Merge tag 'mtd/fixes-for-5.2-final' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-2.6-arm.git] / fs / ocfs2 / journal.c
blob930e3d388579138cc22016ede4393311ea8e54a3
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
5 * journal.c
7 * Defines functions of journalling api
9 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
21 #include <cluster/masklog.h>
23 #include "ocfs2.h"
25 #include "alloc.h"
26 #include "blockcheck.h"
27 #include "dir.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
31 #include "inode.h"
32 #include "journal.h"
33 #include "localalloc.h"
34 #include "slot_map.h"
35 #include "super.h"
36 #include "sysfile.h"
37 #include "uptodate.h"
38 #include "quota.h"
39 #include "file.h"
40 #include "namei.h"
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
45 DEFINE_SPINLOCK(trans_inc_lock);
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
49 static int ocfs2_force_read_journal(struct inode *inode);
50 static int ocfs2_recover_node(struct ocfs2_super *osb,
51 int node_num, int slot_num);
52 static int __ocfs2_recovery_thread(void *arg);
53 static int ocfs2_commit_cache(struct ocfs2_super *osb);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
56 int dirty, int replayed);
57 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
58 int slot_num);
59 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
60 int slot,
61 enum ocfs2_orphan_reco_type orphan_reco_type);
62 static int ocfs2_commit_thread(void *arg);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
64 int slot_num,
65 struct ocfs2_dinode *la_dinode,
66 struct ocfs2_dinode *tl_dinode,
67 struct ocfs2_quota_recovery *qrec,
68 enum ocfs2_orphan_reco_type orphan_reco_type);
70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
72 return __ocfs2_wait_on_mount(osb, 0);
75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
77 return __ocfs2_wait_on_mount(osb, 1);
81 * This replay_map is to track online/offline slots, so we could recover
82 * offline slots during recovery and mount
85 enum ocfs2_replay_state {
86 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
87 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
88 REPLAY_DONE /* Replay was already queued */
91 struct ocfs2_replay_map {
92 unsigned int rm_slots;
93 enum ocfs2_replay_state rm_state;
94 unsigned char rm_replay_slots[0];
97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
99 if (!osb->replay_map)
100 return;
102 /* If we've already queued the replay, we don't have any more to do */
103 if (osb->replay_map->rm_state == REPLAY_DONE)
104 return;
106 osb->replay_map->rm_state = state;
109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
111 struct ocfs2_replay_map *replay_map;
112 int i, node_num;
114 /* If replay map is already set, we don't do it again */
115 if (osb->replay_map)
116 return 0;
118 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
119 (osb->max_slots * sizeof(char)), GFP_KERNEL);
121 if (!replay_map) {
122 mlog_errno(-ENOMEM);
123 return -ENOMEM;
126 spin_lock(&osb->osb_lock);
128 replay_map->rm_slots = osb->max_slots;
129 replay_map->rm_state = REPLAY_UNNEEDED;
131 /* set rm_replay_slots for offline slot(s) */
132 for (i = 0; i < replay_map->rm_slots; i++) {
133 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
134 replay_map->rm_replay_slots[i] = 1;
137 osb->replay_map = replay_map;
138 spin_unlock(&osb->osb_lock);
139 return 0;
142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
143 enum ocfs2_orphan_reco_type orphan_reco_type)
145 struct ocfs2_replay_map *replay_map = osb->replay_map;
146 int i;
148 if (!replay_map)
149 return;
151 if (replay_map->rm_state != REPLAY_NEEDED)
152 return;
154 for (i = 0; i < replay_map->rm_slots; i++)
155 if (replay_map->rm_replay_slots[i])
156 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
157 NULL, NULL,
158 orphan_reco_type);
159 replay_map->rm_state = REPLAY_DONE;
162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
164 struct ocfs2_replay_map *replay_map = osb->replay_map;
166 if (!osb->replay_map)
167 return;
169 kfree(replay_map);
170 osb->replay_map = NULL;
173 int ocfs2_recovery_init(struct ocfs2_super *osb)
175 struct ocfs2_recovery_map *rm;
177 mutex_init(&osb->recovery_lock);
178 osb->disable_recovery = 0;
179 osb->recovery_thread_task = NULL;
180 init_waitqueue_head(&osb->recovery_event);
182 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
183 osb->max_slots * sizeof(unsigned int),
184 GFP_KERNEL);
185 if (!rm) {
186 mlog_errno(-ENOMEM);
187 return -ENOMEM;
190 rm->rm_entries = (unsigned int *)((char *)rm +
191 sizeof(struct ocfs2_recovery_map));
192 osb->recovery_map = rm;
194 return 0;
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198 * memory barriers to make sure that we'll see the null task before
199 * being woken up */
200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
202 mb();
203 return osb->recovery_thread_task != NULL;
206 void ocfs2_recovery_exit(struct ocfs2_super *osb)
208 struct ocfs2_recovery_map *rm;
210 /* disable any new recovery threads and wait for any currently
211 * running ones to exit. Do this before setting the vol_state. */
212 mutex_lock(&osb->recovery_lock);
213 osb->disable_recovery = 1;
214 mutex_unlock(&osb->recovery_lock);
215 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
217 /* At this point, we know that no more recovery threads can be
218 * launched, so wait for any recovery completion work to
219 * complete. */
220 flush_workqueue(osb->ocfs2_wq);
223 * Now that recovery is shut down, and the osb is about to be
224 * freed, the osb_lock is not taken here.
226 rm = osb->recovery_map;
227 /* XXX: Should we bug if there are dirty entries? */
229 kfree(rm);
232 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
233 unsigned int node_num)
235 int i;
236 struct ocfs2_recovery_map *rm = osb->recovery_map;
238 assert_spin_locked(&osb->osb_lock);
240 for (i = 0; i < rm->rm_used; i++) {
241 if (rm->rm_entries[i] == node_num)
242 return 1;
245 return 0;
248 /* Behaves like test-and-set. Returns the previous value */
249 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
250 unsigned int node_num)
252 struct ocfs2_recovery_map *rm = osb->recovery_map;
254 spin_lock(&osb->osb_lock);
255 if (__ocfs2_recovery_map_test(osb, node_num)) {
256 spin_unlock(&osb->osb_lock);
257 return 1;
260 /* XXX: Can this be exploited? Not from o2dlm... */
261 BUG_ON(rm->rm_used >= osb->max_slots);
263 rm->rm_entries[rm->rm_used] = node_num;
264 rm->rm_used++;
265 spin_unlock(&osb->osb_lock);
267 return 0;
270 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
271 unsigned int node_num)
273 int i;
274 struct ocfs2_recovery_map *rm = osb->recovery_map;
276 spin_lock(&osb->osb_lock);
278 for (i = 0; i < rm->rm_used; i++) {
279 if (rm->rm_entries[i] == node_num)
280 break;
283 if (i < rm->rm_used) {
284 /* XXX: be careful with the pointer math */
285 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
286 (rm->rm_used - i - 1) * sizeof(unsigned int));
287 rm->rm_used--;
290 spin_unlock(&osb->osb_lock);
293 static int ocfs2_commit_cache(struct ocfs2_super *osb)
295 int status = 0;
296 unsigned int flushed;
297 struct ocfs2_journal *journal = NULL;
299 journal = osb->journal;
301 /* Flush all pending commits and checkpoint the journal. */
302 down_write(&journal->j_trans_barrier);
304 flushed = atomic_read(&journal->j_num_trans);
305 trace_ocfs2_commit_cache_begin(flushed);
306 if (flushed == 0) {
307 up_write(&journal->j_trans_barrier);
308 goto finally;
311 jbd2_journal_lock_updates(journal->j_journal);
312 status = jbd2_journal_flush(journal->j_journal);
313 jbd2_journal_unlock_updates(journal->j_journal);
314 if (status < 0) {
315 up_write(&journal->j_trans_barrier);
316 mlog_errno(status);
317 goto finally;
320 ocfs2_inc_trans_id(journal);
322 flushed = atomic_read(&journal->j_num_trans);
323 atomic_set(&journal->j_num_trans, 0);
324 up_write(&journal->j_trans_barrier);
326 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
328 ocfs2_wake_downconvert_thread(osb);
329 wake_up(&journal->j_checkpointed);
330 finally:
331 return status;
334 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
336 journal_t *journal = osb->journal->j_journal;
337 handle_t *handle;
339 BUG_ON(!osb || !osb->journal->j_journal);
341 if (ocfs2_is_hard_readonly(osb))
342 return ERR_PTR(-EROFS);
344 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
345 BUG_ON(max_buffs <= 0);
347 /* Nested transaction? Just return the handle... */
348 if (journal_current_handle())
349 return jbd2_journal_start(journal, max_buffs);
351 sb_start_intwrite(osb->sb);
353 down_read(&osb->journal->j_trans_barrier);
355 handle = jbd2_journal_start(journal, max_buffs);
356 if (IS_ERR(handle)) {
357 up_read(&osb->journal->j_trans_barrier);
358 sb_end_intwrite(osb->sb);
360 mlog_errno(PTR_ERR(handle));
362 if (is_journal_aborted(journal)) {
363 ocfs2_abort(osb->sb, "Detected aborted journal\n");
364 handle = ERR_PTR(-EROFS);
366 } else {
367 if (!ocfs2_mount_local(osb))
368 atomic_inc(&(osb->journal->j_num_trans));
371 return handle;
374 int ocfs2_commit_trans(struct ocfs2_super *osb,
375 handle_t *handle)
377 int ret, nested;
378 struct ocfs2_journal *journal = osb->journal;
380 BUG_ON(!handle);
382 nested = handle->h_ref > 1;
383 ret = jbd2_journal_stop(handle);
384 if (ret < 0)
385 mlog_errno(ret);
387 if (!nested) {
388 up_read(&journal->j_trans_barrier);
389 sb_end_intwrite(osb->sb);
392 return ret;
396 * 'nblocks' is what you want to add to the current transaction.
