grab_sit_entry_set();
3716 ses->start_segno = start_segno;
3717 ses->entry_cnt++;
3718 list_add(&ses->set_list, head);
3721 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3723 struct f2fs_sm_info *sm_info = SM_I(sbi);
3724 struct list_head *set_list = &sm_info->sit_entry_set;
3725 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3726 unsigned int segno;
3728 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3729 add_sit_entry(segno, set_list);
3732 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3734 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3735 struct f2fs_journal *journal = curseg->journal;
3736 int i;
3738 down_write(&curseg->journal_rwsem);
3739 for (i = 0; i < sits_in_cursum(journal); i++) {
3740 unsigned int segno;
3741 bool dirtied;
3743 segno = le32_to_cpu(segno_in_journal(journal, i));
3744 dirtied = __mark_sit_entry_dirty(sbi, segno);
3746 if (!dirtied)
3747 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3749 update_sits_in_cursum(journal, -i);
3750 up_write(&curseg->journal_rwsem);
3754 * CP calls this function, which flushes SIT entries including sit_journal,
3755 * and moves prefree segs to free segs.
3757 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3759 struct sit_info *sit_i = SIT_I(sbi);
3760 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3761 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3762 struct f2fs_journal *journal = curseg->journal;
3763 struct sit_entry_set *ses, *tmp;
3764 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3765 bool to_journal = true;
3766 struct seg_entry *se;
3768 down_write(&sit_i->sentry_lock);
3770 if (!sit_i->dirty_sentries)
3771 goto out;
3774 * add and account sit entries of dirty bitmap in sit entry
3775 * set temporarily
3777 add_sits_in_set(sbi);
3780 * if there are no enough space in journal to store dirty sit
3781 * entries, remove all entries from journal and add and account
3782 * them in sit entry set.
3784 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3785 remove_sits_in_journal(sbi);
3788 * there are two steps to flush sit entries:
3789 * #1, flush sit entries to journal in current cold data summary block.
3790 * #2, flush sit entries to sit page.
3792 list_for_each_entry_safe(ses, tmp, head, set_list) {
3793 struct page *page = NULL;
3794 struct f2fs_sit_block *raw_sit = NULL;
3795 unsigned int start_segno = ses->start_segno;
3796 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3797 (unsigned long)MAIN_SEGS(sbi));
3798 unsigned int segno = start_segno;
3800 if (to_journal &&
3801 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3802 to_journal = false;
3804 if (to_journal) {
3805 down_write(&curseg->journal_rwsem);
3806 } else {
3807 page = get_next_sit_page(sbi, start_segno);
3808 raw_sit = page_address(page);
3811 /* flush dirty sit entries in region of current sit set */
3812 for_each_set_bit_from(segno, bitmap, end) {
3813 int offset, sit_offset;
3815 se = get_seg_entry(sbi, segno);
3816 #ifdef CONFIG_F2FS_CHECK_FS
3817 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3818 SIT_VBLOCK_MAP_SIZE))
3819 f2fs_bug_on(sbi, 1);
3820 #endif
3822 /* add discard candidates */
3823 if (!(cpc->reason & CP_DISCARD)) {
3824 cpc->trim_start = segno;
3825 add_discard_addrs(sbi, cpc, false);
3828 if (to_journal) {
3829 offset = f2fs_lookup_journal_in_cursum(journal,
3830 SIT_JOURNAL, segno, 1);
3831 f2fs_bug_on(sbi, offset < 0);
3832 segno_in_journal(journal, offset) =
3833 cpu_to_le32(segno);
3834 seg_info_to_raw_sit(se,
3835 &sit_in_journal(journal, offset));
3836 check_block_count(sbi, segno,
3837 &sit_in_journal(journal, offset));
3838 } else {
3839 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3840 seg_info_to_raw_sit(se,
3841 &raw_sit->entries[sit_offset]);
3842 check_block_count(sbi, segno,
3843 &raw_sit->entries[sit_offset]);
3846 __clear_bit(segno, bitmap);
3847 sit_i->dirty_sentries--;
3848 ses->entry_cnt--;
3851 if (to_journal)
3852 up_write(&curseg->journal_rwsem);
3853 else
3854 f2fs_put_page(page, 1);
3856 f2fs_bug_on(sbi, ses->entry_cnt);
3857 release_sit_entry_set(ses);
3860 f2fs_bug_on(sbi, !list_empty(head));
3861 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3862 out:
3863 if (cpc->reason & CP_DISCARD) {
3864 __u64 trim_start = cpc->trim_start;
