1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
7 * Defines functions of journalling api
9 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
21 #include <cluster/masklog.h>
26 #include "blockcheck.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
33 #include "localalloc.h"
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
45 DEFINE_SPINLOCK(trans_inc_lock
);
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
49 static int ocfs2_force_read_journal(struct inode
*inode
);
50 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
51 int node_num
, int slot_num
);
52 static int __ocfs2_recovery_thread(void *arg
);
53 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
56 int dirty
, int replayed
);
57 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
59 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
61 enum ocfs2_orphan_reco_type orphan_reco_type
);
62 static int ocfs2_commit_thread(void *arg
);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
65 struct ocfs2_dinode
*la_dinode
,
66 struct ocfs2_dinode
*tl_dinode
,
67 struct ocfs2_quota_recovery
*qrec
,
68 enum ocfs2_orphan_reco_type orphan_reco_type
);
70 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
72 return __ocfs2_wait_on_mount(osb
, 0);
75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
77 return __ocfs2_wait_on_mount(osb
, 1);
81 * This replay_map is to track online/offline slots, so we could recover
82 * offline slots during recovery and mount
85 enum ocfs2_replay_state
{
86 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
87 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
88 REPLAY_DONE
/* Replay was already queued */
91 struct ocfs2_replay_map
{
92 unsigned int rm_slots
;
93 enum ocfs2_replay_state rm_state
;
94 unsigned char rm_replay_slots
[0];
97 static void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
102 /* If we've already queued the replay, we don't have any more to do */
103 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
106 osb
->replay_map
->rm_state
= state
;
109 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
111 struct ocfs2_replay_map
*replay_map
;
114 /* If replay map is already set, we don't do it again */
118 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
119 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
126 spin_lock(&osb
->osb_lock
);
128 replay_map
->rm_slots
= osb
->max_slots
;
129 replay_map
->rm_state
= REPLAY_UNNEEDED
;
131 /* set rm_replay_slots for offline slot(s) */
132 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
133 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
134 replay_map
->rm_replay_slots
[i
] = 1;
137 osb
->replay_map
= replay_map
;
138 spin_unlock(&osb
->osb_lock
);
142 static void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
,
143 enum ocfs2_orphan_reco_type orphan_reco_type
)
145 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
151 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
154 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
155 if (replay_map
->rm_replay_slots
[i
])
156 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
159 replay_map
->rm_state
= REPLAY_DONE
;
162 static void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
164 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
166 if (!osb
->replay_map
)
170 osb
->replay_map
= NULL
;
173 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
175 struct ocfs2_recovery_map
*rm
;
177 mutex_init(&osb
->recovery_lock
);
178 osb
->disable_recovery
= 0;
179 osb
->recovery_thread_task
= NULL
;
180 init_waitqueue_head(&osb
->recovery_event
);
182 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
183 osb
->max_slots
* sizeof(unsigned int),
190 rm
->rm_entries
= (unsigned int *)((char *)rm
+
191 sizeof(struct ocfs2_recovery_map
));
192 osb
->recovery_map
= rm
;
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198 * memory barriers to make sure that we'll see the null task before
200 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
203 return osb
->recovery_thread_task
!= NULL
;
206 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
208 struct ocfs2_recovery_map
*rm
;
210 /* disable any new recovery threads and wait for any currently
211 * running ones to exit. Do this before setting the vol_state. */
212 mutex_lock(&osb
->recovery_lock
);
213 osb
->disable_recovery
= 1;
214 mutex_unlock(&osb
->recovery_lock
);
215 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
217 /* At this point, we know that no more recovery threads can be
218 * launched, so wait for any recovery completion work to
220 flush_workqueue(osb
->ocfs2_wq
);
223 * Now that recovery is shut down, and the osb is about to be
224 * freed, the osb_lock is not taken here.
226 rm
= osb
->recovery_map
;
227 /* XXX: Should we bug if there are dirty entries? */
232 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
233 unsigned int node_num
)
236 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
238 assert_spin_locked(&osb
->osb_lock
);
240 for (i
= 0; i
< rm
->rm_used
; i
++) {
241 if (rm
->rm_entries
[i
] == node_num
)
248 /* Behaves like test-and-set. Returns the previous value */
249 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
250 unsigned int node_num
)
252 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
254 spin_lock(&osb
->osb_lock
);
255 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
256 spin_unlock(&osb
->osb_lock
);
260 /* XXX: Can this be exploited? Not from o2dlm... */
261 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
263 rm
->rm_entries
[rm
->rm_used
] = node_num
;
265 spin_unlock(&osb
->osb_lock
);
270 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
271 unsigned int node_num
)
274 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
276 spin_lock(&osb
->osb_lock
);
278 for (i
= 0; i
< rm
->rm_used
; i
++) {
279 if (rm
->rm_entries
[i
] == node_num
)
283 if (i
< rm
->rm_used
) {
284 /* XXX: be careful with the pointer math */
285 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
286 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
290 spin_unlock(&osb
->osb_lock
);
293 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
296 unsigned int flushed
;
297 struct ocfs2_journal
*journal
= NULL
;
299 journal
= osb
->journal
;
301 /* Flush all pending commits and checkpoint the journal. */
302 down_write(&journal
->j_trans_barrier
);
304 flushed
= atomic_read(&journal
->j_num_trans
);
305 trace_ocfs2_commit_cache_begin(flushed
);
307 up_write(&journal
->j_trans_barrier
);
311 jbd2_journal_lock_updates(journal
->j_journal
);
312 status
= jbd2_journal_flush(journal
->j_journal
);
313 jbd2_journal_unlock_updates(journal
->j_journal
);
315 up_write(&journal
->j_trans_barrier
);
320 ocfs2_inc_trans_id(journal
);
322 flushed
= atomic_read(&journal
->j_num_trans
);
323 atomic_set(&journal
->j_num_trans
, 0);
324 up_write(&journal
->j_trans_barrier
);
326 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
328 ocfs2_wake_downconvert_thread(osb
);
329 wake_up(&journal
->j_checkpointed
);
334 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
336 journal_t
*journal
= osb
->journal
->j_journal
;
339 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
341 if (ocfs2_is_hard_readonly(osb
))
342 return ERR_PTR(-EROFS
);
344 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
345 BUG_ON(max_buffs
<= 0);
347 /* Nested transaction? Just return the handle... */
348 if (journal_current_handle())
349 return jbd2_journal_start(journal
, max_buffs
);
351 sb_start_intwrite(osb
->sb
);
353 down_read(&osb
->journal
->j_trans_barrier
);
355 handle
= jbd2_journal_start(journal
, max_buffs
);
356 if (IS_ERR(handle
)) {
357 up_read(&osb
->journal
->j_trans_barrier
);
358 sb_end_intwrite(osb
->sb
);
360 mlog_errno(PTR_ERR(handle
));
362 if (is_journal_aborted(journal
)) {
363 ocfs2_abort(osb
->sb
, "Detected aborted journal\n");
364 handle
= ERR_PTR(-EROFS
);
367 if (!ocfs2_mount_local(osb
))
368 atomic_inc(&(osb
->journal
->j_num_trans
));
374 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
378 struct ocfs2_journal
*journal
= osb
->journal
;
382 nested
= handle
->h_ref
> 1;
383 ret
= jbd2_journal_stop(handle
);
388 up_read(&journal
->j_trans_barrier
);
389 sb_end_intwrite(osb
->sb
);
396 * 'nblocks' is what you want to add to the current transaction.