398 * This might call jbd2_journal_restart() which will commit dirty buffers
399 * and then restart the transaction. Before calling
400 * ocfs2_extend_trans(), any changed blocks should have been
401 * dirtied. After calling it, all blocks which need to be changed must
402 * go through another set of journal_access/journal_dirty calls.
404 * WARNING: This will not release any semaphores or disk locks taken
405 * during the transaction, so make sure they were taken *before*
406 * start_trans or we'll have ordering deadlocks.
408 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
409 * good because transaction ids haven't yet been recorded on the
410 * cluster locks associated with this handle.
412 int ocfs2_extend_trans(handle_t *handle, int nblocks)
414 int status, old_nblocks;
416 BUG_ON(!handle);
417 BUG_ON(nblocks < 0);
419 if (!nblocks)
420 return 0;
422 old_nblocks = handle->h_buffer_credits;
424 trace_ocfs2_extend_trans(old_nblocks, nblocks);
426 #ifdef CONFIG_OCFS2_DEBUG_FS
427 status = 1;
428 #else
429 status = jbd2_journal_extend(handle, nblocks);
430 if (status < 0) {
431 mlog_errno(status);
432 goto bail;
434 #endif
436 if (status > 0) {
437 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
438 status = jbd2_journal_restart(handle,
439 old_nblocks + nblocks);
440 if (status < 0) {
441 mlog_errno(status);
442 goto bail;
446 status = 0;
447 bail:
448 return status;
452 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
453 * If that fails, restart the transaction & regain write access for the
454 * buffer head which is used for metadata modifications.
455 * Taken from Ext4: extend_or_restart_transaction()
457 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
459 int status, old_nblks;
461 BUG_ON(!handle);
463 old_nblks = handle->h_buffer_credits;
464 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
466 if (old_nblks < thresh)
467 return 0;
469 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
470 if (status < 0) {
471 mlog_errno(status);
472 goto bail;
475 if (status > 0) {
476 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
477 if (status < 0)
478 mlog_errno(status);
481 bail:
482 return status;
486 struct ocfs2_triggers {
487 struct jbd2_buffer_trigger_type ot_triggers;
488 int ot_offset;
491 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
493 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
496 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
497 struct buffer_head *bh,
498 void *data, size_t size)
500 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
503 * We aren't guaranteed to have the superblock here, so we
504 * must unconditionally compute the ecc data.
505 * __ocfs2_journal_access() will only set the triggers if
506 * metaecc is enabled.
508 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
512 * Quota blocks have their own trigger because the struct ocfs2_block_check
513 * offset depends on the blocksize.
515 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
516 struct buffer_head *bh,
517 void *data, size_t size)
519 struct ocfs2_disk_dqtrailer *dqt =
520 ocfs2_block_dqtrailer(size, data);
523 * We aren't guaranteed to have the superblock here, so we
524 * must unconditionally compute the ecc data.
525 * __ocfs2_journal_access() will only set the triggers if
526 * metaecc is enabled.
528 ocfs2_block_check_compute(data, size, &dqt->dq_check);
532 * Directory blocks also have their own trigger because the
533 * struct ocfs2_block_check offset depends on the blocksize.
535 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
536 struct buffer_head *bh,
537 void *data, size_t size)
539 struct ocfs2_dir_block_trailer *trailer =
540 ocfs2_dir_trailer_from_size(size, data);
543 * We aren't guaranteed to have the superblock here, so we
544 * must unconditionally compute the ecc data.
545 * __ocfs2_journal_access() will only set the triggers if
546 * metaecc is enabled.
548 ocfs2_block_check_compute(data, size, &trailer->db_check);
551 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
552 struct buffer_head *bh)
554 mlog(ML_ERROR,
555 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
556 "bh->b_blocknr = %llu\n",
557 (unsigned long)bh,
558 (unsigned long long)bh->b_blocknr);
560 ocfs2_error(bh->b_bdev->bd_super,
561 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
564 static struct ocfs2_triggers di_triggers = {
565 .ot_triggers = {
566 .t_frozen = ocfs2_frozen_trigger,
567 .t_abort = ocfs2_abort_trigger,
569 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
572 static struct ocfs2_triggers eb_triggers = {
573 .ot_triggers = {
574 .t_frozen = ocfs2_frozen_trigger,
575 .t_abort = ocfs2_abort_trigger,
577 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
580 static struct ocfs2_triggers rb_triggers = {
581 .ot_triggers = {
582 .t_frozen = ocfs2_frozen_trigger,
583 .t_abort = ocfs2_abort_trigger,
585 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
588 static struct ocfs2_triggers gd_triggers = {
589 .ot_triggers = {
590 .t_frozen = ocfs2_frozen_trigger,
591 .t_abort = ocfs2_abort_trigger,
593 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
596 static struct ocfs2_triggers db_triggers = {
597 .ot_triggers = {
598 .t_frozen = ocfs2_db_frozen_trigger,
599 .t_abort = ocfs2_abort_trigger,
603 static struct ocfs2_triggers xb_triggers = {
604 .ot_triggers = {
605 .t_frozen = ocfs2_frozen_trigger,
606 .t_abort = ocfs2_abort_trigger,
608 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
611 static struct ocfs2_triggers dq_triggers = {
612 .ot_triggers = {
613 .t_frozen = ocfs2_dq_frozen_trigger,
614 .t_abort = ocfs2_abort_trigger,
618 static struct ocfs2_triggers dr_triggers = {
619 .ot_triggers = {
620 .t_frozen = ocfs2_frozen_trigger,
621 .t_abort = ocfs2_abort_trigger,
623 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
626 static struct ocfs2_triggers dl_triggers = {
627 .ot_triggers = {
628 .t_frozen = ocfs2_frozen_trigger,
629 .t_abort = ocfs2_abort_trigger,
631 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
634 static int __ocfs2_journal_access(handle_t *handle,
635 struct ocfs2_caching_info *ci,
636 struct buffer_head *bh,
637 struct ocfs2_triggers *triggers,
638 int type)
640 int status;
641 struct ocfs2_super *osb =
642 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
644 BUG_ON(!ci || !ci->ci_ops);
645 BUG_ON(!handle);
646 BUG_ON(!bh);
648 trace_ocfs2_journal_access(
649 (unsigned long long)ocfs2_metadata_cache_owner(ci),
650 (unsigned long long)bh->b_blocknr, type, bh->b_size);
652 /* we can safely remove this assertion after testing. */
653 if (!buffer_uptodate(bh)) {
654 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
655 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
656 (unsigned long long)bh->b_blocknr, bh->b_state);
658 lock_buffer(bh);
660 * A previous transaction with a couple of buffer heads fail
661 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
662 * For current transaction, the bh is just among those error
663 * bhs which previous transaction handle. We can't just clear
664 * its BH_Write_EIO and reuse directly, since other bhs are
665 * not written to disk yet and that will cause metadata
666 * inconsistency. So we should set fs read-only to avoid
667 * further damage.