3866 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3867 add_discard_addrs(sbi, cpc, false);
3869 cpc->trim_start = trim_start;
3871 up_write(&sit_i->sentry_lock);
3873 set_prefree_as_free_segments(sbi);
3876 static int build_sit_info(struct f2fs_sb_info *sbi)
3878 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3879 struct sit_info *sit_i;
3880 unsigned int sit_segs, start;
3881 char *src_bitmap;
3882 unsigned int bitmap_size;
3884 /* allocate memory for SIT information */
3885 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3886 if (!sit_i)
3887 return -ENOMEM;
3889 SM_I(sbi)->sit_info = sit_i;
3891 sit_i->sentries =
3892 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3893 MAIN_SEGS(sbi)),
3894 GFP_KERNEL);
3895 if (!sit_i->sentries)
3896 return -ENOMEM;
3898 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3899 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3900 GFP_KERNEL);
3901 if (!sit_i->dirty_sentries_bitmap)
3902 return -ENOMEM;
3904 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3905 sit_i->sentries[start].cur_valid_map
3906 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3907 sit_i->sentries[start].ckpt_valid_map
3908 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3909 if (!sit_i->sentries[start].cur_valid_map ||
3910 !sit_i->sentries[start].ckpt_valid_map)
3911 return -ENOMEM;
3913 #ifdef CONFIG_F2FS_CHECK_FS
3914 sit_i->sentries[start].cur_valid_map_mir
3915 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3916 if (!sit_i->sentries[start].cur_valid_map_mir)
3917 return -ENOMEM;
3918 #endif
3920 sit_i->sentries[start].discard_map
3921 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3922 GFP_KERNEL);
3923 if (!sit_i->sentries[start].discard_map)
3924 return -ENOMEM;
3927 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3928 if (!sit_i->tmp_map)
3929 return -ENOMEM;
3931 if (__is_large_section(sbi)) {
3932 sit_i->sec_entries =
3933 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3934 MAIN_SECS(sbi)),
3935 GFP_KERNEL);
3936 if (!sit_i->sec_entries)
3937 return -ENOMEM;
3940 /* get information related with SIT */
3941 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3943 /* setup SIT bitmap from ckeckpoint pack */
3944 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3945 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3947 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3948 if (!sit_i->sit_bitmap)
3949 return -ENOMEM;
3951 #ifdef CONFIG_F2FS_CHECK_FS
3952 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3953 if (!sit_i->sit_bitmap_mir)
3954 return -ENOMEM;
3955 #endif
3957 /* init SIT information */
3958 sit_i->s_ops = &default_salloc_ops;
3960 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3961 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3962 sit_i->written_valid_blocks = 0;
3963 sit_i->bitmap_size = bitmap_size;
3964 sit_i->dirty_sentries = 0;
3965 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3966 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3967 sit_i->mounted_time = ktime_get_real_seconds();
3968 init_rwsem(&sit_i->sentry_lock);
3969 return 0;
3972 static int build_free_segmap(struct f2fs_sb_info *sbi)
3974 struct free_segmap_info *free_i;
3975 unsigned int bitmap_size, sec_bitmap_size;
3977 /* allocate memory for free segmap information */
3978 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3979 if (!free_i)
3980 return -ENOMEM;
3982 SM_I(sbi)->free_info = free_i;
3984 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3985 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3986 if (!free_i->free_segmap)
3987 return -ENOMEM;
3989 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3990 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3991 if (!free_i->free_secmap)
3992 return -ENOMEM;
3994 /* set all segments as dirty temporarily */
3995 memset(free_i->free_segmap, 0xff, bitmap_size);
3996 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3998 /* init free segmap information */
3999 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4000 free_i->free_segments = 0;
4001 free_i->free_sections = 0;
4002 spin_lock_init(&free_i->segmap_lock);
4003 return 0;
4006 static int build_curseg(struct f2fs_sb_info *sbi)
4008 struct curseg_info *array;
4009 int i;