398 * This might call jbd2_journal_restart() which will commit dirty buffers
399 * and then restart the transaction. Before calling
400 * ocfs2_extend_trans(), any changed blocks should have been
401 * dirtied. After calling it, all blocks which need to be changed must
402 * go through another set of journal_access/journal_dirty calls.
404 * WARNING: This will not release any semaphores or disk locks taken
405 * during the transaction, so make sure they were taken *before*
406 * start_trans or we'll have ordering deadlocks.
408 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
409 * good because transaction ids haven't yet been recorded on the
410 * cluster locks associated with this handle.
412 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
414 int status
, old_nblocks
;
422 old_nblocks
= handle
->h_buffer_credits
;
424 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
426 #ifdef CONFIG_OCFS2_DEBUG_FS
429 status
= jbd2_journal_extend(handle
, nblocks
);
437 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
438 status
= jbd2_journal_restart(handle
,
439 old_nblocks
+ nblocks
);
452 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
453 * If that fails, restart the transaction & regain write access for the
454 * buffer head which is used for metadata modifications.
455 * Taken from Ext4: extend_or_restart_transaction()
457 int ocfs2_allocate_extend_trans(handle_t
*handle
, int thresh
)
459 int status
, old_nblks
;
463 old_nblks
= handle
->h_buffer_credits
;
464 trace_ocfs2_allocate_extend_trans(old_nblks
, thresh
);
466 if (old_nblks
< thresh
)
469 status
= jbd2_journal_extend(handle
, OCFS2_MAX_TRANS_DATA
);
476 status
= jbd2_journal_restart(handle
, OCFS2_MAX_TRANS_DATA
);
486 struct ocfs2_triggers
{
487 struct jbd2_buffer_trigger_type ot_triggers
;
491 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
493 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
496 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
497 struct buffer_head
*bh
,
498 void *data
, size_t size
)
500 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
503 * We aren't guaranteed to have the superblock here, so we
504 * must unconditionally compute the ecc data.
505 * __ocfs2_journal_access() will only set the triggers if
506 * metaecc is enabled.
508 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
512 * Quota blocks have their own trigger because the struct ocfs2_block_check
513 * offset depends on the blocksize.
515 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
516 struct buffer_head
*bh
,
517 void *data
, size_t size
)
519 struct ocfs2_disk_dqtrailer
*dqt
=
520 ocfs2_block_dqtrailer(size
, data
);
523 * We aren't guaranteed to have the superblock here, so we
524 * must unconditionally compute the ecc data.
525 * __ocfs2_journal_access() will only set the triggers if
526 * metaecc is enabled.
528 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
532 * Directory blocks also have their own trigger because the
533 * struct ocfs2_block_check offset depends on the blocksize.
535 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
536 struct buffer_head
*bh
,
537 void *data
, size_t size
)
539 struct ocfs2_dir_block_trailer
*trailer
=
540 ocfs2_dir_trailer_from_size(size
, data
);
543 * We aren't guaranteed to have the superblock here, so we
544 * must unconditionally compute the ecc data.
545 * __ocfs2_journal_access() will only set the triggers if
546 * metaecc is enabled.
548 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
551 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
552 struct buffer_head
*bh
)
555 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
556 "bh->b_blocknr = %llu\n",
558 (unsigned long long)bh
->b_blocknr
);
560 ocfs2_error(bh
->b_bdev
->bd_super
,
561 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
564 static struct ocfs2_triggers di_triggers
= {
566 .t_frozen
= ocfs2_frozen_trigger
,
567 .t_abort
= ocfs2_abort_trigger
,
569 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
572 static struct ocfs2_triggers eb_triggers
= {
574 .t_frozen
= ocfs2_frozen_trigger
,
575 .t_abort
= ocfs2_abort_trigger
,
577 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
580 static struct ocfs2_triggers rb_triggers
= {
582 .t_frozen
= ocfs2_frozen_trigger
,
583 .t_abort
= ocfs2_abort_trigger
,
585 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
588 static struct ocfs2_triggers gd_triggers
= {
590 .t_frozen
= ocfs2_frozen_trigger
,
591 .t_abort
= ocfs2_abort_trigger
,
593 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
596 static struct ocfs2_triggers db_triggers
= {
598 .t_frozen
= ocfs2_db_frozen_trigger
,
599 .t_abort
= ocfs2_abort_trigger
,
603 static struct ocfs2_triggers xb_triggers
= {
605 .t_frozen
= ocfs2_frozen_trigger
,
606 .t_abort
= ocfs2_abort_trigger
,
608 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
611 static struct ocfs2_triggers dq_triggers
= {
613 .t_frozen
= ocfs2_dq_frozen_trigger
,
614 .t_abort
= ocfs2_abort_trigger
,
618 static struct ocfs2_triggers dr_triggers
= {
620 .t_frozen
= ocfs2_frozen_trigger
,
621 .t_abort
= ocfs2_abort_trigger
,
623 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
626 static struct ocfs2_triggers dl_triggers
= {
628 .t_frozen
= ocfs2_frozen_trigger
,
629 .t_abort
= ocfs2_abort_trigger
,
631 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
634 static int __ocfs2_journal_access(handle_t
*handle
,
635 struct ocfs2_caching_info
*ci
,
636 struct buffer_head
*bh
,
637 struct ocfs2_triggers
*triggers
,
641 struct ocfs2_super
*osb
=
642 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
644 BUG_ON(!ci
|| !ci
->ci_ops
);
648 trace_ocfs2_journal_access(
649 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
650 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
652 /* we can safely remove this assertion after testing. */
653 if (!buffer_uptodate(bh
)) {
654 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
655 mlog(ML_ERROR
, "b_blocknr=%llu, b_state=0x%lx\n",
656 (unsigned long long)bh
->b_blocknr
, bh
->b_state
);
660 * A previous transaction with a couple of buffer heads fail
661 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
662 * For current transaction, the bh is just among those error
663 * bhs which previous transaction handle. We can't just clear
664 * its BH_Write_EIO and reuse directly, since other bhs are
665 * not written to disk yet and that will cause metadata
666 * inconsistency. So we should set fs read-only to avoid
669 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
)) {
671 return ocfs2_error(osb
->sb
, "A previous attempt to "
672 "write this buffer head failed\n");
677 /* Set the current transaction information on the ci so
678 * that the locking code knows whether it can drop it's locks
679 * on this ci or not. We're protected from the commit
680 * thread updating the current transaction id until