669 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
670 unlock_buffer(bh);
671 return ocfs2_error(osb->sb, "A previous attempt to "
672 "write this buffer head failed\n");
674 unlock_buffer(bh);
677 /* Set the current transaction information on the ci so
678 * that the locking code knows whether it can drop it's locks
679 * on this ci or not. We're protected from the commit
680 * thread updating the current transaction id until
681 * ocfs2_commit_trans() because ocfs2_start_trans() took
682 * j_trans_barrier for us. */
683 ocfs2_set_ci_lock_trans(osb->journal, ci);
685 ocfs2_metadata_cache_io_lock(ci);
686 switch (type) {
687 case OCFS2_JOURNAL_ACCESS_CREATE:
688 case OCFS2_JOURNAL_ACCESS_WRITE:
689 status = jbd2_journal_get_write_access(handle, bh);
690 break;
692 case OCFS2_JOURNAL_ACCESS_UNDO:
693 status = jbd2_journal_get_undo_access(handle, bh);
694 break;
696 default:
697 status = -EINVAL;
698 mlog(ML_ERROR, "Unknown access type!\n");
700 if (!status && ocfs2_meta_ecc(osb) && triggers)
701 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
702 ocfs2_metadata_cache_io_unlock(ci);
704 if (status < 0)
705 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
706 status, type);
708 return status;
711 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
712 struct buffer_head *bh, int type)
714 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
717 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
718 struct buffer_head *bh, int type)
720 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
723 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
724 struct buffer_head *bh, int type)
726 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
727 type);
730 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
731 struct buffer_head *bh, int type)
733 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
736 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
737 struct buffer_head *bh, int type)
739 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
742 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
743 struct buffer_head *bh, int type)
745 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
748 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
749 struct buffer_head *bh, int type)
751 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
754 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
755 struct buffer_head *bh, int type)
757 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
760 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
761 struct buffer_head *bh, int type)
763 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
766 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
767 struct buffer_head *bh, int type)
769 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
772 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
774 int status;
776 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
778 status = jbd2_journal_dirty_metadata(handle, bh);
779 if (status) {
780 mlog_errno(status);
781 if (!is_handle_aborted(handle)) {
782 journal_t *journal = handle->h_transaction->t_journal;
783 struct super_block *sb = bh->b_bdev->bd_super;
785 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
786 "Aborting transaction and journal.\n");
787 handle->h_err = status;
788 jbd2_journal_abort_handle(handle);
789 jbd2_journal_abort(journal, status);
790 ocfs2_abort(sb, "Journal already aborted.\n");
795 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
797 void ocfs2_set_journal_params(struct ocfs2_super *osb)
799 journal_t *journal = osb->journal->j_journal;
800 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
802 if (osb->osb_commit_interval)
803 commit_interval = osb->osb_commit_interval;
805 write_lock(&journal->j_state_lock);
806 journal->j_commit_interval = commit_interval;
807 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
808 journal->j_flags |= JBD2_BARRIER;
809 else
810 journal->j_flags &= ~JBD2_BARRIER;
811 write_unlock(&journal->j_state_lock);
814 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
816 int status = -1;
817 struct inode *inode = NULL; /* the journal inode */
818 journal_t *j_journal = NULL;
819 struct ocfs2_dinode *di = NULL;
820 struct buffer_head *bh = NULL;
821 struct ocfs2_super *osb;
822 int inode_lock = 0;
824 BUG_ON(!journal);
826 osb = journal->j_osb;
828 /* already have the inode for our journal */
829 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
830 osb->slot_num);
831 if (inode == NULL) {
832 status = -EACCES;
833 mlog_errno(status);
834 goto done;
836 if (is_bad_inode(inode)) {
837 mlog(ML_ERROR, "access error (bad inode)\n");
838 iput(inode);
839 inode = NULL;
840 status = -EACCES;
841 goto done;
844 SET_INODE_JOURNAL(inode);
845 OCFS2_I(inode)->ip_open_count++;
847 /* Skip recovery waits here - journal inode metadata never
848 * changes in a live cluster so it can be considered an
849 * exception to the rule. */
850 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
851 if (status < 0) {
852 if (status != -ERESTARTSYS)
853 mlog(ML_ERROR, "Could not get lock on journal!\n");
854 goto done;
857 inode_lock = 1;
858 di = (struct ocfs2_dinode *)bh->b_data;
860 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
861 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
862 i_size_read(inode));
863 status = -EINVAL;
864 goto done;
867 trace_ocfs2_journal_init(i_size_read(inode),
868 (unsigned long long)inode->i_blocks,
869 OCFS2_I(inode)->ip_clusters);
871 /* call the kernels journal init function now */
872 j_journal = jbd2_journal_init_inode(inode);
873 if (j_journal == NULL) {
874 mlog(ML_ERROR, "Linux journal layer error\n");
875 status = -EINVAL;
876 goto done;
879 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
881 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
882 OCFS2_JOURNAL_DIRTY_FL);
884 journal->j_journal = j_journal;
885 journal->j_inode = inode;
886 journal->j_bh = bh;
888 ocfs2_set_journal_params(osb);
890 journal->j_state = OCFS2_JOURNAL_LOADED;
892 status = 0;
893 done:
894 if (status < 0) {
895 if (inode_lock)
896 ocfs2_inode_unlock(inode, 1);
897 brelse(bh);
898 if (inode) {
899 OCFS2_I(inode)->ip_open_count--;
900 iput(inode);
904 return status;
907 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
909 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
912 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
914 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
917 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
918 int dirty, int replayed)
920 int status;
921 unsigned int flags;
922 struct ocfs2_journal *journal = osb->journal;
923 struct buffer_head *bh = journal->j_bh;
924 struct ocfs2_dinode *fe;
926 fe = (struct ocfs2_dinode *)bh->b_data;
928 /* The journal bh on the osb always comes from ocfs2_journal_init()
929 * and was validated there inside ocfs2_inode_lock_full(). It's a
930 * code bug if we mess it up. */
931 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
933 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
934 if (dirty)
935 flags |= OCFS2_JOURNAL_DIRTY_FL;
936 else
937 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
938 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
940 if (replayed)
941 ocfs2_bump_recovery_generation(fe);
943 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
944 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
945 if (status < 0)
946 mlog_errno(status);
948 return status;
952 * If the journal has been kmalloc'd it needs to be freed after this
953 * call.