4011 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4012 GFP_KERNEL);
4013 if (!array)
4014 return -ENOMEM;
4016 SM_I(sbi)->curseg_array = array;
4018 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4019 mutex_init(&array[i].curseg_mutex);
4020 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4021 if (!array[i].sum_blk)
4022 return -ENOMEM;
4023 init_rwsem(&array[i].journal_rwsem);
4024 array[i].journal = f2fs_kzalloc(sbi,
4025 sizeof(struct f2fs_journal), GFP_KERNEL);
4026 if (!array[i].journal)
4027 return -ENOMEM;
4028 array[i].segno = NULL_SEGNO;
4029 array[i].next_blkoff = 0;
4031 return restore_curseg_summaries(sbi);
4034 static int build_sit_entries(struct f2fs_sb_info *sbi)
4036 struct sit_info *sit_i = SIT_I(sbi);
4037 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4038 struct f2fs_journal *journal = curseg->journal;
4039 struct seg_entry *se;
4040 struct f2fs_sit_entry sit;
4041 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4042 unsigned int i, start, end;
4043 unsigned int readed, start_blk = 0;
4044 int err = 0;
4045 block_t total_node_blocks = 0;
4047 do {
4048 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4049 META_SIT, true);
4051 start = start_blk * sit_i->sents_per_block;
4052 end = (start_blk + readed) * sit_i->sents_per_block;
4054 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4055 struct f2fs_sit_block *sit_blk;
4056 struct page *page;
4058 se = &sit_i->sentries[start];
4059 page = get_current_sit_page(sbi, start);
4060 if (IS_ERR(page))
4061 return PTR_ERR(page);
4062 sit_blk = (struct f2fs_sit_block *)page_address(page);
4063 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4064 f2fs_put_page(page, 1);
4066 err = check_block_count(sbi, start, &sit);
4067 if (err)
4068 return err;
4069 seg_info_from_raw_sit(se, &sit);
4070 if (IS_NODESEG(se->type))
4071 total_node_blocks += se->valid_blocks;
4073 /* build discard map only one time */
4074 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4075 memset(se->discard_map, 0xff,
4076 SIT_VBLOCK_MAP_SIZE);
4077 } else {
4078 memcpy(se->discard_map,
4079 se->cur_valid_map,
4080 SIT_VBLOCK_MAP_SIZE);
4081 sbi->discard_blks +=
4082 sbi->blocks_per_seg -
4083 se->valid_blocks;
4086 if (__is_large_section(sbi))
4087 get_sec_entry(sbi, start)->valid_blocks +=
4088 se->valid_blocks;
4090 start_blk += readed;
4091 } while (start_blk < sit_blk_cnt);
4093 down_read(&curseg->journal_rwsem);
4094 for (i = 0; i < sits_in_cursum(journal); i++) {
4095 unsigned int old_valid_blocks;
4097 start = le32_to_cpu(segno_in_journal(journal, i));
4098 if (start >= MAIN_SEGS(sbi)) {
4099 f2fs_msg(sbi->sb, KERN_ERR,
4100 "Wrong journal entry on segno %u",
4101 start);
4102 set_sbi_flag(sbi, SBI_NEED_FSCK);
4103 err = -EINVAL;
4104 break;
4107 se = &sit_i->sentries[start];
4108 sit = sit_in_journal(journal, i);
4110 old_valid_blocks = se->valid_blocks;
4111 if (IS_NODESEG(se->type))
4112 total_node_blocks -= old_valid_blocks;
4114 err = check_block_count(sbi, start, &sit);
4115 if (err)
4116 break;
4117 seg_info_from_raw_sit(se, &sit);
4118 if (IS_NODESEG(se->type))
4119 total_node_blocks += se->valid_blocks;
4121 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4122 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4123 } else {
4124 memcpy(se->discard_map, se->cur_valid_map,
4125 SIT_VBLOCK_MAP_SIZE);
4126 sbi->discard_blks += old_valid_blocks;
4127 sbi->discard_blks -= se->valid_blocks;
4130 if (__is_large_section(sbi)) {
4131 get_sec_entry(sbi, start)->valid_blocks +=
4132 se->valid_blocks;
4133 get_sec_entry(sbi, start)->valid_blocks -=
4134 old_valid_blocks;
4137 up_read(&curseg->journal_rwsem);
4139 if (!err && total_node_blocks != valid_node_count(sbi)) {
4140 f2fs_msg(sbi->sb, KERN_ERR,
4141 "SIT is corrupted node# %u vs %u",
4142 total_node_blocks, valid_node_count(sbi));
4143 set_sbi_flag(sbi, SBI_NEED_FSCK);
4144 err = -EINVAL;
4147 return err;
4150 static void init_free_segmap(struct f2fs_sb_info *sbi)
4152 unsigned int start;
4153 int type;
4155 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4156 struct seg_entry *sentry = get_seg_entry(sbi, start);
4157 if (!sentry->valid_blocks)
4158 __set_free(sbi, start);
4159 else
4160 SIT_I(sbi)->written_valid_blocks +=
4161 sentry->valid_blocks;