681 * ocfs2_commit_trans() because ocfs2_start_trans() took
682 * j_trans_barrier for us. */
683 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
685 ocfs2_metadata_cache_io_lock(ci
);
687 case OCFS2_JOURNAL_ACCESS_CREATE
:
688 case OCFS2_JOURNAL_ACCESS_WRITE
:
689 status
= jbd2_journal_get_write_access(handle
, bh
);
692 case OCFS2_JOURNAL_ACCESS_UNDO
:
693 status
= jbd2_journal_get_undo_access(handle
, bh
);
698 mlog(ML_ERROR
, "Unknown access type!\n");
700 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
701 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
702 ocfs2_metadata_cache_io_unlock(ci
);
705 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
711 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
712 struct buffer_head
*bh
, int type
)
714 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
717 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
718 struct buffer_head
*bh
, int type
)
720 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
723 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
724 struct buffer_head
*bh
, int type
)
726 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
730 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
731 struct buffer_head
*bh
, int type
)
733 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
736 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
737 struct buffer_head
*bh
, int type
)
739 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
742 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
743 struct buffer_head
*bh
, int type
)
745 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
748 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
749 struct buffer_head
*bh
, int type
)
751 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
754 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
755 struct buffer_head
*bh
, int type
)
757 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
760 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
761 struct buffer_head
*bh
, int type
)
763 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
766 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
767 struct buffer_head
*bh
, int type
)
769 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
772 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
776 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
778 status
= jbd2_journal_dirty_metadata(handle
, bh
);
781 if (!is_handle_aborted(handle
)) {
782 journal_t
*journal
= handle
->h_transaction
->t_journal
;
783 struct super_block
*sb
= bh
->b_bdev
->bd_super
;
785 mlog(ML_ERROR
, "jbd2_journal_dirty_metadata failed. "
786 "Aborting transaction and journal.\n");
787 handle
->h_err
= status
;
788 jbd2_journal_abort_handle(handle
);
789 jbd2_journal_abort(journal
, status
);
790 ocfs2_abort(sb
, "Journal already aborted.\n");
795 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
797 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
799 journal_t
*journal
= osb
->journal
->j_journal
;
800 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
802 if (osb
->osb_commit_interval
)
803 commit_interval
= osb
->osb_commit_interval
;
805 write_lock(&journal
->j_state_lock
);
806 journal
->j_commit_interval
= commit_interval
;
807 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
808 journal
->j_flags
|= JBD2_BARRIER
;
810 journal
->j_flags
&= ~JBD2_BARRIER
;
811 write_unlock(&journal
->j_state_lock
);
814 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
817 struct inode
*inode
= NULL
; /* the journal inode */
818 journal_t
*j_journal
= NULL
;
819 struct ocfs2_dinode
*di
= NULL
;
820 struct buffer_head
*bh
= NULL
;
821 struct ocfs2_super
*osb
;
826 osb
= journal
->j_osb
;
828 /* already have the inode for our journal */
829 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
836 if (is_bad_inode(inode
)) {
837 mlog(ML_ERROR
, "access error (bad inode)\n");
844 SET_INODE_JOURNAL(inode
);
845 OCFS2_I(inode
)->ip_open_count
++;
847 /* Skip recovery waits here - journal inode metadata never
848 * changes in a live cluster so it can be considered an
849 * exception to the rule. */
850 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
852 if (status
!= -ERESTARTSYS
)
853 mlog(ML_ERROR
, "Could not get lock on journal!\n");
858 di
= (struct ocfs2_dinode
*)bh
->b_data
;
860 if (i_size_read(inode
) < OCFS2_MIN_JOURNAL_SIZE
) {
861 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
867 trace_ocfs2_journal_init(i_size_read(inode
),
868 (unsigned long long)inode
->i_blocks
,
869 OCFS2_I(inode
)->ip_clusters
);
871 /* call the kernels journal init function now */
872 j_journal
= jbd2_journal_init_inode(inode
);
873 if (j_journal
== NULL
) {
874 mlog(ML_ERROR
, "Linux journal layer error\n");
879 trace_ocfs2_journal_init_maxlen(j_journal
->j_maxlen
);
881 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
882 OCFS2_JOURNAL_DIRTY_FL
);
884 journal
->j_journal
= j_journal
;
885 journal
->j_inode
= inode
;
888 ocfs2_set_journal_params(osb
);
890 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
896 ocfs2_inode_unlock(inode
, 1);
899 OCFS2_I(inode
)->ip_open_count
--;
907 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
909 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
912 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
914 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
917 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
918 int dirty
, int replayed
)
922 struct ocfs2_journal
*journal
= osb
->journal
;
923 struct buffer_head
*bh
= journal
->j_bh
;
924 struct ocfs2_dinode
*fe
;
926 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
928 /* The journal bh on the osb always comes from ocfs2_journal_init()
929 * and was validated there inside ocfs2_inode_lock_full(). It's a
930 * code bug if we mess it up. */
931 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
933 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
935 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
937 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
938 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
941 ocfs2_bump_recovery_generation(fe
);
943 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
944 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
952 * If the journal has been kmalloc'd it needs to be freed after this
955 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
957 struct ocfs2_journal
*journal
= NULL
;
959 struct inode
*inode
= NULL
;
960 int num_running_trans
= 0;
964 journal
= osb
->journal
;
968 inode
= journal
->j_inode
;
970 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
973 /* need to inc inode use count - jbd2_journal_destroy will iput. */
977 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
978 trace_ocfs2_journal_shutdown(num_running_trans
);
980 /* Do a commit_cache here. It will flush our journal, *and*
981 * release any locks that are still held.