955 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
957 struct ocfs2_journal *journal = NULL;
958 int status = 0;
959 struct inode *inode = NULL;
960 int num_running_trans = 0;
962 BUG_ON(!osb);
964 journal = osb->journal;
965 if (!journal)
966 goto done;
968 inode = journal->j_inode;
970 if (journal->j_state != OCFS2_JOURNAL_LOADED)
971 goto done;
973 /* need to inc inode use count - jbd2_journal_destroy will iput. */
974 if (!igrab(inode))
975 BUG();
977 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
978 trace_ocfs2_journal_shutdown(num_running_trans);
980 /* Do a commit_cache here. It will flush our journal, *and*
981 * release any locks that are still held.
982 * set the SHUTDOWN flag and release the trans lock.
983 * the commit thread will take the trans lock for us below. */
984 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
986 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
987 * drop the trans_lock (which we want to hold until we
988 * completely destroy the journal. */
989 if (osb->commit_task) {
990 /* Wait for the commit thread */
991 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
992 kthread_stop(osb->commit_task);
993 osb->commit_task = NULL;
996 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
998 if (ocfs2_mount_local(osb)) {
999 jbd2_journal_lock_updates(journal->j_journal);
1000 status = jbd2_journal_flush(journal->j_journal);
1001 jbd2_journal_unlock_updates(journal->j_journal);
1002 if (status < 0)
1003 mlog_errno(status);
1006 /* Shutdown the kernel journal system */
1007 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1009 * Do not toggle if flush was unsuccessful otherwise
1010 * will leave dirty metadata in a "clean" journal
1012 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1013 if (status < 0)
1014 mlog_errno(status);
1016 journal->j_journal = NULL;
1018 OCFS2_I(inode)->ip_open_count--;
1020 /* unlock our journal */
1021 ocfs2_inode_unlock(inode, 1);
1023 brelse(journal->j_bh);
1024 journal->j_bh = NULL;
1026 journal->j_state = OCFS2_JOURNAL_FREE;
1028 // up_write(&journal->j_trans_barrier);
1029 done:
1030 iput(inode);
1033 static void ocfs2_clear_journal_error(struct super_block *sb,
1034 journal_t *journal,
1035 int slot)
1037 int olderr;
1039 olderr = jbd2_journal_errno(journal);
1040 if (olderr) {
1041 mlog(ML_ERROR, "File system error %d recorded in "
1042 "journal %u.\n", olderr, slot);
1043 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1044 sb->s_id);
1046 jbd2_journal_ack_err(journal);
1047 jbd2_journal_clear_err(journal);
1051 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1053 int status = 0;
1054 struct ocfs2_super *osb;
1056 BUG_ON(!journal);
1058 osb = journal->j_osb;
1060 status = jbd2_journal_load(journal->j_journal);
1061 if (status < 0) {
1062 mlog(ML_ERROR, "Failed to load journal!\n");
1063 goto done;
1066 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1068 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1069 if (status < 0) {
1070 mlog_errno(status);
1071 goto done;
1074 /* Launch the commit thread */
1075 if (!local) {
1076 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1077 "ocfs2cmt-%s", osb->uuid_str);
1078 if (IS_ERR(osb->commit_task)) {
1079 status = PTR_ERR(osb->commit_task);
1080 osb->commit_task = NULL;
1081 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1082 "error=%d", status);
1083 goto done;
1085 } else
1086 osb->commit_task = NULL;
1088 done:
1089 return status;
1093 /* 'full' flag tells us whether we clear out all blocks or if we just
1094 * mark the journal clean */
1095 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1097 int status;
1099 BUG_ON(!journal);
1101 status = jbd2_journal_wipe(journal->j_journal, full);
1102 if (status < 0) {
1103 mlog_errno(status);
1104 goto bail;
1107 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1108 if (status < 0)
1109 mlog_errno(status);
1111 bail:
1112 return status;
1115 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1117 int empty;
1118 struct ocfs2_recovery_map *rm = osb->recovery_map;
1120 spin_lock(&osb->osb_lock);
1121 empty = (rm->rm_used == 0);
1122 spin_unlock(&osb->osb_lock);
1124 return empty;
1127 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1129 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1133 * JBD Might read a cached version of another nodes journal file. We
1134 * don't want this as this file changes often and we get no
1135 * notification on those changes. The only way to be sure that we've
1136 * got the most up to date version of those blocks then is to force
1137 * read them off disk. Just searching through the buffer cache won't
1138 * work as there may be pages backing this file which are still marked
1139 * up to date. We know things can't change on this file underneath us
1140 * as we have the lock by now :)
1142 static int ocfs2_force_read_journal(struct inode *inode)
1144 int status = 0;
1145 int i;
1146 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1147 struct buffer_head *bh = NULL;
1148 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1150 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1151 v_blkno = 0;
1152 while (v_blkno < num_blocks) {
1153 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1154 &p_blkno, &p_blocks, NULL);
1155 if (status < 0) {
1156 mlog_errno(status);
1157 goto bail;
1160 for (i = 0; i < p_blocks; i++, p_blkno++) {
1161 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1162 osb->sb->s_blocksize);
1163 /* block not cached. */
1164 if (!bh)
1165 continue;
1167 brelse(bh);
1168 bh = NULL;
1169 /* We are reading journal data which should not
1170 * be put in the uptodate cache.
1172 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1173 if (status < 0) {
1174 mlog_errno(status);
1175 goto bail;
1178 brelse(bh);
1179 bh = NULL;
1182 v_blkno += p_blocks;
1185 bail:
1186 return status;
1189 struct ocfs2_la_recovery_item {
1190 struct list_head lri_list;
1191 int lri_slot;
1192 struct ocfs2_dinode *lri_la_dinode;
1193 struct ocfs2_dinode *lri_tl_dinode;
1194 struct ocfs2_quota_recovery *lri_qrec;
1195 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1198 /* Does the second half of the recovery process. By this point, the
1199 * node is marked clean and can actually be considered recovered,
1200 * hence it's no longer in the recovery map, but there's still some
1201 * cleanup we can do which shouldn't happen within the recovery thread
1202 * as locking in that context becomes very difficult if we are to take
1203 * recovering nodes into account.
1205 * NOTE: This function can and will sleep on recovery of other nodes
1206 * during cluster locking, just like any other ocfs2 process.