4164 /* set use the current segments */
4165 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4166 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4167 __set_test_and_inuse(sbi, curseg_t->segno);
4171 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4173 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4174 struct free_segmap_info *free_i = FREE_I(sbi);
4175 unsigned int segno = 0, offset = 0;
4176 unsigned short valid_blocks;
4178 while (1) {
4179 /* find dirty segment based on free segmap */
4180 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4181 if (segno >= MAIN_SEGS(sbi))
4182 break;
4183 offset = segno + 1;
4184 valid_blocks = get_valid_blocks(sbi, segno, false);
4185 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4186 continue;
4187 if (valid_blocks > sbi->blocks_per_seg) {
4188 f2fs_bug_on(sbi, 1);
4189 continue;
4191 mutex_lock(&dirty_i->seglist_lock);
4192 __locate_dirty_segment(sbi, segno, DIRTY);
4193 mutex_unlock(&dirty_i->seglist_lock);
4197 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4199 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4200 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4202 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4203 if (!dirty_i->victim_secmap)
4204 return -ENOMEM;
4205 return 0;
4208 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4210 struct dirty_seglist_info *dirty_i;
4211 unsigned int bitmap_size, i;
4213 /* allocate memory for dirty segments list information */
4214 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4215 GFP_KERNEL);
4216 if (!dirty_i)
4217 return -ENOMEM;
4219 SM_I(sbi)->dirty_info = dirty_i;
4220 mutex_init(&dirty_i->seglist_lock);
4222 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4224 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4225 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4226 GFP_KERNEL);
4227 if (!dirty_i->dirty_segmap[i])
4228 return -ENOMEM;
4231 init_dirty_segmap(sbi);
4232 return init_victim_secmap(sbi);
4236 * Update min, max modified time for cost-benefit GC algorithm
4238 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4240 struct sit_info *sit_i = SIT_I(sbi);
4241 unsigned int segno;
4243 down_write(&sit_i->sentry_lock);
4245 sit_i->min_mtime = ULLONG_MAX;
4247 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4248 unsigned int i;
4249 unsigned long long mtime = 0;
4251 for (i = 0; i < sbi->segs_per_sec; i++)
4252 mtime += get_seg_entry(sbi, segno + i)->mtime;
4254 mtime = div_u64(mtime, sbi->segs_per_sec);
4256 if (sit_i->min_mtime > mtime)
4257 sit_i->min_mtime = mtime;
4259 sit_i->max_mtime = get_mtime(sbi, false);
4260 up_write(&sit_i->sentry_lock);
4263 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4265 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4266 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4267 struct f2fs_sm_info *sm_info;
4268 int err;
4270 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4271 if (!sm_info)
4272 return -ENOMEM;
4274 /* init sm info */
4275 sbi->sm_info = sm_info;
4276 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4277 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4278 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4279 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4280 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4281 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4282 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4283 sm_info->rec_prefree_segments = sm_info->main_segments *
4284 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4285 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4286 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4288 if (!test_opt(sbi, LFS))
4289 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4290 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4291 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4292 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4293 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4294 sm_info->min_ssr_sections = reserved_sections(sbi);
4296 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4298 init_rwsem(&sm_info->curseg_lock);
4300 if (!f2fs_readonly(sbi->sb)) {
4301 err = f2fs_create_flush_cmd_control(sbi);
4302 if (err)
4303 return err;