982 * set the SHUTDOWN flag and release the trans lock.
983 * the commit thread will take the trans lock for us below. */
984 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
986 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
987 * drop the trans_lock (which we want to hold until we
988 * completely destroy the journal. */
989 if (osb
->commit_task
) {
990 /* Wait for the commit thread */
991 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
992 kthread_stop(osb
->commit_task
);
993 osb
->commit_task
= NULL
;
996 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
998 if (ocfs2_mount_local(osb
)) {
999 jbd2_journal_lock_updates(journal
->j_journal
);
1000 status
= jbd2_journal_flush(journal
->j_journal
);
1001 jbd2_journal_unlock_updates(journal
->j_journal
);
1006 /* Shutdown the kernel journal system */
1007 if (!jbd2_journal_destroy(journal
->j_journal
) && !status
) {
1009 * Do not toggle if flush was unsuccessful otherwise
1010 * will leave dirty metadata in a "clean" journal
1012 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
1016 journal
->j_journal
= NULL
;
1018 OCFS2_I(inode
)->ip_open_count
--;
1020 /* unlock our journal */
1021 ocfs2_inode_unlock(inode
, 1);
1023 brelse(journal
->j_bh
);
1024 journal
->j_bh
= NULL
;
1026 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1028 // up_write(&journal->j_trans_barrier);
1033 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1039 olderr
= jbd2_journal_errno(journal
);
1041 mlog(ML_ERROR
, "File system error %d recorded in "
1042 "journal %u.\n", olderr
, slot
);
1043 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1046 jbd2_journal_ack_err(journal
);
1047 jbd2_journal_clear_err(journal
);
1051 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1054 struct ocfs2_super
*osb
;
1058 osb
= journal
->j_osb
;
1060 status
= jbd2_journal_load(journal
->j_journal
);
1062 mlog(ML_ERROR
, "Failed to load journal!\n");
1066 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1068 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1074 /* Launch the commit thread */
1076 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1077 "ocfs2cmt-%s", osb
->uuid_str
);
1078 if (IS_ERR(osb
->commit_task
)) {
1079 status
= PTR_ERR(osb
->commit_task
);
1080 osb
->commit_task
= NULL
;
1081 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1082 "error=%d", status
);
1086 osb
->commit_task
= NULL
;
1093 /* 'full' flag tells us whether we clear out all blocks or if we just
1094 * mark the journal clean */
1095 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1101 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1107 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1115 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1118 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1120 spin_lock(&osb
->osb_lock
);
1121 empty
= (rm
->rm_used
== 0);
1122 spin_unlock(&osb
->osb_lock
);
1127 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1129 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1133 * JBD Might read a cached version of another nodes journal file. We
1134 * don't want this as this file changes often and we get no
1135 * notification on those changes. The only way to be sure that we've
1136 * got the most up to date version of those blocks then is to force
1137 * read them off disk. Just searching through the buffer cache won't
1138 * work as there may be pages backing this file which are still marked
1139 * up to date. We know things can't change on this file underneath us
1140 * as we have the lock by now :)
1142 static int ocfs2_force_read_journal(struct inode
*inode
)
1146 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1147 struct buffer_head
*bh
= NULL
;
1148 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1150 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
1152 while (v_blkno
< num_blocks
) {
1153 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1154 &p_blkno
, &p_blocks
, NULL
);
1160 for (i
= 0; i
< p_blocks
; i
++, p_blkno
++) {
1161 bh
= __find_get_block(osb
->sb
->s_bdev
, p_blkno
,
1162 osb
->sb
->s_blocksize
);
1163 /* block not cached. */
1169 /* We are reading journal data which should not
1170 * be put in the uptodate cache.
1172 status
= ocfs2_read_blocks_sync(osb
, p_blkno
, 1, &bh
);
1182 v_blkno
+= p_blocks
;
1189 struct ocfs2_la_recovery_item
{
1190 struct list_head lri_list
;
1192 struct ocfs2_dinode
*lri_la_dinode
;
1193 struct ocfs2_dinode
*lri_tl_dinode
;
1194 struct ocfs2_quota_recovery
*lri_qrec
;
1195 enum ocfs2_orphan_reco_type lri_orphan_reco_type
;
1198 /* Does the second half of the recovery process. By this point, the
1199 * node is marked clean and can actually be considered recovered,
1200 * hence it's no longer in the recovery map, but there's still some
1201 * cleanup we can do which shouldn't happen within the recovery thread
1202 * as locking in that context becomes very difficult if we are to take
1203 * recovering nodes into account.
1205 * NOTE: This function can and will sleep on recovery of other nodes
1206 * during cluster locking, just like any other ocfs2 process.