1208 void ocfs2_complete_recovery(struct work_struct *work)
1210 int ret = 0;
1211 struct ocfs2_journal *journal =
1212 container_of(work, struct ocfs2_journal, j_recovery_work);
1213 struct ocfs2_super *osb = journal->j_osb;
1214 struct ocfs2_dinode *la_dinode, *tl_dinode;
1215 struct ocfs2_la_recovery_item *item, *n;
1216 struct ocfs2_quota_recovery *qrec;
1217 enum ocfs2_orphan_reco_type orphan_reco_type;
1218 LIST_HEAD(tmp_la_list);
1220 trace_ocfs2_complete_recovery(
1221 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1223 spin_lock(&journal->j_lock);
1224 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1225 spin_unlock(&journal->j_lock);
1227 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1228 list_del_init(&item->lri_list);
1230 ocfs2_wait_on_quotas(osb);
1232 la_dinode = item->lri_la_dinode;
1233 tl_dinode = item->lri_tl_dinode;
1234 qrec = item->lri_qrec;
1235 orphan_reco_type = item->lri_orphan_reco_type;
1237 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1238 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1239 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1240 qrec);
1242 if (la_dinode) {
1243 ret = ocfs2_complete_local_alloc_recovery(osb,
1244 la_dinode);
1245 if (ret < 0)
1246 mlog_errno(ret);
1248 kfree(la_dinode);
1251 if (tl_dinode) {
1252 ret = ocfs2_complete_truncate_log_recovery(osb,
1253 tl_dinode);
1254 if (ret < 0)
1255 mlog_errno(ret);
1257 kfree(tl_dinode);
1260 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1261 orphan_reco_type);
1262 if (ret < 0)
1263 mlog_errno(ret);
1265 if (qrec) {
1266 ret = ocfs2_finish_quota_recovery(osb, qrec,
1267 item->lri_slot);
1268 if (ret < 0)
1269 mlog_errno(ret);
1270 /* Recovery info is already freed now */
1273 kfree(item);
1276 trace_ocfs2_complete_recovery_end(ret);
1279 /* NOTE: This function always eats your references to la_dinode and
1280 * tl_dinode, either manually on error, or by passing them to
1281 * ocfs2_complete_recovery */
1282 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1283 int slot_num,
1284 struct ocfs2_dinode *la_dinode,
1285 struct ocfs2_dinode *tl_dinode,
1286 struct ocfs2_quota_recovery *qrec,
1287 enum ocfs2_orphan_reco_type orphan_reco_type)
1289 struct ocfs2_la_recovery_item *item;
1291 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1292 if (!item) {
1293 /* Though we wish to avoid it, we are in fact safe in
1294 * skipping local alloc cleanup as fsck.ocfs2 is more
1295 * than capable of reclaiming unused space. */
1296 kfree(la_dinode);
1297 kfree(tl_dinode);
1299 if (qrec)
1300 ocfs2_free_quota_recovery(qrec);
1302 mlog_errno(-ENOMEM);
1303 return;
1306 INIT_LIST_HEAD(&item->lri_list);
1307 item->lri_la_dinode = la_dinode;
1308 item->lri_slot = slot_num;
1309 item->lri_tl_dinode = tl_dinode;
1310 item->lri_qrec = qrec;
1311 item->lri_orphan_reco_type = orphan_reco_type;
1313 spin_lock(&journal->j_lock);
1314 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1315 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1316 spin_unlock(&journal->j_lock);
1319 /* Called by the mount code to queue recovery the last part of
1320 * recovery for it's own and offline slot(s). */
1321 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1323 struct ocfs2_journal *journal = osb->journal;
1325 if (ocfs2_is_hard_readonly(osb))
1326 return;
1328 /* No need to queue up our truncate_log as regular cleanup will catch
1329 * that */
1330 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1331 osb->local_alloc_copy, NULL, NULL,
1332 ORPHAN_NEED_TRUNCATE);
1333 ocfs2_schedule_truncate_log_flush(osb, 0);
1335 osb->local_alloc_copy = NULL;
1337 /* queue to recover orphan slots for all offline slots */
1338 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1339 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1340 ocfs2_free_replay_slots(osb);
1343 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1345 if (osb->quota_rec) {
1346 ocfs2_queue_recovery_completion(osb->journal,
1347 osb->slot_num,
1348 NULL,
1349 NULL,
1350 osb->quota_rec,
1351 ORPHAN_NEED_TRUNCATE);
1352 osb->quota_rec = NULL;
1356 static int __ocfs2_recovery_thread(void *arg)
1358 int status, node_num, slot_num;
1359 struct ocfs2_super *osb = arg;
1360 struct ocfs2_recovery_map *rm = osb->recovery_map;
1361 int *rm_quota = NULL;
1362 int rm_quota_used = 0, i;
1363 struct ocfs2_quota_recovery *qrec;
1365 /* Whether the quota supported. */
1366 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1367 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1368 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1369 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1371 status = ocfs2_wait_on_mount(osb);
1372 if (status < 0) {
1373 goto bail;
1376 if (quota_enabled) {
1377 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1378 if (!rm_quota) {
1379 status = -ENOMEM;
1380 goto bail;
1383 restart:
1384 status = ocfs2_super_lock(osb, 1);
1385 if (status < 0) {
1386 mlog_errno(status);
1387 goto bail;
1390 status = ocfs2_compute_replay_slots(osb);
1391 if (status < 0)
1392 mlog_errno(status);
1394 /* queue recovery for our own slot */
1395 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1396 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1398 spin_lock(&osb->osb_lock);
1399 while (rm->rm_used) {
1400 /* It's always safe to remove entry zero, as we won't
1401 * clear it until ocfs2_recover_node() has succeeded. */
1402 node_num = rm->rm_entries[0];
1403 spin_unlock(&osb->osb_lock);
1404 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1405 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1406 if (slot_num == -ENOENT) {
1407 status = 0;
1408 goto skip_recovery;
1411 /* It is a bit subtle with quota recovery. We cannot do it
1412 * immediately because we have to obtain cluster locks from
1413 * quota files and we also don't want to just skip it because
1414 * then quota usage would be out of sync until some node takes
1415 * the slot. So we remember which nodes need quota recovery
1416 * and when everything else is done, we recover quotas. */
1417 if (quota_enabled) {
1418 for (i = 0; i < rm_quota_used
1419 && rm_quota[i] != slot_num; i++)
1422 if (i == rm_quota_used)
1423 rm_quota[rm_quota_used++] = slot_num;
1426 status = ocfs2_recover_node(osb, node_num, slot_num);
1427 skip_recovery:
1428 if (!status) {
1429 ocfs2_recovery_map_clear(osb, node_num);
1430 } else {
1431 mlog(ML_ERROR,
1432 "Error %d recovering node %d on device (%u,%u)!\n",
1433 status, node_num,
1434 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1435 mlog(ML_ERROR, "Volume requires unmount.\n");
1438 spin_lock(&osb->osb_lock);
1440 spin_unlock(&osb->osb_lock);
1441 trace_ocfs2_recovery_thread_end(status);
1443 /* Refresh all journal recovery generations from disk */
1444 status = ocfs2_check_journals_nolocks(osb);
1445 status = (status == -EROFS) ? 0 : status;
1446 if (status < 0)
1447 mlog_errno(status);
1449 /* Now it is right time to recover quotas... We have to do this under
1450 * superblock lock so that no one can start using the slot (and crash)
1451 * before we recover it */
1452 if (quota_enabled) {
1453 for (i = 0; i < rm_quota_used; i++) {
1454 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1455 if (IS_ERR(qrec)) {
1456 status = PTR_ERR(qrec);
1457 mlog_errno(status);
1458 continue;
1460 ocfs2_queue_recovery_completion(osb->journal,
1461 rm_quota[i],
1462 NULL, NULL, qrec,
1463 ORPHAN_NEED_TRUNCATE);
1467 ocfs2_super_unlock(osb, 1);
1469 /* queue recovery for offline slots */
1470 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1472 bail:
1473 mutex_lock(&osb->recovery_lock);
1474 if (!status && !ocfs2_recovery_completed(osb)) {
1475 mutex_unlock(&osb->recovery_lock);
1476 goto restart;
1479 ocfs2_free_replay_slots(osb);
1480 osb->recovery_thread_task = NULL;
1481 mb(); /* sync with ocfs2_recovery_thread_running */
1482 wake_up(&osb->recovery_event);
1484 mutex_unlock(&osb->recovery_lock);
1486 if (quota_enabled)
1487 kfree(rm_quota);
1489 /* no one is callint kthread_stop() for us so the kthread() api
1490 * requires that we call do_exit(). And it isn't exported, but
1491 * complete_and_exit() seems to be a minimal wrapper around it. */
1492 complete_and_exit(NULL, status);
1495 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1497 mutex_lock(&osb->recovery_lock);
1499 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1500 osb->disable_recovery, osb->recovery_thread_task,
1501 osb->disable_recovery ?