4306 err = create_discard_cmd_control(sbi);
4307 if (err)
4308 return err;
4310 err = build_sit_info(sbi);
4311 if (err)
4312 return err;
4313 err = build_free_segmap(sbi);
4314 if (err)
4315 return err;
4316 err = build_curseg(sbi);
4317 if (err)
4318 return err;
4320 /* reinit free segmap based on SIT */
4321 err = build_sit_entries(sbi);
4322 if (err)
4323 return err;
4325 init_free_segmap(sbi);
4326 err = build_dirty_segmap(sbi);
4327 if (err)
4328 return err;
4330 init_min_max_mtime(sbi);
4331 return 0;
4334 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4335 enum dirty_type dirty_type)
4337 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4339 mutex_lock(&dirty_i->seglist_lock);
4340 kvfree(dirty_i->dirty_segmap[dirty_type]);
4341 dirty_i->nr_dirty[dirty_type] = 0;
4342 mutex_unlock(&dirty_i->seglist_lock);
4345 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4347 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4348 kvfree(dirty_i->victim_secmap);
4351 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4353 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4354 int i;
4356 if (!dirty_i)
4357 return;
4359 /* discard pre-free/dirty segments list */
4360 for (i = 0; i < NR_DIRTY_TYPE; i++)
4361 discard_dirty_segmap(sbi, i);
4363 destroy_victim_secmap(sbi);
4364 SM_I(sbi)->dirty_info = NULL;
4365 kvfree(dirty_i);
4368 static void destroy_curseg(struct f2fs_sb_info *sbi)
4370 struct curseg_info *array = SM_I(sbi)->curseg_array;
4371 int i;
4373 if (!array)
4374 return;
4375 SM_I(sbi)->curseg_array = NULL;
4376 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4377 kvfree(array[i].sum_blk);
4378 kvfree(array[i].journal);
4380 kvfree(array);
4383 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4385 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4386 if (!free_i)
4387 return;
4388 SM_I(sbi)->free_info = NULL;
4389 kvfree(free_i->free_segmap);
4390 kvfree(free_i->free_secmap);
4391 kvfree(free_i);
4394 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4396 struct sit_info *sit_i = SIT_I(sbi);
4397 unsigned int start;
4399 if (!sit_i)
4400 return;
4402 if (sit_i->sentries) {
4403 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4404 kvfree(sit_i->sentries[start].cur_valid_map);
4405 #ifdef CONFIG_F2FS_CHECK_FS
4406 kvfree(sit_i->sentries[start].cur_valid_map_mir);
4407 #endif
4408 kvfree(sit_i->sentries[start].ckpt_valid_map);
4409 kvfree(sit_i->sentries[start].discard_map);
4412 kvfree(sit_i->tmp_map);
4414 kvfree(sit_i->sentries);
4415 kvfree(sit_i->sec_entries);
4416 kvfree(sit_i->dirty_sentries_bitmap);
4418 SM_I(sbi)->sit_info = NULL;
4419 kvfree(sit_i->sit_bitmap);
4420 #ifdef CONFIG_F2FS_CHECK_FS
4421 kvfree(sit_i->sit_bitmap_mir);
4422 #endif
4423 kvfree(sit_i);
4426 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4428 struct f2fs_sm_info *sm_info = SM_I(sbi);
4430 if (!sm_info)
4431 return;
4432 f2fs_destroy_flush_cmd_control(sbi, true);
4433 destroy_discard_cmd_control(sbi);
4434 destroy_dirty_segmap(sbi);
4435 destroy_curseg(sbi);
4436 destroy_free_segmap(sbi);
4437 destroy_sit_info(sbi);
4438 sbi->sm_info = NULL;
4439 kvfree(sm_info);
4442 int __init f2fs_create_segment_manager_caches(void)
4444 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4445 sizeof(struct discard_entry));
4446 if (!discard_entry_slab)
4447 goto fail;
4449 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4450 sizeof(struct discard_cmd));
4451 if (!discard_cmd_slab)
4452 goto destroy_discard_entry;
4454 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4455 sizeof(struct sit_entry_set));
4456 if (!sit_entry_set_slab)
4457 goto destroy_discard_cmd;
4459 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4460 sizeof(struct inmem_pages));
4461 if (!inmem_entry_slab)
4462 goto destroy_sit_entry_set;
4463 return 0;
4465 destroy_sit_entry_set:
4466 kmem_cache_destroy(sit_entry_set_slab);
4467 destroy_discard_cmd:
4468 kmem_cache_destroy(discard_cmd_slab);
4469 destroy_discard_entry:
4470 kmem_cache_destroy(discard_entry_slab);
4471 fail:
4472 return -ENOMEM;
4475 void f2fs_destroy_segment_manager_caches(void)
4477 kmem_cache_destroy(sit_entry_set_slab);
4478 kmem_cache_destroy(discard_cmd_slab);
4479 kmem_cache_destroy(discard_entry_slab);
4480 kmem_cache_destroy(inmem_entry_slab);