1208 void ocfs2_complete_recovery(struct work_struct
*work
)
1211 struct ocfs2_journal
*journal
=
1212 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1213 struct ocfs2_super
*osb
= journal
->j_osb
;
1214 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1215 struct ocfs2_la_recovery_item
*item
, *n
;
1216 struct ocfs2_quota_recovery
*qrec
;
1217 enum ocfs2_orphan_reco_type orphan_reco_type
;
1218 LIST_HEAD(tmp_la_list
);
1220 trace_ocfs2_complete_recovery(
1221 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1223 spin_lock(&journal
->j_lock
);
1224 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1225 spin_unlock(&journal
->j_lock
);
1227 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1228 list_del_init(&item
->lri_list
);
1230 ocfs2_wait_on_quotas(osb
);
1232 la_dinode
= item
->lri_la_dinode
;
1233 tl_dinode
= item
->lri_tl_dinode
;
1234 qrec
= item
->lri_qrec
;
1235 orphan_reco_type
= item
->lri_orphan_reco_type
;
1237 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1238 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1239 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1243 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1252 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1260 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
,
1266 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1270 /* Recovery info is already freed now */
1276 trace_ocfs2_complete_recovery_end(ret
);
1279 /* NOTE: This function always eats your references to la_dinode and
1280 * tl_dinode, either manually on error, or by passing them to
1281 * ocfs2_complete_recovery */
1282 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1284 struct ocfs2_dinode
*la_dinode
,
1285 struct ocfs2_dinode
*tl_dinode
,
1286 struct ocfs2_quota_recovery
*qrec
,
1287 enum ocfs2_orphan_reco_type orphan_reco_type
)
1289 struct ocfs2_la_recovery_item
*item
;
1291 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1293 /* Though we wish to avoid it, we are in fact safe in
1294 * skipping local alloc cleanup as fsck.ocfs2 is more
1295 * than capable of reclaiming unused space. */
1300 ocfs2_free_quota_recovery(qrec
);
1302 mlog_errno(-ENOMEM
);
1306 INIT_LIST_HEAD(&item
->lri_list
);
1307 item
->lri_la_dinode
= la_dinode
;
1308 item
->lri_slot
= slot_num
;
1309 item
->lri_tl_dinode
= tl_dinode
;
1310 item
->lri_qrec
= qrec
;
1311 item
->lri_orphan_reco_type
= orphan_reco_type
;
1313 spin_lock(&journal
->j_lock
);
1314 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1315 queue_work(journal
->j_osb
->ocfs2_wq
, &journal
->j_recovery_work
);
1316 spin_unlock(&journal
->j_lock
);
1319 /* Called by the mount code to queue recovery the last part of
1320 * recovery for it's own and offline slot(s). */
1321 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1323 struct ocfs2_journal
*journal
= osb
->journal
;
1325 if (ocfs2_is_hard_readonly(osb
))
1328 /* No need to queue up our truncate_log as regular cleanup will catch
1330 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1331 osb
->local_alloc_copy
, NULL
, NULL
,
1332 ORPHAN_NEED_TRUNCATE
);
1333 ocfs2_schedule_truncate_log_flush(osb
, 0);
1335 osb
->local_alloc_copy
= NULL
;
1337 /* queue to recover orphan slots for all offline slots */
1338 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1339 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1340 ocfs2_free_replay_slots(osb
);
1343 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1345 if (osb
->quota_rec
) {
1346 ocfs2_queue_recovery_completion(osb
->journal
,
1351 ORPHAN_NEED_TRUNCATE
);
1352 osb
->quota_rec
= NULL
;
1356 static int __ocfs2_recovery_thread(void *arg
)
1358 int status
, node_num
, slot_num
;
1359 struct ocfs2_super
*osb
= arg
;
1360 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1361 int *rm_quota
= NULL
;
1362 int rm_quota_used
= 0, i
;
1363 struct ocfs2_quota_recovery
*qrec
;
1365 /* Whether the quota supported. */
1366 int quota_enabled
= OCFS2_HAS_RO_COMPAT_FEATURE(osb
->sb
,
1367 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)
1368 || OCFS2_HAS_RO_COMPAT_FEATURE(osb
->sb
,
1369 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
);
1371 status
= ocfs2_wait_on_mount(osb
);
1376 if (quota_enabled
) {
1377 rm_quota
= kcalloc(osb
->max_slots
, sizeof(int), GFP_NOFS
);
1384 status
= ocfs2_super_lock(osb
, 1);
1390 status
= ocfs2_compute_replay_slots(osb
);
1394 /* queue recovery for our own slot */
1395 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1396 NULL
, NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1398 spin_lock(&osb
->osb_lock
);
1399 while (rm
->rm_used
) {
1400 /* It's always safe to remove entry zero, as we won't
1401 * clear it until ocfs2_recover_node() has succeeded. */
1402 node_num
= rm
->rm_entries
[0];
1403 spin_unlock(&osb
->osb_lock
);
1404 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1405 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1406 if (slot_num
== -ENOENT
) {
1411 /* It is a bit subtle with quota recovery. We cannot do it
1412 * immediately because we have to obtain cluster locks from
1413 * quota files and we also don't want to just skip it because
1414 * then quota usage would be out of sync until some node takes
1415 * the slot. So we remember which nodes need quota recovery
1416 * and when everything else is done, we recover quotas. */
1417 if (quota_enabled
) {
1418 for (i
= 0; i
< rm_quota_used
1419 && rm_quota
[i
] != slot_num
; i
++)
1422 if (i
== rm_quota_used
)
1423 rm_quota
[rm_quota_used
++] = slot_num
;
1426 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1429 ocfs2_recovery_map_clear(osb
, node_num
);
1432 "Error %d recovering node %d on device (%u,%u)!\n",
1434 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1435 mlog(ML_ERROR
, "Volume requires unmount.\n");
1438 spin_lock(&osb
->osb_lock
);
1440 spin_unlock(&osb
->osb_lock
);
1441 trace_ocfs2_recovery_thread_end(status
);
1443 /* Refresh all journal recovery generations from disk */
1444 status
= ocfs2_check_journals_nolocks(osb
);
1445 status
= (status
== -EROFS
) ? 0 : status
;
1449 /* Now it is right time to recover quotas... We have to do this under
1450 * superblock lock so that no one can start using the slot (and crash)
1451 * before we recover it */
1452 if (quota_enabled
) {
1453 for (i
= 0; i
< rm_quota_used
; i
++) {
1454 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1456 status
= PTR_ERR(qrec
);
1460 ocfs2_queue_recovery_completion(osb
->journal
,
1463 ORPHAN_NEED_TRUNCATE
);
1467 ocfs2_super_unlock(osb
, 1);
1469 /* queue recovery for offline slots */
1470 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1473 mutex_lock(&osb
->recovery_lock
);
1474 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1475 mutex_unlock(&osb
->recovery_lock
);
1479 ocfs2_free_replay_slots(osb
);
1480 osb
->recovery_thread_task
= NULL
;
1481 mb(); /* sync with ocfs2_recovery_thread_running */
1482 wake_up(&osb
->recovery_event
);
1484 mutex_unlock(&osb
->recovery_lock
);
1489 /* no one is callint kthread_stop() for us so the kthread() api
1490 * requires that we call do_exit(). And it isn't exported, but
1491 * complete_and_exit() seems to be a minimal wrapper around it. */
1492 complete_and_exit(NULL
, status
);
1495 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1497 mutex_lock(&osb
->recovery_lock
);
1499 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1500 osb
->disable_recovery
, osb
->recovery_thread_task
,
1501 osb
->disable_recovery
?