1502 -1 : ocfs2_recovery_map_set(osb, node_num));
1504 if (osb->disable_recovery)
1505 goto out;
1507 if (osb->recovery_thread_task)
1508 goto out;
1510 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1511 "ocfs2rec-%s", osb->uuid_str);
1512 if (IS_ERR(osb->recovery_thread_task)) {
1513 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1514 osb->recovery_thread_task = NULL;
1517 out:
1518 mutex_unlock(&osb->recovery_lock);
1519 wake_up(&osb->recovery_event);
1522 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1523 int slot_num,
1524 struct buffer_head **bh,
1525 struct inode **ret_inode)
1527 int status = -EACCES;
1528 struct inode *inode = NULL;
1530 BUG_ON(slot_num >= osb->max_slots);
1532 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1533 slot_num);
1534 if (!inode || is_bad_inode(inode)) {
1535 mlog_errno(status);
1536 goto bail;
1538 SET_INODE_JOURNAL(inode);
1540 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1541 if (status < 0) {
1542 mlog_errno(status);
1543 goto bail;
1546 status = 0;
1548 bail:
1549 if (inode) {
1550 if (status || !ret_inode)
1551 iput(inode);
1552 else
1553 *ret_inode = inode;
1555 return status;
1558 /* Does the actual journal replay and marks the journal inode as
1559 * clean. Will only replay if the journal inode is marked dirty. */
1560 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1561 int node_num,
1562 int slot_num)
1564 int status;
1565 int got_lock = 0;
1566 unsigned int flags;
1567 struct inode *inode = NULL;
1568 struct ocfs2_dinode *fe;
1569 journal_t *journal = NULL;
1570 struct buffer_head *bh = NULL;
1571 u32 slot_reco_gen;
1573 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1574 if (status) {
1575 mlog_errno(status);
1576 goto done;
1579 fe = (struct ocfs2_dinode *)bh->b_data;
1580 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1581 brelse(bh);
1582 bh = NULL;
1585 * As the fs recovery is asynchronous, there is a small chance that
1586 * another node mounted (and recovered) the slot before the recovery
1587 * thread could get the lock. To handle that, we dirty read the journal
1588 * inode for that slot to get the recovery generation. If it is
1589 * different than what we expected, the slot has been recovered.
1590 * If not, it needs recovery.
1592 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1593 trace_ocfs2_replay_journal_recovered(slot_num,
1594 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1595 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1596 status = -EBUSY;
1597 goto done;
1600 /* Continue with recovery as the journal has not yet been recovered */
1602 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1603 if (status < 0) {
1604 trace_ocfs2_replay_journal_lock_err(status);
1605 if (status != -ERESTARTSYS)
1606 mlog(ML_ERROR, "Could not lock journal!\n");
1607 goto done;
1609 got_lock = 1;
1611 fe = (struct ocfs2_dinode *) bh->b_data;
1613 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1614 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1616 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1617 trace_ocfs2_replay_journal_skip(node_num);
1618 /* Refresh recovery generation for the slot */
1619 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1620 goto done;
1623 /* we need to run complete recovery for offline orphan slots */
1624 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1626 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1627 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1628 MINOR(osb->sb->s_dev));
1630 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1632 status = ocfs2_force_read_journal(inode);
1633 if (status < 0) {
1634 mlog_errno(status);
1635 goto done;
1638 journal = jbd2_journal_init_inode(inode);
1639 if (journal == NULL) {
1640 mlog(ML_ERROR, "Linux journal layer error\n");
1641 status = -EIO;
1642 goto done;
1645 status = jbd2_journal_load(journal);
1646 if (status < 0) {
1647 mlog_errno(status);
1648 if (!igrab(inode))
1649 BUG();
1650 jbd2_journal_destroy(journal);
1651 goto done;
1654 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1656 /* wipe the journal */
1657 jbd2_journal_lock_updates(journal);
1658 status = jbd2_journal_flush(journal);
1659 jbd2_journal_unlock_updates(journal);
1660 if (status < 0)
1661 mlog_errno(status);
1663 /* This will mark the node clean */
1664 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1665 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1666 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1668 /* Increment recovery generation to indicate successful recovery */
1669 ocfs2_bump_recovery_generation(fe);
1670 osb->slot_recovery_generations[slot_num] =
1671 ocfs2_get_recovery_generation(fe);
1673 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1674 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1675 if (status < 0)
1676 mlog_errno(status);
1678 if (!igrab(inode))
1679 BUG();
1681 jbd2_journal_destroy(journal);
1683 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1684 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1685 MINOR(osb->sb->s_dev));
1686 done:
1687 /* drop the lock on this nodes journal */
1688 if (got_lock)
1689 ocfs2_inode_unlock(inode, 1);
1691 iput(inode);
1692 brelse(bh);
1694 return status;
1698 * Do the most important parts of node recovery:
1699 * - Replay it's journal
1700 * - Stamp a clean local allocator file
1701 * - Stamp a clean truncate log
1702 * - Mark the node clean
1704 * If this function completes without error, a node in OCFS2 can be
1705 * said to have been safely recovered. As a result, failure during the
1706 * second part of a nodes recovery process (local alloc recovery) is
1707 * far less concerning.
1709 static int ocfs2_recover_node(struct ocfs2_super *osb,
1710 int node_num, int slot_num)
1712 int status = 0;
1713 struct ocfs2_dinode *la_copy = NULL;
1714 struct ocfs2_dinode *tl_copy = NULL;
1716 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1718 /* Should not ever be called to recover ourselves -- in that
1719 * case we should've called ocfs2_journal_load instead. */
1720 BUG_ON(osb->node_num == node_num);
1722 status = ocfs2_replay_journal(osb, node_num, slot_num);
1723 if (status < 0) {
1724 if (status == -EBUSY) {
1725 trace_ocfs2_recover_node_skip(slot_num, node_num);
1726 status = 0;
1727 goto done;
1729 mlog_errno(status);
1730 goto done;
1733 /* Stamp a clean local alloc file AFTER recovering the journal... */
1734 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1735 if (status < 0) {
1736 mlog_errno(status);
1737 goto done;
1740 /* An error from begin_truncate_log_recovery is not
1741 * serious enough to warrant halting the rest of
1742 * recovery. */
1743 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1744 if (status < 0)
1745 mlog_errno(status);
1747 /* Likewise, this would be a strange but ultimately not so
1748 * harmful place to get an error... */
1749 status = ocfs2_clear_slot(osb, slot_num);
1750 if (status < 0)
1751 mlog_errno(status);
1753 /* This will kfree the memory pointed to by la_copy and tl_copy */
1754 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1755 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1757 status = 0;
1758 done:
1760 return status;
1763 /* Test node liveness by trylocking his journal. If we get the lock,
1764 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1765 * still alive (we couldn't get the lock) and < 0 on error. */
1766 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1767 int slot_num)
1769 int status, flags;
1770 struct inode *inode = NULL;
1772 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1773 slot_num);
1774 if (inode == NULL) {
1775 mlog(ML_ERROR, "access error\n");
1776 status = -EACCES;
1777 goto bail;
1779 if (is_bad_inode(inode)) {
1780 mlog(ML_ERROR, "access error (bad inode)\n");
1781 iput(inode);
1782 inode = NULL;
1783 status = -EACCES;
1784 goto bail;
1786 SET_INODE_JOURNAL(inode);
1788 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1789 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1790 if (status < 0) {
1791 if (status != -EAGAIN)
1792 mlog_errno(status);
1793 goto bail;
1796 ocfs2_inode_unlock(inode, 1);
1797 bail:
1798 iput(inode);
1800 return status;
1803 /* Call this underneath ocfs2_super_lock. It also assumes that the
1804 * slot info struct has been updated from disk. */
1805 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1807 unsigned int node_num;
1808 int status, i;
1809 u32 gen;
1810 struct buffer_head *bh = NULL;
1811 struct ocfs2_dinode *di;
1813 /* This is called with the super block cluster lock, so we
1814 * know that the slot map can't change underneath us. */
1816 for (i = 0; i < osb->max_slots; i++) {
1817 /* Read journal inode to get the recovery generation */
1818 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1819 if (status) {
1820 mlog_errno(status);
1821 goto bail;
1823 di = (struct ocfs2_dinode *)bh->b_data;
1824 gen = ocfs2_get_recovery_generation(di);
1825 brelse(bh);
1826 bh = NULL;
1828 spin_lock(&osb->osb_lock);
1829 osb->slot_recovery_generations[i] = gen;
1831 trace_ocfs2_mark_dead_nodes(i,
1832 osb->slot_recovery_generations[i]);
1834 if (i == osb->slot_num) {
1835 spin_unlock(&osb->osb_lock);
1836 continue;
1839 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1840 if (status == -ENOENT) {
1841 spin_unlock(&osb->osb_lock);
1842 continue;
1845 if (__ocfs2_recovery_map_test(osb, node_num)) {
1846 spin_unlock(&osb->osb_lock);
1847 continue;
1849 spin_unlock(&osb->osb_lock);
1851 /* Ok, we have a slot occupied by another node which
1852 * is not in the recovery map. We trylock his journal
1853 * file here to test if he's alive. */
1854 status = ocfs2_trylock_journal(osb, i);
1855 if (!status) {
1856 /* Since we're called from mount, we know that
1857 * the recovery thread can't race us on
1858 * setting / checking the recovery bits. */
1859 ocfs2_recovery_thread(osb, node_num);
1860 } else if ((status < 0) && (status != -EAGAIN)) {
1861 mlog_errno(status);
1862 goto bail;
1866 status = 0;
1867 bail:
1868 return status;
1872 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1873 * randomness to the timeout to minimize multple nodes firing the timer at the
1874 * same time.