1502 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1504 if (osb
->disable_recovery
)
1507 if (osb
->recovery_thread_task
)
1510 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1511 "ocfs2rec-%s", osb
->uuid_str
);
1512 if (IS_ERR(osb
->recovery_thread_task
)) {
1513 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1514 osb
->recovery_thread_task
= NULL
;
1518 mutex_unlock(&osb
->recovery_lock
);
1519 wake_up(&osb
->recovery_event
);
1522 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1524 struct buffer_head
**bh
,
1525 struct inode
**ret_inode
)
1527 int status
= -EACCES
;
1528 struct inode
*inode
= NULL
;
1530 BUG_ON(slot_num
>= osb
->max_slots
);
1532 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1534 if (!inode
|| is_bad_inode(inode
)) {
1538 SET_INODE_JOURNAL(inode
);
1540 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1550 if (status
|| !ret_inode
)
1558 /* Does the actual journal replay and marks the journal inode as
1559 * clean. Will only replay if the journal inode is marked dirty. */
1560 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1567 struct inode
*inode
= NULL
;
1568 struct ocfs2_dinode
*fe
;
1569 journal_t
*journal
= NULL
;
1570 struct buffer_head
*bh
= NULL
;
1573 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1579 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1580 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1585 * As the fs recovery is asynchronous, there is a small chance that
1586 * another node mounted (and recovered) the slot before the recovery
1587 * thread could get the lock. To handle that, we dirty read the journal
1588 * inode for that slot to get the recovery generation. If it is
1589 * different than what we expected, the slot has been recovered.
1590 * If not, it needs recovery.
1592 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1593 trace_ocfs2_replay_journal_recovered(slot_num
,
1594 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1595 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1600 /* Continue with recovery as the journal has not yet been recovered */
1602 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1604 trace_ocfs2_replay_journal_lock_err(status
);
1605 if (status
!= -ERESTARTSYS
)
1606 mlog(ML_ERROR
, "Could not lock journal!\n");
1611 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1613 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1614 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1616 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1617 trace_ocfs2_replay_journal_skip(node_num
);
1618 /* Refresh recovery generation for the slot */
1619 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1623 /* we need to run complete recovery for offline orphan slots */
1624 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1626 printk(KERN_NOTICE
"ocfs2: Begin replay journal (node %d, slot %d) on "\
1627 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1628 MINOR(osb
->sb
->s_dev
));
1630 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1632 status
= ocfs2_force_read_journal(inode
);
1638 journal
= jbd2_journal_init_inode(inode
);
1639 if (journal
== NULL
) {
1640 mlog(ML_ERROR
, "Linux journal layer error\n");
1645 status
= jbd2_journal_load(journal
);
1650 jbd2_journal_destroy(journal
);
1654 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1656 /* wipe the journal */
1657 jbd2_journal_lock_updates(journal
);
1658 status
= jbd2_journal_flush(journal
);
1659 jbd2_journal_unlock_updates(journal
);
1663 /* This will mark the node clean */
1664 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1665 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1666 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1668 /* Increment recovery generation to indicate successful recovery */
1669 ocfs2_bump_recovery_generation(fe
);
1670 osb
->slot_recovery_generations
[slot_num
] =
1671 ocfs2_get_recovery_generation(fe
);
1673 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1674 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1681 jbd2_journal_destroy(journal
);
1683 printk(KERN_NOTICE
"ocfs2: End replay journal (node %d, slot %d) on "\
1684 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1685 MINOR(osb
->sb
->s_dev
));
1687 /* drop the lock on this nodes journal */
1689 ocfs2_inode_unlock(inode
, 1);
1698 * Do the most important parts of node recovery:
1699 * - Replay it's journal
1700 * - Stamp a clean local allocator file
1701 * - Stamp a clean truncate log
1702 * - Mark the node clean
1704 * If this function completes without error, a node in OCFS2 can be
1705 * said to have been safely recovered. As a result, failure during the
1706 * second part of a nodes recovery process (local alloc recovery) is
1707 * far less concerning.
1709 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1710 int node_num
, int slot_num
)
1713 struct ocfs2_dinode
*la_copy
= NULL
;
1714 struct ocfs2_dinode
*tl_copy
= NULL
;
1716 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1718 /* Should not ever be called to recover ourselves -- in that
1719 * case we should've called ocfs2_journal_load instead. */
1720 BUG_ON(osb
->node_num
== node_num
);
1722 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1724 if (status
== -EBUSY
) {
1725 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1733 /* Stamp a clean local alloc file AFTER recovering the journal... */
1734 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1740 /* An error from begin_truncate_log_recovery is not
1741 * serious enough to warrant halting the rest of
1743 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1747 /* Likewise, this would be a strange but ultimately not so
1748 * harmful place to get an error... */
1749 status
= ocfs2_clear_slot(osb
, slot_num
);
1753 /* This will kfree the memory pointed to by la_copy and tl_copy */
1754 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1755 tl_copy
, NULL
, ORPHAN_NEED_TRUNCATE
);
1763 /* Test node liveness by trylocking his journal. If we get the lock,
1764 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1765 * still alive (we couldn't get the lock) and < 0 on error. */
1766 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1770 struct inode
*inode
= NULL
;
1772 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1774 if (inode
== NULL
) {
1775 mlog(ML_ERROR
, "access error\n");
1779 if (is_bad_inode(inode
)) {
1780 mlog(ML_ERROR
, "access error (bad inode)\n");
1786 SET_INODE_JOURNAL(inode
);
1788 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1789 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1791 if (status
!= -EAGAIN
)
1796 ocfs2_inode_unlock(inode
, 1);
1803 /* Call this underneath ocfs2_super_lock. It also assumes that the
1804 * slot info struct has been updated from disk. */
1805 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1807 unsigned int node_num
;
1810 struct buffer_head
*bh
= NULL
;
1811 struct ocfs2_dinode
*di
;
1813 /* This is called with the super block cluster lock, so we
1814 * know that the slot map can't change underneath us. */
1816 for (i
= 0; i
< osb
->max_slots
; i
++) {
1817 /* Read journal inode to get the recovery generation */
1818 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1823 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1824 gen
= ocfs2_get_recovery_generation(di
);
1828 spin_lock(&osb
->osb_lock
);
1829 osb
->slot_recovery_generations
[i
] = gen
;
1831 trace_ocfs2_mark_dead_nodes(i
,
1832 osb
->slot_recovery_generations
[i
]);
1834 if (i
== osb
->slot_num
) {
1835 spin_unlock(&osb
->osb_lock
);
1839 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1840 if (status
== -ENOENT
) {
1841 spin_unlock(&osb
->osb_lock
);
1845 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1846 spin_unlock(&osb
->osb_lock
);
1849 spin_unlock(&osb
->osb_lock
);
1851 /* Ok, we have a slot occupied by another node which
1852 * is not in the recovery map. We trylock his journal
1853 * file here to test if he's alive. */
1854 status
= ocfs2_trylock_journal(osb
, i
);
1856 /* Since we're called from mount, we know that
1857 * the recovery thread can't race us on
1858 * setting / checking the recovery bits. */
1859 ocfs2_recovery_thread(osb
, node_num
);
1860 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1872 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1873 * randomness to the timeout to minimize multple nodes firing the timer at the
1876 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1880 get_random_bytes(&time
, sizeof(time
));
1881 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1882 return msecs_to_jiffies(time
);
1886 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1887 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1888 * is done to catch any orphans that are left over in orphan directories.
1890 * It scans all slots, even ones that are in use. It does so to handle the
1891 * case described below:
1893 * Node 1 has an inode it was using. The dentry went away due to memory
1894 * pressure. Node 1 closes the inode, but it's on the free list. The node
1895 * has the open lock.
1896 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1897 * but node 1 has no dentry and doesn't get the message. It trylocks the
1898 * open lock, sees that another node has a PR, and does nothing.
1899 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1900 * open lock, sees the PR still, and does nothing.
1901 * Basically, we have to trigger an orphan iput on node 1. The only way
1902 * for this to happen is if node 1 runs node 2's orphan dir.
1904 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1905 * seconds. It gets an EX lock on os_lockres and checks sequence number
1906 * stored in LVB. If the sequence number has changed, it means some other
1907 * node has done the scan. This node skips the scan and tracks the
1908 * sequence number. If the sequence number didn't change, it means a scan
1909 * hasn't happened. The node queues a scan and increments the
1910 * sequence number in the LVB.
1912 static void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1914 struct ocfs2_orphan_scan
*os
;
1918 os
= &osb
->osb_orphan_scan
;
1920 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1923 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
1924 atomic_read(&os
->os_state
));
1926 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1928 if (status
!= -EAGAIN
)
1933 /* Do no queue the tasks if the volume is being umounted */
1934 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1937 if (os
->os_seqno
!= seqno
) {
1938 os
->os_seqno
= seqno
;
1942 for (i
= 0; i
< osb
->max_slots
; i
++)
1943 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1944 NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1946 * We queued a recovery on orphan slots, increment the sequence
1947 * number and update LVB so other node will skip the scan for a while
1951 os
->os_scantime
= ktime_get_seconds();
1953 ocfs2_orphan_scan_unlock(osb
, seqno
);
1955 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
1956 atomic_read(&os
->os_state
));
1960 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1961 static void ocfs2_orphan_scan_work(struct work_struct
*work
)
1963 struct ocfs2_orphan_scan
*os
;
1964 struct ocfs2_super
*osb
;
1966 os
= container_of(work
, struct ocfs2_orphan_scan
,
1967 os_orphan_scan_work
.work
);
1970 mutex_lock(&os
->os_lock
);
1971 ocfs2_queue_orphan_scan(osb
);
1972 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1973 queue_delayed_work(osb
->ocfs2_wq
, &os
->os_orphan_scan_work
,
1974 ocfs2_orphan_scan_timeout());
1975 mutex_unlock(&os
->os_lock
);
1978 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1980 struct ocfs2_orphan_scan
*os
;
1982 os
= &osb
->osb_orphan_scan
;
1983 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1984 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1985 mutex_lock(&os
->os_lock
);
1986 cancel_delayed_work(&os
->os_orphan_scan_work
);
1987 mutex_unlock(&os
->os_lock
);
1991 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1993 struct ocfs2_orphan_scan
*os
;
1995 os
= &osb
->osb_orphan_scan
;
1999 mutex_init(&os
->os_lock
);
2000 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
2003 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
2005 struct ocfs2_orphan_scan
*os
;
2007 os
= &osb
->osb_orphan_scan
;
2008 os
->os_scantime
= ktime_get_seconds();
2009 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
2010 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
2012 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
2013 queue_delayed_work(osb
->ocfs2_wq
, &os
->os_orphan_scan_work
,
2014 ocfs2_orphan_scan_timeout());
2018 struct ocfs2_orphan_filldir_priv
{
2019 struct dir_context ctx
;
2021 struct ocfs2_super
*osb
;
2022 enum ocfs2_orphan_reco_type orphan_reco_type
;
2025 static int ocfs2_orphan_filldir(struct dir_context
*ctx
, const char *name
,
2026 int name_len
, loff_t pos
, u64 ino
,
2029 struct ocfs2_orphan_filldir_priv
*p
=
2030 container_of(ctx
, struct ocfs2_orphan_filldir_priv
, ctx
);
2033 if (name_len
== 1 && !strncmp(".", name
, 1))
2035 if (name_len
== 2 && !strncmp("..", name
, 2))
2038 /* do not include dio entry in case of orphan scan */
2039 if ((p
->orphan_reco_type
== ORPHAN_NO_NEED_TRUNCATE
) &&
2040 (!strncmp(name
, OCFS2_DIO_ORPHAN_PREFIX
,
2041 OCFS2_DIO_ORPHAN_PREFIX_LEN
)))
2044 /* Skip bad inodes so that recovery can continue */
2045 iter
= ocfs2_iget(p
->osb
, ino
,
2046 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2050 if (!strncmp(name
, OCFS2_DIO_ORPHAN_PREFIX
,
2051 OCFS2_DIO_ORPHAN_PREFIX_LEN
))
2052 OCFS2_I(iter
)->ip_flags
|= OCFS2_INODE_DIO_ORPHAN_ENTRY
;
2054 /* Skip inodes which are already added to recover list, since dio may
2055 * happen concurrently with unlink/rename */
2056 if (OCFS2_I(iter
)->ip_next_orphan
) {
2061 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2062 /* No locking is required for the next_orphan queue as there
2063 * is only ever a single process doing orphan recovery. */
2064 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2070 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2072 struct inode
**head
,
2073 enum ocfs2_orphan_reco_type orphan_reco_type
)
2076 struct inode
*orphan_dir_inode
= NULL
;
2077 struct ocfs2_orphan_filldir_priv priv
= {
2078 .ctx
.actor
= ocfs2_orphan_filldir
,
2081 .orphan_reco_type
= orphan_reco_type
2084 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2085 ORPHAN_DIR_SYSTEM_INODE
,
2087 if (!orphan_dir_inode
) {
2093 inode_lock(orphan_dir_inode
);
2094 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2100 status
= ocfs2_dir_foreach(orphan_dir_inode
, &priv
.ctx
);
2109 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2111 inode_unlock(orphan_dir_inode
);
2112 iput(orphan_dir_inode
);
2116 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2121 spin_lock(&osb
->osb_lock
);
2122 ret
= !osb
->osb_orphan_wipes
[slot
];
2123 spin_unlock(&osb
->osb_lock
);
2127 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2130 spin_lock(&osb
->osb_lock
);
2131 /* Mark ourselves such that new processes in delete_inode()
2132 * know to quit early. */
2133 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2134 while (osb
->osb_orphan_wipes
[slot
]) {
2135 /* If any processes are already in the middle of an
2136 * orphan wipe on this dir, then we need to wait for
2138 spin_unlock(&osb
->osb_lock
);
2139 wait_event_interruptible(osb
->osb_wipe_event
,
2140 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2141 spin_lock(&osb
->osb_lock
);
2143 spin_unlock(&osb
->osb_lock
);
2146 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2149 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2153 * Orphan recovery. Each mounted node has it's own orphan dir which we
2154 * must run during recovery. Our strategy here is to build a list of
2155 * the inodes in the orphan dir and iget/iput them. The VFS does
2156 * (most) of the rest of the work.