1876 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1878 unsigned long time;
1880 get_random_bytes(&time, sizeof(time));
1881 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1882 return msecs_to_jiffies(time);
1886 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1887 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1888 * is done to catch any orphans that are left over in orphan directories.
1890 * It scans all slots, even ones that are in use. It does so to handle the
1891 * case described below:
1893 * Node 1 has an inode it was using. The dentry went away due to memory
1894 * pressure. Node 1 closes the inode, but it's on the free list. The node
1895 * has the open lock.
1896 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1897 * but node 1 has no dentry and doesn't get the message. It trylocks the
1898 * open lock, sees that another node has a PR, and does nothing.
1899 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1900 * open lock, sees the PR still, and does nothing.
1901 * Basically, we have to trigger an orphan iput on node 1. The only way
1902 * for this to happen is if node 1 runs node 2's orphan dir.
1904 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1905 * seconds. It gets an EX lock on os_lockres and checks sequence number
1906 * stored in LVB. If the sequence number has changed, it means some other
1907 * node has done the scan. This node skips the scan and tracks the
1908 * sequence number. If the sequence number didn't change, it means a scan
1909 * hasn't happened. The node queues a scan and increments the
1910 * sequence number in the LVB.
1912 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1914 struct ocfs2_orphan_scan *os;
1915 int status, i;
1916 u32 seqno = 0;
1918 os = &osb->osb_orphan_scan;
1920 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1921 goto out;
1923 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1924 atomic_read(&os->os_state));
1926 status = ocfs2_orphan_scan_lock(osb, &seqno);
1927 if (status < 0) {
1928 if (status != -EAGAIN)
1929 mlog_errno(status);
1930 goto out;
1933 /* Do no queue the tasks if the volume is being umounted */
1934 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1935 goto unlock;
1937 if (os->os_seqno != seqno) {
1938 os->os_seqno = seqno;
1939 goto unlock;
1942 for (i = 0; i < osb->max_slots; i++)
1943 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1944 NULL, ORPHAN_NO_NEED_TRUNCATE);
1946 * We queued a recovery on orphan slots, increment the sequence
1947 * number and update LVB so other node will skip the scan for a while
1949 seqno++;
1950 os->os_count++;
1951 os->os_scantime = ktime_get_seconds();
1952 unlock:
1953 ocfs2_orphan_scan_unlock(osb, seqno);
1954 out:
1955 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1956 atomic_read(&os->os_state));
1957 return;
1960 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1961 static void ocfs2_orphan_scan_work(struct work_struct *work)
1963 struct ocfs2_orphan_scan *os;
1964 struct ocfs2_super *osb;
1966 os = container_of(work, struct ocfs2_orphan_scan,
1967 os_orphan_scan_work.work);
1968 osb = os->os_osb;
1970 mutex_lock(&os->os_lock);
1971 ocfs2_queue_orphan_scan(osb);
1972 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1973 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1974 ocfs2_orphan_scan_timeout());
1975 mutex_unlock(&os->os_lock);
1978 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1980 struct ocfs2_orphan_scan *os;
1982 os = &osb->osb_orphan_scan;
1983 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1984 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1985 mutex_lock(&os->os_lock);
1986 cancel_delayed_work(&os->os_orphan_scan_work);
1987 mutex_unlock(&os->os_lock);
1991 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1993 struct ocfs2_orphan_scan *os;
1995 os = &osb->osb_orphan_scan;
1996 os->os_osb = osb;
1997 os->os_count = 0;
1998 os->os_seqno = 0;
1999 mutex_init(&os->os_lock);
2000 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2003 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2005 struct ocfs2_orphan_scan *os;
2007 os = &osb->osb_orphan_scan;
2008 os->os_scantime = ktime_get_seconds();
2009 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2010 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2011 else {
2012 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2013 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2014 ocfs2_orphan_scan_timeout());
2018 struct ocfs2_orphan_filldir_priv {
2019 struct dir_context ctx;
2020 struct inode *head;
2021 struct ocfs2_super *osb;
2022 enum ocfs2_orphan_reco_type orphan_reco_type;
2025 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2026 int name_len, loff_t pos, u64 ino,
2027 unsigned type)
2029 struct ocfs2_orphan_filldir_priv *p =
2030 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2031 struct inode *iter;
2033 if (name_len == 1 && !strncmp(".", name, 1))
2034 return 0;
2035 if (name_len == 2 && !strncmp("..", name, 2))
2036 return 0;
2038 /* do not include dio entry in case of orphan scan */
2039 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2040 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2041 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2042 return 0;
2044 /* Skip bad inodes so that recovery can continue */
2045 iter = ocfs2_iget(p->osb, ino,
2046 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2047 if (IS_ERR(iter))
2048 return 0;
2050 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2051 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2052 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2054 /* Skip inodes which are already added to recover list, since dio may
2055 * happen concurrently with unlink/rename */
2056 if (OCFS2_I(iter)->ip_next_orphan) {
2057 iput(iter);
2058 return 0;
2061 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2062 /* No locking is required for the next_orphan queue as there
2063 * is only ever a single process doing orphan recovery. */
2064 OCFS2_I(iter)->ip_next_orphan = p->head;
2065 p->head = iter;
2067 return 0;
2070 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2071 int slot,
2072 struct inode **head,
2073 enum ocfs2_orphan_reco_type orphan_reco_type)
2075 int status;
2076 struct inode *orphan_dir_inode = NULL;
2077 struct ocfs2_orphan_filldir_priv priv = {
2078 .ctx.actor = ocfs2_orphan_filldir,
2079 .osb = osb,
2080 .head = *head,
2081 .orphan_reco_type = orphan_reco_type
2084 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2085 ORPHAN_DIR_SYSTEM_INODE,
2086 slot);
2087 if (!orphan_dir_inode) {
2088 status = -ENOENT;
2089 mlog_errno(status);
2090 return status;
2093 inode_lock(orphan_dir_inode);
2094 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2095 if (status < 0) {
2096 mlog_errno(status);
2097 goto out;
2100 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2101 if (status) {
2102 mlog_errno(status);
2103 goto out_cluster;
2106 *head = priv.head;
2108 out_cluster:
2109 ocfs2_inode_unlock(orphan_dir_inode, 0);
2110 out:
2111 inode_unlock(orphan_dir_inode);
2112 iput(orphan_dir_inode);
2113 return status;
2116 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2117 int slot)
2119 int ret;
2121 spin_lock(&osb->osb_lock);
2122 ret = !osb->osb_orphan_wipes[slot];
2123 spin_unlock(&osb->osb_lock);
2124 return ret;
2127 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2128 int slot)
2130 spin_lock(&osb->osb_lock);
2131 /* Mark ourselves such that new processes in delete_inode()
2132 * know to quit early. */
2133 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2134 while (osb->osb_orphan_wipes[slot]) {
2135 /* If any processes are already in the middle of an
2136 * orphan wipe on this dir, then we need to wait for
2137 * them. */
2138 spin_unlock(&osb->osb_lock);
2139 wait_event_interruptible(osb->osb_wipe_event,
2140 ocfs2_orphan_recovery_can_continue(osb, slot));
2141 spin_lock(&osb->osb_lock);
2143 spin_unlock(&osb->osb_lock);
2146 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2147 int slot)
2149 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2153 * Orphan recovery. Each mounted node has it's own orphan dir which we
2154 * must run during recovery. Our strategy here is to build a list of
2155 * the inodes in the orphan dir and iget/iput them. The VFS does
2156 * (most) of the rest of the work.