2158 * Orphan recovery can happen at any time, not just mount so we have a
2159 * couple of extra considerations.
2161 * - We grab as many inodes as we can under the orphan dir lock -
2162 * doing iget() outside the orphan dir risks getting a reference on
2164 * - We must be sure not to deadlock with other processes on the
2165 * system wanting to run delete_inode(). This can happen when they go
2166 * to lock the orphan dir and the orphan recovery process attempts to
2167 * iget() inside the orphan dir lock. This can be avoided by
2168 * advertising our state to ocfs2_delete_inode().
2170 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2172 enum ocfs2_orphan_reco_type orphan_reco_type
)
2175 struct inode
*inode
= NULL
;
2177 struct ocfs2_inode_info
*oi
;
2178 struct buffer_head
*di_bh
= NULL
;
2179 struct ocfs2_dinode
*di
= NULL
;
2181 trace_ocfs2_recover_orphans(slot
);
2183 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2184 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
, orphan_reco_type
);
2185 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2187 /* Error here should be noted, but we want to continue with as
2188 * many queued inodes as we've got. */
2193 oi
= OCFS2_I(inode
);
2194 trace_ocfs2_recover_orphans_iput(
2195 (unsigned long long)oi
->ip_blkno
);
2197 iter
= oi
->ip_next_orphan
;
2198 oi
->ip_next_orphan
= NULL
;
2200 if (oi
->ip_flags
& OCFS2_INODE_DIO_ORPHAN_ENTRY
) {
2202 ret
= ocfs2_rw_lock(inode
, 1);
2208 * We need to take and drop the inode lock to
2209 * force read inode from disk.
2211 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2217 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2219 if (di
->i_flags
& cpu_to_le32(OCFS2_DIO_ORPHANED_FL
)) {
2220 ret
= ocfs2_truncate_file(inode
, di_bh
,
2221 i_size_read(inode
));
2228 ret
= ocfs2_del_inode_from_orphan(osb
, inode
,
2234 ocfs2_inode_unlock(inode
, 1);
2238 ocfs2_rw_unlock(inode
, 1);
2240 inode_unlock(inode
);
2242 /* clear dio flag in ocfs2_inode_info */
2243 oi
->ip_flags
&= ~OCFS2_INODE_DIO_ORPHAN_ENTRY
;
2245 spin_lock(&oi
->ip_lock
);
2246 /* Set the proper information to get us going into
2247 * ocfs2_delete_inode. */
2248 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2249 spin_unlock(&oi
->ip_lock
);
2259 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2261 /* This check is good because ocfs2 will wait on our recovery
2262 * thread before changing it to something other than MOUNTED
2264 wait_event(osb
->osb_mount_event
,
2265 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2266 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2267 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2269 /* If there's an error on mount, then we may never get to the
2270 * MOUNTED flag, but this is set right before
2271 * dismount_volume() so we can trust it. */
2272 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2273 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2274 mlog(0, "mount error, exiting!\n");
2281 static int ocfs2_commit_thread(void *arg
)
2284 struct ocfs2_super
*osb
= arg
;
2285 struct ocfs2_journal
*journal
= osb
->journal
;
2287 /* we can trust j_num_trans here because _should_stop() is only set in
2288 * shutdown and nobody other than ourselves should be able to start
2289 * transactions. committing on shutdown might take a few iterations
2290 * as final transactions put deleted inodes on the list */
2291 while (!(kthread_should_stop() &&
2292 atomic_read(&journal
->j_num_trans
) == 0)) {
2294 wait_event_interruptible(osb
->checkpoint_event
,
2295 atomic_read(&journal
->j_num_trans
)
2296 || kthread_should_stop());
2298 status
= ocfs2_commit_cache(osb
);
2300 static unsigned long abort_warn_time
;
2302 /* Warn about this once per minute */
2303 if (printk_timed_ratelimit(&abort_warn_time
, 60*HZ
))
2304 mlog(ML_ERROR
, "status = %d, journal is "
2305 "already aborted.\n", status
);
2307 * After ocfs2_commit_cache() fails, j_num_trans has a
2308 * non-zero value. Sleep here to avoid a busy-wait
2311 msleep_interruptible(1000);
2314 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2316 "commit_thread: %u transactions pending on "
2318 atomic_read(&journal
->j_num_trans
));
2325 /* Reads all the journal inodes without taking any cluster locks. Used
2326 * for hard readonly access to determine whether any journal requires
2327 * recovery. Also used to refresh the recovery generation numbers after
2328 * a journal has been recovered by another node.
2330 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2334 struct buffer_head
*di_bh
= NULL
;
2335 struct ocfs2_dinode
*di
;
2336 int journal_dirty
= 0;
2338 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2339 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2345 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2347 osb
->slot_recovery_generations
[slot
] =
2348 ocfs2_get_recovery_generation(di
);
2350 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2351 OCFS2_JOURNAL_DIRTY_FL
)