2158 * Orphan recovery can happen at any time, not just mount so we have a
2159 * couple of extra considerations.
2161 * - We grab as many inodes as we can under the orphan dir lock -
2162 * doing iget() outside the orphan dir risks getting a reference on
2163 * an invalid inode.
2164 * - We must be sure not to deadlock with other processes on the
2165 * system wanting to run delete_inode(). This can happen when they go
2166 * to lock the orphan dir and the orphan recovery process attempts to
2167 * iget() inside the orphan dir lock. This can be avoided by
2168 * advertising our state to ocfs2_delete_inode().
2170 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2171 int slot,
2172 enum ocfs2_orphan_reco_type orphan_reco_type)
2174 int ret = 0;
2175 struct inode *inode = NULL;
2176 struct inode *iter;
2177 struct ocfs2_inode_info *oi;
2178 struct buffer_head *di_bh = NULL;
2179 struct ocfs2_dinode *di = NULL;
2181 trace_ocfs2_recover_orphans(slot);
2183 ocfs2_mark_recovering_orphan_dir(osb, slot);
2184 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2185 ocfs2_clear_recovering_orphan_dir(osb, slot);
2187 /* Error here should be noted, but we want to continue with as
2188 * many queued inodes as we've got. */
2189 if (ret)
2190 mlog_errno(ret);
2192 while (inode) {
2193 oi = OCFS2_I(inode);
2194 trace_ocfs2_recover_orphans_iput(
2195 (unsigned long long)oi->ip_blkno);
2197 iter = oi->ip_next_orphan;
2198 oi->ip_next_orphan = NULL;
2200 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2201 inode_lock(inode);
2202 ret = ocfs2_rw_lock(inode, 1);
2203 if (ret < 0) {
2204 mlog_errno(ret);
2205 goto unlock_mutex;
2208 * We need to take and drop the inode lock to
2209 * force read inode from disk.
2211 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2212 if (ret) {
2213 mlog_errno(ret);
2214 goto unlock_rw;
2217 di = (struct ocfs2_dinode *)di_bh->b_data;
2219 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2220 ret = ocfs2_truncate_file(inode, di_bh,
2221 i_size_read(inode));
2222 if (ret < 0) {
2223 if (ret != -ENOSPC)
2224 mlog_errno(ret);
2225 goto unlock_inode;
2228 ret = ocfs2_del_inode_from_orphan(osb, inode,
2229 di_bh, 0, 0);
2230 if (ret)
2231 mlog_errno(ret);
2233 unlock_inode:
2234 ocfs2_inode_unlock(inode, 1);
2235 brelse(di_bh);
2236 di_bh = NULL;
2237 unlock_rw:
2238 ocfs2_rw_unlock(inode, 1);
2239 unlock_mutex:
2240 inode_unlock(inode);
2242 /* clear dio flag in ocfs2_inode_info */
2243 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2244 } else {
2245 spin_lock(&oi->ip_lock);
2246 /* Set the proper information to get us going into
2247 * ocfs2_delete_inode. */
2248 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2249 spin_unlock(&oi->ip_lock);
2252 iput(inode);
2253 inode = iter;
2256 return ret;
2259 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2261 /* This check is good because ocfs2 will wait on our recovery
2262 * thread before changing it to something other than MOUNTED
2263 * or DISABLED. */
2264 wait_event(osb->osb_mount_event,
2265 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2266 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2267 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2269 /* If there's an error on mount, then we may never get to the
2270 * MOUNTED flag, but this is set right before
2271 * dismount_volume() so we can trust it. */
2272 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2273 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2274 mlog(0, "mount error, exiting!\n");
2275 return -EBUSY;
2278 return 0;
2281 static int ocfs2_commit_thread(void *arg)
2283 int status;
2284 struct ocfs2_super *osb = arg;
2285 struct ocfs2_journal *journal = osb->journal;
2287 /* we can trust j_num_trans here because _should_stop() is only set in
2288 * shutdown and nobody other than ourselves should be able to start
2289 * transactions. committing on shutdown might take a few iterations
2290 * as final transactions put deleted inodes on the list */
2291 while (!(kthread_should_stop() &&
2292 atomic_read(&journal->j_num_trans) == 0)) {
2294 wait_event_interruptible(osb->checkpoint_event,
2295 atomic_read(&journal->j_num_trans)
2296 || kthread_should_stop());
2298 status = ocfs2_commit_cache(osb);
2299 if (status < 0) {
2300 static unsigned long abort_warn_time;
2302 /* Warn about this once per minute */
2303 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2304 mlog(ML_ERROR, "status = %d, journal is "
2305 "already aborted.\n", status);
2307 * After ocfs2_commit_cache() fails, j_num_trans has a
2308 * non-zero value. Sleep here to avoid a busy-wait
2309 * loop.
2311 msleep_interruptible(1000);
2314 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2315 mlog(ML_KTHREAD,
2316 "commit_thread: %u transactions pending on "
2317 "shutdown\n",
2318 atomic_read(&journal->j_num_trans));
2322 return 0;
2325 /* Reads all the journal inodes without taking any cluster locks. Used
2326 * for hard readonly access to determine whether any journal requires
2327 * recovery. Also used to refresh the recovery generation numbers after
2328 * a journal has been recovered by another node.
2330 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2332 int ret = 0;
2333 unsigned int slot;
2334 struct buffer_head *di_bh = NULL;
2335 struct ocfs2_dinode *di;
2336 int journal_dirty = 0;
2338 for(slot = 0; slot < osb->max_slots; slot++) {
2339 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2340 if (ret) {
2341 mlog_errno(ret);
2342 goto out;
2345 di = (struct ocfs2_dinode *) di_bh->b_data;
2347 osb->slot_recovery_generations[slot] =
2348 ocfs2_get_recovery_generation(di);
2350 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2351 OCFS2_JOURNAL_DIRTY_FL)
2352 journal_dirty = 1;
2354 brelse(di_bh);
2355 di_bh = NULL;
2358 out:
2359 if (journal_dirty)
2360 ret = -EROFS;
2361 return ret;